530 research outputs found

    Experimental and theoretical research on program mutation

    Get PDF
    Issued as Final report, Project no. G-36-636 (continued by G-36-661

    A new parallelisation technique for heterogeneous CPUs

    Get PDF
    Parallelization has moved in recent years into the mainstream compilers, and the demand for parallelizing tools that can do a better job of automatic parallelization is higher than ever. During the last decade considerable attention has been focused on developing programming tools that support both explicit and implicit parallelism to keep up with the power of the new multiple core technology. Yet the success to develop automatic parallelising compilers has been limited mainly due to the complexity of the analytic process required to exploit available parallelism and manage other parallelisation measures such as data partitioning, alignment and synchronization. This dissertation investigates developing a programming tool that automatically parallelises large data structures on a heterogeneous architecture and whether a high-level programming language compiler can use this tool to exploit implicit parallelism and make use of the performance potential of the modern multicore technology. The work involved the development of a fully automatic parallelisation tool, called VSM, that completely hides the underlying details of general purpose heterogeneous architectures. The VSM implementation provides direct and simple access for users to parallelise array operations on the Cell’s accelerators without the need for any annotations or process directives. This work also involved the extension of the Glasgow Vector Pascal compiler to work with the VSM implementation as a one compiler system. The developed compiler system, which is called VP-Cell, takes a single source code and parallelises array expressions automatically. Several experiments were conducted using Vector Pascal benchmarks to show the validity of the VSM approach. The VP-Cell system achieved significant runtime performance on one accelerator as compared to the master processor’s performance and near-linear speedups over code runs on the Cell’s accelerators. Though VSM was mainly designed for developing parallelising compilers it also showed a considerable performance by running C code over the Cell’s accelerators

    The development of a program analysis environment for Ada

    Get PDF
    A unit level, Ada software module testing system, called Query Utility Environment for Software Testing of Ada (QUEST/Ada), is described. The project calls for the design and development of a prototype system. QUEST/Ada design began with a definition of the overall system structure and a description of component dependencies. The project team was divided into three groups to resolve the preliminary designs of the parser/scanner: the test data generator, and the test coverage analyzer. The Phase 1 report is a working document from which the system documentation will evolve. It provides history, a guide to report sections, a literature review, the definition of the system structure and high level interfaces, descriptions of the prototype scope, the three major components, and the plan for the remainder of the project. The appendices include specifications, statistics, two papers derived from the current research, a preliminary users' manual, and the proposal and work plan for Phase 2

    Faster Mutation Analysis via Equivalence Modulo States

    Full text link
    Mutation analysis has many applications, such as asserting the quality of test suites and localizing faults. One important bottleneck of mutation analysis is scalability. The latest work explores the possibility of reducing the redundant execution via split-stream execution. However, split-stream execution is only able to remove redundant execution before the first mutated statement. In this paper we try to also reduce some of the redundant execution after the execution of the first mutated statement. We observe that, although many mutated statements are not equivalent, the execution result of those mutated statements may still be equivalent to the result of the original statement. In other words, the statements are equivalent modulo the current state. In this paper we propose a fast mutation analysis approach, AccMut. AccMut automatically detects the equivalence modulo states among a statement and its mutations, then groups the statements into equivalence classes modulo states, and uses only one process to represent each class. In this way, we can significantly reduce the number of split processes. Our experiments show that our approach can further accelerate mutation analysis on top of split-stream execution with a speedup of 2.56x on average.Comment: Submitted to conferenc

    Doctor of Philosophy

    Get PDF
    dissertationPlaces and distributed places bring new support for message-passing parallelism to Racket. This dissertation describes the programming model and how Racket's sequential runtime-system was modified to support places and distributed places. The freedom to design the places programming model helped make the implementation tractable; specifically, the conventional pain of adding just the right amount of locking to a big, legacy runtime system was avoided. The dissertation presents an evaluation of the places design that includes both real-world applications and standard parallel benchmarks. Distributed places are introduced as a language extension of the places design and architecture. The distributed places extension augments places with the features of remote process launch, remote place invocation, and distributed message passing. Distributed places provide a foundation for constructing higher-level distributed frameworks. Example implementations of RPC, MPI, map reduce, and nested data parallelism demonstrate the extensibility of the distributed places API

    An Introduction to Programming for Bioscientists: A Python-based Primer

    Full text link
    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in the biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a 'variable', the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.Comment: 65 pages total, including 45 pages text, 3 figures, 4 tables, numerous exercises, and 19 pages of Supporting Information; currently in press at PLOS Computational Biolog

    SMT-C: A Semantic Mutation Testing Tools for C

    Full text link
    • …
    corecore