479,865 research outputs found

    Semantic-based decision support for remote care of dementia patients

    Get PDF
    This paper investigates the challenges in developing a semantic-based Dementia Care Decision Support System based on the non-intrusive monitoring of the patient's behaviour. Semantic-based approaches are well suited for modelling context-aware scenarios similar to Dementia care systems, where the patient's dynamic behaviour observations (occupants movement, equipment use) need to be analysed against the semantic knowledge about the patient's condition (illness history, medical advice, known symptoms) in an integrated knowledgebase. However, our research findings establish that the ability of semantic technologies to reason upon the complex interrelated events emanating from the behaviour monitoring sensors to infer knowledge assisting medical advice represents a major challenge. We attempt to address this problem by introducing a new approach that relies on propositional calculus modelling to segregate complex events that are amenable for semantic reasoning from events that require pre-processing outside the semantic engine before they can be reasoned upon. The event pre-processing activity also controls the timing of triggering the reasoning process in order to further improve the efficiency of the inference process. Using regression analysis, we evaluate the response-time as the number of monitored patients increases and conclude that the incurred overhead on the response time of the prototype decision support systems remains tolerable

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Developmental Stages of Perception and Language Acquisition in a Perceptually Grounded Robot

    Get PDF
    The objective of this research is to develop a system for language learning based on a minimum of pre-wired language-specific functionality, that is compatible with observations of perceptual and language capabilities in the human developmental trajectory. In the proposed system, meaning (in terms of descriptions of events and spatial relations) is extracted from video images based on detection of position, motion, physical contact and their parameters. Mapping of sentence form to meaning is performed by learning grammatical constructions that are retrieved from a construction inventory based on the constellation of closed class items uniquely identifying the target sentence structure. The resulting system displays robust acquisition behavior that reproduces certain observations from developmental studies, with very modest “innate” language specificity

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    A grid-based approach for processing group activity log files

    Get PDF
    The information collected regarding group activity in a collaborative learning environment requires classifying, structuring and processing. The aim is to process this information in order to extract, reveal and provide students and tutors with valuable knowledge, awareness and feedback in order to successfully perform the collaborative learning activity. However, the large amount of information generated during online group activity may be time-consuming to process and, hence, can hinder the real-time delivery of the information. In this study we show how a Grid-based paradigm can be used to effectively process and present the information regarding group activity gathered in the log files under a collaborative environment. The computational power of the Grid makes it possible to process a huge amount of event information, compute statistical results and present them, when needed, to the members of the online group and the tutors, who are geographically distributed.Peer ReviewedPostprint (author's final draft

    Video semantic content analysis based on ontology

    Get PDF
    The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standards, such as MPEG-4 and MPEG-7, provide the basic functionalities in order to manipulate and transmit objects and metadata. But importantly, most of the content of video data at a semantic level is out of the scope of the standards. In this paper, a video semantic content analysis framework based on ontology is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. And low-level features (e.g. visual and aural) and video content analysis algorithms are integrated into the ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how features and algorithms for video analysis should be applied according to different perception content and low-level features. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in a soccer video domain and shows promising results
    corecore