93,543 research outputs found

    Spatiotemporal CNN with Pyramid Bottleneck Blocks: Application to eye blinking detection

    Get PDF
    Eye blink detection is a challenging problem that many researchers are working on because it has the potential to solve many facial analysis tasks, such as face anti-spoofing, driver drowsiness detection, and some health disorders. There have been few attempts to detect blinking in the wild scenario, while most of the work has been done under controlled conditions. Moreover, current learning approaches are designed to process sequences that contain only a single blink ignoring the case of the presence of multiple eye blinks. In this work, we propose a fast framework for eye blink detection and eye blink verification that can effectively extract multiple blinks from image sequences considering several challenges such as lighting changes, variety of poses, and change in appearance. The proposed framework employs fast landmarks detector to extract multiple facial key points including the ones that identify the eye regions. Then, an SVD-based method is proposed to extract the potential eye blinks in a moving time window that is updated with new images every second. Finally, the detected blink candidates are verified using a 2D Pyramidal Bottleneck Block Network (PBBN). We also propose an alternative approach that uses a sequence of frames instead of an image as input and employs a continuous 3D PBBN that follows most of the state-of-the-art approaches schemes. Experimental results show the better performance of the proposed approach compared to the state-of-the-art approaches

    Precise eye localization using HOG descriptors

    Full text link
    In this paper, we present a novel algorithm for precise eye detection. First, a couple of AdaBoost classifiers trained with Haar-like features are used to preselect possible eye locations. Then, a Support Vector Machine machine that uses Histograms of Oriented Gradients descriptors is used to obtain the best pair of eyes among all possible combinations of preselected eyes. Finally, we compare the eye detection results with three state-of-the-art works and a commercial software. The results show that our algorithm achieves the highest accuracy on the FERET and FRGCv1 databases, which is the most complete comparative presented so far. © Springer-Verlag 2010.This work has been partially supported by the grant TEC2009-09146 of the Spanish Government.Monzó Ferrer, D.; Albiol Colomer, A.; Sastre, J.; Albiol Colomer, AJ. (2011). Precise eye localization using HOG descriptors. Machine Vision and Applications. 22(3):471-480. https://doi.org/10.1007/s00138-010-0273-0S471480223Riopka, T., Boult, T.: The eyes have it. In: Proceedings of ACM SIGMM Multimedia Biometrics Methods and Applications Workshop, Berkeley, CA, pp. 9–16 (2003)Kim C., Choi C.: Image covariance-based subspace method for face recognition. Pattern Recognit. 40(5), 1592–1604 (2007)Wang, P., Green, M., Ji, Q., Wayman, J.: Automatic eye detection and its validation. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 3, San Diego, CA, pp. 164–171 (2005)Amir A., Zimet L., Sangiovanni-Vincentelli A., Kao S.: An embedded system for an eye-detection sensor. Comput. Vis. Image Underst. 98(1), 104–123 (2005)Zhu Z., Ji Q.: Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Comput. Vis. Image Underst. 98(1), 124–154 (2005)Huang, W., Mariani, R.: Face detection and precise eyes location. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, Washington, DC, USA, pp. 722–727 (2000)Brunelli R., Poggio T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1042–1052 (1993)Guan, Y.: Robust eye detection from facial image based on multi-cue facial information. In: Proceedings of IEEE International Conference on Control and Automation, pp. 1775–1778 (2007)Rizon, M., Kawaguchi, T.: Automatic eye detection using intensity and edge information. In: Proceedings of TENCON, vol. 2, Kuala Lumpur, Malaysia, pp. 415–420 (2000)Han, C., Liao, H., Yu, K., Chen, L.: Fast face detection via morphology-based pre-processing. In: Proceedings of the 9th International Conference on Image Analysis and Processing, vol. 2. Springer, London, UK, pp. 469–476 (1997)Song J., Chi Z., Liu J.: A robust eye detection method using combined binary edge and intensity information. Pattern Recognit. 39(6), 1110–1125 (2006)Campadelli, P., Lanzarotti, R., Lipori, G.: Precise eye localization through a general-to-specific model definition. In: Proceedings of the British Machine Vision Conference, Edinburgh, Scotland, pp. 187–196 (2006)Smeraldi F., Carmona O., Bign J.: Saccadic search with gabor features applied to eye detection and real-time head tracking. Image Vis. Comput. 18(4), 323–329 (1998)Sirohey S. A., Rosenfeld A.: Eye detection in a face image using linear and nonlinear filters. Pattern Recognit. 34(7), 1367–1391 (2001)Ma, Y., Ding, X., Wang, Z., Wang, N.: Robust precise eye location under probabilistic framework. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, pp. 339–344 (2004)Lu, H., Zhang, W., Yang D.: Eye detection based on rectangle features and pixel-pattern-based texture features. In: Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems, pp. 746–749 (2007)Jin, L., Yuan, X., Satoh, S., Li, J., Xia, L.: A hybrid classifier for precise and robust eye detection. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, Hong Kong, pp. 731–735 (2006)Vapnik V. N.: The Nature of Statistical Learning Theory. Springer, New York Inc, New York, NY (1995)Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 1, Hawaii, pp. 511–518 (2001)Fasel I., Fortenberry B., Movellan J.: A generative framework for real time object detection and classification. Comput. Vis. Image Underst. 98(1), 182–210 (2005)Huang J., Wechsler H.: Visual routines for eye location using learning and evolution. IEEE Trans. Evolut. Comput. 4(1), 73–82 (2000)Behnke S.: Face localization and tracking in the neural abstraction pyramid. Neural Comput. Appl. 14(2), 97–103 (2005)Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 9th European Conference on Computer Vision, vol. 2, San Diego, CA, pp. 886–893 (2005)Albiol A., Monzo D., Martin A., Sastre J., Albiol A.: Face recognition using hog-ebgm. Pattern Recognit. Lett. 29(10), 1537–1543 (2008)Lowe D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)Bicego, M., Lagorio, A., Grosso, E., Tistarelli M.: On the use of SIFT features for face authentication. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition Workshop, New York, p. 35 (2006)Yang M.-H., Kriegman D., Ahuja N.: Detecting faces in images: a survey. Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)Jain A., Murty M., Flynn P.: Data clustering: a review. ACM Comput. Syst. 31(3), 264–323 (1999)Mikolajczyk K., Schmid C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)Humanscan, BioID database. http://www.bioid.comPeer, P.: CVL Face database, University of Ljubjana. http://www.fri.uni-lj.si/enPhillips P. J., Moon H., Rizvi S. A., Rauss P. J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Jin, C., Hoffman, K., Marques, J., Jaesik, M., Worek, W.: Overview of the face recognition grand challenge. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 1, San Diego, CA, pp. 947–954 (2005)Jesorsky, O., Kirchberg, K.J., Frischholz, R.: Robust face detection using the hausdorff distance. In: Proceedings of the Third International Conference on Audio- and Video-Based Biometric Person Authentication, Springer, London, UK, pp. 90–95 (2001)Neurotechnologija, Biometrical and Artificial Intelligence Technologies, Verilook SDK. http://www.neurotechnologija.comWitten I., Frank E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn: Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2005)Turk M., Pentland A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201

    Facial Point Detection using Boosted Regression and Graph Models

    Get PDF
    Finding fiducial facial points in any frame of a video showing rich naturalistic facial behaviour is an unsolved problem. Yet this is a crucial step for geometric-featurebased facial expression analysis, and methods that use appearance-based features extracted at fiducial facial point locations. In this paper we present a method based on a combination of Support Vector Regression and Markov Random Fields to drastically reduce the time needed to search for a point’s location and increase the accuracy and robustness of the algorithm. Using Markov Random Fields allows us to constrain the search space by exploiting the constellations that facial points can form. The regressors on the other hand learn a mapping between the appearance of the area surrounding a point and the positions of these points, which makes detection of the points very fast and can make the algorithm robust to variations of appearance due to facial expression and moderate changes in head pose. The proposed point detection algorithm was tested on 1855 images, the results of which showed we outperform current state of the art point detectors

    Atypical eye contact in autism: Models, mechanisms and development

    Get PDF
    An atypical pattern of eye contact behaviour is one of the most significant symptoms of Autism Spectrum Disorder (ASD). Recent empirical advances have revealed the developmental, cognitive and neural basis of atypical eye contact behaviour in ASD. We review different models and advance a new ‘fast-track modulator model’. Specifically, we propose that atypical eye contact processing in ASD originates in the lack of influence from a subcortical face and eye contact detection route, which is hypothesized to modulate eye contact processing and guide its emergent specialization during development
    corecore