3,050 research outputs found

    Project Slope - A study of lunar orbiter photographic evaluation secondary analysis tasks Final report

    Get PDF
    Project SLOPE /Study of Lunar Orbiter Photographic Evaluation/ techniques, implementation and accurac

    Measuring gravitational waves from binary black hole coalescences: II. the waves' information and its extraction, with and without templates

    Get PDF
    We discuss the extraction of information from detected binary black hole (BBH) coalescence gravitational waves, focusing on the merger phase that occurs after the gradual inspiral and before the ringdown. Our results are: (1) If numerical relativity simulations have not produced template merger waveforms before BBH detections by LIGO/VIRGO, one can band-pass filter the merger waves. For BBHs smaller than about 40 solar masses detected via their inspiral waves, the band pass filtering signal to noise ratio indicates that the merger waves should typically be just barely visible in the noise for initial and advanced LIGO interferometers. (2) We derive an optimized (maximum likelihood) method for extracting a best-fit merger waveform from the noisy detector output; one "perpendicularly projects" this output onto a function space (specified using wavelets) that incorporates our prior knowledge of the waveforms. An extension of the method allows one to extract the BBH's two independent waveforms from outputs of several interferometers. (3) If numerical relativists produce codes for generating merger templates but running the codes is too expensive to allow an extensive survey of the merger parameter space, then a coarse survey of this parameter space, to determine the ranges of the several key parameters and to explore several qualitative issues which we describe, would be useful for data analysis purposes. (4) A complete set of templates could be used to test the nonlinear dynamics of general relativity and to measure some of the binary parameters. We estimate the number of bits of information obtainable from the merger waves (about 10 to 60 for LIGO/VIRGO, up to 200 for LISA), estimate the information loss due to template numerical errors or sparseness in the template grid, and infer approximate requirements on template accuracy and spacing.Comment: 33 pages, Rextex 3.1 macros, no figures, submitted to Phys Rev

    Image reconstruction from photon sparse data

    Get PDF
    We report an algorithm for reconstructing images when the average number of photons recorded per pixel is of order unity, i.e. photon-sparse data. The image optimisation algorithm minimises a cost function incorporating both a Poissonian log-likelihood term based on the deviation of the reconstructed image from the measured data and a regularization-term based upon the sum of the moduli of the second spatial derivatives of the reconstructed image pixel intensities. The balance between these two terms is set by a bootstrapping technique where the target value of the log-likelihood term is deduced from a smoothed version of the original data. When compared to the original data, the processed images exhibit lower residuals with respect to the true object. We use photon-sparse data from two different experimental systems, one system based on a single-photon, avalanche photo-diode array and the other system on a time-gated, intensified camera. However, this same processing technique could most likely be applied to any low photon-number image irrespective of how the data is collected

    Efficient Sampling of Band-limited Signals from Sine Wave Crossings

    Get PDF
    This correspondence presents an efficient method for reconstructing a band-limited signal in the discrete domain from its crossings with a sine wave. The method makes it possible to design A/D converters that only deliver the crossing timings, which are then used to interpolate the input signal at arbitrary instants. Potentially, it may allow for reductions in power consumption and complexity in these converters. The reconstruction in the discrete domain is based on a recently-proposed modification of the Lagrange interpolator, which is readily implementable with linear complexity and efficiently, given that it re-uses known schemes for variable fractional-delay (VFD) filters. As a spin-off, the method allows one to perform spectral analysis from sine wave crossings with the complexity of the FFT. Finally, the results in the correspondence are validated in several numerical examples.Comment: To appear in the IEEE Transactions on Signal Processin
    corecore