20 research outputs found

    Remote Real-Time Collaboration Platform enabled by the Capture, Digitisation and Transfer of Human-Workpiece Interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, a platform for global teams to collaborate with each other in real-time to perform complex tasks is highly desirable. This work investigates the design and development of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors borrowed from the gaming industry. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the task environment. This enables teams to remotely work on a common task problem at the same time and also get immediate feedback from each other which is vital for collaborative design, inspection and verifications tasks in the factories of the future

    Surface Reconstruction and Evolution from Multiple Views

    Get PDF
    Applications like 3D Telepresence necessitate faithful 3D surface reconstruction of the object and 3D data compression in both spatial and temporal domains. This makes us feel immersed in virtual environments there by making 3D Telepresence a powerful tool in many applications. Hence 3D surface reconstruction and 3D compression are two challenging problems which are addressed in this thesis

    Correlated multi-streaming in distributed interactive multimedia systems

    Get PDF
    Distributed Interactive Multimedia Environments (DIMEs) enable geographically distributed people to interact with each other in a joint media-rich virtual environment for a wide range of activities, such as art performance, medical consultation, sport training, etc. The real-time collaboration is made possible by exchanging a set of multi-modal sensory streams over the network in real time. The characterization and evaluation of such multi-stream interactive environments is challenging because the traditional Quality of Service metrics (e.g., delay, jitter) are limited to a per stream basis. In this work, we present a novel ???Bundle of Streams??? concept to de???ne correlated multi-streams in DIMEs and present new cyber-physical, spatio-temporal QoS metrics to measure QoS over bundle of streams. We realize Bundle of Streams concept by presenting a novel paradigm of Bundle Streaming as a Service (SAS). We propose and develop SAS Kernel, a generic, distributed, modular and highly ???exible streaming kernel realizing SAS concept. We validate the Bundle of Streams model by comparing the QoS performance of bundle of streams over different transport protocols in a 3D tele-immersive testbed. Also, further experiments demonstrate that the SAS Kernel incurs low overhead in delay, CPU, and bandwidth demands

    Remote real-time collaboration through synchronous exchange of digitised human-workpiece interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, collaborative infrastructures that enable global teams to collaborate with each other in real-time in performing complex manufacturing-related tasks is highly desirable. This work demonstrates the design and implementation of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors and a synchronous data transfer protocol from computer networks. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the workpieces and the task environment. Results show that this platform could enable teams to remotely work on a common engineering problem at the same time and also get immediate feedback from each other making it valuable for collaborative design, inspection and verifications tasks in the factories of the future. An additional benefit of the implemented platform is its use of low cost off the shelf equipment thereby making it accessible to SMEs that are connected to larger organisations via complex supply chains

    A Methodological Approach to User Evaluation and Assessment of a Virtual Environment Hangout

    Get PDF
    Innovation in virtual reality and motion sensing devices is pushing the development of virtual communication platforms towards completely immersive scenarios, which require full user interaction and create complex sensory experiences. This evolution influences user experiences and creates new paradigms for interaction, leading to an increased importance of user evaluation and assessment on new systems interfaces and usability, to validate platform design and development from the users’ point of view. The REVERIE research project aims to develop a virtual environment service for realistic inter-personal interaction. This paper describes the design challenges faced during the development process of user interfaces and the adopted methodological approach to user evaluation and assessment

    Grid Information Technology as a New Technological Tool for e-Science, Healthcare and Life Science

    Get PDF
    Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science.Hoy en día, los proyectos científicos requieren poderosos recursos de computación capaces de manejar grandes cantidades de datos, los cuales han dado paso a la ciencia electrónica (e-ciencia). Estos requerimientos se hacen evidentes en la necesidad de optimizar tiempo y esfuerzos en actividades relacionadas con la salud. Cuando la e-ciencia se enfoca en el manejo colaborativo de toda la información generada en la medicina clínica y la salud, da como resultado la salud electrónica (e-salud). Los científicos se han interesado cada vez más y más en una tecnología emergente, como lo es la Tecnología de información en red, la que puede ofrecer solución a sus necesidades cotidianas. El siguiente trabajo apunta a examinar como la e-ciencia es empleada en el mundo. También se discute que la tecnología puede proveer una solución ideal para encarar nuevos desafíos en e-salud y Ciencias de la Vida.Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science

    Multi-Stream Management for Supporting Multi-Party 3D Tele-Immersive Environments

    Get PDF
    Three-dimensional tele-immersive (3DTI) environments have great potential to promote collaborative work among geographically distributed participants. However, extensive application of 3DTI environments is still hindered by problems pertaining to scalability, manageability and reliance of special-purpose components. Thus, one critical question is how to organize the acquisition, transmission and display of large volume real-time 3D visual data over commercially available computing and networking infrastructures so that .everybody. would be able to install and enjoy 3DTI environments for high quality tele-collaboration. In the thesis, we explore the design space from the angle of multi-stream Quality-of-Service (QoS) management to support multi-party 3DTI communication. In 3DTI environments, multiple correlated 3D video streams are deployed to provide a comprehensive representation of the physical scene. Traditional QoS approach in 2D and single-stream scenario has become inadequate. On the other hand, the existence of multiple streams provides unique opportunity for QoS provisioning. We propose an innovative cross-layer hierarchical and distributed multi-stream management middleware framework for QoS provisioning to fully enable multi-party 3DTI communication over general delivery infrastructure. The major contributions are as follows. First, we introduce the view model for representing the user interest in the application layer. The design revolves around the concept of view-aware multi-stream coordination, which leverages the central role of view semantics in 3D video systems. Second, in the stream differentiation layer we present the design of view to stream mapping, where a subset of relevant streams are selected based on the relative importance of each stream to the current view. Conventional streaming controllers focus on a fixed set of streams specified by the application. Different from all the others, in our management framework the application layer only specifies the view information while the underlying controller dynamically determines the set of streams to be managed. Third, in the stream coordination layer we present two designs applicable in different situations. In the case of end-to-end 3DTI communication, a learning-based controller is embedded which provides bandwidth allocation for relevant streams. In the case of multi-party 3DTI communication, we propose a novel ViewCast protocol to coordinate the multi-stream content dissemination upon an end-system overlay network

    RSSI Based Indoor Passive Localization for Intrusion Detection and Tracking

    Get PDF
    A real time system for intrusion detection and tracking based on wireless sensor network technology is designed by using the IITH mote which is de- veloped and designed in IIT Hyderabad as the communication module in the network.This paper describes the Device-Free Passive Localization system based on RSSI.The main objective of this paper is to design a DFP Local- ization system that is easily redeployable, recon�gurable, easy to use, and operates in real time. In addition the detection of humans is to be done.The em- bedded intrusion detection algorithm is designed so that it is able to cope with the limited resources, in terms of computational power and available memory space, of the microcontroller unit (MCU) found in the nodes. and various challenges and problem faced during the real test bed deployment and also proposed solutions to overcome them.We presented an alternative algo- rithm based on the minimum Euclidean distance classi�er.our result shows that the localization accuracy of this system is increased when using the proposed algorith

    Steering in computational science: mesoscale modelling and simulation

    Full text link
    This paper outlines the benefits of computational steering for high performance computing applications. Lattice-Boltzmann mesoscale fluid simulations of binary and ternary amphiphilic fluids in two and three dimensions are used to illustrate the substantial improvements which computational steering offers in terms of resource efficiency and time to discover new physics. We discuss details of our current steering implementations and describe their future outlook with the advent of computational grids.Comment: 40 pages, 11 figures. Accepted for publication in Contemporary Physic
    corecore