16,169 research outputs found

    Naming and discovery in networks : architecture and economics

    Get PDF
    In less than three decades, the Internet was transformed from a research network available to the academic community into an international communication infrastructure. Despite its tremendous success, there is a growing consensus in the research community that the Internet has architectural limitations that need to be addressed in a effort to design a future Internet. Among the main technical limitations are the lack of mobility support, and the lack of security and trust. The Internet, and particularly TCP/IP, identifies endpoints using a location/routing identifier, the IP address. Coupling the endpoint identifier to the location identifier hinders mobility and poorly identifies the actual endpoint. On the other hand, the lack of security has been attributed to limitations in both the network and the endpoint. Authentication for example is one of the main concerns in the architecture and is hard to implement partly due to lack of identity support. The general problem that this dissertation is concerned with is that of designing a future Internet. Towards this end, we focus on two specific sub-problems. The first problem is the lack of a framework for thinking about architectures and their design implications. It was obvious after surveying the literature that the majority of the architectural work remains idiosyncratic and descriptions of network architectures are mostly idiomatic. This has led to the overloading of architectural terms, and to the emergence of a large body of network architecture proposals with no clear understanding of their cross similarities, compatibility points, their unique properties, and architectural performance and soundness. On the other hand, the second problem concerns the limitations of traditional naming and discovery schemes in terms of service differentiation and economic incentives. One of the recurring themes in the community is the need to separate an entity\u27s identifier from its locator to enhance mobility and security. Separation of identifier and locator is a widely accepted design principle for a future Internet. Separation however requires a process to translate from the identifier to the locator when discovering a network path to some identified entity. We refer to this process as identifier-based discovery, or simply discovery, and we recognize two limitations that are inherent in the design of traditional discovery schemes. The first limitation is the homogeneity of the service where all entities are assumed to have the same discovery performance requirements. The second limitation is the inherent incentive mismatch as it relates to sharing the cost of discovery. This dissertation addresses both subproblems, the architectural framework as well as the naming and discovery limitations

    The essence of P2P: A reference architecture for overlay networks

    Get PDF
    The success of the P2P idea has created a huge diversity of approaches, among which overlay networks, for example, Gnutella, Kazaa, Chord, Pastry, Tapestry, P-Grid, or DKS, have received specific attention from both developers and researchers. A wide variety of algorithms, data structures, and architectures have been proposed. The terminologies and abstractions used, however, have become quite inconsistent since the P2P paradigm has attracted people from many different communities, e.g., networking, databases, distributed systems, graph theory, complexity theory, biology, etc. In this paper we propose a reference model for overlay networks which is capable of modeling different approaches in this domain in a generic manner. It is intended to allow researchers and users to assess the properties of concrete systems, to establish a common vocabulary for scientific discussion, to facilitate the qualitative comparison of the systems, and to serve as the basis for defining a standardized API to make overlay networks interoperable

    Small-world networks, distributed hash tables and the e-resource discovery problem

    Get PDF
    Resource discovery is one of the most important underpinning problems behind producing a scalable, robust and efficient global infrastructure for e-Science. A number of approaches to the resource discovery and management problem have been made in various computational grid environments and prototypes over the last decade. Computational resources and services in modern grid and cloud environments can be modelled as an overlay network superposed on the physical network structure of the Internet and World Wide Web. We discuss some of the main approaches to resource discovery in the context of the general properties of such an overlay network. We present some performance data and predicted properties based on algorithmic approaches such as distributed hash table resource discovery and management. We describe a prototype system and use its model to explore some of the known key graph aspects of the global resource overlay network - including small-world and scale-free properties

    Internames: a name-to-name principle for the future Internet

    Full text link
    We propose Internames, an architectural framework in which names are used to identify all entities involved in communication: contents, users, devices, logical as well as physical points involved in the communication, and services. By not having a static binding between the name of a communication entity and its current location, we allow entities to be mobile, enable them to be reached by any of a number of basic communication primitives, enable communication to span networks with different technologies and allow for disconnected operation. Furthermore, with the ability to communicate between names, the communication path can be dynamically bound to any of a number of end-points, and the end-points themselves could change as needed. A key benefit of our architecture is its ability to accommodate gradual migration from the current IP infrastructure to a future that may be a ubiquitous Information Centric Network. Basic building blocks of Internames are: i) a name-based Application Programming Interface; ii) a separation of identifiers (names) and locators; iii) a powerful Name Resolution Service (NRS) that dynamically maps names to locators, as a function of time/location/context/service; iv) a built-in capacity of evolution, allowing a transparent migration from current networks and the ability to include as particular cases current specific architectures. To achieve this vision, shared by many other researchers, we exploit and expand on Information Centric Networking principles, extending ICN functionality beyond content retrieval, easing send-to-name and push services, and allowing to use names also to route data in the return path. A key role in this architecture is played by the NRS, which allows for the co-existence of multiple network "realms", including current IP and non-IP networks, glued together by a name-to-name overarching communication primitive.Comment: 6 page
    • …
    corecore