Date: May 3, 1979
Project Title: Experimental and Theoretical Research on Program Mutation
Project No: G-36-636 $\quad<-\cdots \quad \cdots \quad$.

Project Director: Dr. R.A. DeMillo.

Reports Required: Progress Reports; Final Report

Sponsor Contact Ferson (s):

Technical Matters

Marvin Denicoff
Director, Information Systems
Program - Coje 637
Mathematical \& Information Sciences Piv. Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Contractual Matters
(thru OCA)
Office of Naval Research Resident Representative Georgia Institute of Technology Room 325, Hinman Research Building Atlanta, Georgia 30332

Defense Prionty Rating: Do-ev unsur mas Reg. I

Assigned to: \qquad Information \& Comeitor Science (School/Laboratory) COPIES TO:

Projec: Director	Library, Technical Fieports Section
Division Chief (EES)	EES Information Office
Schos/Laborazory Director	EES Reports \& Procedures
Dean/Director-EES	Project File (OCA)
Accounting Office	Project Code (GTRI)
Procuremient Office	Other
Security Coovenstor (OCA)	
Repous Cozrdinator IOCAI	

Project No._G-36-636
Includes Subproject No.(s)

Title \qquad
"Experimental and Theoretical Research on Program Mutation"

Effective Completion Date: \qquad
1/31/84
(Performance) \qquad (Reports)

Grant/Contract Closeout Actions Remaining:

- Final Invoice or Final Fiscal Report
\square Closing Documents
\square Final Report of inventions
\square Govt. Property Inventory \& Related Certificate
\square Classified Materal Certificate
\square Other \qquad
Continues Project No \qquad Continued by Project No. G-36-661

COPIES TO:

Project Director
Research Administrative Network
Research Property Management
Accounting
Procurement/EES Supply Services
Research Security Services
Reports Coordinator (OCA))
Legal Services

Library
GTRI
Research Communications (2)
Project File
Other

Program Mutation:

An Approach to Software Testing

Richard A. DeMillo
 School of Information and Compnter Science Georgia Institate of Technology

Program Mutation: An Approach to Software Testing
Table of Contents
Chapter Page

1. Testing for Correctness 1- 1
Computability and Programming Systems 1- 1
The Programang Model 1-4
Deductive and Inductive Inferences 1- 6
Reliability of Test Data 1-12
Adequacy and its Measurement 1-20
Bibliographic Notes 1-35
2. Errors and Mutations 2-1
The Competent Programmer Assumption 2-1
Error Classification 2- 6
Mutant Operators 2-11
Procedure for Developing Adequate Test Data 2-21
Error Coupling 2-22
Eibliographic Notes 2-32
3. Theoretical Studies 3-1
Decision Tables 3- 2
Lisp Programs 3-11
Bibliographic Notes 3-29
4. A Mutation Analyzer 4-1
System Overview 4- 2
A Mutation Analyzer for Cobol 4-11
Internal Form Specifications 4-22
Processing Algorithms 4-34
A Testing Session 4-42
Bibliographic Notes 4-52
5. The Complexity of Program Mutation 5-1
Estimating $|\mu(P)|$ 5-1
Mutant Instability 5-7
Reducing Complexity by Sampling 5-9
Efficiency and Redundancy in Operators 5-12
Eibliographic Notes 5-18

Program Mutation: An Approach to Software Testing

Table of Contents

Chapter Page
6. Further Experimental Studies 6-1
Beat the System Experiments 6-2
Experiments on the Coupling Effect 6-10
Uncoupled Errors 6-16
Coupling and Complexity Measures 6-17
Bibliographic Notes 6-21
7. Mutant Equivalence 7-1
Human Evaluation of Equivalence 7-3
Autometed Equivalence Checking 7-6
Bibliographic Notes 7-13
8. Error Detection 8- 1
Simple Errors 8- 1
Dead Statements 8- 2
Dead Branches 8- 3
Data Flow Errors 8- 6
Domain Errors 8-8
Special Values 8-18
Coincidental Correctress 8-19
Missing Poth Errors 8-22
Missing Statement Errors 8-25
Bibliographic Notes 8-27
9. Field Studies 9- 1
Mutation on Mutation 9- 2
Testing Operational Software 9-22
Appendix A A- 1
Appendix B B- 1
Appendix C C- 1
Appendix D D- 1
Eibliography

Chapter 1

Testing for Correctness

Computability and Programming Systems

Turing Machines. We will assume familiarity with elementary computability the ory. A Turing machine decides or solves a computational problem in the following way: when the machine is presented an input x, the machine eventually halts and oither accepts or rejects the input. We say that a decision problem is solvable (or, equivalently, a predicate is decidable) if there is a Turing machine which accepts exactly those inputs which are solutions to the decision problem and rejects all others. Such a machine is said to be a decision procedure. A problem is said to be unsolvable if no decision procedure exists.

During its operation, a Turing machine carries out a number of basic operations (e.g., moving its read/write heads). The basic operations are called steps. If a Turing machine on input x carries out m basic operations and enters a halt state, the machine is said to have halted after exactly m steps.

We assume some canonical indexing of Turing machines. That is, an effective procedure whereby the ith Turing machine can be listed, for all i 20 . This indexing is fixed throughout.

The Kleene T-predicate is the predicate $T(i, j, k)$ which is true exactly when the ith Turing machine (in the canonical listing of Turing machines), when given input j, halts in exactly steps. The halting problem for Turing machines is the problen of deciding the truth of the the predicate $(\exists x)(T(i, j, x))$. The halting problem is unsolvable. The fundamental technique for showing that a problen is unsolvable will be to reduce the halting problem (or some other problem known to be unsolvable) to the problem in question. In general terms, such a proof involves showing how an aribtary instance of the halting problem can be transformed or reduced to an instance of the problem which is to be shown unsolvable in such a way that the Turing machine halts (or fails to halt) exactly when the transformed instance is a solution to the problem. The argument then proceeds as follows. If the problem is solvable, then the halting problem can be solved by applying the transformation to its instances and using the (assumed) decision procedure. Since this contradicts the unsolvability of the halting problem, the problem in question must also be unsolvable.

A Turing machine may also function as a transducer. That is, given an input x such that $T(i, x, k)$, the ith Turing machine will write onto a designated portion of one of its tapes a value y. The function f determincd by $f(x)=y$ is said to be computed by the ith Turing nachine. A function which is computed by some Turing machine is said to be computable.

An oracle Turing machine contains designated query states. In a query state, the machine submits a fixed value x to an oracle. If the oracle is for a function f, in one step the machine will respond
to the query with $f(x)$. Notice that the oracle f need not be computable. The canonical indexing can be modified to include all oracle machines.

Programming Systems. Any model of effective computation is called a programming system. In a programing system, it is possible to construct representations for algorithms; each such representation is said to be program. We identify a programming system P with the set of programs it defines. It is not necessary that a programming system be universal, only that all programs be effective. We will usually identify a programming system with the set of programs that can be written in the system. Thus examples of programing systems are the set of Markov algorithms, the set of straightine programs which compute polynomials of some fized degree, the set of linear recursive programs schemes, and the set of syntactically correct APL programs.

We assume that each program in a programming system presented in a uniform way, (and, like Turing machines, can be uniformly indexed) and that each program is defined on an input space, D. The programing system defines a method of interpreting programs. If a program $P \quad E \quad$ is started on an input $x \in D$, the semantics of the programing system defines the manner in which values are assigned to input variables, machine states are altered and output is delivored. Since the input spaces of programming systems vary, we will assume that each input space D can be coded in a natural way into the nonnegative integers N.

Let P be a programing system. To each P in P, there corresponds a computable function P. The correspondence is as follows: for each $x \varepsilon D$ we determine the $n(x) \varepsilon N$ that encodes x, and execute P on x to obtain an output y; then $P *(n(x))=n(y)$. We sometimes extend this notation to $P: P *=\{P * \mid P \varepsilon P\}$.

The equivalence problem for a programming system P is the following decision problem. Given programs $P, Q \in P$ determine whe ther or not for all $x \in D, P *(x)=Q^{*}(x)$.

The Programming Model

The testing theory described here differs from most theoretical studies in that we make some assumptions about how programs (in a programming system) are produced.

We assume that the intended behavior of a program is given by a function f - the specification. In practice, describing f is very difficult, perhaps as difficult as programming itself. For our purposes, however, we need only assume that some functional specification exists and it is that function which is to be implemented by the programmer.

The programming task itself resembles a root-finding procedure.

Figure 1.
 The Iterative Programming Process

The initial program produced in Figure 1 corresponds to the initial guess of a root-finding procedure. During the initial iterations, the fact that the program at hand does not satisfy the specification will be obvious (e.g., the program is syntactically incorrect or has a run-time error). During later iterations, however, the $P=f$ test is carried out by direct comparison of the current version of P with f.

In the case that f is uniformly presented - for example, by a predicate calculus formula - the direct comparison may take the form of a proof of correctness. In the situation encountered most frequently in practice, however, f is not uniformly presented.

Rather, the programmer has available a number of instances of f of the form ($x, f(x)$). In this case, the determination of whether or not $P^{*}=f$ is made by observing a finite number of erecutions of P on instances of f. Since we want the theoretical development to be independent of any specific implementation of testing procedures, we will not distinguish these alternatives. Rather, we assume the existence of an oracle for f, i.e., a device for supplying instances of the form ($x, f(x)$) for finitely many $x \in D$.

A finite subset of D for which values of f are available is said to be a test set for P and f. Conceptually, f is an oracle for a procedure which executes P on an input x, queries f and checks $P *(x)=f(x)$.

Deductive and Indactive Inferences

We let P be an arbitrary but fixed programing system. We are interested in testing a program P with specification furing the interative process of producing a correct program.

Definition: P is correct with respect to a specification f if $P *(D)=f(D)$. If P is correct with respect to f, the P is said to compute f.

A natural requirement for a test set that is useful in detemining progran correctness is that execution of the program on the test set should demonstrate the correctness of the program. Not every test set carries the same weight in demonstrating correctness. The testing process itself can be described by a rule of inference:

$$
p^{*}\left(a_{1}\right)=f\left(a_{1}\right) \wedge p^{*}\left(a_{2}\right)=f\left(a_{2}\right) \wedge \ldots \wedge p\left(a_{n}\right)=f\left(a_{n}\right) \wedge \ldots
$$

$$
P *(D)=f(D)
$$

That is, from the observations $P^{*}\left(a_{i}\right)=f\left(a_{i}\right)$, the tester wishes to infer the generalization $\forall x \in D P *(x)=f(x)$. Clearly, if the values a_{i} run through all of D, the inference is deductively valid. But, in general, D is either infinite or large enough to make such procedure impractical.

Another way to view such an inference is in the context of an experiment. To establish the truth of the conclusion, the tester looks for confirming instances of the form $p *(a)=f(a)$. If an experiment ever results in a value b such that $P *(b) \neq f(b)$, then P is not correct, and the experiment has rejected the conclusion. On the other hand, the existence of a confirming instance does not guarantee correctness: theremight be an undiscovered experiment that will show that P is incorrect. So the question arises: when does the tester stop experimenting and infer the correctness of P ? In order to insure objective standards for testing P, these conditions should be stated in general terms as a stopping rule. Wo distinguish two forms of inference allowed by such rules. Suppose that a stoping rule R for a program P results in a set of values $R(P)$ and experimental trials $P *(x)=f(x)$ for $x \in R(P)$.

Deductive Form: From $R(P)$ to infer that P is correct

Inductive Forn: From $R(P)$ to infer that P is correct with probability δ.

Beyond the observation that the stopping rule should be useful in making either deductive or inductive inferences of this form, it is not at all clear what other properties stopping rules should have. Typical naive stopping rules (e.g., make voluminous tests, make tricky tests) have limited effectiveness. Useful rules are based on the following principle: the stopping rule should force the tester to produce a strong set of confirming instances. The notion of strong and weak confirming instances is particularly important in the context of testing program correctness since by simply compiling a finite table $\left\{\left(a_{i}, f\left(a_{i}\right) \| 0 S_{i} \leq n\right\}\right.$, a program can be easily modified to give correct output on a finite set of test cases.

To see the underlying problen in assessing the strength of confirming instances, consider the following thought experiment. By experimental observation, we are to determine whether or not

$$
\begin{equation*}
\forall x(A(x) \Rightarrow B(x)) \tag{1}
\end{equation*}
$$

is true. This entails finding confirming instances x such that $A(x)$ is true and checking to see that $B(x)$ also holds. But (1) is logically equivalent to

$$
\begin{equation*}
\forall x(\neg \mathbb{E}(x) \Rightarrow \rightarrow A(x) . \tag{2}
\end{equation*}
$$

Therefore, another experiment to check the validity of (1) might entail finding confiming instances y such that $B(y)$ fails and checking to see that $A(y)$ also fails. The problem is that strong con-
firming instances of (2) need not be strong confirming instances of (1). Suppose, for example, that (1) is the statement

```
"All ravens are black"
```

Then (2) states,
"All non-black objects are non-ravens."

Thus, while an experiment to verify (1) involves finding ravens and checking their colors, an experiment to verify (2) need not involve ravens at all. Strong confirming instances of (2) can be red shoes or gray walls, and such observations, while supporting a logically equivalent proposition, should provide no rational support for proposition (1).

To insure that the stopping rules which guide testing provide strong confiming instances of correctness, a number of possibilities have been suggested.

Input Space Partitioning: A path through a program P is a sequence of computations that correspond to a possible flow of control through the progran. If a program contains loops, then differing numbers of iterations through loops give rise to different paths. It is possible to associate with every path π a subset D_{π} of D which canses that path to be executed. Thus, P* can be decomposed into a set of functions $P_{\pi}{ }_{\pi}$, where π runs through all pathsin P, and the correctness of P can be determined by testing whether or not $P_{\pi}^{*}=f_{\pi}$, where f_{π} represents the specification for the path π.

Consider a programing system P in which each program P satisfies the following condition: for each pair of paths π_{0}, π_{1}, $P^{*} \pi_{0}(x) \neq P{ }^{*} \pi_{1}(z), f o r ~ a l l x \in D$. Suppose that we have obtained a stopping rule for each of the (possibly infinitely many) P_{n} and that we can infer the correctness of each of them from the tests. Then we can use these tests to infer the correctness of programs in P if and only if $P *{ }_{\pi}\left(D_{\pi}\right)=f_{\pi}\left(D_{\pi}\right)$, for all paths π implies that $P *=f$. This latter condition is equivalent to requiring that domain of f_{π} and D_{π} be disjoint for all paths π, i.e., the path domains D_{π} partition the domain D and the selection of points on which an incorrect program fails can be made randomly from the partitions.

Since the number of distinct paths in a program can be infinite the conditions given above are not particularly useful. On the other hand, it may be possible to choose a subset of all paths for consideration which is sensitive enough to guarantee that the inference can be made with a high degree of confidence. For exam ple, the set of paths to be tested may involve only single iterations of loops and all non-looping paths,

Random Testing: Suppose that Dis supplied with a probability distribution and that $p(x)$ is the probability that $p *(x) \neq f(x)$, when x is chosen according to this distribution. Since p can be expected to converge to the failure rate when P is executed on $x \in D$ chosen according to the given distribution, we wish to derive a stopping rule which gives an indication of whether $p=0$, after n tests. One way to derive an appropriate value of n is to calculate a quantity q based on the results of the tests so that q is greater than p with probobility $1-\alpha$. If n tests are carried out and k
instances x such that $P^{*}(x) \neq f(x)$ are observed, then q is the 1argest value of r such that

$$
\sum_{i=0}^{n}\binom{n}{i} r^{i}(1-r)^{n-i}>a .
$$

Therefore, in a testing experiment, if no orrors are observed

$$
q=1-\alpha^{1 / n}
$$

The testing experiment, then, is to set the statistical limits on the confidence desired from the test (i.e., 1-a) and derive the appropriate valwe for n. Checking correctness on the random domain elements completes the test and allows the inference of correctness to be made.

If D is partitioned into m subsets $D_{1}, \ldots D_{m}$, then it may be possible to assess the probability d_{i} that a random $x \in D$ is in D_{i}. For example, if the D_{i} are path partitions and the paths cor respond to functions that the progran is to carry out, each function being selected with known distribution then d_{i} is simply the probability that the ith function is selected. Similarly, if p_{i} is the failure rate for the i th function determined by D_{i}, we have:
m

$$
p=\sum_{i} p_{i}
$$

$i=1$

Now, consider an experiment in which D is partitioned and for each $D_{i} P^{*}{ }_{i}(x)=f_{i}(x)$, where f_{i} is the specification for the ith partition, for a random choice of x. Then regardless of the
distribution of the d_{i} s,

$$
q^{2} 1-a^{1 / n}
$$

In this way a simple stopping rule can be used to give an inductive inference of correctness.

Reliability of Test Data

The point of these techniques is to insure that the test set chosen allows the inference of correctness to be made with a high degree of confidence. However the test set is chosen, it should allow such an inference. Two versions of a stopping rule which are useful for such an inference are obvious generalizations of the rules given in the examples above.

```
Deductive Stopping Rule: Choose a set of test data so that correct performance on the test data implies correctness.
```

Inductive Stopping Rule: Choose a set of test data so that
correct performance on the test data implies correctness with
probability $1-p$.

The first version provides a convenient characterization of test data which is strong enough to allow a valid inference of correctness.

Definition: A test set T is reliable for a program P and specification f if $P^{*}(T)=f(T)$ implies that P computes f.

Suppose that T is a reliable test set. If $P^{*}(T)=f(T)$, then by definition P is correct. On the other hand, if $P *=f$, then $P *(T)=f(T)$ for any subset of D. Thas, if a test set T is reliable for P and f, then $P *(T)=f(T)$ if and only if P is correct. In essence, reliability of test data restates program correctness. For example, a proof that T is reliable for a correct program is by definition a proof of correctness. Unlike pure correctness proofs, finding a reliable test set for an incorrect program involves locating a program error, since $P *$ and f must differ on at least one point of a reliable test set.

Theorem 1: For any P,f there is a religble test set,

Proof: If P computes f then any test set will do. If P does not compute f, let $x \quad \varepsilon \quad D$ be any point for which $P *(x) \neq f(x)$. Clearly $\mathrm{T}=\{\mathrm{x}\}$ is reliable. []

Given a program P to be tested, two related problems arise. On one hand we may be called upon to judge from available evidence Whether or not P is correct. On the other hand, we may be called upon to produce evidence that is certain to convince such a judge. If the acceptance criteria is the existence of a reliable test set, the problems reduce to the following. Since P is correct exactly when it performs correctly on a reliable test set, a proof that T is reliable for P is a proof of correctness for P, provided only $P *(T)=f(T)$. By the sane token, a mechanical way of producing

Abstract

reliable test sets, implicitly provides mechanical proofs of correctness. Since every program has a reliable test set, procedures to prove that a test set is reliable and to generate reliable test sets are possible.

Definition : The decision problem for reliable test sets is to determine for program P, test set T, and specification f whether or not T is reliable for P and f.

Definition : Let G be a mapping from program-specification pairs to finite subsets of D. G is said to be a reliable test strategy if $G(P, f)$ is reliable for P and f.

In referring to the decision problem for reliability and reliable test strategies we will not mention the underlying programming system or the specification when there is no danger of confusion. Thus, we will often refer to a test strategy for P, when the specification is clear from context.

A decision procedure for reliable test sets consists of a Turing machine with oracle f. P is encoded into the input alphabet of the machine (using, for example, the indexing function of oracle machines). When presented with P and an encoding of T, the procedure either accepts or rejects T.

Theorem 2: Assume that the decision problem for reliable test sets is solvable, Then there is a computable reliable test strategy.

Proof: Let $T_{i} \Subset D$ consist of the first i elements of D under some effective ordering of D. By Theorem 1, there is a reliable test set for any (P, f), and any test containing it is also reliable. Thus, for some i, T_{i} is reliable. The test strategy simply generates T_{0}, T_{1}, \ldots at each stage testing to see whether or not the test set so far gencrated is reliable for (P, f). []

Theorem 3: If a programing system has a computable re1iable test strategy, then the corresponding decision problem for reliable test sets is solvable.

Proof: Assume a reliable test strategy G. We decide whether or not T is reliable as follows. Given (P,f), we first produce a reliable test set $G(P, f)$. By definition, if $P *(G(P, f))=f(G(P, f))$, then P is correct and so every test set is reliable. The decision procedure thus shonld accept T as reliable. Suppose $P^{*}(G(P, f)) \neq$ $f(G(P, f)) . S i n c e p$ is not correct, T is reliable exact1y when $P *(T)$ $\neq f(T)$. Since the process of checking $P *(x)=f(X)$ for finitely many values of x can be carried out by a Turing machine which simulates P and queries an oracle for f, this procedure is a decision procedure.[]

Notice that the decision procedure above, does not really use any information about T when P is correct. This is simply a consequence of the fact that reliable test sets do not demonstrate correctness in any meaningful way. Indeed, if we have any independent proof that P is correct, then we can choose T as we please -as a source of evidence to a third party who must be convinced of P's correctness this is not very satisfying. Furthermore, since the
decision problem is equivalent by this argument to the decision problem for a powerful system of logic (e.g., the logic used to prove that P is correct, we would expect on intuitive grounds that the decision problem for reliability is, in general, unsolvable.

Theorem 4: There are classes of programs which have neither solvable decision problems nor computable test strategies.

Proof: Consider the following programming systen $P=\left\{P_{i} \mid\right.$ $i<0\}$. Each program P_{i} is defined by the following specification:

$$
P_{i}^{*}(x)= \begin{cases}0, & \text { if } i=0 \\ 0, & \text { if } i>0, \text { and } x \neq i \\ 1, & \text { if } i>0, \text { and } x=i\end{cases}
$$

It is easy to see that, since P_{i} gives output 1 only when given its own index as input, $P_{i}=P_{j}{ }_{j}$ exactly when $i=j$. It follows from this observation that the equivalence problem for \mathbf{P} is solvable.

We claim that there is no computable test strategy for P. Suppose otherwise. A strategy G for $\left(P_{0}, f_{0}\right)$ queries f_{0} a finite number of times and halts with some reliable T. Let i be an integer greater than any element of T and any element involved in a query for f_{0}. Then $G\left(P_{0}, f_{i}\right)=T$ Clearly T is not reliable for $\left(P_{0}, f_{i}\right)$), contradicting our choice of G.

By Theorem 2, the existence of a decision procedure for reliable test sets would also produce a computable test strategy, so the decision problen for reliable test sets is also unsolvable for P. []
compiler certification) the expense of constructing a specificationsensitive device is justified by the number of programs which will be validated. Thus the non-uniform problem may be of interest.

Definition : Let the specification f be fixed and let P be a programing system. The f-decision problem for reliability in P is the problem of deciding, given $p \in P$ and test set T, whether or not Tis reliable for P,f.

Definition : Let the specification f be fixed and let P be a prograrming system. An f-reliable test strategy is a mapping G_{f} from P to finite subsets of D such that, for each $P \varepsilon P, G_{f}(P)$ is reliable for P and f.

The proof of the following theorem is nearly identical to the uniform case, and we omit it here.

Theoren 6: Let P be a programming system and let f be a specification. Then P has an f-decision procedure for reliability if and only if P has a reliable test strategy G_{f}.

Furthermore, just as in the uniform case, we can effectively obiain a test strategy from any f-decision procedure and conversely.

The equivalence problem for P also has the same relevance for the non-uniform problems, provided that we limit specifications to functions that are actually computed by some progran in the programming system.

Theorem 7: If a progranming system, P, has a decidable equivalence problem then its f-decision problem for reliability is solvable for each $f \in P^{*}$.

Proof: Let f be a specification in P^{*}. Then some program $P_{0} \varepsilon$ P computes f. Since we are dealing here with the non-uniform decision problem, no procedure for deternining P_{0} needs to be supplied. To decide whether T is reliable for P and f, we will use the decision procedure for equivalence: decide whether or not $P=P_{0}$. If so, then P is correct and T is therefore reliable. If $P \quad \neq \quad P_{0}$, test P against specification $f=P_{0} *$. If $P *(T)=f(T)$, then since T does not contain a point on which P fails, it is not reliable. On the other hand, if $P *(T) \neq f(T)$, then T is clearly reliable.[]

Not surprisingly (given Theorem 7), the ability to decide equivalence also gives enough power to compute a non-uniform test strategy. The proof of this fact follows closely constructions we have seen already, so we will not reproduce it here.

Theorem 8: If a prograrming system, P, has a decidable equivalence problem, then for each $f \varepsilon P^{*}$, there is a computable f-test strategy.

It might be hoped that restricting the decision or strategy problems to the non-uniform cases will make them easier. Unfortunately, reliability is such a strong property that, even in the non-uniform case, the decision (and hence the test strategy) problem is formally as hard as testing equivalence in the programming system.

Theorem 9: Let $f \varepsilon P^{*}$ and suppose that P computes f. If some f-test strategy is computable, then the problen of deciding equivalence to P is solvable for all programs in P.

Proof: Suppose that G_{f} is a reliable test strategy. Let $T=$ $G_{f}(Q)$. If $Q^{*}(T)=P *(T)=f(T)$, then, since T is reliable, $Q^{*}=f=$ P*. On the other hand, if $Q *(T) \neq f(T)$, then $P \neq Q$. Therefore, to decide equivalence to P generate T and run the test for Q on T with specification $P^{*}=f$. The result of the test is the result of the decision procedure.[]

Adequacy and its Measurement

Our first goal is to find a stopping rule which is as useful as reliability in inferring correctness, but which is also useful as evidence that a progran is correct. Recall that the chief defect of reliability is that, if a program is correct, a reliable test set does not have to make any case at all for correctness. Our strategy will be to require that a test set provide an "explanation" of why the progran is believed to be correct. For adequate test sets, this explanation simply states that the program is not incorrect and demonstrates this conclusior with test cases causing incorrect programs to fail but on which the original program does not fail.

Definition: Let f be a specification with domain of definition D for a program P (which may not be correct). A set of test data T is adequate for P with respect f if (a) $P *(T)=f(T)$, and (b) for all prograns Q such that $Q^{*}(D) \neq f(D), Q^{*}(T) \neq f(T)$.

In other words, T is adequate for P if P behaves correctly on T and all incorrect programs behave incorrectly on at least one element of T. Notice that the definition of adequacy incorporates correct execution on the test set as part of the definition while reliability does not. This makes comparisons between reliability and adequacy somewhat awkward. If T is adequate, then it is a simple consequence of the definitions that T is also reliable. On the other hand, suppose that P is correct. Then $T=D$ is reliable but not adequate. On the other hand, if P is incorrect, then it has no adequate test set, but it always has a reliable test set. Most of the theoretical developments based on adequacy can be are left intact if we use only part (b) of the definition. However, the goal of testing based on adequacy and related notions is to infer correctness. The usefulness of the process of deriving adequate test sets in revealing errors in incorrect programs is incorporated into experimenal implications of the theory.

Theorem 10: If T is adequate (for P), then T is reliable, but not conversely.

Recall from the previous section that reliable test sets always exist. Adequate test sets, on the other hand, must distinguish a program from a possibly infinite set of incorrect programs. Since this may require infinitely many test points, we cannot guarantee adequate test sets always exist even for correct programs.

Theorem 11: There are programming systems P such that for any program $P \quad \varepsilon \quad P$, and any (finite) test set T, there is a function f such that $P^{*}(T)=f(T)$ but $P^{*}(x) \neq f(x)$ for all x $\varepsilon \quad D-T$.

Proof: Consider the set of straightiine programs that compute polynomials. Let P be such a program and let $f=P *$ be a polynomial of degree d. If T is any finite set, there is a program Q and polynomial $g=Q^{*}$ of degree $d^{\prime}>d$ such that $f(T)=g(T)$ but f and g disagree on all points not in T. []

Notice that although T is reliable for P and f it is reliable for neither (P, g) nor (Q, f), even though all agrec on T.

Corollary: Let P be a set of straightine programs to evaluate polynomials. Then no program in P has an adequate test set for the specifications in P^{*}.

Proof: The proof of Theorem 11 gives an example of a program which for every finite test set agrees with an incorrect program. []

So far, we have been dealing exclusively with the deductive form of the inference problem. There is a probabilistic algorithm for the set of programs in Theorem 11. Denote by $\prod^{(m, d)}$ the ciass of m variable nonzero polynomials of degreed. Notice that the problem of determining whether or not $P^{*}=f$ can be turned into a problea about zeroes of polynomials by checking $P \neq-f=0$. Define $p(m, d, r)$ to be

$$
\min \operatorname{Prob}\left\{1 \leq_{x_{1}} \leq_{r}, f\left(x_{1}, \ldots, x_{m}\right) \neq 0\right\}
$$

where the minimum is taken over allfe $f(m, d)$. We derive a lower bound on $P=p(n, d, r)$ to get an upper bound $1-p$ on the error in selecting a random point from the m-cube. The procedure is then
iterated t times to obtain an error probability of (1-p)t. Since a polynomial of degree d has at most d roots, ignoring multiplicity, the largest probability of finding a root mast be at least the probability of finding a root by random sampling in the interval $1 \leq_{x_{1}} S_{r}$, and hence $p(1, d, r) \quad 21-d / r$. Now, consider some $f \varepsilon$ TT. There are polynomials $\left\{g_{i}\right\}_{i} \leq_{d}$ such that

d

$$
\begin{aligned}
f\left(x_{1}, \ldots x_{m}, y\right) & =\sum_{i}\left(x_{1}, \ldots, x_{m}\right) y^{i}, \\
& =0
\end{aligned}
$$

Suppose that $g_{k} \in \Pi$. Then we have:

$$
\begin{aligned}
& \operatorname{Prob}\left\{1 \leq_{x_{i}} \leq_{r}, f\left(x_{1}, \ldots, x_{m}, y\right) \neq 0\right\} 2 \\
& \text { Prob }\left\{g_{k}\left(x_{1}, \ldots, x_{m}\right) \neq 0, y \text { not a root }\right\} \geq \\
& p(m, d, r)(1-d / r) .
\end{aligned}
$$

Continuing inductively gives

$$
p(m, d, r) \supseteq(1-d / r)^{m}
$$

and

$$
1 \mathrm{im}(1-\mathrm{d} / \mathrm{r})^{\mathrm{m}}=\operatorname{cxp}(-\mathrm{dm} / \mathrm{r})
$$

Thus, for large m and $r=d m$, we have $p(m, d, d m) \geq e^{-1}$. Therefore, with t evaluations of for independent choices from the m-cube with sides r, a (finite) test set can be constructed which is adequate with probability (1- $\left.e^{-1}\right)^{t}$.

In the previous section, we examined the problem of deciding whether or not a test set is reliable and generating reliable test sets. We have the same interest in deciding test data adequacy and generating adequate test sets, if they exist. The definitions adapt readily to our purpose.

Definition: Let P be a programming system. The decision problem for adequacy in P is the problem of determining for a program P e P, a specification f and test set T, whether or not T is adequate for P, f.

Theorem 12: There is a programming system P suck that the decision problem for adequacy in \mathbf{P} is unsolvable.

Proof: We define a programming system $P=\left\{P_{i} \mid i \geqslant 0\right\}$ as fol1 ows .

$$
P *_{i}(x)= \begin{cases}0, & \text { if } i=0 \\ 1, & \text { if } i>0 \text { and } T(i, i, x) \\ 0, & \text { if } i>0 \text { and } \neg T(i, i, x)\end{cases}
$$

Notice that for all values of $i, P_{i}^{*}(x)$ is defined for all values of x. $\quad P_{i}$ is the constant zero if and only if the ith Turing machine fails to halt on all inputs, so the problem of deciding equivalence to P_{0} is unsolvable.

We claim that an adequate test set exists for P and P just in case $P \neq P_{0}$. Suppose $P^{*}(x)=1$ and suppose that $Q^{*}(x)=1$. Then Q and P both give the results of simulating some ith Turing machine for exactly x steps and must be equivalent. Thus \{x\} is an adequate
test set. If $P *$ is the constant zero function then there is no finite adequate test set since for every m there is a machine which halts on its index in more than m steps. Therefore, an adequate test set for P_{i} exists if and only if P_{i} is not identically zero, that is, P_{i} is not equivalent to P_{0}. But equivalence to P_{0} is undecidable, so the problem of deciding whether P_{i} has an adequate test set must be unsolvable. []

Thus, two problems arise in connection with test data adequacy. First, adequate test sets need not exist. Second, as with reliability, adequacy is a deductive concept, and by virtue of this fact has an unsolvable decision problem. We would like to weaker the notion of adequacy slightly in order to remove both defects. The discussion following Theorem 11 provides some clues as to how this might be done. We would like a property of test sets that allows an inductive inference of correctness, preferably one that can be carried out with a fixed a priori probability of error. In practice, the probability of error may be determined by observations; in such situations, the inference of correctness will be a statistical inference whose strength depends on the strength of a fixed set of empirical observations.

Definition: Let f be a specification with domain D, let P be a program and let A be a set of programs (possibly depending on P). A set of test data T is adequate relative to (with respect to f) if (a) $P *(T)=f(T)$, and (b) for all programs $Q \varepsilon A$, if $Q *(D) \neq f(D)$, then $Q^{*}(T) \neq f(T)$.

Thus, a set of test data is adequate for a program Pelative to A if the data distinguishes p from all incorrect programs in A.

That adequacy relative to A is formally weaker than either adequacy or reliability is established by the following Theoren.

Theorem 13: If T is adequate for P relative to A, then either Tis reliable or $P E A$.

Proof: Let T be adequate relative to A and suppose that T is not reliable. Then $P *(D) \neq f(D)$. But for all $Q \in A, i f Q$ is not correct, then $Q^{*}(T) \neq f(T)$. Since $P *(T)=f(T), P$ cannot be in A.[]

For example, A might represent a certain set of errors which are likely to be introduced into P. Then the existence of a test set T adequate relative to A demonstrates one of two things. Either P is correct (i.e., T is reliable) or P does not contain an A-type error. This property of relative adequacy fits nicely into inductive inferences. Suppose that $P \varepsilon A$ with probability 1- δ. Then if P has a test set T adequate relative to A, the probability that P subsequently fails is at most δ (if T is reliable then P fails with probability 0 , and if P is not correct, then it is not in A, an event of probability δ).

Therefore, if a set A can be found (or generated) which is extensive enough to insure that δ is small, the inductive inference can be made with a well-defined level of confidence.

Unlike adequacy, relative adequacy requires only "alternatives" in A be considered. If A has a particularly simple structure, then the problem of distinguishing P from A might be considerably casier than the problem of distinguishing P from all programs in the programming system. At this point, it is not at all clear what simple structure can be imposed upon A. However, two possibilities are likely candidates. The first is to require that A have a decidable equivalence problem. The second is to require that A be finite.

Definition: The decision problem for relative adequacy is the problem of determining for progran P, subset $A(P)$ of the programing system, and test set T, whether or not T is adequate relative to $A(P)$.

Definition: Let G be a function that for progran P, subset $A(P)$ of the programing system, and specification f, defines $T=$ $G(P, A(P), f) \subseteq D . \quad$ If all such T are adequate relative to $A(P)$, then the function G is said to be an adequate test strategy (relative to $A(P))$.

If $A=P$, then adequacy relative to A is simply adequacy. Therefore, it is possible that relatively adequate test sets do not exist, and a computable test strategy may be only a partial function.

Theorem 14: Assume that $A \subseteq P$, that every program in P has an adequate (relative to A) test set and that there is a decision procedure for adequacy relative to A for P. Then there is a com-

```
putable adequate test strategy for all programs in P.
```

Proof: As in the proof of Theorem 2, consider any decision procedure for relative adequacy. Given P, A and a specification, a test strategy simply enumerates subsets of D, deciding for each subset whether or not it it adequate relative to A. If a relatively adequate test set exists, the enumeration procedure will eventually discover a test set containing it, and output that set as the result of the strategy.[]

However, the converse does not hold

Theorem 15: The existence of a (total) computable adequate test strategy does not imply that the decision problem for adequacy is solvable.

Proof: Define a programming system $P=\left\{P_{i j} \mid 0_{i} S_{j}\right\}$ as follows. $P_{i}{ }_{i 0}$ is the function that is i on input 0 and 0 otherwise. For all $j>0$ let $P_{i j}$ compute the function $P_{i j}{ }_{i j}$ defined below:

$$
P_{i j}(x)=\left\{\begin{array}{l}
i, \text { if } x=0, \\
j, \text { if } x=1, \\
0, \text { if } x=2, \text { and } T(i, i, j), \\
1, \text { if } x=2 \text { and } \tau T(i, i, j), \\
0, \text { if } x>2 .
\end{array}\right.
$$

For each $P_{i j}, \operatorname{let} A=A\left(P_{i j}\right)$ be the set of programs $\left\{P_{i k}: \quad \mathbf{~} \quad 2\right.$ 0\}. Since $\{0,1\}$ distinguishes any two programs in $A,\{0,1\}$ is adequate relative to A. Hence the strategy that produces $\{0,1\}$ is
adequate and is clearly computable.

To show that adequacy relative to A is undecidable, notice that if the ith Turing machine halts in k steps, then $P_{i k}{ }_{i k}(2)=0$, and the test set $\{2\}$ fails to distinguish $P_{i 0}$ and $P_{i k}$. But $P_{i 0}(1) \neq$ $P_{i k}{ }_{i k}(1)$. If the ith Turing machine fails to halt on input i, then for all $\mathrm{m}, \mathrm{P}_{\mathrm{im}}(2)=1$ and $\{2\}$ is adequate for $\mathrm{P}_{\mathrm{i} 0}$. Suppose there is a decision procedure. Then the procedure announces that $\{2\}$ is adequate relative to A for $P_{i 0}$ iff the ith Turing machine fails to halt on input i. []

Corollary: There are programming systems with a decidable equivalence problem and for which every program has an adequate test set for which adequacy is not decidable.

Proof: Since the equivalence problem for the programming system P constructed above is decidable, the corollary follows immediately.[]

Theorem 16: There are programming systems with a decidable equivalence problen and for which adequate test sets exist for each program that do not have a computable adequate test strategy.

Proof: Let $P=\left\{P_{i j} \mid 0 \leq i, j\right\}$ be a programming system defined as follows. For each i, j, define

$$
P_{i j}^{*}(x)=\left\{\begin{array}{l}
i, \text { if } x=0 \\
1, \text { if } 0<x S_{j} \text { and } T(i, i, x) \\
0, \text { otherwise. }
\end{array}\right.
$$

By constrection, $P_{i j}=P_{k m}$ exactly when $i=k$ and $\rightarrow T(i, i, n)$, where $\min (j, m)<n<\max (j, m) . C l e a r l y$ equivalence is decidable.

Choose $A\left(P_{i j}\right)=\left\{P_{i m}: m \geq 0\right\}$. For given i, if the ith Turing machine fails to halt on input i, then all elements of conpute the same function, and so any nonempty test set is adequate for $P_{i j}$ relative to A. On the other hand, if $T(i, i, m)$, then $\{0, m\}$ is adequate. Thus, each program, P, has an adequate test set relative to $A(P)$. Assume that a coraputable strategy, $G_{A^{2}}$ exists, and consider $G_{A}\left(P_{i j}\right)$. The ith Turing machine halts on input iff it halts at the mth step, for some min $G_{A}\left(P_{i j}\right)$. Since test sets are finite, this is impossible. []

Therefore, there are sone very bad choices for A, indeed. Even assuming that A has a decidable equivalence problem does not improve the situation much. We will now examine the effects of requiring only that A be finite.

Definition: Let P be a programming system. For each program P, let $\mu(P)$ be a finite subset of P. Assume further that μ is computable in the sense that there is an effective procedure that lists $\mu(P)$ for all P. $\mu(P)$ is said to be a set of mutants of P.

Theorem 17: Every correct program has a test set adequate relative to $\mu(P)$.

Proof: There are only finitely many programs Q in $\mu(P)$ and each such Q is either correct or not. If $f(x)=P *(x) \neq Q(x)$, add x to the test set. Only finitely many points need be added to obtain

```
an adequate (for }\mu(P)) test set. []
```

Definition: The μ equivalence problem is that of deciding whether or not $Q \varepsilon \mu(P)$ and $P=Q$.

Theorem 18: The following statements are equivalent.
(a) the μ (P)-adequate decision problen is solvable.
(b) there is a computable $\mu(P)$ test strategy.
(c) the μ equivalonce problem is decidable.

Proof: If there is a $\mu(P)$ decision procedure, then a computable $\mu(P)$ test strategy may be constructed as in the proof of Theorem 2. Thus, (a) implies (b).

To show that (b) implies (c) assume a computabe strategy. Given programs P, Q decide μ-equivalence as follows. Compute $\mu(P)$ and check $Q \varepsilon \mu(P)$, and reject if not. Otherwise, generate a test set which is adequate relative to $\mu(P)$ and check equality of $P *$ and Q* on this set. By the definition of adequacy, equality on the test set implies equality over D.

Suppose that we are given a decision procedure for $\mu(P)$ equivalence, and we are to decide whether a test set T is $\mu(P)$ adequate for specification f. Assume that $P *(T)=f(T)$, First, construct the set $\mu(P)$ and determine those $Q E \mu(P)$ which are not equivalent to P. This procedure is effective. For each such $Q \neq P$, we search for some $x \in T$ such that $P^{*}(x) \neq Q^{*}(x)$. Obviously, T is adequate if and only if each such search is successful. Therefore, (c) implies (a).[]

Although there is an equivalence between the decision problems for $\mu(P)$ adequacy, equivalence and test strategies, the finiteness of $\mu(P)$ alone is not sufficient to guarantee that any of these problems are solvable.

Theoren 19: There are programing systems P and functions μ so that none of (a)-(c) in the statement of Theorem 18 are true.

Proof: Let P be as constructed in the proof of Theorem 12, and let $\mu(P)=\left\{P_{0}, P\right\}$ for all P e P. Then $[0\}$ is adequate for P_{i} iff the ith Turing machine on input i does not halt. Since the decision problem for adequacy is unsolvable, Theorem 18 can be used to complete the proof. []

In order for $\mu(P)$-adequacy to be useful in practice, we evidently have to exercise some care in dofining μ, insuring that either the appropriate decision problems are easily decidable, or that heuristics are available.

A key aspect of $\mu(P)$-adequacy is that it admits measurement of how close a given test set is to being adequate. This is a relamation of the decision problem for adequacy which is frequently encountered in testing situations. Since $\mu(P)$-adequacy may itself be a (statistically) strong predictor of program correctness, it may not be cost effective to develop a test set which is μ-adequate. Rather, the inference of correctness may be made on much more slender foundations: the test set is "almost" adequate. We will consider the definition of such a measure here. In later chapters we will consider the evidence for its effectiveness as a stopping
rule.

Let $\mu_{E}(P)$ be the set of those programs in $\mu(P)$ which are functionally equivalent to P; that is, $Q \in \mu_{E}(P)$ if $P *(D)=Q *(D)$. For a set of test data T, we define $\Delta(P, T)$ to be the set of programs $Q \varepsilon$ $\mu(P)$ which disagree with P on at least one point in T. We will confuse the size of a set with its cardinality; in particular, $\mu(P)$ will be used to denote $|\mu(P)|$. Then the mutation score of T is the fraction of the nonequivalent elements of $\mu(P)$ which differ from P on one or more points in T :

Definition: The mutation score of T for P is defined to be

$$
m(P, T)=\Delta(P, T) / \mu(P)-\mu_{E}(P)
$$

Notice that once $\mu(P)$ is fixed, $\mu_{E}(P)$ and $\Delta(P, T)$ are detemined by the semantics of the programing system. We want m to be a ceasurement of test data quality. That is, the function m should be useful in a stopping rule for inductive inferences of correctness: it should be possible to choose a function μ so that
(a) $\mu(P)$ is relatively easy to compute, and
(b) m(P,T) approaches one as our confidence in the correctness of P increases by virtue of $P^{\prime} s$ correct execution on T.

It is an easy observation that $m(P, T)$ is a direct measurement of how close the test set T is to being adequate for P relative to A $=\mu(P)$.

Theorem 20: Assune that $\mu(P)$ contains a correct program. Then $P *(T)=f(T)$ and $m(P, T)=1$ implies that T is adequate for P relative to $\mu(P)$.

Proof: Assume that $\mu(P)$ contains a correct program Q, and suppose that $P^{*}(T)=f(T)$ and $m(P, T)=1$. If P is correct, then for any program $R, \quad R \neq P$ iff $R \neq f$. If $R \varepsilon \mu(P)$ and $R \neq f=P$ and if $m(P, T)=1$, then $R^{*}(T) \neq f(T)$. Ve claim that P cannot be incorrect, for suppose otherwise. Since $\mu(P)$ contains a correct program Q, $m(P, T)$ cannot be 1 unless $P *(T) \neq Q^{*}(T)=f(T)$, a contradiction.[]

The assumption that $\mu(P)$ contains a correct program is called the Competent Programer Assumption. The competent programmer assumption is a limiting empirical hypothesis. In a previous section (see Figure 1) we defiued the programming model by analogy with a root finding procedure in which the proccss of creating and dobugging a program can be stated

$$
P_{f}=(\text { valid representation of program correct for f). }
$$

The program playing the role of the iterative in this process can be expected to change less and less as the programming process continues. When the program is "close" to a correct program, the process stops. Thus, a program to be evaluated by any of the techniques described above is not a random response to a specification: if it has been produced by a competent programmer, it has already been subjected to the iterative programing process. Therefore if $\mu(P)$ represents those programs which are close (in the sense of root-finding) to a correct program, with high probability, P will cither be correct or within a small neighborhood of a correct
program. Our goal in subsequent chapters will be to define $\mu(P)$ so that this assumption is useful in practice.

Theorem 20 can be restated in another form which is of ten more useful. The specific function μ we will deal with later behaves in a "reversible" manner; that is, $P \varepsilon \mu(Q)$ if and only if $Q \varepsilon \mu(P)$. Theorem 21 follows by an argument similar to the one above.

Theorem 21: If $P *(T)=f(T)$ and $m(P, T)=1$, then either T is correct or for all correct programs $Q, P \in \mu(Q)$.

Therefore, by analogy to Theorem 13, we have a measurement of test quality which either accurately reflects the reliability of the test data or requires the violation of a specific empirical hypothesis.

Bibliographic Notes

There are several good refexences on elementary computability theory. Perhaps the most accessible of these are the classic texts by Davis [Davis, 1958] and Minsky [Minsky, 1967]. The notions dealing with inductive and deductive inferences are implicit in most systematic treatments of logical and mathematical matters, and nearly any logic text provides the basic definitions. The relationship of deductive techniques to program correctness is discussed critically in [DeMillo, 1979]. Budd's dissertation [Budd, 1980] gives a good overview of the importance of inductive reasoning in program testing and uses the example of the black ravens.

Many additional sources of information concerning alternative test techniques can be found in the literature. Input space partitioning methods are discussed by Howden [Howden, 1976] and White, Chandrasekaran and Cohen [White, 1978]. The probabilistic algorithm for testing zeroes of polynomials is due to DeMillo and Lipton [DeMillo, 1978]. The a1gorithm is related to a problem in algebraic program testing [Howden, 1976].

Test data reliability was defined by Howden [Howden, 1976] and similar concepts have been given formal treatment by a number of authors. The paper [Goodenough, 1975] also treats the notion of reliable test set generation. Test set adequacy was formulated by DeMi11o, Lipton and Sayward in [DeMillo, 1978a] and has been refined in a series of papers [Acree, 1979], [Budd, 1980a], DeMillo, 1979a]. The relationship between adequacy and mutant programs was developed concurrently and this development can be traced in [DeMil1o, 1978a], [Acree, 1979], [Budd, 1980], [DeMi11o, 1979a], [Acree, 1980]. Related concepts have appeared in [Foster, 1978], [Hamlet, 1978], [Fowden, 1982], and [Brooks, 1980]. The re1ationship between program equivalence, test generation and recognition problems was worked out in a paper by Budd and Angluin [Budd, 1980].

Chapter 2

Erroxs and Mutations

The Competetent Programmer Assumption

Let us recall the following definitions fron Chapter 1. If μ is a mapping which associates a set of programs with a given program $P, \mu_{E}(P) \subseteq \mu(P)$ is the set of programs in $\mu(P)$ which are functionally equivalent to P, and if for a given test set $T, \Delta(P, T)$ consists of those programs in $\mu(P)$ which disagree with P on at least one point in T, then the measure

$$
m(P, T)=\Delta(P, T) / \mu(P)-\mu_{E}(P)
$$

can be defined. Theorem 1.21 guarantees that if P erecutes correctly on the test set T and $m(P, T)=1$, then either P is correct or P does not belong to $\mu(Q)$ for any correct program Q.

For a given program P, the set $\mu(P)$ is calleda set of mutants of P. Thus, if every program P is a mutant of some correct program, calculation of the measure $m(P, T)$ can be used to infer correctness.

The assumption that any program being tested is a mutant of a correct progran is called the Competent Programmer Assumption. The Competetent Programmer Assumption formalizes an observation of human activity. In this case, the observation is that programmers do not create programs at random. Rather, programs that are written by experienced progranmers, are written in response to formal or informal understandings of what the program is intended to do. Thus, in response to specifications for a payroll system, a com-
petent programmer will produce a program that is very much like a correct payroll system. The program produced may be incorrect, inefficient or sloppy, but in the final analysis, it will be more like a correct payroll system than a compiler. The competent programer assumption asserts that programers create programs that are close to being correct. During the iterative programming process, competent programers constantly whittle away the distance between what their programs look like now and what they are intended to 100 k 1ike.

Suppose that the task at hand is to design a Fortran program to compute the (Euclidean) magnitude of an N-dimensional vector X in a Cartesian coordinate system with fixed origin. Then the subroutine P1 below certainly could have been produced by a competent programmer.

```
                                    SUBROUTINE P1(X,MAG)
                                    MAG = 1
                                    DO 1 I = 1,N
                                    MAG = MAG+X(I)**2
                    1 MAG = SQRT (MAG)
                            RETURN
LND.
```

We would question the competence of a programer who produced subroutine P 2:

SUBROUTINE P2 (X,MAG)
MAG $=X(1)$
DO $1 \mathrm{I}=1$, N
$1 \mathrm{MAG}=\mathrm{MAX}(X(I), \mathrm{MAG})$
FETURN
END.

There is no reasonable sense in which P2 is a "buggy" version of the program asked for. P1 can casily be debugged, but P2 is not even a program of the same kind - it is so radically incorrect that its incorrectness can be discovered without testing itl

The competent programer assumption states that a program is assumed to be either correct or a mutant of a correct program. For example, in the problem of computing magnitudes of N-vectors, subroutine $P 1$ is a mutant of the correct P below.

SUBROUTINE $P(X, M A G)$
$\mathrm{MAG}=0.0$
DO $1 \quad \mathrm{I}=1, \mathrm{~N}$
1 MAG $=\mathrm{KAG}+\mathrm{X}(\mathrm{I}) * * 2$
MAG $=\operatorname{SQRT}($ MAG $)$
RETURN
END

Subroutine $P 2$, on the other hand, is not mutant of P.

The notion of closeness is summarized by the function μ. Informally speaking, the set of mutants of a program P should reflect the possible errors that might have been made in the creation of P by a competent programer. If a general concept of error can be derived in such a way that the Competent Programmer Hypothesis can be shown to hold with probability 1- δ then the calculation of $m(P, T)=1$ allows an inference of correctness with the same level of confidence.

The classification of programming errors is not a well understcod process. However, it appears that there are at least four mechanisms responsible software errors.

1. failure to satisfy specifications due to an implementation error,

2. failure to satisfy a requirement,
3. failure to write specifications that correctly represent a design, and
4. failure to understand a requirement.

The problems surroznding requirements and specification testing and evaluation are beyond the scope of this book and are probably not within the domain of correctness testing. The mechanisms referred to in (1) and (2), however, are always reflected in specific program errors: either a program carries out an action that it should not, fails to carry out a necessary action, or carries out an action improperly. This suggests that errors resulting from (1) and (2) are reflected in programs as missing control paths, inappropriate path selection, and inappropriate or missing actions.

In order to satisfy the Competent Programmer Assumption, carry out the following conceptual experiment. We observe a community of programmers and classify the errors they make into categories

$$
E_{1}, E_{2}, \ldots, E_{\mathbf{k}}
$$

We are free to observe the programers for as long as we wish and make whatever specialized assumptions we wish about the programming task they will be called upon to perform. It is, in principle, pos-
sible to gain whatever degree of confidence we desire that among the k classifications we have encountered the errors most likely to be made by this particular group of programmers. Given a program P to test in this setting, we must derive a relatively adequate set of test data, T, for P. If P is incorrect, we will never be able to find an adequate set; indeed, the point of testing P is to find a set of test data that calls attention to the fact that P is incorrect. If P is correct, however, adequate T should at least convince us that P does not contain the errors most likely to be made.

Let

$$
\mu(P)=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}
$$

differ from P only in each containing a single error chosen from one of the error categories. Then an adequate set of test data T should at least provide the following assurance. For each P_{j} which is not equivalent to $P, P *(D) \neq P_{j}{ }^{*}(D)$. In other words for each of the most likely errors, it should be possible to show that P does not contain that specific error. This experiment is specialized to the original group of programmers whose errors we observed and recorded. To attempt such an experiment for all programers is surely hopeless, unless we can be assured that typical programmers tend to make the same, classifiable errors.

Error Classification

The strength of the technique described above rests on our ability to assess the exrors that programmers are most likely to make Rather than speculate on the sources of errors, it is probably more fruitful to examine the errors that programers actually do make.

A number of studies of programmer errors have been conducted over the years. These studies have been carried out using a variety of programs, error classification schemes, and methods for detecting errors. While several researchers have pointed out methodological flaws in the reporting, classification, and documenting of program errors, at least 46 independent, large-scale error data gathering efforts have been carried out and reported. For the most part, problems arising from error classification arise when data gatherers try to interpret the errors arising from the mechanisms (3) and (4) described above. However, the data on errors arising from mechanisms (1) and (2) show remarkable consistency.

The following data is based on E.A. Young's analysis of 69 programs and a total of 1,258 errors in several languages.

Error Type	No. of Errors	Rel. Freq.
Job Ident.	1	0.00
Exec. Request	1	0.00
External I/O	0	0.00
Other System	0	0.00
Subrout. Ident.	3	0.00
Allocation	189	0.15
Label	20	0.02
Computation	343	0.27
Non-comput.	2	0.00
Iteration	117	0.09
Go To	13	0.01
Conditional	59	0.05
I/OFormat	71	0.06
Other I/O	91	0.07
System Call	35	0.03
Subrout. Cal1	22	0.02
Par/Sub List	62	0.05
Subrout. Term.	7	0.01
Other/Multiple	72	0.02
Data	27	0.04
Vert. Delim.	54	0.05
None	69	1.00

Table 1. E. A. Young's Error Data

What is is striking about this data is the relatively small contribution of sophisticated error conditions. Errors such as operating systen interface errors, incorrect job identification, and erroneous external $1 / 0$ assignments accounted for only negligible quantities of the observed errors. It might be the case, however, that the significant contributors to the major error categories were themselves complicated errors. We will describe in a little more detail the nature of the errors which Youngs discovered.

Allocation: These included errors in declaring shapes and sizes of data structures as well as errors in allocating and deallocating local storage for named data objects. These errors
accounted for 15% of the total. Almost all of them appeared in A1go1, Cobol, or PL/I programs.

Computation: These errors occurred within assignment statements and comprised 27% of the observed errors. Almost half of them were caused by the use of a wrong variable or other data object. Wrong variable usage constituted the highest percentage. A large number of errors in this class stemmed from failures to initialize variables properly.

Iteration: Iteration sequence difficulties were semantic in nature (111 of 117). A typical example of such an error is an error in the number of loop iterationsresulting from a confution of $D 0$ and FOR loop semantics. Other examples include errors in loop scope and nonterminating lcops. These exrors accounted for 9% of the total.

1/0: 13% of the errors were due to I/O deficiencies, although most of these were syntactic in nature. Other common errors include the reading or writing of incorrect variables.

Parameter/Subscript List: Although 5% of the total were attributed to these errors, more than than sixty percent of the errors in this category were due to mismatching formal and actual parameters.

[^0]A second study was conducted by T. A. Thayer and his colleagues at TRW's Space Systems and Defense Group. The TRW classification broadly groups errors into twenty categories. We will concentrate on 4 categories which altogether account for 30% of the errors recorded in a study of two large-scale software development projects. The following distribution of reported errors is shown in Table 2.

Table 2. TRW Error Data

Computational Errors: These were errors introduced into arithmetic computations (the classification is insensitive to the nature of the computation; the computation could be the actual calculation of a physically interpretable quantity or merely a bookkeeping calculation of no sigrificance outside the program). The calculations themselves occurred in assignment statements. The errors which make up this category include the incorrect use of an operand in an equation, the incorrect use of parentheses, an error in sign convention, an error in units or data conversion, the production of over/under flow in a computation, the application of an incorrect or inaccurate equation, and the loss of precision due to mixed mode arithmetic, and missing computations.

Logic Errors: The TRW classification scheme is vague about exactly what constitutes a logic error. Indeed, the assignment of specific errors to the logic category varied with the data gathering procedures. However, the studies published using this classification all seem to point toward errors which somehow affect logical decisions in the source code, even though the error under consideration may, in fact, be the result of failing to include a decision. Thus errors in this category included missing logic or condition tests. Logic errors also resulted from a lack of code to perform logical functions. Other errors which were classified as logical errors related to code written to carry out some particularly troublesome function (e.g., checking the settings of switches), or code which was erroneous due to misunderstandings of requirements or specifications. These resulted in incorrect operands in logical expressions, logic activities coded out of sequence, checking wrong variables, errors in the scope of loops, errors in the number of loop iterations, and duplicated logic.

Data Handifing Errors: These errors included errors in input and output operations and errors in intermal data handing. Typical data input errors included errors due to reading invalid input from the correct data file and reading from incorrect files. Also of significance were crrors due to incorrect input formats and end of file processing. Internal data handing errors included errors in initializing data storage areas, using variable before they had been properly set, incorrect type usage, and subscripting errors. Finally, the data output errors mirrored the input errors. Errors such as garbled output or output not matching requirenents were also
considered. In addition, data definition errors such as errors in dimensions, referencing out of array bounds and pointer handing were also be classified as data handing errors.

Interface Errors: These errors roughly correspond to those that were introduced in the process of integrating program units or modules. These included calls to incorrect subroutines, misplaced subroutine calls, and errors in parameter passing during an invocation of a module.

The remaining errors considered in the TEW studies involved errors which were introduced and detected at other phases of the software lifecycle. They included operator/user errors, documentation errors, errors in interfacing to systems software, and requirements errors. In contrast, the remaining errors tended to be fairly complex and difficult to associate with specific program characteristics.

Mutant Operators

[^1]```
SUBROUTINE M1 (X,MAG)
MAG \(=1\) DO \(1 \mathrm{I}=1, \mathrm{~N}\)
\(1 \mathrm{MAG}=\mathrm{HAG}+\mathrm{X}(\mathrm{I}) * * 2\) MAG \(=\) SQRT (MAG) RETURN DND
```

SUBROUTINE M2 (X, MAG)
$\mathrm{MAG}=0.0$
So $1 \mathrm{I}=1, \mathrm{~N}$
$M A G=M A G+X(I) * * 2$
1 MAG $=\operatorname{SQRT}(M A G)$
RETURN
END.

The mutants we will consider arise from the single application of a mutant operator, a simple syntactic or semantic program transformation such as changing a particular instance of a relational operator to one of the remaining operators or changing the target of an unconditional transfer to another labelled target. A problem that arises immediately is that this is apparently a violation of the Competent Programer Assumption. While error classification data indicates that programer errors fall into a small number of identifiable categories, there is $1 i t t 1 e$ to suggest that programmers make errors one at a time. Thus, while concentrating on simple errors may allow a tester to derive adequate test sets relative to a small class of errors, the data may not be adequate relative to a set of errors that are most likely to occur in practice. In fact, there is little lost in restricting mutants to those which can be defined by simple errors. As we will discuss below there is an observable coupling of simple and complex errors so that test data that causes all nonequivalent simple mutants to die is so sensitive
that likely complex mutants also die. The coupling of simple and complex errors implies that if $P$ is correct for an adequate test $T$ while M1 and $M 2$ disagree with $P$, then $P 1$ must also disagree with $P$ on $T$.

A set of mutants $\mu(P)$ is defined by a set of mutant operators that model a set of exrors according to the Competent Programer assumption. That is, for each error category $E_{i}$ there is a set of prograns $\mu_{i}(P)$ which corresponds to the errors defined by $E_{i}$. There is no single correct set of mutant operators -- the Competent Programer llypothesis is specialized to a given community of programers. In practice, however, it is usually only necessary to consider a fixed set of mutant operators which are derived from error data such as the data presented above.

One way to view mutation operators is a maping between representations of source programs (see Chapter 4 for dotails on implementation strategies). Let the tree $T_{1}$ represent some program P, parsed into a tree-structured form as shown in Figure 1 (a). Then a mutation operator when applied to $T_{1}$ produces a new tree $T_{2}$ by modifying a single leaf $t$ of $T_{1}$ as shown in Figure $1(b)$.


Figure 1.

> Mutation by Modifying a Leaf of a Parse Tree

The tree $T_{2}$ remains a validinternal representation of some mutant program of $P$. In practice, not all of the mutant operators fit exactly into this model, but it is nevertheless a helpful organizing principle.

The result of applying such an operator is a 1-order or simple mutant of the original program. 2-order mutants are the result of two applications of (not necessarily the same) mutant operators. Continuing inductively, the notion of a k-order mutant can be defined for any $k \geq 1$. Since the result of applying a mutant operator always results in a syntactically correct program, the number of $k$-order mutants is given by $\xi_{n}^{k}$, where

$$
\xi_{n}=\max \{\mu(P) \mid \operatorname{size}(P)=n\}
$$

and size(P) is any convenient size measure (see Chapter 5).

Unless specified otherwise, the term mutant will apply to simple mutants, and the set of mutants of $P, \mu(P)$, will be defined in terms of (simple) mutant operators. When we want to distinguish $\mu(P)$ from k-order mutants for some $k 2$, we will use $\phi(P)$ for the set of complex mutants.

We now define a set of mutant operators which will form a basis for much of the rest of this book. These operators are mainly language independent with appropriate adaptation can be used as a core of mutant operators for machine implementation. Furthermore, the operators introduced below are designed to model error categories as described above. The effectiveness of the operators in modeliing and detecting errors will be taken up in more detail in 1ater chapters.

Mutant operators can be classified according to whether they affect operands, operators, or statements as a whole.

Operand Mutants: Mutations which affect operands alter the data objects of the program. For simplicity, we assume that there are three kinds of data objects: constants, scalar variables, and arrays. Thus there are nine mutant operators which replace a variable $x$ with each distinct occurrence of $y$, where $x$ and $y$ range over all constants, scalar variable and array references in the program being tested.

In addition to these operators, there is an operator which alters the values of constants appearing in the program. The following table defines the alterations according to the type of the object to which the operators is applied.


A third type of operand mutation replaces array names in each occurrence of an array expression with all other array names of the same dimensionality. In specializing these operators to particular languages, additional operators which account for language dependent features may be needed to augment this list (cf. data mutations for Cobo1).

Operator Matations: Arithmetic operator mutations are formed by replacing each arithetical operator with an operator chosen from the set $\{+,-, /, *, * *,\lceil\rceil$,$\} , where \lceil$ and 1 are operators described below.

Relational operators are mutated by replacing each relational operator with an operator chosen from the set $\{\langle, S,=, \neq, \geq$,$\rangle ,$ trueop, falseop\}, where trueop and falsoop are the operators described below. Similarly boolean operator mutations are formed by replacing each boolean operator with an operator chosen from the set \{V, $\wedge$ leftop, righttop, trueop, falseop\}.

Each unary operator may be remcved by a unary operator removal mutation. Insertions are formed by inserting the elements of the set $[-, \neg,++, A B S,-A B S, Z P U S H\}$, whenevcr appropriate.

Several operator mutants are intended to model the errors classified above. These operators produce mutants which are not strictly internal forms of any correct program, but are nonetheless useful in detecting certain categories of errors.

The first two operators are binary operators $[$ and 7 which can stand instead of either arithmetic or logical operators. The effect of these operators is to evaluate both operands and to return either the right or left hand argument, ignoring the other one.

A second pair of binary operators, trueop and falseop, can be of boolean type only. These operators evaluate both operands and return either the constant value TRUE or FALSE, depending on which operator is applied.

There are several unary operators. Twiddle (denoted ++ or --) is an operatox which returns its argument +1 if the argument is an integer and $\pm .01 \%$ or . 01 (whichever is greater) if the argument is real. The operator $-A B S$ returns the negative of the absolute value. The ZPUSH(X) operators returns $X$ if $X$ is nonzero. However, if $X$ is zero, ZPUSII by definition canses the mutant to be eliminated, thus forcing the expression $X$ to be zero.

Statement and Control Mutations: A sequence of uniabelled nondecision statements in a program is called a basic block. It is a property of a basic blocks that if any one of the statenents in a
block is ever executed, then all statements in the block must also be executed.

One type of statement mutation determines whether or not the initial statement of each basic block is ever executed. The statement operators replaces the first statement of a basic block with a special statement called TRAP. The senantics of the TRAP statement is that if it is ever executed, it immediately causes the mutant to be eliminated. On the other hand, if such a mutant ever survives, then the corresponding basic block has never been executed. In this fashion, mutants can model a basic statement coverage measure of test data adequacy.

Statement coverage is strengthened by using a mutation operator which replaces each statement with a statement that has no effect, such as the Fortran CONTINUE statement. These mutants are designed to determine whether, in addition to being executed, the mutated statement has any effect on the program's execution.

A third statement operator changes the 1 abels on control transfer statements and arithmetic conditionals to other labels which appear in the program.

The final statement operator to be discussed here modifies the structure of loops. One form of this operator changes the final 1abel on Fortran DO loops to other labels which lie between the beginning of the loop and the end of the program. A second form of the operator changes the loop statement semantics. Recall, for example that the difference between a Fortran DO and an Algol FOR statement is that if the initial value of the FOR loop variable is
snaller than the final value, the FOR loop is not executed, but a DO loop body is always executed at least once. Confusing this two loop constructs is a common programming error. A mutation operator that models such an error simply changes a DO statement to a FOR statement.

A set of mutant operators that is applicable to Fortran programs includes the following:

Operand Mutations

1. Constant Replacement (by $+1,-1$ )
2. Scalar for Constant Replacement
3. Source Constant Replacement
4. Array Reference for Constant Replacement
5. Scalar Variable Replacement
6. Constant for Scalar Replacement
7. Array Reference for Scalar Replacement
8. Comparable Array Name Replacement
9. Constant for Array Reference Replacement
10. Scalar for Array Reference Replacement
11. Array Reference for Array Reference Replacenent

Operator Mutations
12. Arithmetic Operator Replacenent
13. Relational Operator Replacement
14. Logical Connective Replacement
15. Unary Operator Replacement
16. Unary Operator Removal
17. Unary Operator Insertion

Statenent Mutations
18. Statement Execution (replacement by TRAP)
19. Statement Deletion
20. RETUEN Statement Replacement

Control Stracture Mutations
21. Jump Statenent Replacement
22. DO statement Replacement

Adapting this set of operators to other languages involves analyzing the errors which can occur dae to language features not present in Fortran. For example, to expand the Fortran operators to the simple Cobol subset discussed in Chaptex 4, the following mutants should be considered.

Operand Matations

1. Move implied decimal point in numeric items one place to the left or to the right.
2. Add or subtract one from an OCCURS clause coant.
3. Insert FILLFR of length one between two adjacent record itens; also change FILLER lengths by one.
4. Reverse adjacent elementary items in records.
5. Alter file references.

Operator Mutations
6. Change ROUNDED TO truncation in arithmetic assignments
7. Change the sense of a MOVE

Control Structure Mutations
8. Interchange PERFGRM and GOTO

We use the notation $\alpha==>\beta$ to indicate the application of a mutant operator to construct $\alpha$ to produce mutation $\beta$. In general $\alpha$ can be a statement, group of statements, program or program fragment. If $\alpha$ is not a complete program, $\alpha=>\beta$ is to be interpreted so that $\alpha$ is changed to $\beta$ and the remaining context of $\alpha$ remains intact if the result is a syntactically correct program.

## A Procedure for Developing Adequate Test Data

Given a program $P$ to test and a set of test data $T$, apply the mutant operator $\mu$ to obtain the set $\mu(P)$ of mutants. The first step is to execute the program $P$ using test data. If $P$ does not perform as specified on $T$, then certainly $P$ is in error. If $P$ performs as specified on $T$, we must determine whether $T$ is adequate relative to $\mu(P) . \quad$ Only two possibilities arise.

1. a mutant $Q \varepsilon \mu(P)$ gives different results fron $P$, or 2. a mutant $0 \varepsilon \mu(P)$ gives the same results as P.

In case (1), $Q$ is said to be dead, while in case (2), the mutant is called live. Obviously, if $T$ leaves only live mutants that are equivalent to $P, m(P, T)=1$, and therefore $T$ is adequate relative to the set of mutants. If $T$ leaves live, nonequivalent mutants, then either $T$ can be augmented by some test strategy to an adequate (relative to $\mu(P)$ ) test set, or there is an error in $P$ that has not yet been revealed.

Jt is not apparent from this description that the procedure is either feasible or effective in detecting errors. As we will show in later chapters, there is a methodology for implementing this procedure which makes it computationally attractive. By the same token, we will denonstrate the error detection capabilities of this procedure. In lieu of these developments, however, the reader shonld notice that we have outlined a principle which can provide inferences of correctness. The inductive strength of those inferences is directly related to a single set of experimental observations - the observations which support the Competetent

Programer Assumption with a specified degree of confidence.

## Error Compling

A coupling effect asserts that test data that is sensitive enough to cause all simple mutants to fail is also sensitive enough to cause all complex mutants to fail. Note that error coupling is not a provable phenomenon in a mathematical sense; indeed, there are very simple counterexamples to it. It is, however, a useful principle that can be observed to hold for broad classes of programs and which can be measured in typical programing environments.

Since error classifications result in sets of motants, it may help to define error coupling in terms of mutant operators.

Definition: Let $\mu(P)$ and $\phi(P)$ define sets of mutants for each $P$ in a programming system. Then $\mu$ is said to be coupled to $\phi$ if $m_{\mu}(P, T)=1$ implies $\mathbb{K}_{\phi}(P, T)=1$.

It may have occurred to the reader that program mutation is the software version of fault detection: that is the origin of a hypothesized coupling effect. The fault detection problem may be specified as follows. Given a digital circuit $C$ and Boolean function $f$ (the specification of the circuit), determine whether or not the circuit $C$ realizes the function $f$. A natural way of solving a fault detection problem is to submit inputs to C. If $C$ works as expected then the circuit is most likely to be fault-free. Suppose C determines the complement of a 32 bit number. Exhaustive testing of an arbitrary circuit might require as many as $2^{32}$ inputs.

However, the faults (or errors) that are assumed to occur are usually constrained in some way. For example, it is commonly assumed that all faults are of the form: a single wire is permanently "stuck at" 0 or 1 . These are called single faults. The single fault assumption reduces the number of test case to under 100. Such assumptions are derived on the basis of experience, the independence of the components of $C$ and the statistical analysis of similar circuits. Using a single fault assumption in g given fault detection problem, a tester obtains a test set $I$ such that $C$ performs correctly on $I$ and no other single fault circuit performs correctly on $I$. Then cither $C$ is correct or it is not in the set of single fault circuits for a circuit correctly realizing f.

The problen that arises in fault detection is how close a single fault test set comes to detecting multiple faults which might actually occur (circuit testers call this phenomenon coverage of the multiple faults). In many circumstances single fandt tests sets provably cover many or all multiple faults. For example, there are classes of circuits (e.g., cascaded two-level networks and internal fanout-free networks) such that if $I$ is a set of test data which solves the single fault detection problem on a given set of wires, then $I$ also solves all maltiple fault detection problems on those wires. As a concrete example, consider the combinational logic circuit shown in Figure 2 below.


Let $K=\{1,3,6,8,11,13,16,18,21,23,26,28,31,33,36,38\}$ denote the indicated 16 inputs of the circuit, and let $I$ be the test set of 56 input vectors shown in Table 4. The entries under i denote the number of the input vector. The vector and parity entries must be read together to determine the value of the vector. For example an entry with vector entry $a_{1}, a_{2}, a_{3}$ and parity entry $\beta \varepsilon\{0,1\}$ denotes an input vector in which inputs numbered $a_{i}$, $1 \leq i \leq 3$, are set to $\beta$ and the remaining inputs are set to $\beta+1 \bmod 2$.


It can be shown that $I$ also covers every multiple fandt involving every k-tuple of the 1 ines from $K$, for $k=2,3$. Furthermore, $I$ covers $90 \%$ of the multiple faults involving $m$ of these lines for $\mathrm{m}=4,5,6$. For multiple faults simultaneously involving all 16 wires, however, less than half of the $2^{16}$ faults are covered. It is essentially a problen in electrical engineering to determine whether or not $k$ simultaneous faults are likely for $\leq 6$. If so, then it would sem appropriate to use the 56 test vectors in $I$.

The coupling of errors in programs has much in comon with the notion of test set coverage. It appears that test data which is adequate for simple errors is also adequate for many complex errors. In fact, the assumptions made about the programming process in Chapter 1 give us some hope that error coupling in programs is a stronger effect than coverage of multiple faults in digital circuits. A faultina circuit is an event of nature - it is essentially random. However, since programs are not created randomly, it sems unlikely that errors are created randomly Neither are errors created by an adversary. Rather, errors are introduced, corrected and reintroduced by programmers diligently creating programs which they intend to be error-free. The result of this activity is that errors are not created specifically to avoid error coupling. There is a great deal of information sharing within a program, and textually distant source statements can exert subtle influences on each other during program execution. The net effect of this interdependence is that complex errors can make their presence known through their effects on single statements and single syntactic items within those statements. Hence, a test that deals with an an error through a simple mutant in one portion of a program can implicitly reveal errors in portions of the program that depend or affect the statement to which the mutant is explicitly applied. Test set coverage also illustrates a theme that runs through our treatment of the coupling effect: the interplay between subcases for which simple errors cover complex errors and statistical estimates for the general case.

```
 We will illustrate this principle with a simple example.
Consider the Fortran program B7 for computing statistics from a
tab1e of observations.
```

```
 SUBROUTINE TAB1 (A,NV,NO,NINT, S, UBO,FREQ,PCT,STATS)
 INTEGER INTX
 REAL TEMP,SCNT,SINT
 INTEGER INN,J,IJ
 HEAL VIAAX,VMIN
 INTEGER I,NOVAR
 HEAL HBO(3),STATS(5),PCT(NINT),FREQ(NINT)
 REAL UBO(3),S(NO)
 INTEGER NINT,NO,NV
 HEAL A(600)
 NOVAR = 5
 DO 5 I=1,3
5 WBO(I)=UBO(I)
 VMIN = 0.1000000000E+11
 VMAX =- 0.1000000000E+11
 IJ=NO* (NOVAR-1)
 DO 30 J=1, NO
 IJ = IJ+1
 IF(S(J)) 10,30,10
10 IF (A(IJ)-VMIN) 15,20,20
15 VMIN = A(IJ)
20 IF (A(IJ)-VMAX) 30,30,25
25 VMAX = A(IJ)
30 CONTINUE
 STATS (4) = VMIN
 STATS(5) = VMAX
 IF(UBO(1)-UBO(3)40,35,40
35 UBO(1) = VMIN
 UBO(3) = VMAX
40 IRN = UBO(3)
 DO 45 I=1,INN
 FREQ = 0.0000
45 PCT(I) = 0.0000
 DO 50 I=1,3
50 STATS(I) = 0.0000
 SINT = ABS((UBO(3)-DB0(1))/(UBO(2)-2.0000))
 SCNT = 0.0000
 IJ = NO*(NOVAR-1)
 DO }75\textrm{J}=1\mathrm{ ,NO
 IJ = IJ+1
 IF(S(J)) 55,75,55
55 SCNT = SCNT+1.0000
 STATS(1) = STATS(1)+A(IJ)
 STATS(3) = STATS(3)+A(IJ)*A(IJ)
 TEMP = UBO(1)-SINT
 INTXT = INN-1
 DO 60 I=1, INTXT
 TEMP = TEMP+SINT
 IF (A (IJ) -TEHP) 70,60,60
```

```
6 0 ~ C O N T I N U E ~
 IF(A(IJ)-TEMP) 75,65,65
65 FREQ(INN) = FREQ(INN) +1.0000
 GO TO 75
70 FREQ(I) = FREQ(I) +1.0000
75 CONTINUE
 IF (SCNT) 79,105,79
79 DO 80 I=1,INN
80 PCT(I) = (FREQ(I)*100.0000)/SCNT
 IF(SCNT-1.0000) 85,85,90
85 STATS (2) = STATS(1)
 STATS(3) = 0.0000
 GO TO 95
90 STATS (2) = STATS(1)/SCNT
 STATS (3) = SQRT(ABS((STATS (3)-(STATS (1)*STATS (1)/
 * SCNT)/(SCNT-1.0000)))
95 DO 100 I=1,3
100 UBO(I) = WBO(I)
105 RETURN
 END
```

This program is adapted from a collection of statistical and scientific programs and contains an artificially inserted error. An error occurs in the line that reads

```
40 1NN = UBO(3).
```

The statement should be

$$
40 \mathrm{INN}=\mathrm{UBO}(2)
$$

Consider,
the mutant

IF $(A(I J)-T E M P) 75,65,65 \Rightarrow I F(A(I J)-1.000) 75,65,65$

Control reaches this point only if $A(I J)$ is bigger than TEMP, so control always passes to 65. By tracing the flow of control we discover that TEMP is equal to the value of the input parameter UBO(3) at this point. To eliminate this mutant, then, we must find
a value where $A(I J)$ is less than one but larger than UBO(3). Therefore $U B O(3)$ must be less than one. There is nothing in the specifications that rules out $\mathrm{UBO}(3)$ 's being less than one, but the error causes $\mathrm{UBO}(3)$ to be assigned to the integer variable INN. All the feasible paths that go through the mutated statement also go through label 65, which references FREQ(INN). Since INN is less than or equal to zoro, an array indez out of bounds error is detecteđ.

As we have already mentioned, there is no useful sense in which errors are provably coupled in real programs. Therefore, it makes sense to inguire into the extent to which errors are coapled.

Definition: Let $P$ be a program and consider $\mu(P)$ and $\phi(P)$ as defined above. We will say that $\mu$ is coupled to $\phi$ with coupling coefficient (1- $\omega$ ) if $\omega$ is the 1 argest number such that for any test set $T$ with $\operatorname{mlsub} \mu(P, T)=1 \phi(P)-\Delta_{\phi}(P, T) S_{\omega}|\phi(P)|$.

We plan on using this definition in experimental investigations into the coupling effect. The goal of these investigations is to determine whether or not a tester can assume with a reasonable degree of confidence that test data which is adequate for simple mutants is also adequate for mutants which explicitly satisfy the competent programmer assumption. Examining all possible test cases is not feasible, so this definition needs some modification to be cxperimentally useful. We will, therefore, usually work with another ccefficient, $z$.

Definition: The coefficient $z$ is the fraction of the nonequivalent members of $\phi$ that are not killed by some particular test case.
$z$ is then a random variable distributed over the space of pairs (P, T), where $P$ is a program, and $T$ is adequate relative to $\mu(P)$. Clearly $\omega$ is an upper bound on $z$. An experiment on the coupling effect is a measurement of the strength of that effect by measurement of $z$. The measurement of $z$ is in turn, an estimate on $\omega$. In practice, z itself can only be estimated by sampling. The usual case is that we will determine a confidence interval for $z$. The conclusion of an experiment organized in this way will then be of the following form. For programs selected from a given population and test data generated by process $G$ (adequate for $\mu$ ) the values of $z$ were cstimated by sampling from $\phi$ and found to range between $x$ and $y$.

Thus, if the population from which we sample is similar to the population of programs about which we want to nake quantitative estimates, and $G$ is the method available for generating test data whose strength we want to determine, and if $\phi$ is an estimate of the distribution of likely mutants, we can use the estimated values of $z$ to bound the probability that errors remain in a given program.

## Bibliographic Notes

The Competent Programmer Assumption was first articulated by DeMillo, Lipton and Sayward [DeMillo, 1978a]. The concept was refined and related to the correctness of mutation testing in a series of papers which followed [Acree, 1979], [Acree, 1980], [Budd, 1980].

The treatment of exror data and data gathering over the past decade has been surveyed by Gannon [Gannon, 1983]. See also Thibodean [Thibodeau, 1982] for a critical evaluation of existing data gathering efforts. The data cited in this chapter was taken from [Youngs, 1974] and [Thayer, 1978].

The form of many of the mutant operators presented above was implicit in [Budd, 1978b]. As experience with constructing automated systems grew, many new operators which are sensitive to specialized error conditions or languge features were designed. The background on these designs can be found in [Acree, 1979], [Acree, 1980], [Budd, 1980], and [Hanks, 1980].

The notion of error coupling was proposed in [DeMillo, 1978a]. Budd's thesis [Budd, 1980] and several subsequent papers have (see, e.g., [DeMillo, 1979]) have given heuristic arguments which support error coupling in software. The operational definitions of coupling coefficients are due to Acree [Acree, 1980]. Experimental justifications for coupling are discussed in Chapter 6. The example used for logic circuit test set coverage appeared in a paper by Agarwal and Masson [Agarwal, 1979] in which an number of special cases of single fault coverage of multiple faults are derived along

## Chapter 3

## Theoretical Studies

There are two possible approaches to applying mutation: (1) For fixed programing systen $P$ define the mutants of $P$ in terms of syntactic and semantic transformation rules that alter $P^{\prime}$ s syntax and interpretation in a way that formally reflects the errors a competent programmer could have made in producing $P$, or (2) define $\mu=$ P. Notice that, by virture of Theorems 1.20 and 1.21 , (2) has the effect of reducing test data adequacy relative to a set of errors to simple test data adequacy. For theoretical studies, (2) is often the more tractable approach since many useful properties of programs can be inherited from their programming systems.

We recall the following fact from Chapter 1:

Theorem 1.18: The following statements are equivalent. (a) the $\mu(P)$-adequate decision problen is solvable. (b) there is a computable $\mu(P)$ test strategy. (c) the $\mu$-equivalence problem is decidable.

Then the following corollary is immediate.

Corollary: If there is a computable test strategy to generate $\mu(P)$ adequate test data $T$, then the equivalence of $P$ and any program Q in $\mu(P)$ must be decidable.

At first glance the result of this theorem appears to cast serious doubt on our ability to derive any intexesting positive results, since the equivalence problem is undecidable for most
interesting 1 anguage classes. As will be seen in this chapter, however, we can obtain useful theoretical results by choosing the set $\mu(P)$ to capture some special properties of the original program P.

For the remainder of this chapter we will consider two specific programming systems: decision tables and LISP programs.

## Decision Tables.


#### Abstract

A decision table is a structured way of describing decision alternatives. Decision tables aremainly used for data processing applications although from time to time they have been suggested as tools for certain analytic studies and for organizing test data selection predicates.


A decision table is conposed of a set of conditions, a set of actions, and a table divided into two parts. Entries in the upper part are chosen from the set \{YES, NO, DON'T CARE\} (denoted $Y, N$, and $*$ ); entries in the lower table are either DO or DON'T DO (denoted $X$ and 0). Each column in the matrix is called a rule. An example is shown in Figure 1.

|  |  | RULES |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | 1 | 2 | 3 | 4 |  |
| condition 1 | $Y$ | $Y$ | $N$ | $*$ |  |
| condition 2 | $N$ | $*$ | $Y$ | $Y$ |  |
| condition 3 | $*$ | $Y$ | $Y$ | $N$ |  |
| condition 4 | $N$ | $Y$ | $*$ | $*$ |  |
| action 1 | $X$ | $X$ | 0 | $X$ |  |
| action 2 | $X$ | 0 | 0 | 0 |  |
| action 3 | 0 | 0 | $X$ | $X$ |  |

Figure 1.
A Typical Decision Table

To ezecute such a program on an input, the conditions are first simultaneously evaluated, forming a vector of YES-NO entries. This vector is then compared to every rule. If the vector matches any rule, the indicated actions are performed. If, for each possible data iten, there is at least one rule that can be satisfied, we say the decision table is complete. We say it is consistent if there is at most one rule.

Definition: Let $P$ be a decision table with rules $R_{1}, \ldots, R_{n}$, and for each $x \in D$, the dowain of $P$, let $V(x)$ be a sequence with values in the set [YES,NO] such that $v(x){ }_{i}$ is the value of condition i when evaluated on input $x$. Rule $R_{j}(1 \leq j \leq n)$ is said to be
satisfied by input $x$ if whenever $R_{j i} \varepsilon\{Y E S, N O\}, R_{j i}=v(x)_{i}$.

Definition: Let $P$ be a decision table with domain D. $P$ is a complete decision table if for all $x \in D$, there is at least one rule of $P$ that is satisfied by $x$.

Definition: Let $P$ be a decision table with domain D. $P$ is a consistent decision table if for all $x$ e $D$, there is at most one rule of $P$ that is satisfied by $x$.

We define the programing system $P$ to be the set of consistent decision tables. In this case, the behavior of programs on $D$ can be characterized functionally. Without loss of generality, we assume that $P$ consists of complete decision tables, since an incomplete decision table can always be simulated by a complete decision table by adding actions that return error flags and rules that are satisfied by previously unmatched inputs in such a manner that the domain of the incomplete table is consistently extended to all of $D$.

Without loss of generality, we may also assume that no two rules specify exactly the same set of actions. Suppose that $P$ is a decision table with two such rules $R$ and $R^{\prime}$. Then by the addition of at most one new condition to $P, R$ and $R^{\prime}$ can be combined into a single rule, With this assumption, we can -- given an example of input-output behavior - always determine which rule was applied to give the required output.

Definition: For each $P \varepsilon P$, we define a set of mutants of $P$ as follows: $\quad \phi(P) \subseteq P$ is the set of all consisent decision tables having the same conditions and actions as $P$.

Notice that the mutants of $P$ differ from $P$ only in the tabular portion of the program. The number of rules may be different, the assignment of actions to satisfied rules need not be correlated, and the occurrences of YES, NO and $*$ entries may be unrelated. This notion of mutant program models the concept of an aribtrary coding error in a decision table: since the conditions and actions must be preserved, it is assumed that the source of errors is not in understanding requirements or specifications, but rather in implementing the sequences of actions to be invoked.

Definition: For each $P \varepsilon P$, the set of simple mutants of $P$, $\mu(P) \subset \phi(P)$ is defined as follows: $P^{\prime} \varepsilon \mu(P)$ if $P^{\prime}$ is a mutant of $P$ such that if some entry $R_{i j}$ in rule $i$ of $P$ is *, then the corresponding entry $R^{\prime}{ }_{i j}$ in rule $i$ of $P^{\prime}$ is either YES or NO and all other rules and actions are identical.

The simple mutants of $P$ are those members of $\phi$ that are formed by changing a single * entry into either a YES or NO entry. If $P$ is consistent then all simple mutants are consistent. Some of these mutants may be equivalent to $P$. The mutant that changes position $j$ in rule i from a to a $Y$ is equivalent to $P$ only if it is impossible for any input to satisfy rule i and not satisfy this condition.

Suppose we test decision table programs by applying Theorem 1.21. That is, we determine the relative adequacy of a test set by computing the mutation score of the test set for a given set of mutants. By naively modelling all possible errors, we have a mutant set $\phi(P)$ that can be as large as $3^{n}+2^{m}$, if $P$ has $n$ conditions and $m$ actions. Since each mutant in $\phi(P)$ could require a distinct test set to distinguish it fron $P$, the number of tests required in a test set adequate relative to $\phi(P)$ could be exponential in the size of $P$. On the other hand, there are at most two simple mutants for every table entry in P. This means there are no more than 2 nm simple mutants. Each mutant requires at most a single test case to differentiate it from P. Therefore, even though there are potentially $2^{n}$ different inputs, a test set that is adequate relative to $\mu(P)$ need have only at most 2 nm inputs.

Since models arbitrary coding errors while $\mu$ models a rather more restricted class of errors, the relative advantage conputing the matation score on the set of simple mutants cannot really be exploited unless there is a coupling of simple and complex errors for programs in P.

Our goal will be to derive a provable coupling effect for the programing system $P$. In particular, we wish to show that if $m_{\phi}$ and ${ }^{m}{ }_{\mu}$ are the mutation scores computed over $\phi(P)$ and $\mu(P)$, respectively, then for all $\mathrm{P} \varepsilon \mathrm{P}$,

$$
m_{\phi}(P, T)=1 \text { if and only if } m_{\mu}(P, T)=1
$$

Assume we have such a set $T$. We require that $T$ satisfy a minimal test requirement, the decision table analog of statement coverage. We will assume that every rule in $P$ is satisfied at least once by some member of $T$, adding points if necessary to meet this condition, If all rules contain ${ }^{\prime \prime}$ 's, then this condition is met initial1y.

This condition on $T$ can be insured in test sets adequate relative to a rich cnough mutant set. Indeed, if $\phi$ had been defined to allow modifications to the actions of decision tables, then it would have been possible to define so that $\mathrm{m}_{\boldsymbol{\phi}}(\mathrm{P}, \mathrm{T})=1$ only if $T$ satisfies each rule of $P$ at least once. This expansion of does not change the error coupling properties of $\mu$, but it would add considerable complexity to the arguments to follow.

Definition: Let $P$ and $Q$ be decision tables, $Q \varepsilon \boldsymbol{q}(P)$, and let T be a test set. If $P^{*}(T)=Q^{*}(T)$, then $Q$ is said to test equal to $P$ on $T$.

Since each rule in $P$ has a unque set of actions, it follows by a simple counting argument that, if $Q$ tests equal to $P$, then for each rule in $P$ there is a corresponding rule in $Q$ with exactly the same actions. Using this fact, we can show the following:

Theorem 1: Suppose $m_{\mu}(P, T)=1$, and $Q$ tests equal to $P$ (on $T$. Let $V(P)_{i}$ be the set of inputs satisfying rule $R_{i}$ if $P$ and $1 e t V(Q)_{i}$ be the set of input satisfying the corresponding rule of $Q$. Then $V(P)_{i} \subset V(Q)_{i}$

Proof: First note that it is not possible for a rule to have a $Y$ entry in $P$ and for the corresponding rule in $Q$ to have an $N$, or vice versa. Otherwise, no data that satisfied the rule in $P$ could satisfy the rule in 0.

Consider each * entry in P. There are two cases. If the change that replaces this * by a $Y$ (the same argument holds for $N$ ) results in an equivalent progran, then the conjunction of the other conditions implies a YES in this position. In this case, it doesn't matter whether $Q$ has a $Y$ or $a *$ (and these are the only two possibilities) - this change cannot contribute to decreasing the size of the set $V(Q)_{i}$. On the other hand, if this change does not result in an equivalent mutant, then $D$ contains points that satisfy the rule and both satisfy and fail to satisfy this particular condition. Both these must be accepted by the same rule in Q. Therefore $Q$ must also have a * in this position.

The only remaining possibility is that some rule $\mathrm{R}_{\mathrm{i}}$ in P has a $Y$ (or $N$ ) and the corresponding position in $Q$ has a*. This strictly increases the size $V(Q)_{i, ~ g i v i n g ~ o u r ~ r e s u l t . ~[] ~}^{\text {( }}$

Theorem 2: Let $P \varepsilon P$ and let $T$ be a test set. If $m_{\mu}(P, T)=1$, then $m_{\phi}(P, T)=1$.

Proof: Let $V(P){ }_{j}$ be the set of inputs satisfying rule $R_{i}$ in $P$. Since $P$ is consistent, the $V(P)_{i}$ are disjoint. Since $P$ is complete, they cover the entire space of inputs. Each rule in $Q$ must be satisfied by at least the set satisfying the corresponding rule in P. Since $Q$ is consistent, it can satisfy no more. []

Recall that Theorem 1.18 stated that we could form an adequate test set relative to the set of mutants only if we could decide equivalence of $P$ and each of its mutants. Obviously there are some cases where this is true (for example, when all conditions are independent and therefore none of the mutants are equivalent). We can easily find examples where this is not true. Consider, for example, two conditions where the implication

```
condition1 }=>\mathrm{ condition2
```

is undecidable, and construct a decision table as shown in Figure 2 .

| condition 1 | $Y$ |
| :---: | :---: |
| condition 2 | $*$ |
| print "YES" | $X$ |

Figure 2.
Example of Undecidable Equivalence

We can replace the $*$ in the condition 2 row with a $Y$ if and only if condition 1 always implies condition 2 . In this fashion using almost any undecidable question we can construct a program with the property that the equivalence question for it and one of its mutants is undecidable.

The most restrictive assumption made in proving Theorem 2 sems to be that each rule must have a distinct set of actions. To show that this restriction cannot be eliminated altogether, consider the two decision tables shown in Figure 3. The two programs are not equivalent (they process the input NNM differently), yet they agree on a set of test inputs \{NNYY, NYYN, YYNN, YNNY, NNNN, NYNY, YYYY, YNYN\}, Which is adequate relative to $\mu(P)$.


Figure 3.
A Case not Covered by Mutation

It is not known whether the restriction to rules having distinct actions can be replaced with a weaker assumption, or whether there is any test method that can be used to demonstrate correctness in this case other than trying all $O\left(2^{n}\right)$ possibilities.

## Lisp Programs


#### Abstract

In this section we will consider the programming system $P$ consisting of programs written in the subset of LISP containing the functions CAR, CDR, and CONS and the predicate ATOM.

We will refer to S-expressions as points. We assume that all points have unique atoms. Clearly if two programs agree on all points then they are equivalent over the entire domain, so there is no generality lost in this assumption.


Definition: A LISP program is a selector program if it is composed of just CAR and CDR. We inductively define a straight-1ine program as a selector program or a program formed by the CONS of two other straight-line programs.

Straight-1ine programs: We will show in this section that in the subsystem consisting of straightine prograns, if $\mu$ is the constant mapping onto the entire subsystem, then $m_{\mu}(P,\{X\})=1$, provided only that $X$ is a point such that $P(X)$ is defined.

We first note that the power of a selector program is very weak.

Theorem 3: If two selector prograns test equal on any input for which they are both defined, they must compute identical values on al1 points.

Proof: The only power of a selector program is to choose a subtree out of its input and return it. We can view this process as selecting a position in the complete CAR/CDR tree and returning the subtree rooted at that position. Since there is a unique path from the root to this position, there is a unique predicate that selects it. Since atoms are unique, by merely observing the output we can determine the subtree that was selected. []

Definition: A straight-line program $P(X)$ is well formed if for every occurrence of the construction $\operatorname{CONS}(A, B)$ it is the case that $A$ and $B$ do not share an immediate parent in $X$.

The intuitive idea of this definition is that a program is well formed if it does not do any more work than it needs to. Notice that being well formed is a structural property of programs.

We now define a complexity measure for straight-line programs.

Definition: The CONS-depth of a program is defined inductively.

1. The CONS-depth of a selector program is zero.
2. The CONS-depth of a straight-line program

$$
P(X)=\operatorname{CONS}(P 1(X), P 2(X))
$$

is

$$
1+\operatorname{MAX}(\operatorname{CONS}-\operatorname{depth}(P 1(X)), \operatorname{CONS}-\operatorname{depth}(P 2))) .
$$

Theorem 4: If two well formed selector prograns test equal on any point for which they are both defined, then thoy must have the same CONS-depth.

Proof: Assume we have two programs $P$ and $Q$ and a point $X$ such that $P(X)=Q(X)$, yet the CONS-depth(P) < CONS-depth(Q). This implies that there is at least one subtree in the structure of $Q$ that was produced by CONSing two straight-1ine programs while the same subtree in $P(X)$ was produced by a selector. But then the objects $Q$ CONSed must have an immediate ancestor in $X$, contradicting the fact the $Q$ is well formed. []

Theorem 5: If two well formed straight-1ine programs test equal on any point $X$ for which they are both defined, then they must test equal on all points.

Proof: The proof will be by induction on the CONS-depth. By Theorem 4, any two programs that agree on $X$ must have the same CONScepth. By Theorem 3 the theorem is true for programs of CONS-depth zero. Hence, we will assume it is true for programs of CONS-depth n and show the case for $n+1$.

If program $P$ has CONS-depth $n+1$ then it must be of the form $\operatorname{CONS}(P, Q)$ where $P$ and $Q$ have CONS-depth no greater than $n$. Assume we have two programs $P$ and $O$ in this fashion. Then for all $Y$ :

```
P(Y)=Q(Y) if and only if
CONS(P1(Y),P2(Y)) = CONS(Q1(Y),Q2(Y)) if and on1y if
P1(Y) = Q1(Y) and P2(Y) = Q2(Y)
```

Hence by the induction hypothesis $P$ and $Q$ must test equal for all Y. []

We can easily generalize Theorem 5 to the case where we have multiple inputs. Recall that each atom is unique; therefore given a vector of arguments we can form them into a ist and the result will be a single point with unique atoms. Sinilarly, a program with multiple arguments car be replaced by a program with a single argument by assuming the inputs are delivered in the form of a list, and replacing each occurrence of an argument name with a selector function accessing the appropriate position in this list. Using this construction and assuming that Theorem 5 does not hold in the case of multiple arguments, it is possible to construct two programs with single arguments for which Theorem 5 fails, giving a contradiction.

To sumarize this section: for any well formed straight-line progran, ary unique atomic point for which the function is defined is adequate to differentiate the program from all other well formed straight line programs.

Recursive programs: The type of programs we will study in this section can be described as follows. The input to the program will consist of selector variables, denoted $x_{1}, \ldots, x_{m}$, and constructor variables, denoted $y_{1}, \ldots, y_{p}$. A program will consist of a program body and a recurser. A program body consists of $n$ statements, each statement composed of a predicate of the form ATOM(t( $\left.x_{1}\right)$ ) where $t$ is a selector function and $x_{1}$ a selector variable, and a straight-line output function over the selector and constructor variables. A recurser is divided into two parts. The constructor part is com-
posed of $p$ assignment statements for each of the $p$ constructor variables where $y_{i}$ is assigned a sraight-1ine function over the selector variables and $y_{i}$. The selector part is composed of m assignment statements for the $m$ selector variables where $x_{i}$ is assigned a selector function of itsclf.

The exanple in Figure 4 should give a more intuitive picture of this class of programs. Given such a program, execution proceeds as follows: Each predicate of the execution; otherwise if any predicate is TRUE the result of execution is the associated output function. Otherwise, if no predicate evaluates TRUE then the assignment statements in the recurser and constructor are performed and execution continues with these new values.

Program $P\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{p}\right)=$

$$
\begin{aligned}
& \text { IF } p_{i}\left(x_{i 1}\right) \text { THEN } f_{1}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{p}\right) \\
& \text { ELSE IF } \ldots \\
& \ldots \\
& \text { ELSE IF } p_{n}\left(x_{i n}\right) \text { THEN } f_{n}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{p}\right) \\
& \quad E L S E \\
& y_{1}:=g_{1}\left(y_{1}, x_{1}, \ldots, x_{m}\right) \\
& y_{p}:=g_{p}\left(y_{p}, x_{1}, \ldots, x_{m}\right) \\
& \quad x_{1}:=n_{1}\left(x_{1}\right) \\
& \quad x_{m}:=n_{m}\left(x_{m}\right) \\
& P\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{p}\right)
\end{aligned}
$$

Figure 4.
A Recursive Program

We will make the following restrictions on the programs we will consider:

1. All the recursion selector and recursion constructor functions must be non-trivial.
2. Every selector variable must be tested by at least one predicate.
3. There is at least one output function that is not a constant.
4. (Freedom) For each $1<k \leq n$ and $\lambda \geq 0$ there exists at least one input that causes the program to recurse $\lambda$ times before exiting with output function $k$.

Let $\phi$ be the set of all programs with the same number of selector and constructor variables as $P$, the same number of predicates, and output functions no deeper than some fixed limit olimit. Our goal is to construct a set of test cases $T$ that is adequate relative to $\$$. The set of simple mutants $\mu$ will be described in the course of the proof, as they enter into the arguments. The proof will proceedin several smaller steps: We first give some basic definitions and demonstrate some tools that we will use in later sections. We then show how to use testing to bound the depth of the selector functions. We then narrow the form of the selector functions still further, and finally show that they must exact1y match $P$. In preparation for the main theorem, we first deal with the points tested by the predicates.

As in the previous section, we will use capital letters fron the end of the alphabet to represent vectors of inputs. Hence we will refer to $P(X)$ rather than $P\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{p}\right)$. Similarly we will abbreviate the simultaneous application of constructor functions by $C(X)$ and recursion selectors by $R(X)$.

We will use letters from the start of the alphabet to represent positions in a variable, where a position is defined by a finite CAR-CDR path from the root. When no confusion can arise we will frequently refer to "position a in $X$ ", whereby we mean position a in some $x_{i}$ or $y_{i}$ in $X$. We will sometimes refer to position belative to position a, by which we mean to follow the path to a and starting from that point follow the path to $b$.

The depth of a position will be the number of CARs or CDRs necessary to reach the position starting from the root. Similarly the depth of a straight-line function will be the deepest position it references, relative to its inputs. Let $w$ be the maximum depth of any of the selector, constructor, recurser, or output functions in $P$. The size of an input $X$ will be the maximum depth of any of the atoms in $X$.

We can extend the definition of $S$ to the space of inputs by saying $X S Y$ if and only if all the selector variables in $X$ are smaller than their respective variables in $Y$, and sinilarly the constructor variables. We will say $Y$ is $X$ "pruned" at position a if Y is the largest input less than or equal to $X$ in which a is atomic. This process can be viewed as simply taking the subtree in $X$ rooted at a and replacing it by a unique atom.

If a position (relative to the original input) is tested by some predicate we will say that the position in question has been touched. Call the $n$ positions touched by the preaicates of $P$ without going into recursion the primary positions of $P$.

The assumption of freedom asserts only the existence of inputs X that will cause the program to recurse a specific number of times and exit by a specific output function. Our first theorem shows that this can be made constructive.

Theorem 6: Given $\lambda \geq 0$ and $1 \leq i \leq n$ we can construct an input $X$ so that $P(X)$ is defined and when given $X$ as an input $P$ recurses $\lambda$ times before exiting by output function 1 .

Proof: Consider m+p infinite trees corresponding to the m+p input variables. Mark in BLUE every position that is touched by a predicate function and found to be non-atomic in order for $P$ to recurse $\lambda$ times and reach the predicate i. Then mark in RED the point touched by predicate $i$ after recursing $\lambda$ times.

The assumption of freedom implies that no BLUE vertex can appear in the infinite subtree rooted at the RED vertex, and that the RED vertex carnot also be marked ELUE. Now mark in YELLOW all points that are used by constructor functions in recursing $\lambda$ times, and each position used by output function $i$ after recursing $\lambda$ times. The assumption of freedom again tells us that no YELLOW vertex can appear in the infinite subtree rooted at the RED vertex. The RED vertex may, however, also be colored YELLOW, as may the BLUE vertices.

It is a simple matter then to construct an input $X$ so that

1. all BLUE vertices are interior to $X$ (non-atomic),
2. the RED vertex is atomic, and
3. al1 YELLO vertices are contained in $X$ (they may be atomic).

Notice that the procedure given in the proof of Theorem 6 allows one to find the smallest $X$ such that the indicated conditions hold. If a is the implies that no point can be twice touched; hence the minimal a point is a well defined concept.

Given an input $X$ such that $P(X)$ is defined, let $F_{X}(Z)$ be the straight-Iine functicn such that $F_{X}(X)=P(X)$. Note that by Theorem 5. $F_{X}$ is defined by this single point.

Theorem 7: For any $X$ for which $P(X)$ is defined, we can construct an input $Y$ with the properties that $P(Y)$ is defined, $Y \sum X$ and $\mathrm{F}_{\mathrm{X}} \neq \mathrm{F}_{\mathrm{Y}}$.

Proof: Let $\lambda$ and $i$ be the constants such that on input $X, P$ recurses $\lambda$ times before exiting by output function $i$. Let the predicate $p_{i}$ test variable $\mathbf{x}_{\mathbf{j}}$.

There are two cases. First assume $f$ is not a constant function. Now it is possible that the position that would be tested by $P_{i}$ after recursing $\lambda+1$ times is an interior position in $X$, but since $X$ is bounded there must be a smallest $k>\lambda$ such that the predicate $p_{i}\left(R\left(x_{j}\right)\right)$ is either true or undefined. Using Theorem 6 we can find an input $Z$ that causes $P$ to recurse $k$ times before exiting by output function $i$. Let $Y$ be the union of $X$ and $Z$. Since $Y Z Z$, must recurse at least as much on $X$ as it did on $Z$. Since the final point tested is still atomic $P(Y)$ will recurse $k$ times before exiting by output function i. Since

$$
f_{i}\left(R^{\lambda}(X), R^{\lambda}(Y)\right) \neq f_{i}\left(R^{k}(X), C^{k}(Y)\right)
$$

we have that $\mathrm{F}_{\mathrm{X}} \neq \mathrm{F}_{\mathrm{Y}}$.

The second case arises when $f_{i}$ is a constant function. By assumption 3 there is at least one output function that is not a constant function. Let $f_{i}$ be this function. Let the predicate $p_{i}$ test variable $x_{j}$. We can apply the same argument as before, except that it may happen by chance that $P(Y)=P(X)$, i.e. $P(Y)$ returns the constant value. In this case increment $k$ by 1 and perform the same process and it cannot happen again that $P(Y)=P(X)$. []

Theorem 8: If $P$ touches a location $a$, then we can construct two inputs $X$ and $Y$ with the properties that $P(X)$ and $P(Y)$ are defined. Then for any $Q$ in $\phi$, if $P(X)=Q(X)$ and $P(Y)=Q(Y)$, then Q must touch a.

Proof: Let $Z$ be the minimal a point. Using Theoren 7 we can construct an input $X$ such that $P(X)$ is defined, $X \quad Z$, and $F_{X} \neq F_{Z}$. Let $Y$ be $X$ pruned at $a$.

We first claim that $P(Y)$ is defined and $F_{Y}=F_{Z}$. To sce this, note that every point that was tested by $P$ in computing $P(Z)$ and found to be non-atomic is also non-atomic in Y. Position a is atomic in both, and if the output function was defined on $Z$ then it must be defined on $Y$, which is strictly larger.

Suppose that, given input $Y$, a program $Q$ recurses $\lambda$ times before exiting by output function $i$ but does not touch position a. Since $X$ is strictly larger than $Y$, on $X, Q$ must recurse at least as much and at least reach predicate $i$. Let the position in $Y$ that was touched by predicate $i$ and found to be atomic be $b$. Since position $b$ is not the same as position $a$, position $b$ is also atomic in $X$. Therefore, given input $X, Q$ will recurse $\lambda$ and exit by output function i. But this implies by Theorem 5 that $F_{X}=F_{Y}$, a contradiction. []

Bounding the depth of the recursion and predicate functions: Our first set of test inputs uses the procedure given in Theorem 8 to demonstrate that each of the $n$ primary positions in $P$ are indeed touched.

Next, for each selector variable, use the procedure giver in Theorem 8 to show that the first $n+1$ postions (by depth) must be touched. Let $d$ be the maximum size of these $m(n+1)$ positions. (We will assume d is at least 3 and is larger than both 2 v and olimit.)

Theorem 9: If $Q$ is a program in $\phi$ that correctly processes these $2 m(n+1)$ points, then the recursion selectors of $Q$ have depth $d$ or less.

Proof: Consider each selector variable separately. At least one of the $n+1$ points touched in that variable must have becn touched after $Q$ had recursed at least once. If the recursion selector had depth greatcr than $d$, the program could not possibly have touched the point in question. []

Theorem 10: If $Q \in \quad \&$ correctly processes these $2 m(n+1)$ points, then none of the selector programs associated with the predicates can have a depth greater than d.

Proof: At least one of the inputs causes $Q$ to recurse at least once; hence all the predicates must have evaluated FALSE and theretore were defined. If any of the predicates did have a depth greater than $d$, they would have been undefined on this input. []

Since $d>0$ imit we also know that $d$ is a bound on the output functions of $Q$.

Fe are now in a position to make a conment concerning the size of the points computed by the procedure given in Theorem 8. Let $\lambda$ be the naximum depth of the "relative root" (the current variable position relative to the original variable tree) at the time position a is touched. We know the minimal a trec is no larger than 1+w. This being the case, to find an atoraic or undefined point (as in the procedure associated with Theorem 7) we will at worst have to recurse to a position $1+w$ deep, but no more than $1+w+d$ deep. Hence neither of the two points constructed in Theorem 8 need be any layger than $1+2 w+d$. This fact will be of use in proving Theorem 13.

Narrowing the form of the recursion selectors: We will say a selector function factors a selector function $g$ if $g$ is equivalent to $f$ composed with itself some number of times. For example, CADR factors CADADADR. We will say that $f$ is a simple factor of $g$ if $f$ factors $g$ and no function factors $t$ other than fitself. Let us denote by $s_{i}, i=1, \ldots, m$, the simple factors of $r_{i}$, the recursion selector functions. That is, for each variable i there is a constant $\lambda_{i}$ so that the recursion selector $r_{i}$ is $s_{i}$ composed with itself $\lambda_{i}$ times. Let $q$ be the greatest common divisor of all the入s. Hence the recursion selectors of $P$ can be written as $S Q$ for some recursion selector S .

We now construct a second set of data points in the following fashion: For each selector variable $x_{i}$, let a be the first position touched with depth greater than $2 d^{2}$ in $x_{i}$. Using Theorem 8, generate two points that demonstrate that position a must be tonched. Let $T_{0}$ be the set containing all the $(2 n+2 m(n+1+2 m)$ points computed so far.

Theorem 11: If a $\varepsilon$ $\phi$ computes correctly on $T_{0}$ then recursion selector $i$ of $Q$ must be a power of $s_{i}$.

Proof: Assume the recursion selector of $x_{i}$ in $Q$ is not a power of $s_{i}$. Recall that the depth of the selector cannot be any greater than d. Once it has recursed past the depth d, it will be in a totally different subtree from the path taken by the recursion selector of F .

Since d $>$ 3, it is required that $Q$ touch a point that has depth at least 3 d . Q must therefore touch this point prior to recursing to the depth d. By Theoren 9 this is impossible. []

We can, in fact, prove a slightly stronger result.

Theorem 12: If $Q \varepsilon \quad \phi$ computes correctly on $T_{0}$ then there exists a constant $r$ such that the recursion selcotors of $Q$ are exact1y $S^{x}$.

Proof: By Theorem 11, the recursion selectors of $Q$ must be powers of $s_{i}$. For each selector, construct the ratio of the power of $s_{i}$ in $Q$ to that in P. Theorem 12 is equivalent to saying that all these ratios are the same. Assume they are different and 1 et $x_{i}$ be the variable with the smallost ratio and $x_{j}$ the variable with the 1argest.

Let $X$ and $Y$ be the two inputs that demonstrate that a position a of depth greater than $2 \mathrm{~d}^{2}$ in $\mathrm{x}_{\mathrm{i}}$ is touched. Both $P$ and $Q$ must recurse at least $2 d$ times on these inputs. In comparison to what $P$ is doing, $x_{j}$ gains at least one level every time $Q$ recurses. By the
time $x_{i}$ is within range to touch $a, x_{j}$ will have gone $2 d$ levels too far. Since $2 d>d+2 w, x_{j}$ will have run of $f$ the end of its input; hence $Q$ cannot have received the correct answer on $X$ and $Y$. []

Theoren 8 gave us a method to demonstrate a position is touched. He now give a way to demonstrate a position is not touched.

Theorem 13: If $Q$ e $\phi$ computes correctly on all the test points so far constructed, then for any position a not touched by $P$ we can construct two inputs $X$ and $Y$ so that if $P(X)=Q(X)$ and $P(Y)$ $=Q(Y)$ then $Q$ does not touch a.

Proof: Let position a be in variable $x_{i}$. Let $m$ be the smallest number such that after recursing m times the recursion selector i is deeper than a. Let $\lambda$ be the maximum depth of any recursion selectors at this point. Let $X$ be the complete tree of depth $1+2 d$ pruned at a.

There are two cases: If $P(X)$ is not defined, assume $Q$ touches a. The relative roots of $Q$ cannot be deeper than $1+d$ at the time when a is touched. Hence the minimal a point is no deeper than 1+2d. Since $X$ is strictly larger than the minimal a point we know that $Q(X)$ must be defined, which contradicts the fact that $Q(X)=$ $P(X)$.

The second case arises if $P(X)$ is defined. Using Theorem 7 we construct an input $Z \sum X$ such that $F_{X} \neq F_{Z}$. Let $Y$ be $Z$ pruned at a. Assume $Q$ touches $a$. Since $Y \geq X, Q(Y)$ must be defined, so assume $P(Y)$ is defined. By construction $F_{Y}=F_{Z} \neq F_{X}$. But since $Q$ toached
a, $\mathrm{F}_{\mathrm{X}}=\mathrm{F}_{\mathrm{Y}}$, which is a contradiction. []

Recursion selectors mot be the same as P: If $Q \varepsilon$ \& executes correctly on $T_{0}$, then by The orem 12 , the recursion selectors of $Q$ must be $S$ for some constant r. From Theorem 9 we know the depth of $S$ is no larger than $d$; hence there are at most d/(depth of $S$ ) choices. For each possible $r$ (not equal to $q$ ), construct a mutant program $P^{\prime}$, which is equal to $P$ in all respects but the mutant selectors, which are $S^{\text {r }}$.

In this section we will consider test cases as pairs of inputs, generated using the procedure given in Theorem 12, which return either the value YES, saying they were generated by the same straight-1ine program, or the value NO, saying they weren't. Other than this we will not be concerned with the output of the mutants.

If each mutant touches a point that $P$ does not, then construct two points (using Theorem 13) to demonstrate this. If any mutant touches only points that $P$ itself touches, then we will say $P$ cannot be shown correct by this testing method. Call this set of test cases $\mathrm{T}_{1}$.

Theorem 14: If $Q \varepsilon q$ executes correctly on $T_{0}$ and $T_{1}$, then the recursion selectors of $Q$ must be exactly $\mathbb{S}^{q}$.

Proof: Assume not, and that the recursion selectors are $S^{r}$ for some constant $r \neq q$. No matter what the primary positions of $Q$ are, we know it must touch at some point the primary positions of $P$. It therefore must always touch the primary positions of $P$ relative to the position it has recursed to. But, therefore, it must at least
touch the points that the mutant associated with r does. []

Testing the primary positions of $P$ : Consider each primary position separately. Assume that in some program $Q$ in $\phi$ the position is not primary, but thet it is touched after having recursed $\lambda$ times. Let $b$ be the position of a relative to $S q \lambda$. This means in $Q$ that $b$ is primary. Now $b$ cannot even be touched (let alone be primary) in $P$ because of the assumption of freedom. Using the procedure given in Theorem 13, constract two points that demonstrate that $b$ is not touched, which demonstrates that a must be primary. Taken together, these test points insure that the primary positions of $P$ must be primary in all other programs.

Notice that we need to make no other assumptions about the other primary positions in $Q$; we can treat each of then indopendently, We, therefore, have at most $n(d /(d e p t h$ of $S$ ) mutant programs, hence at most twice this number of test points. Call this test $\operatorname{set} \mathrm{T}_{2}$.

Theorem 15: If $Q$ e $\phi$ executes correctly on $T_{0}$, $T_{1}$, and $T_{2}$ then the primary positions of $Q$ are exactly those of $P$.

Notice that by Theorem 5 this also gives us the following.

Theorem 16: The output functions of $Q$ are exactly those of $P$.

Main Theorem: Once we have the other elements fixed, the constructors are almost given to us. Remember one of the assumptions is that each of the constructor variables appears in its
entirety in at least one of the output functions. A11 we need do is to construct $P$ data points so that data point i causes the program $P$ to recurse once and exit using an output function that contains the constructor variable i. Call this set $T_{3}$. Using Theorem 5 we then have

Theore 17: The recursion constructors of $Q$ must be exactly those of $P$.

The only remaining source of variation is the order in which the primary positions are tested. The only solution we have been able to find here (short of making more severe restrictions on $\phi$ ) is to try all possibilities. There are $n$ ! of these, some of which may be equivalent to the original program. Let $T_{4}$ be a set of data points that differentiates $P$ from all non-equivalent members of this set.

Putting all of this together gives us our main theorem:

Theorem 18: Given a program $p$ in $\phi$, if $Q \varepsilon \notin$ executes correctly on the test points constructed in Theorems 9, 14, 15, and 17, then $Q$ must be equivalent to $P$.

Corollary: Either $P$ is correct or no program in $\phi$ realizes the intended function.

Even though the depth of the output functions is bounded, we did not bound the number of CONS functions they contain; hence there are an infinite number of programs in the set $\phi$. This is true even after we have bounded the depth of the recursion selectors and the
predicate selectors in Theorem 10.

The most important aspect of this result is the method of the proof. Once we have fixed the recursion selectors via test set $T_{0}$, the remainder of the arguments can be proved by constructing a small set of mutants and showing that test data designed to distinguish these from the original actually will distinguish $P$ from a much lar ger class of prograns. In all we constructed
$d(1 /($ depth of $S)+n /(d e p t h$ of $S Q))+p+n!$
mutants, and we proved that test data that distinguished $P$ from this set of mutants actually distinguished $P$ from the infinite set of programs in $\phi$.

## Bibliographic Notes

The results in this chapter were developed in Budd's thesis [Budd, 1980] and in papers by Budd and Lipton [Budd, 1978] and Budd, DeMillo, Lipton and Sayward [Budd, 1980b].

## Chapter 4.

## A Mutation Analyzer

In overall structure, a mutation analyzer serves as a test harness and aids in performing mutation analysis. This chapter provides a detailed description of the implementation of mutation analyzer.

Although existing mutation analyzers differ in certain respects, there are essential similarities. Briefly, the systems allow an interactive user to enter a program to be tested. The program is parsed to a convenient internal form and appropriate data files are created. The user then entexs test data, ezecuting the program on the test data to check for errors. At the point of calculation of the mutation score, the user "turns on" or enables a subset of the mutant operators. The system creates a list of mutant description records, descriptions of how the internal form is to be modified to create the required mutant. The changes are induced sequentially with additional heuristics to speed up processing and the modified internal form is executed. The results aro compared to the original results to determine whether or not the matant survives the execution on that data. At the completion of the pass, summary reports are presented to the user, and several options are provided for examizing the remaining live mutants. The user may also declare matants to be equivalent and therefore remove them from future consideration. This function can be partially automated with considerable improvement in performance. The issue of equivalent matants will be discussed more fully in Chapter 8.

## System Overview

The user interface of a matation analyzer is interactive. Tasks are assigned to both the user and the analyzer which are best suited to their capabilities. One way to see how this might be acconplished is to imagine the system as an adversary who, when confronted with a progran asks the user a set of questions about the program (e.g., "Why did you use this type of statement here when an alternative statement works just as well?"). The task of the user is then to provide justification in the form of test data which will give an answer to such a question.

An overview of the structure of such a system is shown in Figure 1.


Figure 1.
System Organization

The heart of a mutation analyzer is roughly that portion of the system which lies within the dotted box in Figure 1. This portion is largely language independent since it is driven by an internal form of the source program rather than the source program itself. Given a sufficiently general internal form, it is possible to implement a mutation analyzer for a new language by modification of the input/output interface. In later sections, we will describe the details of mutation analyzer for a simple subset of Cobol.

A single run of a mutation analyzer divides naturally into three phases: the run preparation phase, in which the information which is required by the analyzer is prepared, the mutation phase,
during which the mutations are generated and a mutation score is calculated, and a post run phase in which results are analyzed and reports are generated.

Run Preparation. The role of the run preparation phase is to initialize various files and buffer areas. This phase is characterized by its high degree of user involvement. The user is first asked to supply the name of the file which contains the source progran to be tested. Depending on whether or not the system has previousiy been run on this file the program file is either parsed to an internal form or a previously generated internal form file is retrieved. This internal form is subsequently interpreted to simulate program execution. A fragment of a typical interral form generated by the Fortran statement

IF (A. LT. $\mathrm{X}(2)$ ) $\mathrm{P}=1$
is shown in Figure 2.


Figure 2.
Internal Form

The user is then interactively prompted for the test data on which the program is to be tested (and against which the mutation score is to be calculated). After each test case has been specified (either by direct user entry at the keyboard or by reference to a test file), the original program is executed on the test case and the results of execution are displayed (or written onto an output file for later eamination). The role of the oracle who determines whether or not the calculated output of the program is satisfactory may be played by either the user or the system. If the user plays the role of the oracle, then he must literally examine the inputcutput relation deternined by the program's execution to determine
whether the computed input-output relation is the one required by the specification. If the system plays the role of the oracle, it must be supplied with a predicate subroutinc. A predicate subroutine is an executable, uniform specification of input-output behavior, The syster invokes the predicate subroutine each time the subject program is executed on a test case to determine if the input-output relation computed during that execution is the one required by the specification. In either case. if the test case is processed satisfactorily, the user is allowed to either enter additional test cases or to compute the mutation score and associated statistics.

After the user has entered test data, he is prompted for a specification of which mutant operators he wishes to apply. Instead of constructing multiple copies of the program (one for each mutant), a short descriptor of eachmutation to be performed is generated and stored in an auxiliary file. Each time the mutant is to be run, the internal form is modified according to the information stored in the descriptor and the modified program is interpreted in the mutation phase. The user may also specify a percentage of the mutant operators to be applied.

Experience has shown that it is best to partition the task of developing test data which is adequate relative to the entire set of mutants in stages. Each stage further refines the test data to distinguish the program under test from a more extensive class of mutants. A convenient partitioning of the mutant operators is the following:

## Level 1: Statement Analysis

Goal: Insure that every branch is taken and that every statement is necessary

Matants: all statement and control mutants

Level 2: Predicate Analysis
Goal: Exercise predicate boundaries

Mutants: Alter predicate and loop limit
subexpressions by small amounts
$A B S$ insertions in predicates
Relational operator substitutions

Level 3: Domain Analsysis
Goal: Exercise data domains

Mutants: Alter constants and subexpressions
by small amounts
ABS insertions

Level 4: Coincidental Correctness Analysis

Goal: Determine coincidental correctness conditions
Mutants: Operand substitutions
Operator substitutions.

In addition, the user may specify that certain of the mutants are to be randomly sampled in computing the matation score. While there is some loss of effectiveness in randomly sampling mutants (as opposed to exhanstively executing all mutants), experimental evidence (cf. Chapter 5) suggests that test data which delivers a
high mutation score under the sampling strategy also results in a high mutation score when computed according to the definitions in Chapter 1. The advantage to the user in reducing processing time can be considerable, especially for large monolithic programs.

Matation Phase. Once the user has specified the program, test data and level of test (mutation operators and parcentage) to be applied, the system enters the mutation phase. During this phase there is virtually no user interaction. Mutation descriptor records are processed sequentially or randomly sampled depending on whether or not the user has specified a percentage other than 100\%. The mutant program is generated by modification to the internal form of the source program. The mutant is then executed on the test data and is either marked "dead" or "alive". A mutant is marked dead if it has delivered results which differ from the program being tested -- by, for example, producing different output, violating a predicate subroutine, or inducing a runtime error - on at least one test case. Otherwise the mutant remains alive. The mutation score is then the ratio of dead mutants to the total number of nonequivalent mutants. A dynamic recordis kept of the number and percentage of living mutants of each type. These records are organized to allow access in a number of dimensions (e.g., live mutants by statement, by mutant type, randomly sampled). Since the final mutation score is the ratio of deadmutants to the total number of nonequivalent mutants, equivalent mutants must be deleted before the score is correctly interpretable. There are two times when it is appropriate to delete equivalent mutants. Many equivalent mutants car be detected automatically (cf. Chapter 8).

If a mutant can be deleted automatically it is deleted during the mutation phase. Equivalent mutants can also be deleted under user control during the post run phase.

Post Run Phase. When the mutant programs have been run on the current test cases, the system enters a post run phase. In this phase, statistics are displayed indicating the results of the mutation run to thet point. The user can interactively select descriptions of live and dead mutants and display them on the screen. During the post run phase certain reports may also be generated; the se reports provide a detailed permanent record of the mutation run.

The user may also declare certain mutants to be equivalent. Equivalent mutants do not enter into the mutation score calculation. There are two reason a user may deciare a natant to be equivalent. First, the user may have actually determined that the mutant belongs to $\mu_{\mathrm{E}}$. Such a mutant has not been automatically eliminated during the mutation phase, but the system provides some antomated help in the post run phase for determining equivalence. Some implementations provide data flow analyzers and various static analysis tools that allow the user to determine equivalence (see Chapter 8) Second, the user may choose to ignore a portion of the program being tested. For example, a subroutine or module may already have been tested adequately during a previous phase. The decision to mark all mutants which change code in that subroutine then essentially eliminates that portion of the program from further consideration even thongh the routine is still present in executable form and delivers results to modules which invoke it during the mutation and pre run phases.

The user can re-run the system and augment the test cases in an attempt to improve the mutation score. The user may also specify that additional mutation operators are to be applied to the program. This cycle can continue until the user is satisfied that the current test data is adequate relative to the given set ofmation operators.

Several files hold information between system runs. These are shown in Figure 3, which outlines the functions of each phase. The internal form file stores the parsed version of the source program being tested. The test data file stores for each test case the test data input and the results of erecution of the program being tested on the test data. The mutation information file sorts the mutation descriptor records and other statistics generated during the mutation and post run phases.


Figure 3.
Major Files

## A Matation Analyzer for Cobol

We will now describe in some detail the organization of mutation analyzer for a subset of Cobol which we refer to as "Level 1" Cobol. A Level 1 Cobol program is written in the standard Cobol format (colums $1-6$ containing sequence numbers, column 7 containing continuation marks, columns 8 throngh 72 containing Level 1 Cobol statements).

The following syntax chart defines Level 1 Cobol:

```
IDENTIFICATION DIVİSION.
PROGRAM-ID. program-name
[AUTHOR.comment-entry.]
[DATE-WRITTEN. comment-entry.]
[DATE-COMPILED. conment-entry.]
[SECURITY. comment-entry.]
[REMARSS. comment-entry.]
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
[SOURCE-COMPUTER. comment-entry.]
[OBJECT-COMPUTER. comment-entry.]
[SPECIAL-NAMES.][CO1 IS mnemoric-name.]
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 [SELECT file-name ASSIGN TO {INPUTi|OUTPUTi]...]
DATA DIVISION.
FILE SECTION.
[FD file-name RECORD CONTAINS integer CLARACTERS]
 [lABEL RECORDS ARE [STANDARD lOMITTED]]
 DATA RECORD IS data-name
 level-number {data-name | FILLER}
 [KEDEFINES data-nane-2]
 [{PICTURE{PIC} IS character-string]
 [OCCURS integer TIMES]
 ...
 ...
[HORRING STORAGE SECTION.
 [77 1eve1 entries.]
 [record entries.]...]
PROCEDURE DIVISION.
[paragraph-name.]
 ADD {identifier-1|litera1-1][identifier-2||1-2]... {TO|GIVING] identifier-m
 [ROUNDED][ON SIZE ERROR imperative-statement].
 CLOSE file-name-1 [file-name-2]... .
 CORPUTE id [ROUNDED] = arithemtic-expression
 [ON SIZE ERROR inperative-statement]
 DIVIDE {identifier-1|1iteral-1} {INTO|BY}} {identifier-2|iitera1-2}
 [GIVING identifier-3][ROUNDED][ON SILE ERROR imperative-statement].
 EXIT.
 GO TO paragraph-name
 CO TO paragraph-name-1 [[paragraph-name-2]... DEPENDING ON id].
 IF condition { statement-1|NEXT STATEMENTS}
 [ELSE statement-2 {[NEXT STATENENT]]
 MOVE identifier-1 To identifier-2 [identifier-3]
 MNLTIPLY {identifier-1|1iteral-1} BY {identifier-2|1-2}
 [GIVING identifier-3][ROUNDED][ON SIZE ERROR imperative-statement].
 OPEN [INPUT file-mane-1 [file-name-2]]
 [OUTPUT file-name-3 [file-name-4]]
 PERFORM paragraph-name-1[THRU paragraph-name-2]
 FERFORM percgraph-name-1 [THRU paragraph-name -2] {identifier-1| int-1} TIMES
```

```
 PERFORM paragraph-name-1 [THRD paragraph-name-2]
 [VARYING identifier-1 FROM {identifier-2|1iteral-1}
 BY {identifier-3|1iteral-2} ONTIL condition]
READ file-name RECORD [INTO identfier]
 AT FND imperative-statement.
STOP RUN
SUBTRACT {identifier-I|literal-1}[identifier-2|1iteral-2]...
 FROM {identifier-m|literal-m}
 [GIVING identifier-n][ROUND][ON SIZE ERROR imperative-statement].
WRTTE record-name [FROM identifier-1]
 [AFTER ADVANCING {identifier-2\integerlmnemonic} LINES].
```

Implementation Overview. The user provides the name of the file containing the source program. Of course this program should be a legal Level 1 Cobol program. The program is parsed to its internal form. The system then produces all mutation descriptors. The legal mutations are the following:

Decimal Alteration: move implied decimal in numeric items one place to the left or right, if possiblc.

Dimensions: reverse two-level table dimensions

OCCURS clause alteration: add or subtract a constant (usually 1) from an occurs clause.

Insert FILLER: insert a FILLER of length 1 between adjacent items of a record.

FILLER size alteration: add or subtract a constant (usually 1)
from the length of a FJLLER.

Elementary item reversal: reverse adjacent elementary items in a record.

File reference alteration: interchange names of files at the point of reference.

Statement deletion: replace a statement by the null statement.

GO TO $\rightarrow$ PERFORM: change GOTOs to PERFORMS

PERFORM $\rightarrow$ GOTO: change PERFORMis to GOTOs

Conditional reversal: negate the condition in an IF-THEN clause.

STOP statement substitution: replace a statement by a STOP statement.

THRU clanse extension: expand the scope of the THRU clause by a fixed namber of statements (usually 1)

TRAP statement replacement: replace each statement by a statement. TRAP statements are not included in Level 1 Cobol. The effect of a TRAP statement is to call a routine which ceases normal program operation and returns control to the matation analyzcr with the information that a statement has been TRAPped.
A Mrtation Analyzer ..... 4-15
Substitute arithmetic verb: interchange arithmetic verb with all other arithmetic verbs.

Substitute operator in COMPUTE: interchange arithmetic operator with all other arithmetic operators in an arithmetic expression.

Parenthesis alteration: move one parenthesis one character to the right or left.

ROUNDED alteration: interchange ROUNDED and truncation.

MOVE reversal: reverse the sense of a move in a simple MOVE statement if the resulting statement is legal.

Logical operator replacement: interchange all Boolean operators.

Scalar for scalar replacement: sabstitute one tablular item reference for another when the result is a legal expression in Level 1 Cobol.

Constant for constant replacement: interchange constants that appear in the program.

Scalar for constant replacement: replace constant references with non-tabular iter references.

Constant for Scalar replacement: replace non-tabular item references with constant.

Constant adjustment: adjust the value of a constant by a fixed percentage (always at least 1 if the constant is an integer).

Mntants may be erabled selectively and a fixed precentage of the mutants to bc processedmay be specified as described in the previous section.
futants may die in a variety of ways. A mutant may deliver incorrect results (i.e.. it may fail to match the output of the program being tested or may fail to satisfy the predicate subroutine). Mutants may also die by prodecing xuntime faults (e.g., attempting to read unopened files or dividing by 0 ). Irfinite loops in mutants are detected by setting a timing constant which sets an absolute upper bound on the number of iterations of a single locp which are allowed. A typical setting of the timing constant might be three times the number of statements executed by the program being tested of the test case currently being processed.

Level 1 Cobol is 1 imited to a fixed number of sequential input and output files. Ten nonrewindable files sem to be sufficient for such common data processing applications as posting sorted transactions against master file and updating the master. For this simple system there should be a limit set on the anount of storage allocated for each file for each test case. Files are packed into arrays by replacing each string of repetitions of a single character (such as a string of blanks) by storing a token which represents the character and a repeat count.

As described ir the previous section, the system should create a number of auxiliary files. Some of these files are random access files used to process the mutants and test cases. Others are needed for the restart capability. A convenient naming scheme is to use the name of the auxiliary file as an extension to the name of the program file provided by the user. For example, if the user submits TEST-PRGG-1 to the system, the system might store the internal form of the progran in the filc TEST-PROG-1.if.

A file that deserves special attention is the logfile. This file contains:

1. a listing of the program with line numbers assigned.
2. a record of the percentage of mutants to be created.
3. a summary of test case and mutant transactions, in the order in which they occurred (whenever a test case is submitted a message is logged about that transaction, including the location of the test case and whether the test case was accepted or rejected by the user; mutants are entered as they are enabled),
4. a summary of matant status after each mutation phase,
5. a listing of live mutants after each matation phase,
6. an optional listing of test cases after each pre run phase.

These files should not be automatically deleted after a run is completed, but rather should be available for a possible resumption of testing.

Suggested File Formats. The files which are required for processing have been described above. In this section, we will examine the structure of those files in enough detail to permit easy implementation of analyzer for Level 1 Cobol.

## SOURCE PROGRAM 〈filenane〉

The source program is assumed to be in a sequential system file, in the standard Cobol format.

## INFUT FILE (EXTERNAL)

Input file can either be supplied by the user as a standard sequential file or can be entered directly from the terminal. It is, of course, possible to create some input files outside the system using whatever tools the user has access to, and to create the others interactively.

TEST FILES (INTERNAL)

The internal test files contain all test cases that have been created at that time. There are two files containing test information, the test status file, and the test data file.

TEST STATUS FILE (〈filename〉.ts): The first record of this file contains global information.
entry

This record will be followed by two records for each test case. The first test case record has the format:
entry

The second record contains a bit map for the statements executed by this test case. This bit map is used to speed up processing during the mutation phase. If a statement is not executed by a test case, then no mutant of that statement shomid be executed. By using the
bit map to record statement executions，the applicability of a matant to a given test casc can be casily determined．

TEST DATA FILE（＜filename〉．td）：The test data file contains the actual test cases，with the input file（s）first，followed by the output file（s）of the original program．To save space these should be stored in packed format with strings of repeated characters replaced by single characters and repeat counts．

MUTANT RECORD FHE（ $(f i l e n a m e\rangle . m r):$ The mutant records are stored in binary format，at four integers per mutant record．All records for a particular mutant type are stored contiguously，fol－ lowed by all records for the next mutant type．

MUTANT STATUS FILE（〈filename〉．ms）：The first section of the file contains a total matant count and headers for each mutant type．


For each motant type there is then a status block，of one record．The status block contains the following information

| \|entry| | contents |
| :---: | :---: |
| 1 | total mutants for this type |
| 12 | bit map length in words |
| 3 | mrf pointer for the first mutant record of |
|  | this type |
| 4 | number of live mutants |
| 5 | number of dead mutants |
| 6 | number killed by trap (*) |
| 7 | namber killed by time-out |
| 8 | number killed by data fault |
| 9 | number killed by initialization fault |
| 10 | number killed by I/O fanlt in OPEN/CLOSE |
| \| 11 | number killed bv attempt to read past EOF |
| 112 | number killed by writing too much |
| \| 13 | number killed by output too large for buffer |
| \| 14 | number killed by array subscripts out-of-bounds |
| 15 | number killed by incorrect output |
| 16 | number killed by garbage in the code array |

The status biock is followed by counts indicating live, dead, and equivalent mutants, indexed by mutant number.

INTERNAL FORM (〈filename〉.if): The internal form file contains the following tables:

SYMBOL TABLE

STATEMENT TABLE

CODE ARRAY

INIT

HASH TABLE

TNIT is the initial segment of memory containing literals, PICTUREs, and memory initialization information. The remaining tables are described below.

OUTPUT FILE (<filename〉. 10 ): This is a file containing information on the run. Its contents are controlled by the user. Typical contents would be a listing of the source program, the test. cases, the status after each pass through the system, and a insting of some or all of the 1 ive mutants.

INITIAL. HASH: This table is the same as HASH-TABLE except that it contains only the reserved words and their tokens.

## Internal Form Specifications

SYMBOL TABLE: The symbol table is an 10xN array of integers. A simple data item (group or elementary) is described by one row in the array. A table item is described in two rows, the second is a dope vector. The following conventions are useful. Entry 1 in each row (record) points to the hash table entry for the name of the item. If the item has no name (such as a filler or literal), entry 1 is zero. Entry 2 is always a code for the type of the record. Its value determines the meaning of the other entries. The overall organization of the symbol table entries is as shown in Figure 4.

| $\begin{array}{r} \text { FILE } \\ \text { DEFINITION } \end{array}$ | PROGRAM |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | infuto |  |  |  |  |  |  |  |  |  |
|  | inputi - outputs |  |  |  |  |  |  |  |  |  |
|  | oltputg |  |  |  |  |  |  |  |  |  |
| DATA ITEM | $\begin{aligned} & \text { HASH } \\ & \text { ADDRESS } \end{aligned}$ | TPPE | level | PICTURE <br> AODRESS | ADDRESS | LENGTH | DEPTH | value ADDRESS | $\xrightarrow[\text { CEFTNE }]{\text { RE- }}$ | SOURCE LINE |
| TABLE ENTRY |  | CODE | $\begin{aligned} & \text { FIRSI } \\ & \text { SUSSCR. } \end{aligned}$ | $\begin{aligned} & \text { SECOND } \\ & \text { SUGSCR. } \end{aligned}$ | $\begin{aligned} & \text { MAX } \\ & \text { FIRST } \\ & \text { SUOSSR. } \end{aligned}$ | $\underset{\text { SECOND }}{\operatorname{MAX}}$ SUBSCR | occurs value |  |  |  |
| LITERAL |  | CODE | $\begin{aligned} & \text { DECL. } \\ & \text { POSITION } \end{aligned}$ | LITERAL POOL | LENGTH |  |  |  |  |  |
| PARAGRAPH <br> NAME | NAME | coce | $\begin{aligned} & \text { FIRST } \\ & \text { STMT. } \end{aligned}$ | LAST STMT. |  |  |  |  |  |  |

Figure 4.
Symbol Table Organization

Table 5 describes the contents of the first 21 rows of the symbol tab1e.


DATA ITEMS: The following table describes the organization of the entries for the elcmentary data items.


SECOND ROW FOR TABLE ITEMS A second row is required for the dope vector when the data item is a table entry.
contry: contents

## LITERALS DEFINED IN THE PROCEDURE DIVISION: For cntering

 references to literals which are defined in the procedure division, the following table format is used. SPACES and ZCRC (and twiddles of ZERO) have entries of this fornat which are present by default, even if not nsed in the program.(entry

PARAGRAPH NAMES Paragraph names are entered in the following format:

| $\|e n t r y\|$ | contents |
| :---: | :---: |
| \| 1 | pointer to name |
| I |  |
| 12 | code $=9$ |
|  |  |
| 13 | statement table index of first statenent |
| ¡ |  |
| \| 4 | statement table index of last statement |
| 1 Table 9. Symbol Table - Paragraph Names |  |

Entries in the symbol table are stored in the same order as the items are encountered. In particular, entries for data items defined in the DATA DIVISION are stored almost as they appear in the source code, with nesting being implicit in the level numbers and the sequence. Onc exception to this rule is the inclusion of dummy FILLER entries of length zero between elementary items. This is to accomodate the metant operator that inserts fillers to avoid having to change procedure division references.

Memory is organized as shown in Figure 5.


Figure 5.
Memory Organization

The first 30 characters of memory are used as a temporary aritbmetic register. Following that cones the constant data area. This area includes:

PICture strings - for edited numeric items. There are $3+N$ descriptors, where $N$ is the length of the picture string. The first is the length of the string; descriptor 2 is the number of digit positions; and descriptor 3 is the number of digits to the right of the decinal foint. Then follows the picture string. An editing MOVE uses this string to interpretively execute the MOVE instruction.

VALUE literals. for numeric items - descriptor 1 is the number of digits, descriptor 2 is the ncmber of digits in fraction, and descripters 3 to $n+2$ are the digits themselves. An operational sign is coded in the last descriptor with the last digit. for nonnmeric items - descriptor 1 is the length $N$ in characters, and descriptors 2 to $\mathrm{N}+1$ are the characters.

Procedure Division Iiterals. These are digits or characters only. Since these itcms have individual symbol table rows, the extra information (e.g., length, decimal position) is stored there.

SPACES and ZERO are stored in positions after the arithmetic register in a format that can be referenced either as VALUE or Procedure Division literals, depending on the start pointer.

A variable area follows the constant area. Ail data is stored on a USAGE IS DISPLAY basis, one character at a tinc. Since some mutations change the data structure, reallocation between executions is sometimes necessaty.

STATEMENT TABLE: The statement table is composed of triples of integers. The first is the starting position of an instruction in the code table. When a procedure division statement is mutated, the original code is not modified. Instead, a mutated copy of the instruction is created and appended to the end of the code table. This entry is then modified to point to this motant copy of the instruction. The second entry in the triple is the line number of the statement on the source listing. The third entry contains a code. A valuc of 0 means this statement is a continuation in a
sentence (no period after previous statement.) A value of 1 means a new sentence. A value greater than 1 means the beginning of an ELSE clanse.

IFTERNAL FORM OF PROCEDURE DIVISION: The following table describes the format of the internal form for each Cobol instruction. The bracketed entries "identifier","ident", and "id", as well as "op" are pointers to symbol table entries describing identifiers or literals. The symbol table contains information about type, length, and location. Notice that an operand can also be a table reference. In this case, instead of a single integer we wonld have [op][index-1] or [op][index-1] [index-2]. The interpreterwill know from the symbol table ontries for op whether 0,1 , or 2 indices (subscripts) are needed for a valid reference. Index-1 (and index-2) are also symbol table references to simple (unsubscripted) variables or to numeric licerals. The notations "procedure" and "oroc" represent pointers to symbol table entries describing paragraph nanes. The symbol table will contain pointers to the first and last statements in the paragraph, in the statement table.

Each instruction is preceded by a word containing the length of that instruction.

| ｜source | internal forn syntax |
| :---: | :---: |
| 1 HOVE | $\langle$ LOV〉 $\langle n\rangle\langle$ source $\rangle\langle$ dest－1〉．．．〈dest－n〉 |
| ｜ADD |  |
| ｜ADD－GIVING |  |
| ｜SUBTRACT |  |
| ｜SUB－GIV | $\langle$ SUG〉〈rnd＞＜size〉＜n＞＜op－1〉．．．〈op－n＞＜dest＞ |
| ｜MULTIPLY | $\langle\mathrm{nd}\rangle\langle r \mathrm{nd}\rangle\langle\mathrm{size}\rangle\langle o p-1\rangle\langle o p-2\rangle$ |
| ｜HULT－GIV | $\langle\mathrm{MUG}\rangle\langle\mathrm{rnd}\rangle\langle\mathrm{size}\rangle\langle o p-1\rangle\langle o p-2\rangle\langle$ dest $\rangle$ |
| ｜DIVIDE | $\langle\mathrm{DI}\rangle\langle\mathrm{rud}\rangle\langle$ size〉$\langle$ ¢op－1〉＜op－2〉 |
| 1DIV－GIV | $\langle\mathrm{DIG}\rangle\langle\mathrm{rnd}\rangle\langle$ size〉$\langle$ op－1〉＜op－2〉〈dest〉 |
| 1 COLPPUTE | $\langle C O\rangle\langle r n d\rangle\langle s i z e\rangle\langle i d e n t\rangle\langle a r i t h . ~ e x p$. |
| 16070 | 〈GO〉〈procedure〉 |
| 1GO TO．．DEPENS | 〈GOD〉〈n〉〈proc－1〉．．．〈proc－n〉〈ident〉 |
| PPERFORM | 〈PE〉〈procedure〉〈procedure－2〉 |
| ｜PERFORE－URTIL | 〈PEU〉〈proc－1〉〈proc－2〉〈condition〉 |
| ｜PREFORK VARYING | 〈PEV〉〈proc－1〉〈proc－2＞〈ident〉〈from＞＜by〉 |
|  | $\langle\mathrm{NEP} 1\rangle\langle\mathrm{p} 1-\mathrm{stm} \mathrm{t}-\mathrm{ptr}\rangle\langle\mathrm{p} 2-\mathrm{code}-\mathrm{ptr}\rangle\langle$ condition） |
| PPERFORM－TIRES | 〈PET〉〈procedure〉〈procedure－2〉〈ident〉 |
|  | 〈REP2〉＜count＞＜start＞＜stop＞ |
| Ino op | ＜nET〉＜0＞ |
| Iretura | 〈IRET〉〈addr＞ |
| ｜IF | $\langle\mathrm{IF}\rangle\langle\mathrm{l}$ se－stmt－ptr〉＜condition＞ |
| INEGATED IF | 〈NIF〉〈else－stmt－ptr＞＜condition＞ |
| lOPEN | 〈0P〉＜1．．20〉 |
| CIMSE | 〈CL〉＜1．20） |
| ［READ | 〈RE〉〈1．．10〉〈from－ident＞ |
| ｜wRITE | 〈TRR〉〈1．10〉〈from－ident〉〈advance〉 |
| ISTOP RUN | 〈STOP＞ |
| ITRAP | 〈TRAP＞ |

The itens 〈rnd〉 and 〈size〉are codes．〈rnd〉 is set to 0 for truncated values and 1 for rounded values．〈size〉 is set to 0 if no SIZE ERROK clause has been specified and 1 otherwise．In the inter－ nal form the $S$ IZE FRROR clause inmediately follows the current statement．Arithmetic expressions are interpreted（see algorithms below）by 2 ＂calculator＂that uses the initial memory locations for subexpression and intermediate storage．

In PERFORM－VARYING and PERFORM－TIMES statements 〈REPI〉 represents the iteration control instruction．On returning from the PERFORM，control is returned to this instruction．〈p1－stmt－ptr〉 is
a statement table pointer corresponding to the symbol table＜pointer proc－1〉．〈p2－code－ptr＞is a code pointer for the insertion of the return．〈REP2〉 is similar to REP1，but 〈count〉 holds the value that was in＜ident＞when the statement was first executed．Start and stop are statement table pointers for the perform range．

Each paragraph ends with a no op statememt．When a PERFORM statement is executed，it first changes the no op at the end of its range to a return by inserting the return address（in the statement table）and then transferring to the beginning of the range．When a RETURN is executed，it transfers to the address in the instruction and also changes itself to a no by changing its address field to 0．No op＇s are also inserted when NEXT SENTENCE is used or implied in an IF statement．

In the WRITE statement 〈sdvance〉is a symbol table pointer．

MUTANTS：The mutant descriptions are stored in four integers． The first is the mutant type，and the others（not all types use all four integers）are used for auxiliary information．The following motants are defined．


We now describe the effects of each of these mutations on the internal form entries．The mutations are grouped by the Cobol syntactic structures affected during the matation：data，input， output，control，and procedural．Each matant is described by four integers which specify the type of nutation，relevant table entries， and parameters defining the mutant．In the notation below，blank entries in the descriptors are indicated by 〈x〉．〈field〉 denotes the location in the code table relative to the start of the statement．All other locations and linits are defined throagh their symbol table entries．Thus，the mutants can be stored in a file of 4xN integers．

## DATA MUTATIONS

（1）〈DECIMAL〉〈sym．tab．1oc＞＜＋1｜－1〉〈x〉
（2）〈DIMENS1〉〈sym．tab．loc〉〈x〉〈sym．tab．loc．－2〉
（3）〈DIMENS2〉〈syn．tab．loc〉〈＋1｜－1〉〈E〉
（4）〈INSERTF〉〈symbol table location〉〈x〉〈x〉
（5）〈ALTERF〉〈syn．tab．loc〉〈＋1｜－1〉〈x〉
（6）〈REVERSE〉〈sym．tab．loc．〉〈next．elementary．loc〉〈x〉

## INPUT／OJTPUT MUTATIONS

（7）〈FILEREF〉〈statement〉〈x〉〈new file－code〉

## CONTROL STRUCIURE MUTATIONS

（8）〈DELETE〉〈statement〉〈x〉〈x〉
（9）$\langle$ GO－PERF〉〈statement $\rangle\langle x\rangle\langle x\rangle$
（10）$\langle\mathrm{PERF}-\mathrm{GO}\rangle\langle$ statement $\rangle\langle x\rangle\langle x\rangle$
（11）〈THENELS〉〈statement〉〈x〉〈x〉
（12）〈STOPINS〉〈statement〉〈x〉〈x〉
（13）〈THRUEKT〉〈statement〉〈new paragraph limit〉〈x〉
（14）〈＇TRAP〉〈statement〉〈x〉〈x〉

## PROCEDURAL MUTATIONS

（15）〈ARIVERB〉〈statement〉〈new operation〉〈x〉
（16）〈ARIOPER〉〈statement〉〈field〉〈new operation〉
（17）〈PARENTH〉〈statement〉〈from－field〉〈to－field〉
（18）〈ROUND〉〈statement〉〈x〉〈x〉
（19）〈MOVEREV〉〈statement＞〈x〉〈x〉
（20）〈LOGIC〉〈statement〉〈field〉〈new value〉
（21）〈S－FOR－S〉〈statement〉〈field〉〈new symtab loc．〉
（22）〈C－FOR－C〉〈statement〉〈field〉〈new loc〉
（23）〈C－FOR－S〉〈statement〉〈field〉〈new loc〉
（24）〈S－FOR－C〉〈statement〉〈field〉〈new loc〉
（25）〈CONSADJ〉〈statement〉〈field〉〈new loc〉

## Processing Algorithns

In this section，we will describe the principal processing that takes place during the mutation phase of the analyzer．The overall organization of these algorithns is as shown in Figure 6.


Figure 6.
Call Structure for Processing Algorithms

Each major algorithm is described below. Minor algorithms are described briefly in the major algorithas that use them.

In addition to the processing algorithms described below, an implementor will need some utilities for conmon file processing operations. The $\quad$ tilities which are most likely to be helpful are those which take and replace a given mutant (indexed by its number) in a mutant buffer, create and delete files, check to sce if a specified file (on a specified unit) is open or already exists. Sequential and randon access reads and writes are also required.

ABORT - stop the run
ABORT prints a message indicated in its call. It then closes all open files without further processing. No files are deleted. ABORT then terminates the run and returns control to the operating system. Be aware that ABORT does not actually cause the output file to be printed. The user must do that outside the system.

## ALCATE - allocate storage

ALCATE scans the symbol table, filling in the fields for the lengths of group items, and for the positions and multipliers for all items.

CLOSEF - close a file

CLOSEF closes currently open files. It will also detect if the file was not opened and return an error message to the calling algorithm.


#### Abstract

CORREC - check mutant correctness

CORREC compares as output of the program being executed with the output of the original program. Depending on the mode of correctness checking chosen by the user (or by the defanlt methods), this may be done after each record is "written", after the progran has completed execution (unless the program has failed by some other method), or not at all. Also selectable by the user should be the precision of the checking: total agreement, or agreement up to spacing.


DECOMP - decompile statement
DECOMP decompiles a statement in internal form to its Cobol equivalent.

DRIVER the main program
This program controls the looping through the mutation process at the highest level. It controls the prexun, mutation, and postrun phases of the run. This is the routine that may be altered later if the "phase" concept is dropped.

DSPSTT - display status
Display the status of the mutants that have been turned on. This includes a listing by mutant type of the numbers of mutants 1 ive and eliminated, and a listing by elimination method of the number eliminated by each method.

ENTRY - entry routine for set-np.
This algorithm is entered only once, at the beginning of a testing session. ENTRY first asks the user for the name of the raw program file. It then checks to see if the temporary files needed already exist (their names will be derived from the raw program file name). If they do, then the user will be asked if he wants to purge them for a fresh run. If a fresh run is desired, or if the temporary files did not exist, ENTRY causes the program to be parsed, and causes the needed temporary files to be created and initialized.

## INITM - initialize core memory

This algorithm initializes program memory for the start of an interpretive interaction. This rontine is called before each erecution of each mutant program, as well as before the execution of the original program.

INHASH - insert info into hash table
INHASH can only be used after OHASH has already been called to determine the proper point of insertion for the name. OUASH also does the actual insertion of the name. INHASL makes the insertion permanent. If a name is not permanently inserted the name will be overwititen the next time OHASH accesses that location.

INTERP - interpretively execnte the program.
INTERP interprets the internal form of the program. The program can fail in INTERP by attempting to read past the end of file, by writing too many records on an output file, by taking too much time, by arithmetic fault, or by mode mismatch. The limits for time and out-
pot records are in ERSTAT. For the original program these are arbitrary values, bet for motant programs, they should be set for conparisons with the original progran. INTERP leaves a code for the mode of failure, or nonfailure, in ERSTAT. Also placed in ERSTAT are connts of the actual time used and records written. INTERP calls CORREC after each "write" or after the end of execution, or not at all, depending on the correctness checking mode selected by the user.

MAKEMU - make mutants

MAEEMU creates the descriptor record file, and initializes the mutant status record. The first time it is called, it writes header information ard the first batch of mutants. On subsequent calls it appends mutant records.

MUTATE - mutate the program
MUTATE mutates the progran. For a data division mutation, this means altering one or several entries in the symbol table, and also possibly the already initialized memory. For the procedure division the affected statenent is copied, in its mutated version, at the end of the code table. The statement table is then modified so that the pertinent entry points to the modified version, rather than the original. The original statement is not affected, so that restoration is easy.

MUTPH - control the mutation phase.

MUTPH first creates the mutants that have been requested by the user, and then performs the motations and runs the mutants, updating
the mutant status as it does so. Each test case and each mutant record carries a flag thet indicates whether or notit was created on this pass. While looping through the mutants, each new mutant is run against all test cases. Each old mutant that has not already been killed is ren only against the new test data.

OPENF - open a file
OPENF opens a file. This algorithm will have concentrated system dependencies. Typical paxameters passed to OPENF include the type of file (e.g., sequential output file or random input file), the starting position in the file (e.g., beginning, end, random address), and a flag to indicate success of the operation. Extensive use should be made of the native operating system file handing routines in implementing OPENF.

PARSE - driver routine for parsing subroutines.
This routine controls the four divisional routines that actually perform the parsing. It also prints error messages. The pilot systen, at least, will abort the parsing when the first error is detected. The user will be informed of the offending line and the type of error.

POSTRH - the post run phase
POSTPH is guided by user dialogue. Its purpose is to display information for the user. The mutant status should be automatically displayed upon entry, all other information is by request. The user may ask to see the program, the test cases (by number), or the mutants (all, selected, or one random mutant of each type).

Finally, the user may return to the pre-ran phase by command or end the session.

PREPH - the controliing routine for the prerun phase The prerun phase is guided by user dialogue. PREPH will ask about test cases for this pass. These may be in a file or they may be entered from the terminal. Several test cases nay be entered at cnce. After each test case the user is presented with the results of the run and is asked if the test case should be retained. After the test cases are entered PREPI asks the user which mutants are to be turned on. The uscr may turn them all on, or he may name a subset, or he may select mutants to be activated.

PRSDAT - parse the data division PRSDAT parses the data division, building the symbol table for later use by PRSPRO, INTERP, and MAKEMD. PRSDAT enters one 1ine in the symbol table for each identifier declared in the DATA DIVISION. PRSDAT also builds an array for the initialization of memory before each run.

PRSENV - parse the environment division.
This routine parses the environment division. The only lines of importance are the SELECT statements, which contain the file declarations, The file names are placed in the symbol table in entries 2-5.

PRSID - parse the identification division.
This routine essentially recognizes a correct identification division. The only effect on the internal form is to insert the program name (from the PROGRAM-ID statement) into the first location of the symbol table.

PRSPRO - parse the procedure division RSPRO parses the procedure division, creating the code array and the statement array. PRSPRO also adds 1iterals and paragraph names to the symbol table.

PUINAM - put name in NAMES array

PUTNAH inserts character string in NAMES for future reference, such as by decompiler.

QHASH -- query hash - is item already in hash table?
QHASE takes a name of 30 characters and checks to see if it is already in the hash table. If so, it sets and indez to the position in the table where the nanc was found. If no match is found, an index is set to that insertion position.

RESTOR - restore a matant to the original version
Restore the internal form of the program to its original state. For a Data Division mutant this means removing a filler, re-reversing two elementary items, of restoring table attribates. In all of these cases the symbol table must be modified, and space must be reallocated. For a Procedure division mutant, restoration is easier. All that must be done is to change entry 1 in the statement
table entry to its previous value.

SCAN - the scanner routine

SCAN passes to the parsing routines tokens from the source file. For an idenfifier token, scan calls the hash query routine to see if the symbol is already in the table and if so, where.

TSTCAS - process a test case
TSTCAS inputs one test case from the user, either directly or from a file, runs the test case, and displays the result to the user. If the test case is accepted, it is merged into the test file, marked as "new".

## A Testing Session

The following is the output of a level 1 Cobol system whose design parallels the design given above. The program under test was nodified scmewhat, mainly in the reduction of the record sizes to nake a better CRT display. The program takes as input two files, representing an old backup tape and a new one. The output is a summary of the changes. The input files are assumed to be sorted on a key field. The program has 1195 mutants, of which 21 are easily seen to be equivalent to the original pragram. Initially ten test cases were generated to eliminate all of the nonequivalent mutants. Subsequently a stibset of five test cases was found to be adequate. The entire run took about 10 minutes of clock time, and 2 minutes and 13 seconds of CPU time on the PRIME 400.

VELCOME TO THE COBOL PILOT MUTATION SYSTEM
PLEASE ENTER THE NAME OF THE Cobol PROGRAM FILE: $>1$ og-changes
DO YOU WANT TO PURGE WORKING FILES FOR A FRESH RUN ? >yes
PARSING PROGRAR
SAVING INTERNAL FORM
WHAT PERCENTAGE OF THE SUBSTITUTION MUTANTS DO YOU WANT TO CREATE? $>100$ CREATING MUTANT DESCRIPTOR RECORDS
PRE-RUN PEASE
DO YOU WANT TO SUBMIT A TEST CASE ? >program

PROGRAM LAST COMPILED ON 11180.

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID, POQAACA.
3 AUTHOR. CPT R Y HOREHEAD.
4 INSTALLATION. HQS USACSC.
5 DATE-WRITTEN. OCT 1973.

REMARKS.
THIS PROGRAM PRINTS OUT A LIST OF CHANGES IN TEE ETF. ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THF.
OLD ETF AND THE NEV ETF ARE TIIE INPUTS. BUT THERE IS NO
FURTHER PROCESSING OF THE ETF HERE. THE ONLY OUTPUT IS A
LISTING OF THE ADDS, CIANGES, AND DELETES. THIS PROGRAM IS
FOR HQ OSE ONLY AND HAS NO APPLICATION IN THE FIELD.

MODIFIED FOR TESTING UNDER CPMS BY ALLEN ACREE JULY, 1979.
ENVIRONRENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. FRIME.
ODJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CCNTHOL.
SELECT OLD-ETF ASSIGN INPUT1.
SELECT NEF-ETF ASSIGN INPUT2.
SELECT PRNTR ASSIGN TO OUTPUT1.
DATA DIVISION.
FILE SECTION.
FD OLD-ETF
RECORD CCNTAINS 80 CIIARACTERS
LABEL RECORDS ARE STANDARD
DATA FECORD IS OLD-REC.
01 OLD-REC.
03 FILLER
03 OLD-KEY
03 FILLER
FD NEH-ETF
RECORD CONTAINS 80 CIIARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS NEW-REC.
01 NEF-REC.
03 FILLER
03 NEH-KEY
03 FILLER
FD PRNTR
RECORP CCNTATNS 40 CLIARACTERS

PIC $X$.
PIC X(12).
PIC X(67).

PIC X .
PIC X(12).
PIC X(67).

LABEL RECORDS ARE OMITTED DATA RECORD IS PRNT-LINE.
01 PRNT-LINE
PIC X(40).
WORKING-STORAGE SECTION.
01 PRNT-HORK-AREA. 03 LINE1 PIC X(30).
03 LINE2
03 LINE3
PIC X(30).
PIC X(20).
01 PRNT-OUT-OLD.
03 WS-LN-1.
05 FILLER
05 FILLER
05 LN1
05 FILLER
03 WS-LN-2.
05 FHLLER
05 FILLER
05 LN2
05 FMLLER
03 WS-LN-3.
05 FILLER
05 FILLER
05 LN3
05 FILLER
01 PRNT-NEW-OUT.
03 NE ${ }^{\mathrm{W}}-\mathrm{LN}-1$.
05 FILLER
$05 \mathrm{~N}-\mathrm{LN} 1$
05 FILLER
03 NEW-LN-2.
05 FILLER
$05 \mathrm{~N}-\mathrm{LN} 2$
05 FILLER
03 NEH-LN-3.
05 FILLER
05 N-LN3
05 FILLER
PROCEDURE DIVISION.
0100-OPENS.
OPEN INPUT OLD-ETF NEV-ETF.
OPEN OUTPUT PRNTR.
0110-0LD-READ.
READ OLD-ETF AT END GO TO 0160-OLD-EOF.
0120-NEW-READ.
READ NEY-ETF AT END GO TO 0170-NEW-EOF.
0130-COMPARES.
IF OLD-KEY = NEW-KEY
NEXT SENTENCE
ELSE GO TO 0140-CK-ADD-DEL.
IF OLD-PEC = NEW-REC.
GO TO 0110-GLD-EEAD.
MOVE OLD-RLC TO PRNT-WORK-AREA.
PERTORM 0210-OLD-HRT THRU 0210-EXIT.
MOVE NEW-REC TO PRNT-WORK-AREA.
PERFORM 0200-NW-WRT THRU 0200-EXIT.
GO TO 0110-OLD-PEAD.

101
102

## 103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
1.21

122
123
124
125
126
127
128
129
130
131
132
133

WHERE IS OLD-ETF?
$>1 \mathrm{c} 9$
WHERE IS NEV-ETF?
$>1 \mathrm{c} 6$
OLD-ETF PROVIDED TO THE FROGRAN
1123456789012IIIIIIIIIIOJJJJJJJJJKKKKKKKKKKLLLLLLLLLLLNNNNNNNNNNBBBBBEBBBBGGGGG J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFODDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

NEW-ETF PROVIDEN TO THE PROGRAM

113345678901200000000000000000000000000000000000000000000000000000000000000000 J 234567890123 YYYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 345678901234 UUUUUUUUUUHHHHHHHIUGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

## PRNTR AS YRITTEN BY THE PROGRAM

O I123456789012IIIIIIIIIIOJJJJJJ
L JJJKKKKKKkKkKkL LLLLLLLLLLNNNNNN
D NNNBBBBBBBBBEEGGGGGGG
N 113345678901200000000000000000
E 000000000000000000000000000000
W 00000000000000000000
0 J234567890123YYYYYYYYYYGGGGGGG
L GGGFFFFFFFFFFODDDDDDDDDSSSSSSS
D SSSXXXXXXXXXXEEEEEE
N J234567890123YYYYYYYYYYGGGGGGG
E GGGFFFFFFFFFFDDDDDDDDDSSSSSSS
W SSSXXXXXXXXXXXEEEEEE
N 345678901234 UUUUUUUUUUHHHHER
E HiHGGGGGGGGGGDDDDDDDDDDSSSSSSS
W SSSEEEEEEEEEEAAAAAA
THE PEOGRAM TOOK 84 STEPS
IS THIS TEST CASE ACCEPTABLE ? yes do you want to submit a test case ? >no MUTATION PHASE
What nev mutant types are to be considered ? >se1ect
enter the mubers of the motant types you want to turn on at this time.

| 4 | **** | INSERT FILLER TYPE **** |
| :---: | :---: | :---: |
| 5 | **** | FILLER SIZE ALTERATION TYPE **** |
| 6 | **** | ELEdentary Item riversal type **** |
| 7 | ** | File reference alteration type **** |
| 8 | ** | STATEMENT DELETION TYPE **** |
| 10 | **** | PERFCRH - - G0 TO TYPE **** |
| 11 | **** | TIIEN - ELSE REVERSAL TYPE **** |
| 12 | **** | STOP STATEMENT SUBSTITUTION TYPE **** |
| 13 | **** | Thidu clause extension type **** |
| 14 | **** | trap Statement replacement type **** |
| 19 | **** | MOVE REVERSAL TYPE **** |
| 20 | **** | logical operator replacement type **** |
| 21 | **** | scalar for scalar replacement **** |
| 22 | ** | CONSTANT FOR CONSTANT REPLACEIENT **** |
| 23 | **** | CONSTANT FOR SCALAR REPLACENENT **** |
| 25 | **** | CONSTANT ADJUSTMENT **** |

TYPES ? $>4$ to 14 stop
-- TESTCASE 1 -
250
284 CONSITERED 224 KILLLED 60 REMAIN
mutant status

| TYPE | TOTAL | LIVE | PCT |  |
| :--- | ---: | ---: | ---: | ---: |
| EQUIV |  |  |  |  |
| INSERT | 41 | 7 | 82.93 | 0 |
| FILLSZ | 38 |  | 14 | 63.16 |
| ITEMRV | 21 |  | 0 | 100.00 |
| FILES | 5 | 1 | 80.00 | 0 |
| DELETE | 54 |  | 13 | 75.93 |
| FER GO | 7 | 2 | 71.43 | 0 |
| IF REV | 3 | 1 | 66.67 | 0 |
| STOP | 53 | 10 | 81.13 | 0 |
| THRU | 8 | 2 | 75.00 | 0 |
| TRAP | 54 | 10 | 81.48 | 0 |

## TOTALS

$284 \quad 60 \quad 78.87 \quad 0$

DO YOU WANT TO SEE TIE LIVE MUTANTS? $>$ no
do you want to see tile bquivalent mutants? $>$ no
WOULD YOU LIKE TO SEE THE TEST CASES? ? Ho
LOOP OR HALT ? >10op
PRE-RUN PHASE
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
WHERE IS OLD-ETF?
>1c15
WHERE IS NEH-ETF?
$>1 \mathrm{c} 5$
OLD-ETf Provided to the program
000000000012 IIIIIIIIIIIJJJJJJJJJJKKkKkKkkkkkLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG I123456789012IIIIIIIIIIIJJJJJJJJJJKKKKKKKKKKKLLLLLLLLLL NNNNNNNNNBBBBBBBBBBBGGGGG J 234567890123 YYYYYYYYYYGGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXXEEEEE

NEW-ETF PROVIDED TO THE PROGRAM
I123456789012IIIIIIIIIIIJJJJJJJJJJKKKKKKKKKKKLLLLLLLLLLNNNNNNNNNBBBBBBBBBBBCGGGG J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFIDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
prntr as writien dy the program
$000000000000121 I I I I I I I I J J J J J J J$
L JJJKKKKKKKKKKLLLLLLLLLLLNNNNNNN
D NNNBEBBBBBBBBGGGGGGG
THE PROGRAM TOOK 44 STEPS
IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
VHERE IS OLD-ETF?
>1c14
HHERE IS NER-ETF?
$>1 \mathrm{c} 5$
OLD-ETF PROVIDED TO TIE PRGGRAM
I123 456789012 IIIIIIIIIIIKJ JJJJJJJJKKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBEBBGGGGG J234567890123YYYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXXEEEEE

NEW-ETF PROVIDED TO THE PRCGRAM

```
I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKRKKKLLLLLLLLLLLNNNNNNNNNNNBBBBBBBEBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
PWNTE AS WRITTEN BY THE PROGRAM
 0 I123456789012IIIIIIIIIIKJ JJJJJ
 L JJJEKKKKKKKKKKLLLLLLLLLLLLNNNNNNNN
 D NNNEBBEEBBBBBGGGGGGG
 N I123456789012IIIIIIIIIIJJJJJJJ
 E JJJKKKKKKKKKKLLLLLLLLLLLLNNNNNNN
 V INNBBRBBBBBBEGGGGGGG
 THE PROGRAM TOOK 48 STEPS
IS THIS TEST CASE ACCEFTABLE ? >yes
DO YOU WANT TO SUEMIT A TEST CASE ? >yes
 WHERE IS OLD-ETF?
>1c11
 WhERE IS NEW-ETF?
>1c1
 OLD-ETF PROVIDED TO THE PROGRAM
 00
 NLW-EIF PROVIDED TO THE PROGRAM
 I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLLNNNNNNNNNNNBDBBBBBBBBGGGGG
 J234567&90123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
 345678901234UUUUUUUUUUHHHHHIIHHHGGGGGGGGGGDDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA
 PRNTR AS MRITTEN BY TIIE PROGRAM
 0 0000000000000000000000000000000
 I. 00000000000000
 D
 N T123456789012IIIIIIIIIIJJJJJJJ
 E JJJKKKKKFKEKKLLLLLLLLLLLNNNNNNNN
 W NNNBBBBBBBLBBBGGGGGGG
 N J234567890123YYYYYYYYYYGGGGGGG
 E GGGFFFFFFFFFFDDDDDDDDDDSSSSSSS
 W SSSXXXXXXXXXXEEEEEEE
 N 345678901234UUUUUUUUUUIHHHHIIII
 E HHHGGGGGGGGGGDDDDDDDDDDSSSSSSS
 * SSSEEEEEEEEEEAAAAAAA
 THE PROGRAM TOOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
 WHERE IS OLD-ETF?
>1c1
 WHERE IS NEW-ETF?
>1c1I
```


## OLD-ETF PRCVIDED TO TEE PROGRAK

I123 456789012 IIIIIIIIIIIJJJJJJJJJJKKKKKKKKKKKLLLLLLLLLLNNNNNNNNNSBBEBBBBBBBGGGGG J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 34567890123 4UUUUUUUUUUHHHHHHHHIGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

NEW-ETF PROVIDED TO TEE PROGRAM
00000000000000000000000000000000000000000000
prntr as written by the progran
N 000000000000000000000000000000
E 00000000000000
W
0 I1234567890121IIIIIIIIIJJJJJJJ
L JJJEKKKKKKKKEKLLLLLLLLLLNNNNNNN
D NNNBBBBBBBBBEEGGGGGGG
O J234567890123YYYYYYYYYYGGGGGGG
L GGGFFFFFFFFFFDDDDDDDDDDSSSSSSS
D SSSXXXXXXXXXXXEEEEEE

L HHLGGGGGGGGGGDDDDDDDDDDSSSSSSS
D SSSEEEEEEEEEEAAAAAAA
the prograk tcok 64 Steps
IS THIS TEST CASE ACCEPTABLE ? >yes
do you want to submit a iest case ? >no mutation phase
WIIAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? >all

- TESTCASE 1 -250
500
750
814 CONSIDERED 640 KILLED 174 REMAIN
- TESTCASE 2 -. 234 CONSILERED 82 LILLED 152 REMAIN
- TESTCASE 3 -152 CONSIDERED
- TESTCASE 4 151 CONSIDERED
- TESTCASE 5 - 90 CONSIDERED 69 KILLED 21 REMAIN
MUTANT STATUS

| TYPE | TOTAL | Live | PCT | EquIV |
| :---: | :---: | :---: | :---: | :---: |
| INSERT | 41 | 3 | 92.68 | 0 |
| FILLSZ | 38 | 12 | 68.42 | 0 |
| ITEMRV | 21 | 0 | 100.00 | 0 |
| FILES | 5 | 0 | 100.00 | 0 |
| DELETE | 54 | 1 | 98.15 | 0 |
| PER G0 | 7 | 0 | 100.00 | 0 |
| IF REV | 3 | C | 100.00 | 0 |


| STOP | 53 | 0 | 100.00 | 0 |
| :--- | ---: | ---: | ---: | ---: |
| THRU | 8 | 0 | 100.00 | 0 |
| TRAP | 54 | 0 | 100.00 | 0 |
| MOVE R | 13 | 0 | 100.00 | 0 |
| LCGIC | 15 | 1 | 93.33 | 0 |
| SUBSFS | 704 | 4 | 99.43 | 0 |
| SUBCFC | 12 | 0 | 100.00 | 0 |
| SUBCFS | 58 | 0 | 100.00 | 0 |
| C ADJ | 12 | 0 | 100.00 | 0 |

## TOTALS

$1098 \quad 21 \quad 98.09 \quad 0$
do you want to see the live mutants? >yes THE LIVE MUTANTS

FOR EACE MUTANT : HIT RETURN TO CONTINUE. TYPE 'STOP' TO STOP. type 'equiv' to JUDge the idutant equivalent.

```
**** INSERT FILLER TYPE ****
```

there are 3 mutants of this type left.
DO YOU WANT TO SEE THEM? ? yes
a filler of lengti one has been inserted after
THE ITEM WHICH STARTS ON LINE 52
JTS LEVEL NUMBER IS 3
>
A Filler of lengit one has been inserted after
THE ITEM WHICH STARTS ON LINE 53
ITS LEVEL NTBBER IS 3
>
A FILLER OF LENGTH one has been inserted after
THE ITEM WHICH starts ON LINE 69
ITS LEVEL NUMBER IS 3
>
**** FILLER SIZE ALTERATION TYPE ****
thene are 12 mutants of this type left.
DO YOU WANT TO SEE THEM? >yes
the filler of line 58 has had ITS size decrenented by one.
>
TIE FILLER ON LINE 58 has had ITS SIZE INCREMENTED BY ONE.
>
THE FILLER ON LINE 63 HAS HAD ITS SIZE DECREMENTED BY ONE.
>
the filler on line 63 has had its stze incremented by one.
>
THE FILLER ON LINE 68 mas mad its SIZE dECREMENTED bY one.

```
A Mutation Analyzer
>
 THE FILLER ON LINE 68 IIAS HAD ITS SIZE INCREMENTED BY ONE.
>
 THE FILLER ON LINE 73 HAS BAD ITS SIZE DECREMENTED BY ONE.
>
 THE FILLER ON LINE 73 mAS HAD ITS SIZE INCREMENTED BY ONE.
>
 THE FILLER ON LINE 77 HAS hAD ITS SIZE DECRERENTED BY ONE.
>
 THE FILLER ON LINE 77 HAS HAD ITS SIZE INCRENENTED BY ONE.
>
 THE FILLER ON LINE 81 has had ITS SIZE DECREMENTED BY ONE.
>
 THE FILLER ON LINE 81 HAS hAD ITS SIZE INCREMENTED BY ONE.
>
 STATEMENT DELETION TYPE ****
TMERE ARE 1 MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THER?`ges
 ON LINE 106 THE STATEMENT:
 GO TO 0150-CK-ADD-DEL
 has bleN deleten.
>
 **** LOGICAL OPERATOR REPLACEMENT TYPE
THERE ARE }1\mathrm{ MOTANTS OF THIS TYPE LEFT.
DO yOU WANT TO SEE TILM?)yes
 ON LINE 102 THE STATEMENT:
 IF OLD-KEY > NEW-KEY
 HAS BEEN CEANGED TO:
 IF OLD-KEY NOT < NEW-KEY
>
 **** SCALAR FOR SCALAR REPLACEMENT
```

```
TEERE ARE 4 MUTANTS OF THIS TYPE LEFT.
```

TEERE ARE 4 MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THEM?>yes
DO YOU WANT TO SEE THEM?>yes
ON LINE 129 TiE STATEDENT:
ON LINE 129 TiE STATEDENT:
MOVE LINE1 TO N-LN1
MOVE LINE1 TO N-LN1
HAS BEEN CAANGED TO:
HAS BEEN CAANGED TO:
MOVE NEH-REC TO N-LN1
MOVE NEH-REC TO N-LN1
>
>
ON LINE 129 THE STATEIENT:
ON LINE 129 THE STATEIENT:
HOVE LINE1 TO N-LNI

```
 HOVE LINE1 TO N-LNI
```

                                    4-51
    ```
HAS BEEN CHANGED TO:
```

HAS BEEN CHANGED TO:
MOVE PRNT-WORK-AREA TO N-LN1
MOVE PRNT-WORK-AREA TO N-LN1
>
>
ON LINE 138 THE STATLMENT:
ON LINE 138 THE STATLMENT:
MOVE LINE1 TO LN1
MOVE LINE1 TO LN1
HAS BEEN CFANGED TC:
HAS BEEN CFANGED TC:
MOVE OLD-REC TO LN1
MOVE OLD-REC TO LN1
>
>
ON LINE 138 THE STATEMENT:
ON LINE 138 THE STATEMENT:
MOVE LINE1 TO LN1
MOVE LINE1 TO LN1
HAS BEEN CHANGED TO:
HAS BEEN CHANGED TO:
MOVE PRNT-MORK-AREA TO LN1
MOVE PRNT-MORK-AREA TO LN1
>
>
DO YOU WANT TO SEE TIE EQUIVALENT MUTANTS?>no
DO YOU WANT TO SEE TIE EQUIVALENT MUTANTS?>no
YOULD YOU LIKE TO SEE THE TEST CASES?>no
YOULD YOU LIKE TO SEE THE TEST CASES?>no
LOOP OR HALT ? >halt
LOOP OR HALT ? >halt
**** STOP

```
**** STOP
```


## Bibliographic Notes

The paper [Acree, 1979] gives an overview of existing mutation analyzers. The basic structure described in this chapter was described in a papcr by Budd, DeMillo, Lipton and Sayward [Budd, 1978a] The syster described in [Budd, 1978a] accepts a subset of Fortran. Subsequent analyzers have been designed and implemented for ANSI Fortran 74 [Budd, 1980] and Level 1 Cobol [Acree, 1980], [Hanks, 1980]. Eudd [Budd, 1982] has announced the implementation of a portable Fortran analyzer. Techniques for speeding up the mutation phase are described in each of these references. In addition, post processors to detect certain forms of matant equivalence were discussed by Baldwin and Sayward [Baldwin, 1979]. Tanaka's thesis describes the implementation of an equivalence checker based on data flow analysis techniques.

## Chapter 5

## The Complexity of Program Mutation

In this chapter, we will deal with the cost of matation analysis and with methods for reducing the cost. The efficiency of calculating the $m(P, T)$ value for a program $T$ is limited by the number of mutants in $\mu(P)$ and, to a lesser extent, by the running time of P. He will discuss the worst case size of $\mu(P)$ for the mutation operators described in Chapter 2 and give observed values for the size of $H(P)$. Ve will also present some justification for reducing the total cost of analysis by randon sampling of mutants and discuss the effects of sampling techniques on the quality of test data.

## Estimating $|\mu(P)|$

The effects of the runing time of $P$ on the overall complexity of calculating $m(P, T)$ are difficult to determine in quantitative terms. Because of the varietv of ways in which a nutant may die, wutants tend to be very unstable. That is, a matant may not die by actually producing an output which differs from $P$. It is more likely that a mutant will die by execating a trap statement, an illegal operation (a zero divide, for instance), or by one of a ramber of other "non-standard" means. Furthermore, not every live mutant is erecuted on every test case. As described in Chapter 4,it is convenient to keep a count of executed statements available during mutation phases. If amtant occurs in an unexecuted portion of a program, then that mutant is not executed on the test case, since it cannot possibly be killed by the test case. Thus, even though
programs with long running times are more costly to test by mutation analvis (or by any other dynamic testing technique, for that matter), the best estimate of the cost of calculating m(P.T) is $\mu(P)$. It is this quantity on which we will concentrate.

Hatant operators are chosen to balance two conditions. The first condition is that $\mu(P)$ be kept reasonably small -- say, a small polynomial function of some simple size parameter such as nomber of statements or number of data names. The second condition is that $\mu(P)$ come as close as possible to satisfying the Competent Programer Assumption.

Recall that we have defined simple mutants as follows. Let $P$ be a progran in in a programing system defined by a grammar $G$, and let parse(P) be the syntax tree for $P$ obtained by parsing $P$ according to G. Then a 1 -order simple motant operator is a function may ping $T_{1}$ to a tree $T_{2}$ so that $T_{1}$ and $T_{2}$ differ by at most one terminal node (i.e., leaf). $T_{2}$ defines a simple 1-order mutant of P. Proceeding inductively, a $k$-order mutant is simply a k-fold iteration of 1 -order mutants. In particular, notice that simple mutants do not alter the "semantic structure" of a program -- that is they do not modify the internal nodes of the parse tree. Error operators are with few exceptions simple 1-order mutants.

He will give a heuristic analysis of the expected number of mutants of a program as function of several size parameters.

First, it is possible to derive an order-of-growth expression for the number of Fortran mutants. Data reference replacements are accomplished by interchanging reference nanes occurring within the
program. In a program with $N$ statements and $K$ distinct data references this number is $F(N, K)=\left(\frac{K}{2}\right)=O\left(K^{2}\right)$. The reader can convince himself that for each of the constant and operator replacement schemes there is a constant $c$ so that the number of generated mutants is bounded by cK. Therefore, $F(N, K)$ dominates the total nomber of of mutants, and the number of generated mutants is in the worst case quadratic in the number of distinct data references.

Observations of typical programs lead to another estimation of the expected number of mutants generated. In programs that are not inordinately dense each statement contains relatively few data references, so $F(N, G)$ is more closely approximated by $F(N, K)=O(N K)$. In typical programs, the data references tend to be so sparsely distributed that the rate of growth is usually closer to quadratic in $N: \quad F(N, K)=O\left(N^{2}\right)$.

In generating mutants of Cobol programs, it is possible to more nearly approach linear growth, since the number of data reference interchanges is limited by syntactical redundancies. In fact, an analysis similar to the one carried out above gives the worst case estimate for the expected number of mutants for a cobol program as the number of data division lines multiplied by the number of procedcre division lines. For typical Cobol programs this estimate is $C(N, K) \ll N^{2}$.

Observed values of $\mu(P)$ fall considerably under these estimates. Tables 1 and 2 show mutant growth rates for some typical Fortran and Cobol programs. Notice that in both cases (except for the variation in small Fortran programs) the estimates given above are generous upper bounds on the observed number of notants. In
experimental settings the average growth rate for "production" Cobol programs to be more nearly linear in the product of procedure division lines and $K$ than quadratic in $N$.



Choosing to measure the complexity of mutation analysis on the basis of a single size measure can, however, be deceptive. For example, consider a single assignment statement. If the right hand side of the assignment is extremely complex, then the number of data references and operators will determine completely the number of matants generated. The 33 line program in Table 1 is an example of a program with such a dense structure.

Another size measure is the complexity of the control structure. The so-called McCabe metric measures branching complexity. The Halstead effort measurement is another measure of complexity. The following table summarizes the observed relationship between these six size measures for 16 Fortran programs.

Number		\|Number	Number		NNumber	
of	MicCabe	Data	Distinct\|		\| of	
\|Lines	Metric	Refs	Refs	Effort	Mutants	
N	V	X	K	E	M	
12 \|	1	103	21	32033	2580	
13	5	27	8	4071	317	
17	4	32	8	6928	386	
17	7	45	9	15246	634	
24	7	72	40	17565	2716	
26 !	9	40	11	16270	646	
33	12	55	13	41819	\| 859	
33	1	407	53	249701	\| 23382	
56	9	129	23 \|	138939	\| 3657	
66	10	115	15	170492	2425	
67	15	158	28	189585	5230	
71	11	135 \|	16	166715	2888	
981	22	227	32	365825	\| 8457	
112	26	237	68	320331	\| 16380	
277	122	\| 5451	63	3024488	\| 34657	
514	113	\| 1138		93	19267409	\|120000

The strength of the correlation of the number of mutants with each of the other measurements is given in the following table.


The correlation coefficient is for a linear fit between the number of mutants and the factors discussed above (first column). The second, third, and fourth colums represent the correlation between the number of mutants and the mutants arising from the three categories of mutation operators. It is possible to develop useful 1inear models to predict the number of mutants in terms of the most significant factors. For example, the linear model for the data above is

$$
\mathrm{F}=79+.766 \mathrm{XK}+4 \mathrm{X}+.0008 \mathrm{E}
$$

However, this model is correlated only marginally better than the simple statistic $X K$. It is unlikely that the coefficients can be generalized to form a reliable predictive model for other data sets.

## Mutant Instability.

Even though the number of mutants generated by these methods is observed to grow rather slowly as a function of program size, of the As noted above, however, a mutant seldom runs to completion; rather, mutant programs tend to be rather unstable, dying by executing "illegal" statements which are trapped and which canse premature termination of the programs. The statistics in Table 5 show typical stability data for Fortran programs tested under a mutation analyzer.
observation
Average number of test
cases mutants renain live
Average total mutant executions
per session (units $=\mathrm{F}(\mathrm{N}, \mathrm{K})$ )
sp
Average fraction of nonequivalent
mutants killed by first test case
sp
Average execution time of live
mutant (percent of original test)
Table 5. Lifespan of Unstable Fortran Mutants

The instability of mutants has sone theoretical basis. From standard software reliability studies of sof tware we have the working principle that the probability of failure in a given time interval is proportional to the number of errors in the program. Whenever this principle holds, the expected time to failure of the program is inversely proportional to the number of errors present. If $t$ is the time to failure (measured, say, in number of statements executed), and if cn is the probability of failure during the execution of any given stetement, then the expected time to failure is
given by

$$
\infty
$$

$$
E(t)=\sum_{i=1}(1-c n)^{(i-1)}(c n) i
$$

This reduces to $E(t)=\mathrm{cn}^{-1}$.

Although the specd with which matants can be eliminated is a function of the capabilities of the human tester, it is our experience that somewhat more than $30 \%$ of the remaining live matants are killed by each test case, yielding rapid convergence.

The following table represents the average number of statements executed before failure for program with $k$-order mutants ( $k \geq 2$ ). The programs represented are from the set of sir Cobol programs described in Appendix $A$.

| Program | 2nd ORder | 3rd Order | 4th Order | 5th Order |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | 30 | 24 | 21 | 19 |
| A2 | 47 | 27 | 19 | 15 |
| A3 | 50 | 38 | 31 | 27 |
| A4 | 124 | 85 | 67 | 59 |
| A5 | 52 | 35 | 27 | 22 |
| A6 | 132 | 98 | 74 | 60 |

As the graph in Figure 1 shows, the analytical model holds quite well. Not only is there an apparent linear relationship between $1 / \operatorname{Avg}(T)$ and $n$ for each of the programs, but also for all but one of the programs, the line segments can be extrapolated backvards to show the intercepts near zero. That one program is the smallest of the six and, presumably, the worst simulation of a large
nodule. This data cannot be interpreted as strongly as we would like, however, since the probabilistic assumptions are based on typical operational data; the test cases that generated this data were intentionally chosen to be nontypical: the test cases were required to exercise the exception-handing code that would rarely be exccuted in practice.


Figure 1. Failure Rate Data

## Reducing Complexity by Sampling

The bounds of practicality for monolithic programs are somewhere in the 5,000 to 10,000 line range for Fortran and somewhat higher for Cobol programs. Even this must be treated as an optimistic upper limit - certainly mutation is not easy to apply at the 5,000 statement leve1. A valuable technique for handing large
programs is to use Monte Carlo methods to sample from large populations of metants. A simple argument to support such an analysis goes as follows. Let $f(x)$ appear in a specific context of a program undergoing matation analysis; if a set of test data is too weak for the program bat the program is nevertheless correct, then there is an adequate set of test data, $T$, on which $[f(x)] *(T)$ $\neq\left[f\left(x^{\prime}\right)\right] *(T)$, where $x^{\prime}$ is some specified data reference replacement mutation of $x$ and $[f(x)]$ * denotes the functional interpretation of $f(x)$. But $x$ and $x^{\prime}$ in these expressions are bound variables; it only matters that they refer to distinct positions of a state vector which has been specially constracted to exhibit the inequality. In other words, it is important that we are able to "explain" with test data why $x$ is an argument of $f$, but perhaps less important that we be able to explain why the argument is not $x$, or any other specific alternative. But this can be accomplished by sampling from enough alternative choices $x^{\prime}$ to insure that identities that we are observing are not wathematical. If the functions involved are at all well-behaved algebraically then algebraic identities can be discerned in this way

Using the Cobol program A1-A6 in Appendix A, we want to study the effects of testing using only randomily selected substitution mutants. The table which follows summarizes the results of this study. The columns labelled "survive" indicate the counts of the number of mutants (using $100 \%$ of the substitution mutants) that survive the specified testing criteria and are not equivalent to the original program.

Program	\# Mutants   at $10 \%$	\# Mutants   at $100 \%$	Survive TRAP	Survive $10 \%$
A1	389	1098	6	0
A2	603	2814	906	0
A3	1125	6340	129	2
A4	1609	7334	97	16
A5	1527	7957	407	14
A6	4011	28275	789	66
Table 7. Random Sampling Experiment				

We have included the strength of data that merely covers all statenents for comparison purposes. While simpie statenent coverage does not by itself lead to strong test data, generating mutants to kill only $10 \%$ of the substitution matants is almost as good as generating test data to ki11 $100 \%$ of the mutants. This trend is almost as strong at the $5 \%$ and $1 \%$ levels for large programs.

The apparent decrease in the strength of the test as program size increases is probably due to the naive sampling strategy used to sample the mutants. A sampling strategy which inserts default values or avoids selection of mutants which are correlated to rreviously selected mutants shocld avoid this effect. This experiment has been repeated several times using differing sets of programs.

In a similar experiment, three Fortran programs (B1-B3 in Appendix B) were subjected to mutation using test data that killed all nonequivalent mutants. In a double blind experiment, the same programs were analyzed by three different subjects. Subject 1 analyzed all three programs sampling $10 \%$ of the mutants, subject 2 sampled using $25 \%$ of the mutants, while subject 3 analyzed all three prograns at the $50 \%$ level. The number of nonequivalent mutants left
undetected by the three subjects is shown in the following table as a fraction of the total number of mutants.


Notice that even using $10 \%$ of the total number of mutants, the strength of the test data is within $1 \%$ of the adequate set. This experiment was repeated asing the programs cited in another study (see Chapter 6). In each case it was determined that the test data remained within 1\% of the adequate test data.

These experiments suggest strongly that a cost effective approach to generating adequate test data is to generate only a small percentage of the total number of mutants and develop test data which is adequate relative to this set of mutants.

Efficiency and Redundancy in Operators

The results quoted above dealing with randon sampling of the mutants might measure still another effect: redundancy among the operators. That is, it may be possible to derive strong test data from a random subset of the mutants simply because so many mutations deal with the same error or type of error. Thererfore, it is natural to look for efficiency in the mutation process by eliminat-
ing those mutants from consideration which do not add significently to the strength of the test data generated.

For an operator to be useful it must force the tester in some way to prodace stronger test data than could have been produced without it. If all of the mutation produced by a given operator are eliminated by virtually any test data that executes the affected line, then it is natural to assume that the operator does not significantly improve on the statement coverage operators.

Let us fix a mutation operator and define the following parameters. $N_{t}$ is the total number of matants generated by that operator, $N_{u}$ is the number of mutants that are eliminated on the first execution by given data set, and $N_{e}$ is defined to be the number of equivalent mutants.

A measure of efficiency for such an operator is given by

$$
\left(N_{t}-\left(N_{u}+N_{e}\right)\right) / N_{t} .
$$

Notice that $N_{t}$ and $N_{c}$ depend only on the program being considered and the matation operator. $N_{u}$ depends on the choice of test data being supplied. The redundancy of a mutation operator is then given by:

$$
\left(N_{u}+N_{e}\right) / N_{\hat{L}}
$$

A procedure for collecting operator efficiency data is the folIowing. First, select several programs representative of the space of programs ir the intended application. Second, generate test data that is just strong enough to execute all statements. Third, generate test date to obtain a mutation score of 1 . The point of
the second step is to intentionally produce weak tests, which force statement coverage but do as little other testing as possible.

After such measurements have becn made on several programs and for multiple independent test data generations for each program, a set of efficiency measurements for each operator will be obtained. If an operator consistently has a high redundancy, then the deletion of the operator from the system appears justified. An operator possessing high efficiency on all programs and all test setsevidently forces the tester toward stronger test data and should be retained.

The approach outline above has two limitations. First, it does not consider interactions between operators. That is, operators may have the same high efficiencies, but each actually has the same effect. In this case, one or the other may be necessary, but certainly not both. The efficiency measurements will not give an indication of this condition since they provide only the interaction of the TRAP operator with all of the others. Therefore, the experiment can be wiciened to indicate operator redundancy with any subset of the operators by replacing step 2 of the data gathering procedures with the following: generate test data just strong enough to eliminate all of the nonequivalent mutants generated by the given subset of error operators. Of course, the definition of $\mathrm{N}_{\mathrm{u}}$ needs to be accordingly modified.

Ideally, we would like to measure the efficiency of operators relative to all possible subsets in order to find the minimal set of operators which delivers adequate tests. Since this is not feasible, a less demanding strategy is required. For example, it is possible to chocse the most efficient operator relative to TRAP,
then choose the most efficient relative to TRAP and the first operator, and so on. The process terminates when there is no remaining operator whose efficiency relative to the set chosen is above a given threshold.

Obviously, this approach applies only to a given class of program from which the sampling takes place. Changing the language or even the programming discipline might effect operator efficiency. However, if the sample population is representative it is always possible to "tune" the set of operators for that population by using only operators which derive useful testing information.

The results of a single data generation experiment for the Cobol program A1-A6 are given in the following table. An asterisk indicates that no mutants of that type were generated for the progran.


There is obviously a wide variation in efficiencies between the programs. This a partly due to the indirect test data selection procedures and partly due to the inherent differences in the grograms.

The first five operators are of special interest. These are Cobol data mutations that force the syst into interpretive execution using a run-time symbol table. If these mutants can somehow be eliminated; then a more efficient compiled execution of mutant is feasible. The first operator moves the implied decimal point in a numeric item. It is useful primarily in that it forces the tester to provide nonzero values for that variable. The same effect can be
achieved by an operator which resembles ZPUSH. The second operator alters the OCCUPS count in a table description. Since the sample programs make little use of tables, nothing can be inferred from the data for this operator. Inserting an extra filler in a record is of 1ittle use, as is altering the sizc of a filler. Reversing two adjacent elementary items within a record is sometimes a useful operation, but the same effect can most likely be achieved by substituting one field for another in the procedure division.

In the procedure division, changing a GOTO to a PERFORM usmally provides no testing power. Perhaps most of the testing effort in trying various path alternatives is already achieved by simple statement coverage. Inserting a STOP statement is not helpful because in most program files, files will be left open which is an error. STOP insertion thus play essentially the same role as TRAP. THRU clause alteration, reparenthesization of arithmetic expressions and the reversal of the direction of a binary MOVE and changing an I/O reference from one file to another are also rarely useful in this study. It may be that thesemutations are too drastic. Errors this large may be detected by almost any test case that exercises all program statenents. The errors sought after simple statement coverage are rather more subtle ones. The major errors have already been ruled out.

A non-redundant set of Cobol operators then might be the following: statement deletion, $I F$ reversal, and the substitution operators for arithmetic operators, scalar for constants, constants for scalars, constants for constants, scalars for constants, and constant adjustment.

## Bibilographic Notes

An overview of practical experiences with matation analyzers which support the analytic and experimental bounds discussed in this chapter can be found in the papers [Acree, 1979],[Acree, 1980], and [Budd, 1980]. The data relating to the number of mutants generated as a function of program size was developed by Acree, Eudd, DeMillo, Lipton and Sayward and is reported in [Acree, 1979]. The data relating complexity with the number of mutants appears in Budd's thesis [Budd, 1980].

Experimental results on mutant stability and the effectiveness of sampling have been treated by Budd and Acree in [Acree, 1980] and [Pudd, 1980] and are also reported in [Acree, 1979].

The notion of operator efficiency was developed in Acrec's thesis [Acree, 1980].

## Chapter 6

## Further Experimental Studies


#### Abstract

In experimental studies of program testing, the problems of interest are:


1. What is the cost of performing the test?
2. What is gained from performing the test?

In general, quantitative answers to these questions are the most desirable, but that secms to be beyond the state-of-the-art. A less precise but still valuable solution is to discover how testing costs relate to the performance of the test. In practice, this costbenefit ratio is the one that will be of most use in determining which testing technique to apply.

The cost of program mutation is ultimately constrained by the number of mutants which must be executed. As described in previous chapters, the set of mutants $\mu$ of a program is defined by a set of mutant operators that result in a set $\mu$ whose size is bounded roughly by the product of the number of data references and the number of distinct data references. As discussed in Chapter 5, it is generally not necessary to execute all mutants in $\mu$. since random sampling yields test data whose mutation score is only slightly inferior to an adequate test set.

However, one should question the effectiveness of applying program mutation with only simple matants since other more complicated (but reasonable) alternatives are apparently overlooked. This is an apparent violation of the Competent Programmer Assumption. The coupling effect indirectly addresses the more complicated
mutants of $P$ : test data that causes all simple mutants of $P$ to fail is so sensitive that it implicitly causes all complex combinations of them to fail. In Chapter 3, we examined two situations in which error coupling guarantees that test data adequate for a simple set of mutants is also adequate for mutants which satisfy the Competent Programmer Assumption. In this chapter we will examine some experimental evidence for the address the observable properties of error coupling.

## Beat the System Experiments

Evidence against error coupling is any event in which incorrect program are successfully tested against an adequate test set. Since such examples can always be "cooked-up" for any test technique, a problem of more practical importance may be what kind of errors are always detected and what kind of errors are overlooked.

At present these questions can only be studied empirically because of the lack of any widely accepted formal models of programming errors.

One sort of experiment is a many-subject experiment. The experiment has $N$ subjects with varying levels of programing and testing skill and $M$ programs that have zero or more errors known only by the experimenter, and each subject reports on the errors detected in trying to pass the mutant test.

Another useful experimental technique is a single-subject experiment. We call such an experiment a beat the system experiment. The single subject is someone having a very high level of programming expertise and much familiarity with the concepts of program mutation. The M programs have one or more errors, and the subject has complete knowledge of what the errors are. The subject tries to beat the mutation system - to pass the mutation test with an incorrect program by developing test data on which the program is correct but on which all mutants of the program fail. If there are error types for which the highly skilled subject cannot beat the system, then these error type will probably be detected by any user of the system. On the other hand, if there are error types for which the subject can consistently beat the system, then the given set of mutant operators has a certain weakness in detecting these errors.

A beat the system experiment is an attempt at a worst-case analysis, We attempt to find out how the system will perform under the worst system circumstances. Beat the system experiments are extensions of experimental reliability studies. A testing technique is said to be reliable for for an error type if the use of the testing technique is guaranteed to reveal the presence of the errors of that type. Reliable studies are aimed at comparing two or more competing methodologies and deriving statistical information of the form "On the following examples of programs, method A discovered X\% of the errors and method B discovered $Y \%$." In the beat the system experiments we are more concerned with the type of errors missed.

For example, several of the programs studied in early experiments revealed that a significant number of exrors in Fortran are caused by programers' treating the DO statement as if it were an Algol FOR statement. These errors are detected by introducing a mutant that changes a DO statement into a FOR statement, bringing this fact to the programer's attention and forcing him to derive data that indicates he had knowledge of this potential pitfall.

We will describe two sets of experiments. The first set is a beat the system experiment using the Fortran programs B1-B11. These programs are described in Appondix B. Appendix $E$ also contains descriptions of the errors in these programs. The second set of experiments adapts earlier reliability studies in a comparative analysis of program mutation and a number of other testing techniques.

It is difficult to construct a classification scheme for error types that is neither so specific that each error forms its own type nor so general that important patterns cannot be detected (cf. Chapter 2). If the classification is based on logical mistakes, then it is of ten hard to relate errors to mistakes in the code. On the other hand, it seems difficult to base a scheme just on mistakes in the code, since often a single logical mistake will be responsible for changes in several locations in the program. Following the classification scheme in Chapter 2, we group errors into the following categories:

Missing path errors: These are errors where a whole sequence of computations that should be performed in special circumstances is omitted.

Incorrect predicate errors: These are errors that arise when all important paths are contained in the program, bat a predicate that determincd which path to follow is incorrect.

Incorrect computation statement: These are errors that arise fron a computation statement that is incorrect in some respect.

Missing computation statement: These are errors that axise from the omission of one or more computational steps.

Missing clause in predicate: This is a special case of an incorrect predicate error, but, since it is hard to detect, we give it special treatment.

The 25 errors in the program B1-B11 range from simple to subtle crrors. Because of the worst-case nature of the experiment, the fact that 5 errors are not discovered does not mean that these errors would always remain undiscovered if mutation analysis was used in a normal debugging situation. Table 1 gives the number of errors detected by error type. Of these 25 errors, only 8 would be caught using branch analysis.


In three of these categories, the errors are caused by the lack of certain constracts in the program. Since the testing method is asked to guess at something that is not in the program, we should
really be surprised that it does as well as indicated. Nonetheless, missing path errors and missing clauses in predicates are probably the most difficult errors for any testing method to discover.

The failure of the mutation in detecting these 5 errors is probably not an indication of weakness in the method, rather, it reflects on our choice of mutant operators. It is quite possible that with another set of mutant operators many of these errors would be caught.

The second experiment is derived from an earlier reliability study by Howden and ases two sources of data. The first is the book Elements of Programming Style by B. Kernighan and P. Plauger. In a chapter entitled "Common Blunders" Kerighan and Plauger offer twelve program fragnents, each containing errors inserted to illustrate common programming mistakes. In a beat the system experiment, these twelve program fragments were subjected to symbolic evaluation, path analysis (each loop executedat least twice), a conbination of symbolic evaluation and path analysis, and program mutation. Once path domains are identified, the experimenter uses a random choice of test data for the domains. Therefore, it is possible that more sensitive input partition tests will yield slightly different results.

The following table sumarizes the results of this experiment


The 20 errors detected by program mutation are detected in six ways. The interpreter of an automated mutation analyzer was responsible for detecting 8 errors, 5 were detected by spoiling coincidental correctness expressions (cf. Chapter 10), 2 were caught by finding a correct mutant of the incorrect program, 2 are canght by $A B S$ insertion, two are detected by predicate testing (see Chapter 4) and 1 error was detected by an explicit branch analysis mutant. The two errors not detected consisted of a two statement interchange in a routine for computing the sine function and an error involving an equality test between reals. The following table describes the errors and the mutants which detect them.

Error	Method of Detection
variable SUM uninitialized	interpreter
DABS operator necded	explicit mutant
-1**(I/2) used instead	$I / 2 \Rightarrow I / 1$ or $I / 2$
of ( -1 )**(I/2)	with no effect
interchange of statements	not detected
variable E uninitialized	interpreter
type mismatch	interpreter
variable C not reset	to eliminate branch analysis
	mutants, $S C+C I$ rust be
	less ilar or ecual to TC
error when $C I=0$	caught by ZPUSH mutant
expression should be $\mathrm{NUM}(1)$	interpreter
override of DATA statement	interpreter
initialization	
failure on 46 transactions	$\rangle \Rightarrow \geq \geq$
$\geq$ should be $>$	$\geq \Rightarrow>$
undefined variable	$1==>2$ on 1 ower DO loop limit
error if $\mathrm{B}+\mathrm{C}<.01$	twiddle $\mathrm{B}+\mathrm{C}$ by . 01
loop exits incorrectly	increase iterations by 1
uninitialized variable	interpreter
one entry tables cause error	$(\mathrm{LOW}+\mathrm{HIGH}) / 2 \Rightarrow$ LOW $+\mathrm{HIGH}-2$
failure to match $\mathrm{A}(1)$	$(\mathrm{LOW}+\mathrm{HIGH}) / 2 \Rightarrow \mathrm{LOW}+\mathrm{HIGH}-2$
$J=\operatorname{MAPKS}(\mathrm{I})-1 / 10$ should be	$I / 10=0 / 10$
$J=(\operatorname{MARKS}(\mathrm{I})-1) / 10$	
missing parthentheses around expression $\mathrm{AN}-1.0$	ZPUSH (SUMSQ-( SUMSQ**2/AN))
10*.1 = 1	caught by all data
equality test on reals	not detected
Table 3. Mutants Detecting Errors	

Error 19 is one of the errors not detected by either path analysis or symbolic evaluation, although a symbolic evaluator with a special two dimensional output could have caught the error. In Fortran, the expression $1 / 10$ evaluates to 0 . Therefore, the mutant which replaces $1 / 10$ with $0 / 10$ catches the error. Neither path analysis nor symbolic evaluation detect error 2 , which is an explicit mutant of a correct program.

A second experiment uses the programs B1 - B4 in a comparison of the error detection capabilities of path analysis, branch analysis, functional testing, special values testing, anomaly testing, and black-box analysis. The path analysis discipline for this experiment requires each loop to be executed at least once. Special values testing is a collection of heuristics (e.g., force every expression to 0 ).

Table 4 presents the results of this experiment.

Test Method	Error Caught	Total Errors
Path Analysis	4	5
\|Branch Analysis	0	5
\|Functional Testing	3	5
\|Static Analysis	0	5
\|Black Box Testing	3	5
\|Program Mutation	4	5

The error which was not detected by progran mutation
is a missing path error (see Appendix B). Apparently these errors are the most difficult for dynamic testing techniques. On the other hand test techniques which work fron functional descriptions or specifications of program behavior sem to do quite well at

```
detecting these errors.
```


## Experiments on the Coupling effect

We begin with an example of the experimental evidence for the existence of error coupling.

The subject program is Hoare's

FIND program (see Appendix B, Program B10). FIND was used in the following experiment.

1. A test data set of 49 cases was derived and shown to be adequate.
2. The test data set from 1 was heuristically reduced to a set of 7 test cases which also turned out to be adequate.
3. Random simple k-order mutants were sclected $(k>1)$.
4. The higher order mutants of step 3 were executed on the reduced test data set.

It would be evidence against the coupling effect if it was possible to randomly generate very many higher order non-equivalent wutants on which the reduced test data set behaved in a rianner indistinguishable from FIND. Notice that Step 2 biases the experiment against the coupling effect since it removes the manmachine orientation of mutation analysis. We concentrated first on the case $k=2$, with the following results:


However, a inaited analysis of higher order mutants prodaced the following results:

Property	\|Mutants ${ }^{\text {\| }}$
Number of k-order mutants ( $k>2$ )	1,500
Number indistinguishable from FIND	0.1
Table 7. Higher Order Mutants	

The following arganent shows a defect in this experiment. Just as the competent programer assumption states that programs are not written at randow, the coapling effect is implied by the fact that program statements are not composed at random; indeed, there is considerable flow and sharing of information between statements of a program, so that a ckange to one portion of a program is likely to have observable, albeit subtle, effects on its global context. Now for the protiem with this experiment: the k-order mutants are chosen randonily and by independent drawings of 1-order mutants. Therefore, the resuiting higher-order mutant is very unstable and subject to quick failure. The experiment should also be conducted When the higher-order matants contain subtley related errors. To this end, the experiment was repeated using the following replacement for step 3:

## 3': Randomly generate correlated k-order <br> mutants of the program.

In Step 3', "correlated" means that each of the k applications of 1-order mutant operators will be related in some way to all of the preceding applications, all affecting the same line, for example. As before, if a program is successfully subjected to mutation analysis on a test data set, then the coupling effect asserts that the correlated k-order mutants are also likely to fail on the test data.

To broaden the experiment we use, in addition to FIND, the programs (B12) STKSIM which maintains a stack and performs the operations clear, push, pop, and top, and TRIANG (B9) which classifies integers as either not representing the lengths of sides of any triangle or as representing the sides of scalar, isosceles or equilateral triangles.

Table 8 contains a sumary of the results of the experiment. The data suggests strongly that there is a meaningful sense in whick errors are coupled by an appropriate choice of error operators.


The results are for the most part self explanatory. Except for the correlated thref-order rutant of TRIANG, all of the correlated
$k$-order mutants described in the table are equivalent to their subject programs. The remaining live TRIANG matant would have been eliminated with a more sophisticated error operator for detecting loop boundaries.

Essentially the same study was repeated using Al-AG. The basic format of the experiment remained the same: develop adequate test data, randomly generate a large number of complex mutants, execute the selected mutants on the test data, keeping track of those not eliminated, and remove equivalent mutants from the 1 ist of uncoupled complex mutants.

In all cases the strategy in randomly selecting complex mutants was to use uniform sampling with replacement from the given space of conplex mutants. The parameters of each experiment are the program being tested, the tester, the types of complex mutants considered and the sample size. It is possible that the effects of the human tester are relevant. The repetition of this experiment by other investigators should determine the variation in the strength of error coupling due to test data generation.

As before, we concentrate on second order mutants, both correlated and uncorrelated. The statistic that is developed is a confidence interval on the fraction of second order mutants that are uncoupled. Since error coupling is not expected to be total in practice, this gives us an estimate of the probability that a second order mutant escapes detection by matation analysis. If we find any uncoupled mutants, we obtain a two-sided confidence interval and if we find none we still obtain a one-sided - upper bound -- confidence interval.

For the experiments with uncorrelated pairs of mutants, a sample size of 50,000 meaningful second order mutants was used for each of the six programs. Table 9 summarizes the results.


Test data generated to kill first order matants proved to be sufficient to kill at least $99.976 \%$ of all second ordcr mutants in a11 cases considered, and $99.992 \%$ in most cases. Significantly, progran size does not seem to be an important factor in the strength of error coupling. If these results hold over a broad range of programs, the addition of second order mutants can be expected to give almost no additional power not already present in simple mutants, and certainly not enough to justify their cost.

The experiments on second order mutants used 10,000 mutants for each program. The format of the experiments is otherwise identical to the ones above, The results of these experiments are sumarized in Table 10.


The same six programs were gubjected to a final series of experiments to look for uncoupledmutants of orders 2 through 5. 20,000 complex substitution matants were generated for each program and each oxdex. Intuition suggests that it is not necessany to carry out such experiments for extremely large values of $k$ : the more erroxs introduced into a program, the more the Competent Programmer Assumption is violated. On the other hand, the behavior of extronely high order mutants is not well understood, and it seems prudent to eramine some data on nultiple mutations, if only to insure that there are no unexpected processes at work.

For this experiment, 20,000 complex substituion mutants of orderk $(2 \leq k \leq 5)$ were generated for each of tho six Cobol programs. All mutants examined were uncorrelated. The mutants were randonly selected and then examined to insure that all matations applied to distinct data references. The folowing table shows the number of matants that passed the first order test data for each program, and the nomber that were not equivalant - these are uncoupled mutants.


## Dncoupled Errors:

The uncoupled errors discovered in the last three series of experiments described above involved alterations to predicates in conditional expressions. They can be classified as follows.

Type I Errors: Changing both operands in a comparison

$$
\text { IF (a operation } b) \Longrightarrow I F\left(a^{\prime} \text { operation } b^{\prime}\right)
$$

Type II Errors: Changing an operand and operation in a comparison $\operatorname{IF}(a$ operation $b) \Longrightarrow I F\left(a^{\prime}\right.$ new-operation $\left.b\right)$

Type III Errors: Changes to non-interacting comparisons
$\mathrm{IF}\left(\mathrm{P}_{1}(\mathrm{a}) \wedge \mathrm{P}_{2}(\mathrm{~b}) \wedge \ldots\right) \Rightarrow \operatorname{IF}\left(\mathrm{NOT}_{\mathrm{P}}^{1}(\mathrm{a}) \wedge \mathrm{P}_{2}(\mathrm{~b}) \vee \ldots\right)$

If an uncoupled error is thought of as a potential error in the program, then the se three types of uncoupled errors represent a form of coincidental correctness (see Chapter 10): taking the right path for the wrong reason. A plausible reason that these are the only known types of uncoupled errors is that mutation analysis does not explicitly test higher level path coverage. Indeed the problem of testing higher level path coverage is so complex (due simply to the number of paths) that it is probably out of reach of any systematic testing technique.

## Coupling and Complexity Measures

There are frequent references in the 1iterature to a possible relationship between program reliability and structaral characteristics of the program. If such a relationship exists, then it is possible that there is a similar relationship between those structural characteristics and error coupling. One such characteristic is structural complexity, measured, for instance, by the number of program branches).

Consider the following simple test strategy, often called DD path coverage. The goal is to develop test data that forces the program down every path from decision point to decision point. This strategy may require test data which drives the program down a particularly complex path to discover an error. For example, consider the following program, which sorts the triple (A,B,C).

```
L1: if \(A<B\) then goto L2;
 \(\mathrm{T}:=\mathrm{A} ; \mathrm{A}:=\mathrm{B} ; \mathrm{B}:=\mathrm{C}\);
L2: if \(\mathrm{E}<\mathrm{C}\) then gotto L3;
 \(\mathrm{T}:=\mathrm{A} ; \mathrm{A}:=\mathrm{C} ; \mathrm{C}:=\mathrm{T}\);
L3: if \(\mathrm{B}<\mathrm{C}\) then goto L4;
 \(\mathrm{T}:=\mathrm{B} ; \mathrm{B}:=\mathrm{C} ; \mathrm{C}:=\mathrm{T}\);
L4: stop
```

The program is incorrect. The condition at L2 shoủd be $A<C$. The input (1,2,3) and (3,2,1) both give correct results and force the execution of all decision to decision branches. (1,2,3) takes the TPUE branches at L1-L3 while (3,2,1) takes the FALSE branches. The error is not uncovered in this way: what is needed is a test case that forces execution of a complex path corresponding to differing outcones at $L 1$ and L2 . Thus simply covering all branches leaves some errors undetected. It is possible that mutation contains the same weakness, since mutations tend to be localized in the program (note, however, that mutation analysis contains DD path coverage as a special case, so it can be no weaker; cf. Chapter 2). The number of test cases required for exhaustive testing of all possible conditions in this program is $2^{3}=8$.

To test the relationship between the number of branches and error coupling, we hypothesize that the more branches a program has, the harder it is to develop adequate test data. In more concrete terms: the proportion of uncouplederrors rises with the structural

Program	Number of Branches	Number of Records	Number of Mutants	Nunber   that Pass	Number   Uncoup led
C-1	0	1	474	329	0
C-2	1	3	480	153	1
C-3	3	7	492	84	1
C-4	5	12	504	50	3
C-5	7	15	516	18	9
Table 12. Complexity Metric Data					

Eleven of the surviving uncoupled mutants are of type $\quad$. The other three are of type II. The relatively large number of equivalent mutants in these programs is due to the padding that was
complexity of the program. An experiment to test this hypothesis would match program for length and number of mitants and would allow the branching count to vary, measuring the coupling coefficient, defined in Chapter 2.

If the confidence intervals on the estimates of the coefficients overlap, then no relationship may be inferred. If there is no overlap, then there is a statistical relationship. If, in addition, there is a causal mechanism responsible for the statistical relationship, an argument could be made for simplicity in program structore for program to be tested by progran mutation.

For this experiment, a sequence of small programs was written, all using the same data items and data references, but with an increasing number of branches. The experiments examined 50,000 pairs of mutants for each program, The following table shows the number of branches, test cases, mutants, pairs passing the test data and uncoupled mutants for each progran
used to insert extra branches without greatly affecting the number of mutants generated. The $95 \%$ confident interval on $z(100,000)$ plotted against the number of branches is shown in Figure 1.


Figure 1.
95\% Confidence Intervals

It is apparent that in this set of programs, the effect of adding conplexity is very slight. It can be accounted for by the type of uncoupled mutants seen in the experiments described above. If this relationship holds in practice, then the branching complexity of prograns has little impact on the difficulty of mutation analysis.

## Bibliographic Notes

The beat the system experiments were designed by Budd and Sayward. The data reported here is taken from Budd's thesis [Budd, 1980] and a paper by Budd, DeMillo, Lipton and Sayward [Budd, 1980b]. The experiments on the coupling effect were designed by Acree [Acree, 1980] and DeMil1o, Lipton and Sayward [DeMillo, 1978a]. The data also appeared in [Acree, 1979]. Experiments on program complexity were carried out by Acree [Acree, 1980].

## Chapter 1

## Mutant Equivalence

Experience indicates that in production programs, the number of equivalent matants can vary between $2 \%$ and $5 \%$ of the total mutant count. In more finely tuned programs, however, it is common for source statements to appear in a particular form solely for efficiency reasons. In these program such statements can be altered without affecting the output behavior. A typical example of this behavior is beginning a 100 p at 2 instead of 1 or 0 , so that a matation which changes " 2 " to " 1 ", for example, causes an extra iteration but does not alter the outcome of the looping operation. In tuned programs, the equivalent matants can comprise as much as $10 \%$ of the total.

Equivalent mutants are not distributed with respect to their operators in the sane proportion as other mutants. In fact, a sam11 number of mutant types account for the preponderanco of equivalent mutants. The following table provides some data on the distribution of equivalent mutants for typical Fortran programs.


Table 1. Distribution of Equivalent Mutants by Type

It has become increasingly clear that determining mutant equivalence ranges from very difficult to very easy. It is helpful to classify the types of equivalence which must be judged. At the
first level are mutants which are detectable as equivalent by noting that (1) if a parameter has a variable uppcr bound, the value of the upper bound must be positive, and (2) the values on loop variable limits determine the range of values of the loop variable for the extent of the loop. At the second level are mutants which can be judged equivalent by examining.

It is easy to show that equivalent mutant detection is an undecidable problem Assume a fixed programing language which is expressive enough to allow the programing of all recursive functions, and let $P 1$ and $P 2$ be arbitrary procedures written in the 1anguage. Since "goto" mutations are meaningful and 1ikely motations, consider the following program to which goto replacement has been applied.

$$
\begin{aligned}
& \text { goto } \mathrm{L} \text {; go to } \mathrm{M} \text {; } \\
& \text { L:P1;ha1t; } \quad \Rightarrow \quad L: P 1 ; h a 1 t ; \\
& \text { M:P2;ha1t; M:P2;ha1t; }
\end{aligned}
$$

Clearly, these two programs are equivalent (that is, they either halt together and deliver the same output or they diverge together) if and only if $P 1$ and P2 are equivalent, and that is undecidable for the 1 anguage described above.

In spite of this, most equivalent mutants which arise in practice are stylized and rather easy to judge equivalent. This is perhaps due to the Competent Programmer Assumption: the subject program and an allegedly equivalent mutant are not chosen randomly - in fact, they are chosen by a very carcful sieving of all possible programs and the structure of this relationship should be
something that one can exploit in determining matant equivalence.

## Human Evaluation of Equivalence

It would be desirable to measure in an experimental setting the accuracy of hunan testers in judging mutant equivalence. This section describes an experiment conducted using the programs $A-3, A-4, A-$ 5, and A-6. For each progran, a sequence of test cases was used to eliminate mutants, but testing was stopped when the number of mutants remaining was approximately twice the number of remaining mutants. This process eliminated most of the obviously inequivalent mutants. From the remaining mutants, for each program, a subset of fifty mutants was randomly selected. Two subjects were used in this experiment.

Both subjects had been involved in the development of mutation nalysis systems, and both were competent programers. Neither subject had been exposed to the programs used in the experiment. Each subject was given the list of mutants and the source listing for each of the programs and was instructed to mark each mutant equivalent or not cquivalent. There were no other intructions or restrictions placed on the subjects.

There are two kinds of errors that can be made in judging equivalence. The first type of error is the marking of a nonequivalent mutant as equivalent. The second type of error mistakes equivalent mutants as nor-equivalent. Errors of the second type are not very serions, since in the process of matation analysis, the
mutant remains in the system and can be reconsidered at any later time. However, when a type 1 error occurs, a mutant which can be valuable in detecting errors is prematurely removed from the system. Premature removal of matants increases the likelihood that an erroneous program will be accepted as correct by the tester.

The results of human evaluation of the four programs is shown in the following table.


The tables show the number of equivalent and non-equivalent mutants in the mutant sample present late in the testing process, and the number of correct identifications of errors. More significantly the table documents the number of errors of each type in judging mutant equivalence.

Subject 1 was more variable in accuracy that Subject 2 , but overall their results were similar. Subject 1 identified $79.5 \%$ of the mutant correctly. Subject 2 was correct on $80 \%$ of the mutants. In measuring type 1 errors the best computation is probably the total type 1 exrors as a percentage of the total number of nonequivalent mutants, since thesc represent the potential type 1
errors. Subject 1 made type 1 errors on $14.3 \%$ of the nor-equivalent mutants, while Subject 2 made type 1 errors on $11.1 \%$. On the other hand, Subject 1 made type 2 errors on $31.5 \%$ of the equivalent mutants, and Subject 2 made type 2 errors on $35.1 \%$.

The number of type 1 errors may be high enough to significantly reduce confidence in the abilities of human evaluators if it is an accurate reflection of the frequency of such errors in practice. It should be remembered, however, that the subjects were required to mark each mutant as equivalent or not with only the evidence at hand (the source listing), while a tester in practice may postpone the decision pending further testing and thought. In addition, the subjects worked in isolation and thus were denied both helpful consultation and the motivation of accountability for potential errors. These are important factors in actual testing situations. High error rates for type 2 errors indicate that the subjects were being conservative in their judgements, marking mutants as non-equivalent When in doubt.

This observation leads us to consider automated techniques for judging mutant equivalence. An automated technique will have the desirable properties of the human evaluators. Namely, an automated technique will make type 2 errors. On the other hand, an automated equivalence tester never makes type 1 errors.

## Automated Equivalence Checking

Before we proceed it may be instractive to exanine a few instances of equivalent mutants which show this structure. In the analysis of the FMS. 1 scanner (see Section 2), a relatively large number of matants resulting from the transformation
$X \Rightarrow$ RETURN
appear as live mutants on even very good test data. On closer examination, however, most of these reveal that

$$
X=\mathbf{G O} \text { T0 } 90,
$$

where statement labelled 90 is itself a RETURN. The programmer's style is to always jump to a common RETURN statement, allowing an easy "proof" of equivalence.

For another example, let us return to the NXTLIV routine described in Chapter 9. A principal source of equivalent mutants in that example was the troublesome test for a word of zeroes. Its only purpose is to save the effort of looking through the words bit by bit. If the condition in the test is replaced by any identically true expression,

IF (L.NE.0) GOTO $23 \Rightarrow \operatorname{IF}(12 . N E .0)$ GO TO 23
the program runs a bit longer but is otherwise identical. Similarly the mutation

```
IF(MUTNO.GT.MCT) GOTO 40 => IF(MUTNO.GE.MCT) GOTO 40
```

changes the performance of the program only, but this time it improves it!

These last two examples are not accidental. Mutations of a program are sinilar to simple transformations that are made in code optimization; it is not surprising that some of then should turn out to be optimizing or de-optimizing transfomations. Conversely, correctness preserving optimizing transformations should be applicable to detecting equivalent mutants. If this is a useful heuristic then the task of identifying equivalent mutants can be reduced to detecting those which are equivalent for an interesting reason.

Almost all of the techniques used in optimizing compiled code can be applied in some way to decide whether a mutant is equivalent to the subject program. Some optimizing transformations are widely applicable while others are limited in scope. We will give a sampiing of the useful transformations.

Constant Propagation: Constant propagation involves replacing constants to eliminate run-time evaluation. A typical optimizing transformation would replace statement 3 as shown below

1	$\mathrm{~A}=1$		
2		$\mathrm{~B}=2 \quad$	1
:---	$\quad \mathrm{~A}=1$.		

There are several elegant schemes for global transformations of this form.

Constant propagation is most useful for detecting cases in which a mutant is not equivalent to the subject program; any change which can affect the known value of variable can be detected in this fashion. The mechanism for testing equivalence of mutants using constant propagation is to compare at all points after the mutation site the constants which are globally propagated through the program. If they differ it is likely that the programs are not equivalent. The test is certain if therc is a RETURN, HALT or some other exit statenent in which the set of associated constants contains an output variable and if there is a path from the entry point of the program to the exit point. This is resolvable by dead code detection.

Invariant Propagation: Invariant propagation generalizes constant propagation by associating with each statement a set of invariant relations between data elements (e.g., $X<0$ or $B=1$ ). Although invariant propagation has met with limited applicability in compiler design, it is a powerful technique for detecting equivalent matants, particularly those involving relational matant operators. These operators frequently affect an expression only if it has a certain relationship to 0 . For example $|x|$ changes the value of $x$ only if $x<0$. In the program-mutant pair

| IF (A.LT. O) GOTO1 | IF (A.LT.0) GOTO1 |
| :--- | :--- | :--- |
| $B=A$ |  |$\Rightarrow \quad B=A B S(A)$.

the conditional allows as to deternine the invariant (A>0) and this allows us to determine that the program and its mutant are equivalent since the absolute value of a positive number is that

Consider the mutation

$$
A=B+C(\text { partition }=A ; B+C) \Longrightarrow A=B-C(\text { partition }=A ; B-C)
$$

Comparing the partitions shows that A has a different value in the two programs.

The same ideas are used to show equivalence. If a mutation has changed part of expression $E$ to an expression $E^{\prime}$ but $E$ and $E^{\prime}$ are in the same equivalence class, then the mutant is equivalent.

Loop Invariants: Another common transformation removes code fron inside loops if the execution of that code does not depend on the iteration of the loop. Since many mutations change the boundaries of loops techniques for recognizing this invariance is useful for detecting equivalent mutants. In those cases where the mutation either increases or decreases the code within a loop, loop invariant recognition can be used to decide whether or not the effect of the loop is changcd. In the following matation, excess code is brought within the scope of the Do statement.

1
2

D0 $1 I=1,10 \quad \Rightarrow$ $A(I)=0$ CONTINUE 1 $B=0$

D0 $2 I=1,10$ $\mathrm{A}(\mathrm{I})=0$
CONTINUE $B=0$

Since the assignment $\mathrm{E}=0$ is loop invariant, it does not matter how many times it is executed.

Hoisting and Sinking: Hoisting and sinking is a form of code removal from loops in which code which will be repeatedly executed is moved to a point wherc it will be executed only once; this is accomplished by a calculus which gives strict conditions on when a
block of code can be moved up (hoisted) or down (sunk).

The applications for equivalence testing are similar to the applications for loop invariants. The major difference is that hoisting and sinking applies to cases in which code is included or excluded along an execution path by branching changes. These are the sorts of changes obtained by GOTO replacement and statement deletion mutations. In these cases, we get equivalence if the added or deleted code can be hoisted or sunk out of the block involved in the adaition or deletion.

An example will illustrate.


```
B=0
IF(A.EQ.0)GO TO 3
A=A+1
```

3

Since both programs are thus transformed, they are equivalent.

Dead Code: Dead Code detection is geared toward identifying sections of code which cannot be executed or whose execution has no effect. Dead code algorithms exist for detecting several varieties
of dead code situations. We have already used dead code analysis as a sabproblen in the propagation problems above. Dead code analysis is also useful to directly test equivalence, particularly for those mutations arising from an alteration of control flow.

A typical application is to analyze the program flowgraphs. If, for example, a mutation disconnects the graph and neither connected component consists entirely of dead statements, then the nutant cannot be equivalent. Such disconnection is possible by the mutant which inserts RETURNs in Fortrar subroutines.

Another common situation involves applying mutations to sites in a program which are themselves dead code; this is the classical compiler code optimization problem: we must detect dead code since any mutations applied to it are equivalent.

Dead code analysis can also be used to show nonequivalence by using it to demonstrate that a mutation has "killed" a block of code.

Postprocessing the Mutants: Optimizing transformations can be implemented as a postprocessor to a mutation system. User experience is that it is relatively easy to kill as may as $90 \%$ of the 1 ive mutants. To the remaining $10 \%$ an equivalence heuristic such as the rules sketched above can be applied.

The difficulty of judging equivalent mutants from those remaining after the postprocessing stage both helps and hinders the testing process. On one hand, forcing testers and programiners to "sign off" on equivalent mutants enforces a unique sort of accountability

```
Hutant Equivalence
in the testing phase of program development. On the other hand,
particalarly clever programming leads to many equivalent mutants
whose equivalence is rather a nuisance to judge; carelessness for
these programs may lead to error proneness. Our experience,
however, is that production programs present no special difficulties
in this regard.
```


## Bibliographic Notes

Detecting mutant equivalences is inherent in mutation testing, and the problem was described in [DeMillo, 1978a] and [DeMillo, 1979a]. Acree's thesis presents a discussion of the experiments used to evaluate human equivalence detection [Acree, 1980]. Baldwin and Sayward [Baldwin, 1979] noticed the relationship between mutant equivalence and optimization. These algorithms also appear in [Acree, 1979]. Tanaka [Tanaka, 1981] designed and implemented an equivalence checking post processor which uses some of the data flow analysis techniques described in this chapter.

## Chapter 8

## Error Detection


#### Abstract

A progran testing technique serves two purposes. It raises the user's confidence that a correct program is really correct. The other major function of program testing is to detect errors in programs that are not correct. In Chapter 6, we saw a number of instances in which program mutation is capable of detecting the presence of errors -- even when other techniques fail to do so. Recall that a testing technique is reliable if it always detects errors of a certain type. Much current research in program testing centers on developing test techniques which are reliable for classes of errors. Our goal in this chapter will be to examine program mutation in comparison with other well studied reliable test methodologies. We will describe a nunber of error types and show by example how the mutant operators desribed in Chapters 2 and 4


## Simple Errors

If the program contains a simple error (i.e., one represented by an error operator), then one of the mutants generated by the system will be correct. The error will be discovered when an attempt is made to eliminate the correct program since its behavior will be correct but the progam being tested will give differing results. If the program contains simple k-order errors the errors will also be detected (see Chapter 11 for an exemple).

## Dead Statements

Many programming errors manifest themselves in "dead code", that is, source statements that ere unexecutable or, more seriously, give incorrect results regardless of the data presented. Such errors may persist for weeks or even years if the errors lie in rarely executed portions of the program.

Therefore, a reasonable first goal in testing a program is to insist that each statement be executed at least once. Typical methods for achieving this goal include, for example, the insertion of instruction conters into straight line segments of the program, so that a non-zero vector of counters indicates that the instrumented statements have all been executed at least once.

During mutation analysis, the goal outlined above will be viewed from a slightly different perspective. If a statement cannot be executed, then clearly we can change the statement in any way we want, and the effects of the changes will not be noticeable as the program runs - in particular the altered program will not be distinguishable in its output behavior from the original one. There is, however, a mutant operator which draws the tester's attention to this situation in more economical way. Among the mutants are those which replace in turn the first statement of every basic block by a call to a routine which aborts the run when it is executed. Such mutations are extremely unstable since any data which causes the execution of the replaced statement will also cause the mutant to produce incorrect results and hence to be eliminated. The converse is also true. That is, if any of these mutants survives the analysis then the altered statement has never been erecuted.

Therefore, accounting for the survival of these mutants gives important information about which sections of the program have beeri executed.

This analysis shows why apparently useful testing heuristics can lead one astray. For example, it has been suggested that not executing a statement is equivalent to deleting it, bet this discussion shows how such a strategy can fail. A statement can be executed and still serve no useful purpose. Suppose that we replace every statement by a convenient NO-OP such as the Fortran CONTINUE. The survival or elimination of such mutants gives more information than merely whether or not the statement has been executed. It indicates whether or not the statement has any observable effect upon the output. If a statement can be replaced by a NO-OP with no observable effect, then it can indicate at best that machine time is wasted in its execution (possibly a design error) and very often a much more serious exror.

Insuring that every statement is executable is no guarantee of correctness. Predicate errors or coincidental correctness may pass undetected even if every statement is successfully erecuted. We will return to these error types later in this Chapter.

## Dead Branches

An improvement over simply analyzing the execution of statements can be had by analyzing the execution of branches, attempting to execute every branch at least once.

Consider the program segment

A: IF(〈expression〉) THEN B;
C;
A11 statements $A, B$ and $C$ can be executed by a single test case. It is not true however that in this case all branches have been executed. In this example the empty else clause branch can be bypassed even though $A, B$ and $C$ are executed.

However, the requirement that every branch be traversed can be restated: every predicate must evaluate to both TRUE and FALSE. The latter formulation is used in mutation analysis. The mutant operators trueop and falseop replace each logical expression by Boolean constants. Like the statement analysis mutations described above, these mutations tend to be unstable and are easily eliminated by almost any data. If these mutants survive, they point directly to a weakness in the test data which might shielda possible error.

Matating each relation or each logical expression independently actually achieves a stronger test than that achieved by the usal techniques of branch analysis. For consider the compound predicate

IF (A.LE.B.AND.C.LE.D)TEEN ...

Simple branch coverage requires only two test cases to test the predicate. But suppose that the test points for the covering test are $A\langle B \wedge C\langle D$ and $A\langle B \wedge C\rangle D$.

These points have the effect of only testing the second clause. This kind of analysis fails to take into account the hidden paths implicit in compound predicates. In testing all the hidden paths,
program mutation requires at least three points to test the predicate, corresponding to the branches ( $A>B, C\rangle D$ ), ( $A\langle B, C\rangle D$ ), and $(A \leq B, C \leq D)$.

As a more concrete example, consider the program shown in Figure 1 (cf. Program B4). It is intended to calculate the number of days between two given dates. The predicate which determines whether a year is a leap year is incorrect. Notice that if the year is divisible by 400 (i.e.. if year REM $400=0$ ) it is necessarily divisible by 100 (ie, year REM $100=0$ ). Therefore, the logical expression formed by the conjunction of these clauses is equivalent to the second clause alone. Alternatively the expression year REM $100=0$ can be replaced by the $10 g i c a l$ constant TRUE and the resulting mutant is equivalent to the original program. Since it is not obvious what the programmer had inmind, the error is discovered. Mutation analysis also shows that the assignment daysin(12):=31 is redundant and can be removed from the program.

```
PROCEDURE ca1endar(INTEGER VALUE day1,month1,day2,month2,year);
BEGIN
 INTEGER days
 IF month2=month1. THEN days=days2-days1
 COMMENT if the dates are in the same month, then
 we can compute the number of days directly;
 ELSE
 BEGIN
 INTEGER ARRAY daysin(1..12)
 daysin(1):=31; daysin(3):=31; daysin(4):=30;
 daysin(5):=31; daysin(6):=30; daysin(7):=31;
 daysin(8):=31;daysin(9):=30; daysin(10):=31;
 daysin(11):=30; daysin(12):=31;
 IF ((year REM 400)=0) OR
 ((year REM 100)=0 and (year REM 400)=0)
 THEN daysin(2):=28 ELSE daysin(2):=29;
 COMMENT set daysin(2) according to whether or not
 year is leap year;
 days:=day2+(daysin(month1)-day1);
 COMMENT this yields the number of days in complete
 intervening months;
 FOR i:=month1 +1 UNTCL month2-1 DO days:=daysin(i)+days;
 COMMENT add in the days in complete months;
 END
 WRTTE(days)
 END;
```

Figure 1.

Data Flow Errors.

A program nay access a variable in one of three ways. A variable is said to be defined if the result of a statement is to assign a value to the variable. A variable is said to be referenced if its value is required by the execution of a statement. Finally, a variable is said to be undefined if the semantics of the 1anguage does not explicitly give any other value to the variable. Examples of undefined variables are the values of local storage after procedure return or Fortran $D O$ loop indices after normal loop termination.


#### Abstract

We define three types of data flow anomalies which are often indicative of program errors. These anomalies are consecutive accesses to a variable of the following forms:


1. undefined then referenced,
2. defined then undefined,
3. defined then redefined.

Anomaly 1 is almost always indicative of an error, even if it occurs only on a single path between the point at which the variable becomes undefined and its point of reference. Anomalies 2 and 3 tend to indicate errors when they are unavoidable, that is, when they occur along every control path.

The second and third types of anomalies are attacked directly by mutation operators. If a variable is defined and is not used then in most cases the defining statement can be eliminated without effect (by insertion of a CONTINUE statement for instance). This may not be the case if in the course of defining the variable a function with side effects is invoked. In this case, the definition can very likely be altered in many ways with no effect on the side effect, resulting in the variable being given different values. An attempt to remove these mutations will usually result in the anomaly being discovered.

It is more difficult to see which operators address anomalies of the first type; the underlying errors are attacked by the discipline imposed by program matation. A tester creates and executes matants in a specific test environment: a large interpretive system. Whenever the value of a variable becomes
undefined, it is set by the interpreter to the unique constant UNDEFINED. Beforc overy variable reference, a check is performed by the interpreter to see if the variable has undefined valwes. If the variable is UNDEFINED the error is reported to the user, who can then take action. Several examples of error detection by the interpreter are presented in Chapter 6.

## Domain Errors.

A domain error occurs when an input value causes an incorrect path to be executed due to an error in a control statement. Domain errors are to be contrasted with computation errors which occur when an input value causes the correct path to be followed but an incorrect function of the input value is computed along that path due to an error in a computation statement. These notions are not precise and it is difficult with many errors to decide in which category they belong (cf. the error classifications in Chapter 2).

For a program containing $N$ input variables (e.g., parameters, arrays, and $I / 0$ veriables), any predicate in the program can be treated algebraically and can thus be described by a surface in the $N$ dimensional input space. If, as of ten happens, the predicate is linear, then the surface is a hyperplane.

Consider a two dimensional example with input variables $I$ and $J: I+2 J \leq-3$. The domain strategy tests this predicate using three test points, two on the 1 ine $I+2 J=3$, and one point which lies of $f$ the 1 ine, but within an envelope of width 2 d centered on the line. Call these points $A, B$ and $C$ (see Figure 2). If $A, B$, and $C$ ield
correct output, then the defining curve of the predicate must cut the sections of the triangle $A B C$. Choosing $d$ small enough makes the chance of the predicate actually being one of these alternatives small. Therefore, we have gained some confidence that the predicate is correct.

Values of $d$


Figure 2.
Domains for $1+2 \mathrm{~J}<3$

Program mutation also deals with the issue of domain errors. Indeed the domain strategy can be implemented using mutation once a simple observation is made: it is not necessary that points $A$ and $B$ both lie on the line - it is only necessary that the line separate them or that they do not both lie on the same side of the line. Hereafter, we will work with the domain stategy using this simplifying assumption.

There are three error operators which generate mutants causing the tester to generate the required points. Intuitively, we can think of the mutations as posing certain alternatives to the predicate in question. These alternatives require the tester to supply "reasons" (in the form of test data) why the alternative predicate cannot be used in place of the original.

Relational Operator Replacement. Changing an inequality operator to a strict inequality, weakening the operator, or changing its sense gencrates a mutant which can only be eliminated by a test point which exactly satisfies the predicate. For ezample changing $I+2 J \leq 3$ to $I+2 J<3$ requires the tester to generate a point on the line $I+2 J=3$ which satisfies the first predicate but which does not satisfy the second predicate.

Triddle. Recall from Chapter 2 that twiddle is a unary operator denoted by ++ or - , depending on its sense. Usually $++a$ is defined to be $a+1$ if $a$ is an integer and $a+.01$, if a is real. In some cases t+a is defined to be sensitive to the magnitude of a. The complementary operator -a is defined similarly.

Graphically, the effect of twiddle is to move the proposed constraint a small distance fron the original line. In order to eliminate these mutants, a data point must be found which satisfics one constraint but not the other and is hence very close to the original live.

Other Replacements. These operators replace data references with other syntactically meaningful data references and similarly for operators. These effects are related to the phenomenon of "spoilers" which are described later in this chapter.

Replacements are the main source of complexity in the mutation process, since the number of data substitution mutant alone grows approximately quadratically in the size of the program being tested (see Chapter 5). The practical effect of considering so many alternatives is to increase the total number of data points necessary for their elimination. This leads by the dorain strategy to an increased confidence that the predicate has been correctly chosen.

For comparison, let us fork throngh the program in Figure 3. No specifications are given for this program, but the progran can be compared against a presumably correct version; in any case the progran is useful since it involves only two input variables.

READ I, J;
IF $\mathrm{I}<\mathrm{J}+1$
THEN $K=T+J-1$
ELSE $\mathrm{K}=2 * \mathrm{I}+1$;
IF $K>I+1$
THEN $\mathrm{L}=\mathrm{I}+1$
ELSE $L=\mathrm{J}-1$;
IF $I=5$
THEN $M=2 * \mathrm{~L}+\mathrm{K}$;
ELSE $\mathrm{H}=\mathrm{L}+2 * \mathrm{E}-1$
WRITE M;

Figure 3.

The program has only three predicates:
$I \leq J+1, K\rangle I+1$, and $I=5$.

The effect of changing the first of these is typical, so we will
deal with it.

Figure 4 is a listing of all the alternatives tried for the predicate $I<J+1$. Some of these are redundant (e.g.. $+\mathbb{I}\langle J+1$ and $I \leq-$ $-J+1)$, but this is mercly an artifact of the generation device; the redundancies can be easily removed. The alternative predicates introduced in this way are illustrated in Figure 5. The original predicate line is the heavy line. It has been suggested that the progran of Figure 3 contains the errors shown in Table 1.


We leave it to the reader to verify that attempting to eliminate the alternative $K \geq I+2$ necessarily ends with the discovery of the first error. Note that this is not trivial since errors 1 and 4 can interact in a subtie way. In the sequel we show how the remaining errors are dealt with.

```
 1. IF(I<J)
 2. IF(I\leqJ+2)
 3. IF(I\leqJ+1)
 4. IF(I\leqJ+J)
 5. IF (1\leqJ+1)
 6. IF (2<J+1)
 7. IF (5\leqJ+1)
 8. IF(I\leq1+1)
 9. IF (I<2+1)
10. IF (I<5+1)
11. IF(I<J+5)
12. IF(-I\leqJ+1)
13. IF(++I\J+1)
14. IF(--I\J+1)
15. IF (I<-J+1)
16. IF (I\leq++J+1)
17. IF (I<--J+1)
18. IF(I\leq-(J+1))
19. IF(I<J-1)
20. IF(I\leqMOD (J,1))
21. IF(I<J)
22. IF(I\leq1)
23. IF(I<J+1)
24. IF (I=J+1)
25. IF(.NOT.I=J+1)
26. IF(I>J+1)
27. IF(I\geqJ+1)
```

Figure 4.


Figure 5.
Alternative Predicate Domains

The introduction of the unary ++ and - operators can be generalized in several useful ways. In addition to the twiddle operators, we consider the unary operator - and the operators ABS (absolute value), $-A B S$ (negative absolute value), and ZPUSH (zero push). Consider the statement $A=B+C$. In order to eliminate the mutants $A=A B S(B)+C, A=B+A B S(C)$, and $A=A B S(B+C)$, we must generate a set of test points in which $B$ is negative (so that B+C differs from $A B S(B+C), C$ is negative, and $B+C$ is negative). Notice that if it is impossible for $B$ to be negative then this is an equivalent mutation. In this case, the proliferation of these alternatives can either be a nuisance or an impertant documentation aid, defending upon the
testers' point of view. The topic of equivalent matants will be taken up again later.

In similar fashion, negative absolute value insertion forces the test data to be positive. We use the term domain pushing for this process. By analogy to the domain strategy, these mutations push the tester into producing test cases where the domains satisfy the given requirements.

Zero Push is an operator defined so that ZPUSH(x) is $x$ if $x$ is nonzero, and otherwise is undefined so that the mutant dies immediately. Hence the elimination of this mutant requires a test point in which the expression $x$ has the value zero.

Applying this process at every point where an absolute value sign can be inserted gives a scattering effect. The tester is forced to include test cases acting in various positions in several problen domains. Very often, in the presence of an error, this scattering effect causes a test case to be generated in which the error is explicit.

Returning to the example in Figure 3, we can generate the additional alternatives shown in Figure 6. Figure 7 shows the domains into which these mutants push. Even this simple example generates a large number of requirements!

1. $\operatorname{IF}(\operatorname{ABS}(I)>J+1)$
2. $\operatorname{IF}(I>\operatorname{ABS}(J)+1)$
3. $I F(I>A B S(J+1))$
4. $K=(A B S(I)+J)-1$
5. $E=(I+A B S(J))-1$
6. $K=A B S(I+J)-1$
7. $K=A B S((I+J)-1)$

8, $K=2 * A B S(I)+1$
9. $\mathrm{K}=\mathrm{ABS}(2 * \mathrm{I})+1$
10. $\mathrm{K}=\mathrm{AES}\left(2^{*} \mathrm{I}+1\right)$
11. $\operatorname{IF}(\operatorname{ABS}(\mathrm{K})<\mathrm{I}+1)$
12. $\operatorname{IF}(\mathrm{K}\langle A B S(\mathrm{I})+1)$
13. $\operatorname{IF}(\mathrm{K}\langle\mathrm{ABS}(\mathrm{I}+1))$
14. $L=A B S(I)+1$
15. $L=A B S(I+1)$
16. $\mathrm{L}=\mathrm{ABS}(\mathrm{J})-1$
17. $L=A B S(J-1)$
18. $\operatorname{IF}(. \operatorname{NOT} . A B S(I)=5)$
19. $\mathrm{K}=2 * \mathrm{ABS}(\mathrm{L})+\mathrm{K}$
20. $\mathrm{M}=2 * \mathrm{~L}+\mathrm{ABS}(\mathrm{K})$
21. $\mathrm{B}=\mathrm{ABS}(2 * \mathrm{~L}+\mathrm{K})$
22. $M=\operatorname{ABS}(\mathrm{L})+2 * \mathrm{~K}-1$
23. $\mathrm{H}=\mathrm{L}+2 * \mathrm{ABS}(\mathrm{K})-1$
24. $\mathrm{M}=\mathrm{ABS}(\mathrm{L}+2 * \mathrm{~K})-1$
25. $\mathrm{M}=\mathrm{ABS}(\mathrm{L}+2 * \mathrm{~K}-1)$

Figure 6.


Figure 7.
Effects of Domain Pushing

One effect of the error $L=J-1$ is that any test point in the area bounded by $I=J+1$ and $I=1$ will return an incorrect result. But this is precisely the area that mutants 8,9 , and 10 push us into. So, the error could not have gone undiscovered in mutation analysis.

This process of pushing the tester into producing data satisfying sone criterion is also of ten accomplished by other mutations. Consider the program in Figure 8, which is based on a text reformatter progran and which is also discussed in Appendix B (Program B11).

```
alarm:=FALSE
bufpos:=0;
fil1:=0;
REPEAT
 incharacter(cw);
 IF cw=BL or cW=RL THEN
 IF fil11+bufpos \leq maxpos THEN
 outcharacter(BL);
 ELSE
 BEGIN
 outcharacter(NL);
 fi11:=0;
 FOR k:=1 STEP 1 UNTIL bufpos DO outcharacter(buffer[k])
 fi11:=fi11+bufpos;
 bufpos:=0
 END
 ELSE
 IF bufpos = maxpos THEN alarm:=TRUE;
 ELSE BEGIN
 bufpos:=bufpos+1;
 buffer[bufpos]:=cw
 END
UNTIL alarm or cy=ET
```

Figure 8.

Consider the mutant which replaces the first statement fill:=0 with the statement fill:=1. The effect of this mutation is to force a test case to be defined in which the first word is less than maxpos characters long. This test case then detects one of the five errors originally reported in Appedix B. The surprising thing is that the effect of this mutation seems to be totally ancelated to
the statement in which the mutation takes placel

## Special Values

Another form of test which has been studied is special yalues testing. Testing of special values is definod in terms of a number of "rules". For example:

1. Every subexpression should be tested on at least one test case which forces the expression to be zero.
2. Every variable and every subexpression should take on distinct set of values in the test case.

The relationship between the first rule and domain pushing (via zero values mutations) has already been discussed. The second rule is undeniably important. If two variables are always given the same value then they do not act as free variables and a reference to the first can be uniformly replaced with a reference to the second. But this is also an error operetor and the existence of these mutations enforces the goals of Rale 2 .

A slightly more general method of enforcing Rule 2 might use the following device. A special array exactly as large as the number of subexpressions to be computed in the program is kept. Each entry in this array has two additional tag bits which are intialized to their low values indicating that the array is uninitialized. As each subexpression is encountered in turn, the value at that point is recorded in the array and the first tag bit is set. Subsequently, when the subexpression is again encountered if the second tag is still off the current valne of the expression is compared against the recorded value. If these values differ the second tag
is set to high values; otherwise no change is made. By counting those expressions in which the second tag bit is low and the first is high one can infer which expressions have not had their values altered over the test case. Matations could be constructed to reveal this.

## Coincidental Correctness

The result of evaluating a given test point is coincidentally correct if the result matches the intended value in spite of a computation error. For example, if all our test data results in the variable $I$ taking on the values 2 and 0 , then the computation $J=I * 2$ may be coincidentally correct if the intended calculation was $J=I * * 2$.

The problem of coincidental correctness is central to program testing. Every progremmer who tests an incorrect program and fails to find the errors has really encountered an instance of coincidental correctness. In spite of this, there has been no direct assanlt on the problem and some authors have gone so far as to say that the problems of coincidental correctness are intractable.

In mitation analysis, coincidental correctness is attacked by by the use of spoilers. Spoilers implicitly remove from consideration data points for which the results could obviously be coincidentally correct - this "spoils" those data points. For example by explicitly creating the mutation

$$
J=I * 2 \Rightarrow J=I * * 2,
$$

we spoil those test cases for which $I=0$ or $I=2$ are coincidentally correct and require that at lest one test case have an alternative value.

Continuing with the example of Figure 3, Figure 9 shows the spoilers and their effects associated with the statement $M=L+2 * K-1$. Notice that a single spoiler may be associated with up to four different lines depending on the outcome of the first two predicates in the program. In geometric terms (see Figure 11), the effects of the spoilers are that within each data domain for each line there must be at least one test case which does not lie on the given line. In broad terms, the effects of this are to require that a large number of data points for which the possibilities of coincidental correctness are very siight.
1. $M=(L+1 * K)-1$
2. $M=(L+3 * K)-1$
3. $M=(I+2 * K)-1$
4. $\mathrm{M}=(\mathrm{J}+2 * \mathrm{~K})-1$
5. $H=(K+2 * K)-1$
6. $\mathrm{M}=(\mathrm{L}+2 * \mathrm{~J})-1$
7. $\mathrm{M}=(\mathrm{L}+2 * \mathrm{I})-1$
8. $M=(L+2 * L)-1$
9. $M=(L+I * K)-1$
10. $\mathrm{M}=(\mathrm{L}+\mathrm{J} * \mathrm{~K})-1$
11. $\mathrm{M}=(\mathrm{L}+\mathrm{K}$ *K $)-1$
12. $\mathrm{M}=(\mathrm{L}+\mathrm{L} * \mathrm{~K})-1$
13. $M=(L+2 * K)-I$
14. $\mathrm{M}=(\mathrm{L}+2 * \mathrm{~K})-\mathrm{J}$
15. $\mathrm{H}=(\mathrm{L}+2 * \mathrm{~K})-\mathrm{K}$
16. $M=(L+2 * K)-L$
17. $\quad \mathrm{M}=(1+2 * \mathrm{~K})-1$
18. $\mathrm{M}=(2+2 * \mathrm{~K})-1$
19. $M=(5+2 * K)-1$
20. $M=(L+2 * 1)-1$
21. $M=(L+2 * 2)-1$
22. $M=(L+2 * 5)-1$
23. $M=(L+5 * K)-1$
24. $\mathrm{M}=(-\mathrm{L}+2 * \mathrm{~K})-1$
25. $M=(L+2 * K)-1$
26. $M=(L+2 *-K)-1$
27. $M=(L+2 *-K)-1$
28. $M=(L+2 * K)-1$
29. $M=((L+2 * K)-1)$
30. $\mathrm{H}=(\mathrm{L}+2+\mathrm{K})-1$
31. $\mathrm{M}=(\mathrm{L}+2-\mathrm{K})-1$
32. $\mathrm{M}=(\mathrm{L}+\mathrm{MOD}(2, \mathrm{~K}))-1$
33. $\mathrm{M}=(\mathrm{L}+2 / \mathrm{K})-1$
34. $\mathrm{M}=(\mathrm{L}+2 * * \mathrm{~K})-1$
35. $\mathrm{M}=(\mathrm{L}+2)-1$
36. $\mathrm{M}=(\mathrm{L}+\mathrm{K})-1$
37. $\mathrm{M}=\mathrm{L}-2 * \mathrm{~K}-1$
38. $\mathrm{M}=(\operatorname{MOD}(\mathrm{L}, 2 * \mathrm{~K}))-1$
39. $\mathrm{M}=\mathrm{L} / 2 * \mathrm{~K}-1$
40. $\mathrm{H}=\mathrm{L} * 2 * \mathrm{~K}-1$
41. $M=L^{*}$ * $(2 * K)-1$
42. $\mathrm{H}=\mathrm{L}-1$
43. $M=(2 * K)-1$
44. $\mathrm{M}=\mathrm{L}+2+\mathrm{K}+1$
45. $M=M O D(L+2 * K, 1)$
46. $M=(L+2 * K) / 1$
47. $\mathrm{M}=(\mathrm{L}+2 * \mathrm{~K}) * 1$
48. $\mathrm{M}=(\mathrm{L}+2 * \mathrm{~K}) * * 1$
49. $M=(L+2 * K)$
50. $\mathrm{M}=1$

Figure 10

Values of $J$


Figure 11.
Effects of Spoilers

Often the fact that two expressions are coincidentally the same over the input data is a sign of a program error or of poor testing. The sorting progran of Figure 12 is described in Appendix B (Program B2), and it performs correctly for a large number of input values. If, however, the statements following the IF statement are never executed for some loop iteration it is possible for R3 to be incorrectly set and an incorrectly sorted array will result.

By constructing the mutant which replaces the statement

$$
a(R 1):=\mathbb{R} 0 \Rightarrow a(R 1):=a(R 3)
$$

it is clear that there are two ways of defining Ro, only one of which is used in the test data. This exposes the error.

FOR R1=0 BY 1 TO N BEGIN
R0: $=\mathrm{a}$ (R1) ;
FOR R2=R1+1 BY 1 TO N BEGIN
IF a(R2) $>$ RO THEN BEGIN
R0: $=\mathrm{a}(\mathrm{R} 2)$;
$\mathrm{R} 3:=\mathrm{R} 2$
END
END
R2: =RO;
$a(R 1):=R 0$;
$a(R 3):=R 2$
END;

Figure 12.

## Missing Path Errors

A progran contains a missing path error if a predicate is required which does not appear in the subject program, causing some data to be computed by the same function when an altogether different function of the input data is called for. Such missing predicates can eally be the result of two different problems,
however, so we might consider the following alternative definitions.

A progran contains a specificational missing path error if two cases which are troated differently in the specifications are incorrectly combined into a single function in the program. On the other hand, a progran contains a computational missing path error if within the domain of a single specification a path is missing which is required only because of the nature of the algorithm or of the data involved.

An example of a specificational error is the fourth error from Table 1. Although this error might result from a specification there is nothing in the code itself which could give any hint that the data in the range $2 * J<5 * I-40$ is to be handled any differently than shown in the program.

As an example of the second class of path error consider the subroutine shown in Figure 13. The input consists of a sorted table of numbers and an element which may or may not be in the table. The only specification is that upon return $X(L O W) \leq A \leq X(H I G H)$ and HIGH $\leq$ Low +1 . A problem arises if the program is presented with a table of only one entry, in which case the program diverges.

In the specifications there is no clue that a one-entry table is to be treated any differently from a k>1 entry table. The algorithm makes it a special case.

	SUBROUTINE BIN(X,N, A, LOW, HIGH)
	INTEGER X (N), N, A, LOH, HIGE
	INTEGER MID
	LOW=1
	HIGII=N
6	IF (IEIGH-LOW-1) $7,12,7$
12	RETURN
7	MID $=($ LOW + HIGH $) / 2$
	$\operatorname{IF}(A-X(M L D)) 9,10,10$
9	HIGH=MID
	GO TO 6
10	LOW = MID
	GO TO 6
	END

Figure 13.


#### Abstract

Computational missing path problems are usually caused by requirements to treat certain values (e.g., negative numbers) differently from others. When this occurs, data pushing and spoiling of ten 1 e ad to the detection of the errors. In the example under consideration here an attempt to kill either of the mutants


IF(HIGH-LON-1) 12,12,7
or

$$
M I D=(L O W+E I G H)-2
$$

will cause us to generate a test case with a single element.

Since motation analysis - 1ike all testing techniques - deals mainly with the program under test, the problem of dealing with specificational missing path errors appears to be considerably more difficult. Under the Competent Programmer Assumption and the coupling effect, however, a tester who has access to an "oracle" for the program specifications can assume that the mutants cover all program behavior! So by consulting the specifications the tester can detect missing paths by noting incomplete behavior and thus uncover any
missing paths. But since the assumptions of a competent programmer and coupling are statistical and since it may be infeasible to check for incomplete behavior, the chances of detecting such missing paths are not certain.

To see this failure, consider the missing path error discussed above (the fourth error in Table 1). It is possible to generate test data which is adequate but which fails to detect the missing path error because there is no oracle to consult for completeress of behavior. This appears to be a fundamental limitation of the testing process. Unlike, say, program vexification, program testing does not require unfform a priori specifications; rather we only ask that the tester be able to judge correctness on a case-by-case basis. It is our view that the only way to attack these problems is to start with a core of test cases generated fron specifications, independent of the subject program. This core of test cases can then be augmented to achieve stronger goals.

## Missing Statement Errors

By analogy with missing path exrors, a missing statement error is defined by a statement which should appear in the program but which does not. It is not clear that the techniques of statement analysis can be used to uncover these exrors. In fact, it is rather surprising that program mutation - a technique which is directly oriented toward examining the effect of a modification to a statement - can be used to detect missing statements at all!

To see how this can be accomplished, consider the program shown in Figure 14. This program accepts a vector $V$ of length $N$ and retarns in MPSUM the value

$$
V(i)+V(i+1)+\ldots+V(N)
$$

where $j=i-1$ is the smallest index such that $V(j)$ is strictly positive. In degenerate cases, MPSUR=0 is returned.

There is a missing RETURN statement which should follow the IF statement. The effect of the error is to cause undefined behavior When the vector $V$ is uniformly nonpositive (undefined, since Do loop variables are of indeteminate value after normal completion of the 1oop).

A simple mutation of MPADD is the transformation

DO $1 \mathrm{I}=1, \mathrm{~N} \Rightarrow$ DO $1 \mathrm{I}=1, \mathrm{~N}+1$.

This mutant fails only when the loop executes $N+1$ times. In this case all elements of $V$ are nonpositive and the original program fails, so eliminating this mutant uncovers the error, But even after adding the return statement, MPADD will still be incorrect due to a missing path error. We leave it to the reader to discover the error by considering the mutant

DO $1 \mathrm{I}=1, \mathrm{~N} \Rightarrow \mathrm{DO} 1 \mathrm{I}=1, \mathrm{~N}-1$.

```
 SUBROUTINE MPADD(V,N,MPSUM)
 INTEGER V(N),N,MPSUM
 MPSUM = 0
 DO 1 I=1,N
 1 IF(V(I).GT.0)GO TO 2
 D0 3 I=M,N
 3 MPSUR=NPSUM+V(I)
 RETURN
 END
```

    \(2 \quad \mathrm{H}=\mathrm{I}+1\)
    Figure 14.

## Bibliographic Notes

The usefulness of program mutation for detecting errors was pointed out by DeMillo, Lipton and Sayward in [DeMillo, 1978a]. However, the first systematic investigation of classes of errors that are revealed by mutant operators was given in [Acree, 1979]. These techniques are several others which are useful in uncovering known error classes also appear in Budd's thesis [Budd, 1980].

## Chapter 9

## Field Stndies


#### Abstract

In spite of extensive theoretical and experimental analysis, systematic program testing in production programming environments is rare. Most published accounts of testing experience in large scale development efforts concentrate on ad hoc techniques which have been tailored to the parent project. On the other hand, published descriptions of systematic testing research use example programs which are small, the oretically interesting and easily adaptable to expository accounts. This leaves open the question of whether any systematic testing strategy can be economically applied in production programing situations. This chapter describes several field experiments with production programs of varying size and complexity.


The common thread in all of these case studies is that the programs being tested are not known beforehand to be "testable" by any technique. The programs are neither appealing nor known to be correct. In fact several of the programs were known to contain resistant erross that had escaped all of the usual debugging techniques. Other programs had been thoroughly tested by other organizations and fielded with errors that surfaced only during subsequent operation.

The programs below were tested using Fortran and Cobol mutation analyzers based on the design principles presented in Chapter 4. The test environments varied. The Fortran analyzers were implemented on a large Digital Equipment System/20. The Cobol analyzer was implemented on PR1ME Computer Corporation's 400 and 500 series computers. The level of skill of the testers also varied.

In one instance, the testers were expert mutation analyzer users. In another, the testers were unknown, and program mutation was used to evaluate the results of an independent testing effort. Although these studies used considerable machine resources, the principle bottleneck in the testing process was the human tester. In only one instance (the testing of a 2,500 statement Cobol program) did the test team have to wait appreciable lengths of time to receive the test results. On the average, expert testers were able to fully test (i.e., develop adequate test sets, correct errors discovered, and retest the modified programs) production code at the rate of 1,500 delivered source $1 i n e s$ per tester per week.

## Mutation on Mutation

The Fortran programs which we will discuss below are key routines of a Cobol mutation analyzer whose design parallels the organization suggested in Chapter 4. These programs were tested in nearly the same form as the prograns which would eventually be integrated into the operational system. The few modifications that had to be made to allow testing on a Fortran analyzer were mainly to due to operating system dependencies that were not supported in the test environments.

NXTLIV

This program is a routine called NXTLIV. It is a key routine in the Cobol mutation analyzex and at the time of testing was known to contain an error that could not be located by the usual debugging
techniques.

NXTLIV accepts as input the identifying number of mutant of a given type and returns the number of the next live mutant, as indicated by bit maps of the live matants. The bit maps are, in general, too large to fit in an internal array so they must be paged from a random access disk file as needed. Similar maps of the dead mutants and equivalent mutants are also stored. The program is shown below.

SUBROUTINE NXTLIV (MTYPE, MUTNO)
C FIND TEE NEXT LIVE MUTANT AFTER THE MUTNOth OF TYPE MIYPE
C RETURN THIS VALUE IN MUTNO.
C A Valde of Zero returned means no mutants of that type
REMAIN ALIVE.
NOLIST
\$INSERT ICSO57>CPMS. COMPAR $>$ SYSTEM. PAR
\$INSERT ICSO57>CPMS. COMPAR $>M A C H$ INE. SIZES. PAR
\$INSERT ICSO $57>$ CPMS. COMPAR $>F I L E N M . ~ C O M ~$
\$INSERT ICSO 57>CPMS. COMPAR>TSTDAT. COM
\$INSERT ICS057 >CPMS. COMPAR >MSBUF. COM
LIST
INTEGER MTYPE, MUTNO
INTEGER I, J,K,L, WORD,BIT
LOGICAL ERR
C CALL TIMER1 (33)
C ASSUME THAT THE RECORD CONTAINING THE LIVE BIT MAPS FOR
C MUTNO IS ALREADY PRESENT, UNLESS MUTNO=0.
$\mathrm{K}=\mathrm{BPW}-1$
C CHECK TO SEE IF WE ARE AT THE END OF A PHYSICAL RECORD
IF (MUTNO.EQ.0) TO TO 1
IF (MOD (MOTNO, K*MSFRS) . WQ.0) GO TO 24
GO TO 10
1 CALL REARAN(MSFILE,LIVBUF, MSFRS, LIVPTR, ERR)
IF (ERR) CALL ABORT (' (NXTLIV) ERROR IN MUTANT STATUS FILE',36)
CALL REARAN(MSFILE, EQUBUF, MSFRS, EQUPTR, ERR)
IF (ERR) CALL ABORT(' (NXTLIV) ERROR IN MUTANT STATUS FILE',36)
CALL REARAN (NSFILE, DEDBUF, MSFRS, DEDPTR, ERR)
IF (ERR) CALL ABORT(' (NXTLIV) ERROR IN MUTANT STATUS FILE',36)
CHANGD $=$. FALSE.
WORD=1
$\mathrm{BIT}=2$
GO TO 20
$10 \quad$ WORD $=\operatorname{MOD}($ (MUTNO $) /(K), M S F R S)+1$.
B IT $=$ MOD (MUTNO, K) +2
20 DO $22 J=W O R D, M S F R S$
$\mathrm{L}=\mathrm{LIVBUF}$ (J)
IF (L.NE.0) GO TO 23

An error has been detected; the correct output for MUTNO is 13 instead of 14. This crror resulted from choosing a starting point in the middle of a word of zero bits. NXTLIV ordinarily searches the bits of each word looking for the next "1", but for efficiency a whole word is compared to zoro before the search is begun. If all bits are set low, MUTNO is incremented by the word length and the next word is acecssed, A correct algorithm would increment MUTNO only by the number of bits left to be examined in the word. The only way this can make a difference in the original program is for NXILIV to be called in such away as to stop at a " 1 " bit in the middle of the word, which is otherwise all $0^{\prime} s$, and then by a mutant failure or equivalence (outside the routine) to have that bit turned off before NXTLIV is called again for the next mutant to be considered. Obviously this situation is so rare that it is bound to defy haphazard debugging attempts but is nonetheless common enough to cause irritation in a production-sized Cobol run.

The needed fix is to replace

MUTNO $=$ MUTNO $+K$
by

MUTNO $=$ MUTNO $+(\mathrm{K}-(\mathrm{BIT}-2))$.

After eliminating all SAN mutants and turning on the remaining error operators, a total of eleven test cases killed all but 50 of 1.514 mutants, about 96.7 percent of the total. Eventually the

```
tester's attention was directed to the mutant at line 45
```

$\mathrm{BIT}=2 \Longrightarrow \mathrm{I}=2$.

The test case 15 in Table 2 is an attempt to eliminate this mutant. The program again failed and another error was found. This error is also related to the test for the entire word of zerocs. By starting in the middle of a word of zeroes, the BIT pointer is not correctly set to 2 to begin searching the next word. The correction is to replace

22 CONTINUE
by
$22 \mathrm{BIT}=2$

An interesting note is that this "correction" is actually a mutation that the tester wonld have had to eliminate in any event, so in effect the error was uncovered by the coupling effect before it was explicitly considered.

The complete analysis of the corrected program required the elimination of 1,580 matants. The corrected algorithm has since been ranning without known failure in an operational matation analyzer.
MOVENY and MOVENM
These routines were tested using a more sophisticated mutationanalyzer than the one used to test NXTLIV. Only minor modificationsin the source code were required to conform to the requirements ofthe test enviromment.
The MOVENM and MOVENF routines were believed to be correct atthe time of testing. The listings for MOVENW and MOVENM are shownbelow.
SUBROUTINE MOVENW(SOURCE,SLEN,DEST, DLEN)
INTEGER MLEN, K, SUB2, SUB1, LOOPHI, I, III, IER
INTEGER STMT(3,10), CODE(30), SYMTAB(10,9)CHAR MEMORY (425)INTEGER DLEN, DEST, SLEN, SOURCE
INPUT OUTPUT IER, MEMORYINPUT DLEN, DEST, SLEN, SOURCE
MLEN = DLEN ..... 1
IF (SLEN .LT. MLEN) MLEN = SLEN ..... 23
LOOPHI $=($ DEST + MLFN $)-1$ ..... 4
SUB2 $=$ SOURCE -1 ..... 5
SOB2 2 SOURCE 1
DO 20 SUB1 =DEST, LOOPHI ..... 6
SUB2 $=$ SUB2 +1 ..... 7
$\mathrm{E}=$ MEMORY (SUB2) ..... 8
IF (K . EQ. '\#') IER = 4 ..... $9 \quad 10$
20 MEMORY(SUB1) = K ..... 11
IF (IER .NE. 0) GOTO 9999 ..... 1213
IF (DLEN .LE. MLEN) GOTO 9999 ..... 1415
$I=$ LCOPHI + 1 ..... 16
LOOPHI $=($ DEST + DLEN) -1 ..... 17
D0 30 SUB1=I, L00PHI ..... 18
30 MEMORY (SUB1) $=$ ' ' ..... 19
9999 CONTINUE ..... 20
RETURN ..... 21
END
SUBROUTINE MOVENM (SOURCE, SLEN, SDEC, DEST, DLEN, DDEC, TYPPE)
LOGICAL NEGNO
INTEGER X(5), PTNEGD, PTNEGS, K, SUB2, SUB1, LOOPHI, LEND
INTEGER LENS, I, IHI, DDECPT, SDECPT, IER. STMT(3,10)
INTEGER CODE (30), $\operatorname{SYMTAB}(10,9)$
CIAR MEMORY (425)
INTEGER TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE
INPUT OUTPUT IER, MEMORY
INPUT TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE
PTNEGS $=($ SOURCE + SLEN) -1 ..... 23
FTNERD $=(D E S T+$ DLEN $)-1$ ..... 24
CALL UNPACK (MEMORY (PTNEGS), $X, 5$ ) ..... 25
NEGNO $=\mathbf{X}(2)$.EQ. '-' ..... 26
$X(2)=1$ ' ..... 27
IF(NEGNO) CALL PACK (X, MEMORY (PTNEGS) ,5) ..... $28 \quad 29$
LENS $=$ SLEN - SDEC ..... 30
LEND $=$ DLEN - DDEC ..... 31
SDECPT = SOURCE + LENS ..... 32
DDECPT $=$ DEST + LEND ..... 33
SUBI = DDECPT - 1 ..... 34
IF (SDEC .EQ. 0 .OR. DDEC .EQ. 0) GOTO 22 ..... 3536
IHI $=(S D E C+S D E C P T)-1$ ..... 37
IF (DDEC . LE. SDEC) IHI = (DDEC + SDECPT) -1 ..... $38 \quad 39$
DO 20 SUL2=SDECPT, IHI ..... 40
SUB1 $=$ SUB1 +1 ..... 41
$\mathrm{K}=\mathrm{MEMORY}(\mathrm{SUB} 2)$ ..... 42
IF (K .EQ. '\#') IER = 4 ..... 4344
$\operatorname{MPMORY}(S C B 1)=\mathbf{K}$ ..... 45
IF (IER . NE. 0) GOTO 50 ..... $46 \quad 47$
22 IF (DDEC . LE. SDEC) GOTO 30 ..... 4849
$I=$ SUB1 +1 ..... 50
HHI $=($ DEST + DLEN $)-1$ ..... 51
DO 25 SUB1=I, IHI ..... 52
25 MERORY (SUB1) $={ }^{\prime} 0^{\prime}$ ..... 53
30 LCOPHI = LEND ..... 54
IF (LENS .LF. LEND) LOOPHI = LENS ..... 55
SUB1 = DDECPT ..... 57
SUB2 $=$ SDECPT ..... 58
IF (LEND . EQ. 0) GOTO 50 ..... 59 ..... 60
IF (LENS .EO. O) GOTO 41 ..... 61
DO $40 \mathrm{I}=1$, LOOPHI ..... 63
SUB1 $=$ SUB1 -1 ..... 64
SUB2 $=$ SUB2 -1 ..... 65
$K=$ MEMORY (SUB2) ..... 66
IF (E.EQ. 'H') IER = 4 ..... 6768
$40 \quad \operatorname{BEMORY}($ SUB1 $)=K$ ..... 69
IF (IER . NE. 0) GOTO 50 ..... $70 \quad 71$
JF (LEND .LE. LENS) GOTO 50 ..... 7273
41 IHI = SUB1 - 1 ..... 74
DO $45 \mathrm{I}=\mathrm{DEST}$, IHI ..... 75
$45 \operatorname{MEMORY}(\mathrm{I})=$ '0' ..... 76
$50 \quad \mathrm{X}(2)=1$. ..... 77
IF (NEGNO) CALL PACK (X, MENORY (PTNEGS) , 5) ..... $78 \quad 79$
IF (.NOT. (NEGNO . AND. TYPPE .EQ. 2)) RETUPN ..... 8081
CALL UNPACK (MEMORY (PTNEGD), X,5) ..... 82
$\mathrm{X}(2)=$ ' ${ }^{\prime}$ ..... 83
CALL PACK (X, MEMORY (PTNEGD),5) ..... 84
RETURN ..... 85
END

Program mutation on each subrcutine indicated that no errors existed and that the two subroutines were correct. A 1isting of each subroutine with its equivalent mutants and the MUTANT STATE information is given in Appendix C.

Host of the equivalent mutants are the absolute value or ZPUSH mutants of $\begin{aligned} & \text { variable; these variables are always positive and never }\end{aligned}$ zero because they refer to the menory location and length for either the sending field or destination field in the Cobol MOVE statement and this cannot be negative or zero.

It is interesting to note the statement:

IF (K. .EQ. '\#') IER=4

This conditional is checking for undefined data. If the data is undefined, the data is moved entirely to the receiving field before the interpreter is halted and an error returned to the calling subroutine. The conditional statement:

IF (IER .NE. 0) GO T0 9999 as in MOVENW
IF (IER .NE. 0) GO TO 50 as in MOVENM
is located after the Fortran DO loop that is moving the data; if this statement were moved inside the DO loop, then the error could cause the error return before all the data is moved. The tester decided that the time to evaluate the error condition every time through the DO loop would be more time consuming than the time needed to move the remaining data to the receiving field. It should be noted that moving the undefined data to the receiving field has no effect because interpretation of the program is halted.

## MOVEED

The MOVEED, numeric edited move, subroutine was submitted for mutation analysis because it had not been fully tested by conventional means. The pregram as modified is shown below.

SUBROUTINE MOVEED (SOURCE, SLEN, SDEC, DEST, DLEN, PLEN, PDIG, PDEC, * PIC, IER)

LOGICAL SUPRES, NEGNO
INTEGER X(5), SUB2, SUB1, IHI, PLDIG, IVAR, I, SCOUNT, DESTHI INTEGER CHAR, PDIGLN, SDIG, SARRAY(50), PICST, DDEC INTEGER STMT $(3,10), \operatorname{CODE}(30), \operatorname{SYMTAB}(10,9)$ CHAR MEMORY (310) INTEGER TER
CHAR PIC(10)
INTEGER PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCEINPUT OUTPUT MEMORY, IERINPUT PIC, PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCESUPRES = .TRUE.87
DO $5 \mathrm{I}=1$, PLEN ..... 88
5
$\operatorname{SARRAY}(I)=10$ ..... 89
PLDIG $=$ PDIG - PDEC ..... 90
SDIG $=$ SLEN - SDEC ..... 91
IF (SDEC .EQ. 0) COTO 11 ..... 9293
SUB1 = PLDIG ..... 94
SUB2 $=($ SOURCE + SDIG) -1 ..... 95
DO $10 \mathrm{I}=1$, SDEC ..... 96
SUB1 $=$ SUB1 +1 ..... 97
SUB2 $=$ SUB2 +1 ..... 98
IF (MEMORY (SUB2) . FQ. '\#') IER = 4 ..... 99100
10 SARRAY (SUB1) = MEMORY (SUB2) ..... 101
IF (IER .NE. 0) COTO 101 ..... 102103
11 IF (SDIG .GE. PLDIG) IMI = PLDIG ..... 106
IF (SDIG .LT. PLDIG) IHI = SDIG ..... 107108
SUB1 = PLDIG +1 ..... 109
SUB2 $=$ SODRCE + SDIG ..... 110
DO $15 \mathrm{I}=1$, IHI ..... 111
SUB1 $=$ SUB1 -1 ..... 112
SUR2 $=$ SUB2 -1 ..... 113
IF (MEMORY (SUB2) . $E$. '\#') IER = 4 ..... 114115
15 SARRAY (SUB1) = MEMORY(SUB2) ..... 116
IF (IER . NE. 0) GOTO 101 ..... 117118
16 SUB1 $=($ SOURCE + SLEN $)-1$ ..... 119
CALL URPACK (MEMORY (SUB1) , X,2) ..... 120
NEGNO $=\mathrm{X}(2) \quad, \mathrm{EQ} .{ }^{\prime}-$ ' ..... 121
SUB1 $=$ DEST ..... 122
SCOUNT $=0$ ..... 123
DO $100 \mathrm{I}=1$, PLEN ..... 124
SUB1 $=$ DEST +I ..... 125
IF ((DEST + 1) - 1 .GT. (DLEN + DEST) - 1)) GOTO ..... 126127
CHAR $=$ PIC(I) ..... 128
IF(PIC(I) .EQ. '9') SUPRES = .FALSE.IF (SARRAY (SCOUNT + 1) . NE ${ }^{\prime} 0$ ') SUPRES $=$. FALSE.129130IF (CHAR . NE. '-') GOTO 20131132$\operatorname{MEMORY}(\operatorname{SUP} 1-1)=1 \quad 1$133134135IF (I .EQ. 1) GOTO 100136137SCOUNT $=$ SCOUNT +1138139
IF(.NOT. SUPRES) GOTO 99140
IF (NEGNO) MEMORY (SUB1 - 1) = '-'141142
143144IF (MEMORY (SUB1 - 2) .EQ. '-') MEMORY (SUB1 - 2) = 'GOTO 100145146
147
20 IF (CHAR .NE. '+') GOTO 30 ..... 148149
IF (I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 - 1) = - -' ..... 150151
IF (I .EQ. 1 .AND. .NOT. NEGNO) MEMORY(SUB1 - 1) = '+' ..... 152153
IF (I . EQ. 1) GOTO 100 ..... 154155
SCOUNT $=\mathrm{SCODNT}+1$ ..... 156
IF (.NOT. SUPPES) GOTO 99 ..... 157158
IF (NEGNO) MEMORY (SUB1 - 1) = '-' ..... 159160
IF (.NOT. NEGNO) MEMORY(SUB1 - 1) $=1+'$ ..... 161162
IF (MEMORY (SUB1 - 2) .EQ. ' + ') MERORY (SUB1 - 2) $=$ ' ' ..... 163164
IF (MEMORY (SUB1 - 2) .EQ. '-') MEMORY (SUB1 - 2) =' ' ..... 165 ..... 166
GOTO 100 ..... 167
30
IF (CHAR .NE. '\$') GOTO 40 ..... 168169
IF (I .EQ. 1) MEMORY(SUB1 - 1) = '\$' ..... 170171
IF (I .EQ. 1) GOTO 100 ..... 172173
SCOUNT $=$ SCOUNT +1 ..... 174
IF (. NOT. SUPRES) GOTO 99 ..... 175176
BEMORY (SUB1 - 1) = '\$' ..... 177
 ..... 178179
GOTO 100 ..... 180
40 IF (CHAR .NE. '*') GOTO 50 ..... 181182
SCOUNT $=$ SCOUNT +1 ..... 183
IF (. NOT. SUPRES) GOTO 99 ..... 184185
MEMORY (SUB1 - 1) $=1$ *' ..... 186
GOTO 100 ..... 187
50 IF (CHAR .NE. 'Z') GOTO 55 ..... 188189
SCOUNT $=$ SCOUNT +1 ..... 190
IF(.NOT. SUPRES) GOTO 99 ..... 191192
MEMORY (SEB1 - 1) = ' ..... 193
GOTO 100 ..... 194
55
IF(CHAR .NE. '9') GOTO 60 ..... 195196
SCOUNT $=$ SCOUNT +1 ..... 197
MEMORY (SUE1 - 1) = SARRAY(SCOUNT) ..... 198
GOTO 100 ..... 199
60 IF(CHAR . NE. 'B') GOTO 70 ..... 200201
MEMORY (SUB1 - 1) $=1$ ..... 202
GOTO 100 ..... 203
70 IF (CHAR . NE. '/') GOTO 80 ..... 204205
$\operatorname{MEHORY}($ SUB1 -1$)=1 /$ ' ..... 206
GOTO 100 ..... 207
80 IF (CHAR .NE. 'V') GOTO 81 ..... 208209
GOTO 100 ..... 210
81 IF (CHAR .NE. '.') GOTO 82 ..... 211212
$\operatorname{MEMORY}(S U B 1-1)=$ '.' ..... 213
GOTO 100 ..... 214
82 IF (CHAR .NE. ', ') GOTO 83 ..... 215216
IF (. NOT. SUPRES) MEMORY(SUB1 - 1) = ',' ..... 217218
IF (SUPRES) MEMORY (SUB1 - 1) = ' ' ..... 219 ..... 220
GOTO 100 ..... 221
83 IER $=3$ ..... 222
GOTO 101 ..... 223
99 MEMORY(SUB1 - 1) = SARRAY(SCOUNT) ..... 224
100 CONTINUE ..... 225
101 CONTINUE ..... 226
RETURN ..... 227

The data for this subroutine consisted of the following input and input/ortput data.

## INPUT DATA

SOURCE - INTEGER data that contains the starting location in memory for the sending field.

SLEN - INTEGER data that specifies the length of the item in memory.

SDEC - INTEGER specifing the number of digits in the fraction part of a number.

DEST - INTEGER data that contains the starting location in memory for the receiving field.

DLEN - INTEGER data that specifies the length of the receiving data item in memory.

PLEN - INTEGER that specifies the length of the PICTURE specification.

PDIG - INTEGER that gives the number of digits in the PICTURE description.

PDEC - INTEGER specifying the number of digits in the fraction part of the PICTURE.

PIC - CIIARACTER array which contains the Cobol PICTURE for the edited move.

INPUT/OFTPTUT DATA
MEMORY - CHARACTER data that contains the programs memory.
IER - INTEGER used as error indicator.

The numeric edited move takes data from a source field and places it in a receiving field according to what may be called a template or instructions specified in the Cobol PICTURE.

Two errors and redundant conditional statements were found in MOVEED. The first error detected involved a Fortran DO loop where the upperbound on the loop was zero so the DO loop was being
executed once when it should not be executed at all. The specific statement is:

DO $15 \mathrm{I}=1$, IHI
at line 111 in Figure 5 where IHI has been assigned the value of SDIG (number of digits in the whole part of a number) or PLDIG (number of allowable digits in the whole part of the PICIURE description). The test data that uncovered this error is in Figure 1.

```
TEST CASE NUMBER 9
PARAMETERS ON INPUT
SOURCE = 294
SLEN = 7
SDEC = 7
DEST = 5
DLEN = 8
PLEN = 8
PDIG = 7
PDEC = 2
PIC = "ZZZZ9.99###
IER = 0
MEMORY = "############################## 00101- UUUUU
*A ZZZZZZZZZZZ 10- 05 235787 ZZZ9
*.99 ++++.9 $$$$$V $*****9.99
* 9.999.9 99/99/99 99B99B99 XXXXXXXX
*XXXXXXXXXXXX YYYYYYYYY3040210200ABCDEELSE2 IF2ELSE120301DONE#############
*############持##################UUUUUUAZZZZZZZZZZZZ 000500001000-01234567##
*#######"
PARAMETERS ON OUTPUT
```



Figure 1. Test Data Detecting DO Loop Error

The program was corrected and the effected lines for the new program are shown in Figure 2. The new line is the line with the Fortran statement 1 abel 11.

```
11 IF(SDIG .EQ. 0 .OR. PLDIG .EQ. 0) GOTO 16
104 105
 IHI = PLDIG
 IF(SDIG .LT. PLDIG) IHI = SDIG
 107108
 SUB1 = PLDIG + 1
 109
 SUB2 = SOURCE + SDIG 110
 DO 15 I=1, IHI
 110
 111
 SUB1 = SUB1 - 1
 112
 SUB2 = SUB2 - 1 113
 1F(MEMORY(SUB2) .EQ. '#') IER = 4 114 115
 15 SARRAY(SUB1) = MEMORY (SUB2) 116
```

Figure 2. Corrected Program

The second error that was uncovered by mutation analysis involved the handiing of the PICTURE item 'V' which says not to output a decimal point to the receiving field.

```
TEST CASE NUMBER 1
PARAMETERS ON INPUT
SOURCE = 294
SLEN = 8
SDEC = 4
DEST = 5
DLEN = 7
PLEN = 8
PDIG = 7
PDEC = 3
PIC = "9999V999 "
IER = 0
```



```
*.99 ++++.9 $$$$$V
* 9.999.9 99/99/99 99B99B99 XXXXXXXX
*XXXXXXXXXXXX YYYYYYYYY3040210200ABCDEELSE2 IF2ELSE1 20301D0NE################
```



```
*######"
PARAMETERS ON OUTPUT
MEMORY = "####1234567####################)}
*A ZZZZZZZZZZZ 05 10- 235787 ZZZ9
*.99 ++++.9 $$$$$V $*****9.99
* 9,999.9 99/99/99 99899B99 XXXXXXXX
```




```
*#######
IER = 0
```

Figure 3. Data Detecting PICTURE Clause Error

This error was detected from the data shown in Figure 3. In statement label 80 , if a $V$ is the item in the picture, then nothing is done and control goes back to the top of the loop where the next item in the PICTURE description is retrieved. The error occurs because the pointer (variable SUB1) for the next available location in the receiving field is automatically increnented at the beginning of the loop; to correct this error subtract 1 from SUB1 when a $V$ instruction is detected. The original method for calculating the next available location used the Do loop index and the absolute location of the destination field which disregards the statement

SUL1=SUB-1 executed when a 'V' is encountered. This made it mandatory to rewrite the handing of the destination pointer. The new code is given in Appendiz D. It has been indicated that some conditional statements were redundant in the original program. These have been rewritten as in Appendix D. Figure 5 contains the program with the 'V' exrcr and with the redundant statements. It can be seen from this listing that several redundant conditional statements have no effect on the result of the program. These redundant statements have been deleted.

Specifically, a redundant conditional statement exists for statement 106107 where IHI is assigned the value of PLDIG if SDIG is greater than or equal to PLDIG; but, the next statement 108109 will reassign the value of IHI to SDIG if SDIG is less than PLDIG; it can be seen that the first conditional statement can be changed to the assignment statement $I H I=P L D I G$ becanse it will be reassigned if the following conditional statement is true.

Another redundant conditional statement is 136137 where the statement:

IF ( I .EQ. 1 .AND. NEGNO) MEMORY (SUB1 - 1) = '-'
does not need the compound conditional portion I . EQ. 1 because statement 138139 takes care of that portion of the conditional. This is rewritten as: IF (NEGNO) MEMORY(SUB1 - 1) = '-' which allows the deletion of statement 143144.

As in the previous conditional statement, the statements 150 151 and 152153 do not need the portion of the conditional $I$. FQ . 1 because the statement 154155 takes care of the condition; also statement 159160 and statement 161162 are deleted.

The conditional statement 170171 is changed to the assignment
statement which allows for the deletion of statement 177.
The rewritten MOVEED was tested and the results indicated that
the routine was correct. Figure 4 contains the status information
for the testing of subroutine MOVEED.

MUTANT ELIMINATION PROFILE FOR MOVEED

MUTANT TYPE	TOTAL	DEAD	LIVE		EQU IV		
CONSTANT REPLACEMENT	151	146	$96.7 \%$	0	$0.0 \%$	5	$3.3 \%$
SCALAR VARIABLE REPLACEME	2430	2413	$99.3 \%$	0	$0.0 \%$	17	$0.7 \%$
SCALAR FOR CONSTANT REP.	1121	1119	$99.8 \%$	0	$0.0 \%$	2	$0.2 \%$
CONSTANT FOR SCALAR REP.	694	692	$99.7 \%$	0	$0.0 \%$	2	$0.3 \%$
SOURCE CONSTANT REFLACEME	601	599	$99.7 \%$	0	$0.0 \%$	2	$0.3 \%$
ARRAY REF. FOR CONSTANT R	470	470	$100.0 \%$	0	$0.0 \%$	0	$0.0 \%$
ARRAY REF. FOR SCALAR REP	1041	1030	$98.9 \%$	0	$0.0 \%$	11	$1.1 \%$
COMPARABLE ARRAY NANE RE	148	148	$100.0 \%$	0	$0.0 \%$	0	$0.0 \%$
CONSTANT FOR ARRAY REF RE	105	105	$100.0 \%$	0	$0.0 \%$	0	$0.0 \%$
SCALAR FOR ARRAY REF REP.	684	680	$99.4 \%$	0	$0.0 \%$	4	$0.6 \%$
ARRAY REF. FOR ARRAY REF.	251	246	$98.0 \%$	0	$0.0 \%$	5	$2.0 \%$
UNARY OPERATOR INSERTION	325	318	$97.8 \%$	0	$0.0 \%$	7	$2.2 \%$
ARITHKETIC OPERATOR REPLA	218	218	$100.0 \%$	0	$0.0 \%$	0	$0.0 \%$
RELATICNAL OPERATOR REPLA.	210	191	$91.0 \%$	0	$0.0 \%$	19	$9.0 \%$
LOGICAL CONNECTOR PEPLACE	5	5	$100.0 \%$	0	$0.0 \%$	0	$0.0 \%$
ABSOLUTE VALUE INSERTION	399	151	$37.8 \%$	0	$0.0 \%$	248	$62.2 \%$
STATERENT ANALYSIS	80	80	$100.0 \%$	0	$0.0 \%$	0	$0.0 \%$
STATEMENT DELETION	56	56	$100.0 \%$	0	$0.0 \%$	0	$0.0 \%$
RETURN STATEMENT REPLACEM	128	128	$100.0 \%$	0	$0.0 \%$	0	$0.0 \%$
GOTO STATEMENT PEPLACEMEN	648	636	$98.1 \%$	0	$0.0 \%$	12	$1.9 \%$
DO STATEHENT END REPLACEM	76	72	$94.7 \%$	0	$0.0 \%$	4	$5.3 \%$

MUTANT STATE FOR MOVEED

```
FOR EXPERIMENT "MOVEED " THIS IS RUN 18
NUBBER OF TEST CASES = 65
NUMBER OF MUTANTS = 9841
IUMBER OF DEAD MUTANTS = 9503 (96.6%)
NUMBER OF L.IVE MUTANTS = 0 (0.0%)
NOPBER OF EQUIV MUTANTS = 338(3.4%)
NUMBER OF MUTANTS WHICH DIED BY NON STANDARD MEANS 4530
NORMALIZED MUTANT RATIO *****%
NUMEER OF MOTATABLE STATEVENTS = 133
GIVING A MUTANTS/STATEMENT RATIO OF 73.99
NUMBER OF DATA REFERENCES = 272
NUMRER OF UNIQUE DATA REFERENCES = 34
aLL motant TYPES HAVE BEEN ENABLED
```


## Testing Operational Software

The sof tware in these studies was contributed by the U.S. Army Computer Systems Command (Army Institute for Research in Management Information and Computer Science). Both programs are large Cobol modules that had been designed, coded, tested and fielded by the Army. The testers did not have access to the original programmers, but test data was supplied by the Army. The first progrem was a 2500 line program which was supplied with test data but not documentation or other information to guid the tester. Over 650,000 mutants were generated and run on 3,000 Army test cases. After one week of elapsed testing time, the tester terminated the run when it was determined that the Army supplied test data was of such low quality that less than $10 \%$ of the mutants had been eliminated.

The second program is an editor. It consists of 1200 source code 1ines written in a standard dialect of Cobol. When supplied with a transaction file, the program sorts and edits the input data to generate an error listing with critical and non-critical errors indicated. After all critical errors are corrected and edited, a master file is updated. The updated master file is sorted and a run report is generated.

Minor modifications were required to make the program conform to Level 1 Cobo1. Since Level 1 Cobol does not allow multiple data records in a file description, each data record in a such a file was assigned its own file. Since Level 1 Cobol files are specified to be nonrewindable, the program was divided into four sections so that the output of the first section was the input of the second section and so on.

LOW and HIGL values and the current DATE were input by separate files since the CPMS did not supply these values.

Since the parpose of this run was to evaluate the quality of test data supplied by another test organization, the mutation tester did not follow the level-by-level testing strategy suggested in Chapter 2; rather, all mutant operators were enabled (see the description of a Level 1 Cobol analyzer in Chapter 2 for a 1 ist of Cobol matant operators). After processing 29 Army test cases, the analyzer returned the following status report.

MUTANT STATUS

TYPE	TOTAL	LIVE	PCT	EQUIV
DECIML	69	48	30.43	0
OCCURS	6	4	33.33	0
INSERT	430	100	76.74	0
FILLSZ	310	45	85.48	0
ITEMRV	293	77	73.72	0
FILES	464	0	100.00	0
DELETE	545	59	89.17	0
GO PER	45	7	84.44	0
PER GO	20	3	85.00	0
IF REV	75	2	97.33	0
STOF	541	8	98.52	0
THRU	365	29	92.05	0
TRAP	545	6	98.90	0
ARTTH	135	17	87.41	0
ROUND	45	0	100.00	0
MOVE	111	5	95.50	45
LOGIC	681	161	76.36	0
SUBSFS	11352	947	91.66	0
SUBCFS	1004	167	83.37	0
SUBCFS	1380	115	91.67	0
SUBSFC	4857	457	90.59	0
C ADJ	33	3	90.91	0
TOTALS				0
		23306		
			90.30	45

This test was augmented by 10 additional cases supplied by the tester and equivalent mutants werc removed from the system, resulting in the following mutant status report
MUTANT STATUS 236 MARKED AS EQUIVALENT

TYPE	TOTAL	LIVE	PCT	EQUIV
DECIML	69	4	94.20	44
OCCURS	8	2	66.67	2
INSERT	430	10	97.67	90
FILLSZ	310	4	98.71	41
ITEMRV	293	26	91.13	51
FILES	464	0	100.00	0
DELETE	545	56	89.72	3
GO PER	45	6	86.67	1
PER GO	20	3	85.00	0
IF REV	75	2	97.33	0
STOP	541	7	98.71	1
THRU	365	29	92.05	0
TRAP	545	3	99.45	3
ARITH	135	17	87.41	0
ROUND	45	0	100.00	45
MOVER	111	5	95.50	0
LOGIC	681	161	76.36	0
SUBSFS	11352	947	91.66	0
SUBCFC	1004	167	83.37	0
SUBCFS	1380	115	91.67	0
SUBSFC	4857	457	90.59	0
C ADI	33	3	90.91	0
TOTALS				
	23306	2024	91.32	281

During the analysis of TRAP mutants, a test case was constructed to kill the mutants associated with the report type and the transaction code. The possible values of the type of a report were $K, I, W, L, D$, and $E$. The possible transaction vaiues were $A, C$, and $D$. The test case constructed consisted of all possible combinations of the report type and the transaction code. The values of other input variables remained the same in each combination.

The interpreter generated a "reference to undefined data at or near line [line number]" error when the program was rn on the test case constructed. The statement marked with boldface in the follow ing piece of code was in error.

0200-PRINT-ERRORS.
IF WS-SW2 $=1$ PERFORM 0230-CIECK-FOK-A THRU 0240-EXIT.
..........
MOVE STATIONID-2 TO STATIONID-ES-EDIT.
MOVE INSTALLCODE-02 TO INST-WS-EDIT.
MOVE TRANSCODE-02 TO TRANSCODE-WS-EDIT.

The cause of this error was that all elementary data itens but one in paragraph 0230-CHECK-FOR-A had been assigned values. The following piece of code shows the paragraph under considoration.

0230-CHECK-FCR-A.
................
HOVE WS-STATIONID-WS-K TO STATIONID-WS-EDIT. MOVE WS-TRANSCODE-WS-K TO TRANSCODE-WS-EDIT.

There are two ways to correct the error. One solution is to insert the missing statement MOVE WS-INSTALLCODE-WS-K TO INST-WSEDIT after the 1 ine highlighted in boldface. The other solution is to insert the statement MOVE SPACES TO EDITDETALL-WS after the statement 0200-FRINT-ERRORS. after the statement 0200-PRINT-ERRORS.

```
ICENTIFICATION JIVIS:ON.
PRCGRAM-ID. POCAACA.
AUTHCR. CPT R W MOREYEAD.
INSTALLAT:ON, HOS USACSC.
OATE-WRITTEN. OCT 1973.
REMARKS.
 THIS PROGRAM PRINTS OUT A LIST OF ChANGES IN THE ETF.
 ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE
 CLD ETF AND ThE NEW ETF are the inputS. but there is no
 FURTHER PROCESSING OF the ETF here. the ONLy OUTPUT IS A
 LISTENG Of the ADDS. CHANGES, AND dELETES. THIS prograv is
 FOR HO USE CNLY AND HAS NO APPLICATION IN THE FIELD.
 MCDIPIED FCR TESTING UNDER CPMS BY ALLEN ACREE
 JULY, 1979.
 ENV:RONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-CCMPJTER. PRIME.
 OBJECT-CCMPJTER. PRIME.
 IMPUT-OUTPUT SECT.CN.
 FIte-ccn-not.
 SELEC: OLE-ETF ASSIGN INPUT4.
 SELEOT NEW-ZTP ASSIGN INPUTB.
 SESEC: PRNTP ASSIGM TO OUTfUTg.
 DATA DIVISTON.
 FELE SECTION.
 FD OLD-ETF
 RECORE CONTAINS go charmCtERS
 iage: mecords ame standaind
 DATA GECORD IS CLD-REC.
 01 OLD-REC.
 O3 F:LEER PIC x.
 03 OLD-KEY PIC X(12).
 O3 EIL:ER
FS NEW-ETF
 AECCRD CONTAINS 80 CHARACTERS
 LABEL RECORDS ARE STANDARD
 DATA RECCRD IS NEW-HEC.
 01 NEW-ZEC.
 O3 EyEEEn PICX.
 03 NEW-KEY FILLER
 O3 NEW-KEY FILLER
 FS PRNTR
 RECORD CONTAINS 40 Characters
 LAEE: RECORDS ARE OMITTED
 IATA RECORD IS PRNT-LINE.
 01 PRNT-I.INE
 PIC X(40).
 WOFKIMG-STORAGE SECTION.
 01 PRNT-WORR-AREA.
 03 LIMEI PIC X(30).
 O3 LINE2
 03 LINE3
 01 PRNT-OUT-OLD.
 03 WS-LN-1.
 05 FILLER pIC x value space.
 05 PILLER PIC XXXX VALUE O U
 05 LN1
 05 PIELER
 03 WS-LN-2.
 05 PILEER
 O5 TILLER
 PIC X(57).
 PIC X(30).
 PIC x(20).
PIC x(30).
PIC xXX VALUE SPACES.
pIC x value space.
PIC xxxX VAlUE it ..
```

01 PRNT-NEW-OUT.
03 NEN-EN-I.
05 FIELER
05 N-LCI
05 FILLER
03 NEN-LN-2.
う5 EILLER
N - CN2
OS FILLER
NEA-EN-3.
05 FILCER
$05 \quad \mathrm{~N}$-LN3
05 FICEER
FROCEDURE DIVIETOH.
0:03-OPENS.
OPEN I:AFUT OLS-ETT NEW-ETF.
OPEN OUPPUT PENTR.
0:10-OLD-READ.
GEAD OED-ETR AT END GO TO 0160-OLD-EOF.
2:20-MEN-AEM2.
AEAD MEN-ETF AT END SO TO O170-NEK-EOT.
3:20-companes.
: F OLO-KEY $=\mathrm{NEW}$-REY
NEXT SENTENCE
ELSE GO -O 0140-CK-ADD-DEL.
IF CLD-REこ = NEN-REC
GO 0 01:0-OLO-READ.
MOVE SED-AEE TJ PRSTHORK-AREA.
PERECPM $22: 0-C E D-W R E$ THRU O2IO-EXIT.
MOVE NEW-REE TO PRNT-WORR-AREA.
PERFORM O200-NW WRT THPU O2OO-EXIT.
GO TO O:10-CLD-REAS.
-140-CK-ASD-5EL.
:E OLD-KEY ; NEN-REY
MOVE HEW-REC TO PRNT-WORR-AREA
PERFORM 0200-RN-WHT THRU 0200-EXIT
60 TO 0120-3EW-REAO
ELSE GO TO 0:50-CK-ADD-DEL.
$0150-\mathrm{CR}$ - $\mathrm{ADC-DEL}$.
MOVE OLD-REC TO PRNT-WORK-AREA.
PERFORM 0210-OLD-WRT THRU 0210-EXIT.
HEAD C!D-ETF AT END
MOVE NEW-REC TO PRNT-WOAR-AREA
PERPSRM 0200-NW-WRT THRU 0200-EXIT
GO TO 0160-OLD-ECP.
GO TO 0130-COMPARES.
0160-OLD-EOP.
READ NEW-ETF AT EMD GO TO 0180-EOJ.
MOVE NEW-REC TO PRNT-WORK-AREA.
PERFORM 0200-NW-WRT THRU 0200-EXIT.
GO TO O160-OLD-EOP.
O170-NEW-ECE.
MOVE OLD-REC TO PRNT-WORK-AREA.
PERPORM 0210-OLD-WRT THRU 0210-EXIT.
READ OLD-ETF AT END CO TO 0180-EOJ.
GO TO O170-NEW-EOF.
0180-803.

PIC $x(30)$ ．
PIC xXX VALUE SPACES．
pic $x$ value space．
pIC XxXX Value＇D＇．
PIC $\times(20)$ ． PIC XXX VAlue space．

PIC xxxxx value $\cdot \mathrm{N} \cdot$ ． PIC $\times(30)$ ． pyc xxx value space．

PIC $x \times x \times x$ VALUE $\quad E \quad 1$ ． PIC $\times(30)$ ．
izc xxx value spaces．
pic xxxxx value $w$＇．
P：C $\times(20)$.
pic xxx value spaces．

```
126
127
128
129
130
131
132
133
134
135
136
137
138
139
240
141
142
143
144
145
146
```

```
 CLOSE OLD-ETF NEW-ETF PRNTR.
```

    CLOSE OLD-ETF NEW-ETF PRNTR.
    STOP RUN.
    STOP RUN.
    0200-NW-WRT.
0200-NW-WRT.
MOVE LINEI TO N-LNI.
MOVE LINEI TO N-LNI.
MOVE LINE2 TO N-INZ.
MOVE LINE2 TO N-INZ.
mOVE LINE3 TO N-LN3.
mOVE LINE3 TO N-LN3.
GRITE PRNT-LINE FROM NEW-LN-I AFTER ADVANCING 2.
GRITE PRNT-LINE FROM NEW-LN-I AFTER ADVANCING 2.
WRITE PRNT-LINE FROM NEW-LN-2 AFTER ADVANCING 1.
WRITE PRNT-LINE FROM NEW-LN-2 AFTER ADVANCING 1.
WRITE PRNT-IINE FROM NEW-LN-3 AFTER ADVANCING 1.
WRITE PRNT-IINE FROM NEW-LN-3 AFTER ADVANCING 1.
0200-EXIT.
0200-EXIT.
EXIT.
EXIT.
0210-OLD-WRT.
0210-OLD-WRT.
MOVE LINEI TO LN1.
MOVE LINEI TO LN1.
MOVE LINE2 TO LN2.
MOVE LINE2 TO LN2.
MOVE LINE] TO LN3.
MOVE LINE] TO LN3.
WRITE PFINT-IINE FROM WS-LN-1 AFTER ADVANCING 2.
WRITE PFINT-IINE FROM WS-LN-1 AFTER ADVANCING 2.
WRTTE PRNT-LINE FROM WS-LN-2 APTER ADVANCING 1.
WRTTE PRNT-LINE FROM WS-LN-2 APTER ADVANCING 1.
WRITE PRNT-LINE FROM WS-LN-3 APTEA ADVANCING 1.
WRITE PRNT-LINE FROM WS-LN-3 APTEA ADVANCING 1.
0210-EXIT.
0210-EXIT.
EXIT.

```
 EXIT.
```

```
IDENTIFICATION DIVISION.
PROCRAN-ID.
 PROG-1.
AUTHOR
 JAMES L. BJNGHRM.
DATE-WRITTEN.
 APRIL 14, 1979.
ENVIRONMENT SIVISION.
CONEIGURATION SEETICN
SOURCE-CCMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT IN-TRANSACTION ASSIGN TO INPUTO.
 SELECT OUTPUT-PAYMENT ASSIGN TO OUTPUTO.
DATA DIV:SICN.
FILE SECTYON.
F2 IN-TRANSACNION
 RECORE CONTAFVS IE CRARACTERS,
 LABEL RECORES ARE OMITTED.
 DATA RECCRD IS TRANSACTION-RECORD.
C1 T=AMSAC:ION-RECCND.
 O5 ACCT-NUM PIC 9(B).
 O5 SILED-AMT PIC 9(5)V99.
 O PERCENTAGE PICV99.
 O5 ACCT-CLASS PIC X.
FE OUTPUT-PAYMENT
 FECORD CONTAINS 55 CHARACTERS.
 CABEL RECORDS ARE OMITTED.
 DATA RECORO IS OUTPLTT-AEC
C1 OUTPUT-RECORD PICX(55).
NORRENG-STORAOE SECTION.
O1 W-TOTASS-OUTPUT-RECORD.
 O5 FILLER PIC X(4) VALUE SPACES.
 O5 NAME-OF-C:ASS
 05 TOTAL-CLASS-jAY
 05 FILLER
01 W-OUTPUT-RECORD.
 O5 PILLER PIC XXX VALUE SPACES.
 O5 W-ACCT-NUM
 05 PILLER
 05 W-BILLED-AMT
 O5 FILLER
 O5 W-PERCENTAGE
 O5 EILLER
 05 W-ACCT-CEASS
 05 FILLER
 O5 W-PAYMENT
01 TEMPORARY-ITERS.
 OS POTAL-A-PAY
 0S TOTAL-X-PAY
 05 TOTAL-M-PAY
 05 TOTAR-T-PAY
```

OI W-OUTPUT-RECCRD.
PIC $X X X$ VALUE SPACES.
OF-ACCI-NUM
05 PILLER
W-BILLED-AMT
O5 FILLER
OF -8 ERCENTAGE

05 W-ACCT-CEASS
05 FILLER
05 W-PAYMENT
01 TEAPORARY-ITERS.
O5 FOTAL-A-PAY

05 TOTAL-M-PAY
05 TOTAL-T-PAY

PIC X(4) VALUE SPACES.
PIC X(34).
PIC $\$ 55 \$ \$ \$ 9.99$.
PIC $X(4)$ VALUE SPACES.
PIC 9(5)V99.
PIC V99.
PIC $X$.

PIC $\times(55)$.

PIC $9(8)$.
PIC $X X X$ VALUE SPACES.
PIC 9(5).99.
PIC XXX VALUE SPACES.
PIC . 99.
PIC $\times X X$ VALUE SPACES.
PIC $X$.
PIC $x \times x$ VALUE SPACES.
PIC S\$5\$59.99.

PIC 9(6)V99.
PIC 9(6)V99.
PIC $9(6) V 99$.
PIC g(6)V99.

```
6 2
63
65
6 6
6 7
68
69
7 0
7 1
7 2
7 3
7 4
7 5
7 5
7 7
78
7 9
80
81
82
8
84
&
85
87
98
8
90
9:
92
93
94
95
95
97
8
9
100
101
102
103
104
105
105
107
108
109
110
111
112
113
114
115
116
117
118
118
120
121
122
123
124
125
```

```
 05 TOTAL-2-PAY
```

    05 TOTAL-2-PAY
    O5 PAY-AMT-A
    O5 PAY-AMT-A
    05 PAY-AMT-X
    05 PAY-AMT-X
    05 PAY-AMT-M
    05 PAY-AMT-M
    OS PAY-AMT-T
    OS PAY-AMT-T
    05 PAY-AMT-2
    05 PAY-AMT-2
    01 ERROR-mESSAGE.
01 ERROR-mESSAGE.
O5 INVALID-DATA-RECCRD
O5 INVALID-DATA-RECCRD
PIC X(50)
PIC X(50)
value 'invalid data on this card'.
value 'invalid data on this card'.
01 FLAg-value.
01 FLAg-value.
O5 MCRE-DATA-REMAINS PIC X VALUE 'Y'.
O5 MCRE-DATA-REMAINS PIC X VALUE 'Y'.

* 88 NO-mORE-DATA-REMAINS VALUE 'N'.
* 88 NO-mORE-DATA-REMAINS VALUE 'N'.
PROCEDURE DIVISION.
PROCEDURE DIVISION.
PROCESS-TRANSACTION.
PROCESS-TRANSACTION.
OPEN INPUT IN-TRANSACTICN
OPEN INPUT IN-TRANSACTICN
CUTPU: OUTPUT-PAYMENT.
CUTPU: OUTPUT-PAYMENT.
MCVE ZEROES TO TOTAL-A-PAY, TOTAL-X-PAY, TOTAL-M-PAY,
MCVE ZEROES TO TOTAL-A-PAY, TOTAL-X-PAY, TOTAL-M-PAY,
TOTAL-T-PAY, TOTAL-Z-PAY.
TOTAL-T-PAY, TOTAL-Z-PAY.
READ IN-TRANSACTICN
READ IN-TRANSACTICN
AT END MOVE 'N' TO MORE-DATA-REMAINS.
AT END MOVE 'N' TO MORE-DATA-REMAINS.
PERFCRM CHECK-DATA UNTIL MCRE-DATA-REMAINS - 'N'.
PERFCRM CHECK-DATA UNTIL MCRE-DATA-REMAINS - 'N'.
PERFCRM WRITE-OUTPUT-TOTALS.
PERFCRM WRITE-OUTPUT-TOTALS.
ClOSE IN-TRANSACTION
ClOSE IN-TRANSACTION
OUTPUT-PAYMENT.
OUTPUT-PAYMENT.
STOP RUN.
STOP RUN.
CHECK-DATA.
CHECK-DATA.
IF ACCT-NUM IS NUMERIC
IF ACCT-NUM IS NUMERIC
AHD BIELED-AMT IS NUMERIC
AHD BIELED-AMT IS NUMERIC
AND PERCENTAGE SS NUMERIC
AND PERCENTAGE SS NUMERIC
ANE (ACCT-CLISS = 'A' OR
ANE (ACCT-CLISS = 'A' OR
ACCT-CLASS = 'X' OR
ACCT-CLASS = 'X' OR
ACCT-CLASS = 'M' OR
ACCT-CLASS = 'M' OR
ACC:-CLASS = 'T' OR
ACC:-CLASS = 'T' OR
ACCT-CMASS = 'Z')
ACCT-CMASS = 'Z')
PERFORM IROCESS-ONE-TRANSACTION
PERFORM IROCESS-ONE-TRANSACTION
ELSE
ELSE
WRETE OUTPUT-RECORD FROM ERROR-MESSAGE.
WRETE OUTPUT-RECORD FROM ERROR-MESSAGE.
READ IN-TRANSACTION
READ IN-TRANSACTION
AT END MONE 'N' TO MORE-DATA-REMAINS.
AT END MONE 'N' TO MORE-DATA-REMAINS.
PAOCESS-ONE-TRANSACTICN.
PAOCESS-ONE-TRANSACTICN.
MOVE ACCT-NUM TO W-ACCT-NUM.
MOVE ACCT-NUM TO W-ACCT-NUM.
MOVE BILLED-AMT TO W-BILLED-AMT.
MOVE BILLED-AMT TO W-BILLED-AMT.
MOVE PERCENTAGE TO W-PERCENTAGE.
MOVE PERCENTAGE TO W-PERCENTAGE.
HOVE ACCT-CIASS TO W-ACCT-CLASS.
HOVE ACCT-CIASS TO W-ACCT-CLASS.
IF ACCT-CLASS : 'A' OR ACCT-CLASS m 'X'
IF ACCT-CLASS : 'A' OR ACCT-CLASS m 'X'
COAPUTE FERCENTAGE : 1.00 - PERCENTAGE
COAPUTE FERCENTAGE : 1.00 - PERCENTAGE
IP ACCT-CLASS - 'A'
IP ACCT-CLASS - 'A'
MULTIPLY BIL\&ED-AMT BY PERCENTAGE
MULTIPLY BIL\&ED-AMT BY PERCENTAGE
GIVING PAY-AMT-A ROUNDED
GIVING PAY-AMT-A ROUNDED
ADD PAY-AMT-A TO TOTAL-A-PAY
ADD PAY-AMT-A TO TOTAL-A-PAY
MOVE PAY-AMT-A TO W-PASMEENT
MOVE PAY-AMT-A TO W-PASMEENT
ELSE
ELSE
MULTIPLY BILLED-AMT BY PERCENTAGE
MULTIPLY BILLED-AMT BY PERCENTAGE
GIVING PAY-AMT-X ROUNDED
GIVING PAY-AMT-X ROUNDED
ADD PAY-APT-X TO TOTAL-X-PAY
ADD PAY-APT-X TO TOTAL-X-PAY
MOVE PAY-AMT-X TO %-PAYMENT.
MOVE PAY-AMT-X TO %-PAYMENT.
if acct-class - 'm'

```
 if acct-class - 'm'
```

```
 MULTIPIY BILEED-AMT BY PERCENTAGE
 GIVING PAY-AMT-M ROUNDED
 ADS PAY-AMT-S4 TO TOTAL-K-PAY
 MOVE PAY-AMT-M TO W-PAYMENT.
 IF ACCT-CLASS = "T'
 MOVE BILLED-AMT TO PAY-MAT-T
 ADD PAY-AMT-T TO TOTAL-T-PAY
 MOVE PAY-AFT-T TO W-PAYMENT.
 IF ACCT-CLASS = '2'
 MOVE BILLED-AMT TO PAY-AMT-Z
 ADD PAY-AMT-Z TO TOTAL-Z-PAY
 MOVE PAY-AMM-Z TO W-PAYMENT.
 WRITE OUTPUT-RECORD FROM W-OUTPUT-RECORD.
WRITE-CUTPUT-TOTALS.
 MOVE TOTAL-A-PAY TO TOTAL-CLASS-PAY.
 MOVE, TOTAL AMOUNT FOR CLASS A: TO NAME-OP-CIASS.
 WRITE OUTPUT-RECORD FRCM W-TOTALS-OUTPUT-RECORD.
 MOVE TOTAL-X-PAY TO TOTAL-CLASS-PAY.
 MOVE TOTAL AMOUNT FOR CLASS X: TO NAME-OP-CLASS.
 WRITE OUTFUT-RECORD FRCM W-TOTALS-OUTPUT-RECORD.
 MOVE FCTAL-M-PAY %O TOTAL-CLASS-PAY.
 MOVE TCTAL &MOUNT FOR CLASS M: 'TO NAME-OF-C:ASS.
 HAITE OUTPUT-RECORD FROM W-TOTALS-OUTPUT-RECORD.
 MOVE TOTAL-T-RAY :O TOTAL-CLASS-PAY.
 MOVE MOTAL AMOUNT FCR CLASS T: 'TO NAME-OP-CLASS.
 WRITE OUTPUT-RECORD FROM W-TOTALS-OUTPUT-RECORD.
 MOVE TOTAL-Z-PAY TO TOTAL-CLASS-PAY.
 MOVE FOTAL AMOUNT FOR CLASS 2: 'TO NAME-OPNCLASS.
 WHIEE OUTPUT-RECORD EROM W-TOTALS-OUTPUT-RECORD.
```


## Progran A3

```
IDENTIFICATION DIVISION.
PFOGRAM-ID. SAMPEE-4.
REmARKS. ADAPTED FROM YOURDAN, ET AL. ElEARNING TO pROGRAM
 IN STRUCTURED COBOL."
ENVIRONMENT DIVISICN.
CONFICURAT:ON SECTION.
SOURCE-COMFUTER. PRIME.
OBJECT-COMPUTER. FRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT APPLICATION-CARDS-FILE ASSIGN TO INPUTO.
 GELECT PRCFILE-LISTING ASSIGN TO OUTPUTO.
DATA DIVISION.
FILE SECTION.
FD APPLICATION-CARDS-PILE
 RECORD CONTAINS 8O ChARACTERS
 CABEL RECORDS ARE CMITTED
 DATA RECORD IS NAME-ADDRESS-AND-PHONE-IN.
01 NAME-ADDRESS-AND-PKONE-IN.
 OS NAME-IN PIC X(20).
 05 ADDRESS-IN . PIC X(40).
 O5 PHONE-IN PIC X(11).
 05 FIELER
 O5 ACCT-NUM-IN2 PIC 9(6).
FO PROF:LE-LISTING
 gECCRD CONTAINS 132 Charactens
 LABEL RECORDS AAE OMITTED
 DATA RECORD IS PRINT-LINE-OUT.
OI PRINT-LIME-OUT
PIC X(132).
WORKING-STORAGE SECTION.
O1 COMMON-WS.
 O5 CARDS-IEFT PIC X(3).
01 CREDIT-INFORMATION-IN.
 05 CARD-TYPE-IN
 O5 ACCT-HUH-IN2
 OS FILLER
 O5 CREDIT-INFO-IN
 05 PILLER
01 APPLICATION-DATA-WSB1.
 OS NAME-AND-ADDRESS-WS.
 10 NAME-WS
 10 ADDRESS-WS.
 15 STREET-WS PIC X(20).
 15 CITY-WS
 is STAFE-WS
 15 21P-WS
 05 PHONE-WS.
 10 AREA-CODE-WS PIC 9(3).
 10 NUMBR-WS PIC X(8).
 05 FIILER
 05 ACCT-MUM-WS
 OS CREDIT-INPO-WS.
 10 SEX-HS PIC X.
 10 PILLER PIC X.
 10 MARITAL-STATUS-WS PIC x.
 10 FILLEA
 10 NUMBER-DEPENS-WS
 PIC X.
 PIC 9(6).
 PIC X.
 PIC X(22).
 PIC X(50).
 PIC X(8).
PIC 9(5).
PIC }x
PIC X.
```

```
10 FILLER
```

10 FILLER
lol
0: DISCR-INCOME-CALC-FIELCSWSCB.
0: DISCR-INCOME-CALC-FIELCSWSCB.
OS anNUAL-INCOME-idS
OS anNUAL-INCOME-idS
E5 ARNUNAL-TAX-WS
E5 ARNUNAL-TAX-WS
O5 TAX-RATE-WS
O5 TAX-RATE-WS
OS MONTHS-IN-YEAR
OS MONTHS-IN-YEAR
O5 MONTHLY-NET-INIOME-WS
O5 MONTHLY-NET-INIOME-WS
O5 MONTHLY-PAMENTS-WS
O5 MONTHLY-PAMENTS-WS
O5 MONTHLY-PAMMENTS
O5 MONTHLY-PAMMENTS
PIC X.
PIC X.
PIC 9(3).
PIC 9(3).
PIC X.
PIC X.
PIC 99.
PIC 99.
PIC x.
PIC x.
FIC x.
FIC x.
lo OWN-OR-RENT-WS
lo OWN-OR-RENT-WS
PIC 9(3).
PIC 9(3).
FIC }x\mathrm{ .
FIC }x\mathrm{ .
PIC 9(3).
PIC 9(3).
PrC 9(5).
PrC 9(5).
PIC 9(5).
PIC 9(5).
PYC 9V99 VALUE 0.25.
PYC 9V99 VALUE 0.25.
PIC 99 VALUE 12.
PIC 99 VALUE 12.
PIC 9(4).
PIC 9(4).
PIC 9(4).
PIC 9(4).
PIC S9(3).
PIC S9(3).
01 LINE-i-NSBJ.
01 LINE-i-NSBJ.
05 FILLEA
05 FILLEA
05 MAME-II
05 MAME-II
VM:UE ' FHONE ('.
VM:UE ' FHONE ('.
pic x(5) value spaces.
pic x(5) value spaces.
PIC X(20).
PIC X(20).
PIC X(11)
PIC X(11)
05 FIEこER
05 FIEこER
AREA-CODE-L: PIC 9(3).
AREA-CODE-L: PIC 9(3).
AREA-CODE-L: PIC 9(3).
AREA-CODE-L: PIC 9(3).
03 FILLER
03 FILLER
OS numbr-id
OS numbr-id
05 EILLEA
05 EILLEA
05 SEX-L1
05 SEX-L1
05 FILEEN
05 FILEEN
O5 FELEER
O5 FELEER
value 'income \$'.
value 'income \$'.
OS INCOME-HUNDREDS-LI
OS INCOME-HUNDREDS-LI
PIC XX VALUE ') '.
PIC XX VALUE ') '.
PIC X(8).
PIC X(8).
PIC X(3) VALUE SPACES.
PIC X(3) VALUE SPACES.
PIC X(5).
PIC X(5).
PIC x(9) VALUE SPACES.
PIC x(9) VALUE SPACES.
PIC x(14)
PIC x(14)
PIC 9(3).
PIC 9(3).
OS INCCME
OS INCCME
8IC X(28)
8IC X(28)
VALUE '00 PER yEAR; IN THIS EMPLOY '.
VALUE '00 PER yEAR; IN THIS EMPLOY '.
05 YEARS-EMPLOYEE-L:.
05 YEARS-EMPLOYEE-L:.
20 YEAFS-L:
20 YEAFS-L:
10 EESCN-L1
10 EESCN-L1
2IC xX.
2IC xX.
PIC X(15).
PIC X(15).
01 LINE-2-WEB3.
01 LINE-2-WEB3.
FILLER PIC X(5) VALUE SPACES.
FILLER PIC X(5) VALUE SPACES.
OS FILLER
OS FILLER
O5 STREET-L2 PIC X(20).
O5 STREET-L2 PIC X(20).
05 FILEER
05 FILEER
PIC X(27) value spaces.
PIC X(27) value spaces.
05 MAR:TAL-STATUS-L2
05 MAR:TAL-STATUS-L2
PIC X(B).
PIC X(B).
05 FILLER
05 FILLER
pIC x(7) value spaces.
pIC x(7) value spaces.
05 FILLEF
05 FILLEF
PIC X(16).
PIC X(16).
05 OUTGO-DESCN
05 OUTGO-DESCN
PIC 9(3).
PIC 9(3).
05 FILLER
05 FILLER
PIC X(11)
PIC X(11)
VALUE P pER MTH 1.
VALUE P pER MTH 1.
PIC X(22)
PIC X(22)
O5 PILLER VALUE 'DISCRETIONARY INCOME P'.
O5 PILLER VALUE 'DISCRETIONARY INCOME P'.
OS DISCR-INCOME-L2 PIC 9(3).
OS DISCR-INCOME-L2 PIC 9(3).
OS PILLER VALIJE P PER MTH.. PIC X(9)
OS PILLER VALIJE P PER MTH.. PIC X(9)
OS PILLER VALJE P PER MTH..
OS PILLER VALJE P PER MTH..
01 LINE-3-wSB3.
01 LINE-3-wSB3.
05 PILLER
05 PILLER
05 PILLERR
05 PILLERR
05 PILLER
05 PILLER
pIC x(5) value spaces.
pIC x(5) value spaces.
05 FILIER
05 FILIER
2%P-L3
2%P-L3
PILLER
PILLER
ACCT-NUM-L3
ACCT-NUM-L3
O1 LINE
O1 LINE
10 FILLER
10 FILLER

# 

# 

    05 FILLEF
    05 FILLEF
                    CUE PER MTH '.
                    CUE PER MTH '.
                    $'.
                    $'.
                            *
                            *
            vazuE
            vazuE
    AREA-CODE-L: PIC 9(3).
    AREA-CODE-L: PIC 9(3).
    2 .
2 .
PIC 9(3)

```
PIC 9(3)
```

```
126
127
128
i29
130
132
132
133
134
135
136
137
139
139
140
14]
142
143
144
145
249
150
\51
252
153
15:
155
156
157
158
159
160
161
162
163
164
165
165
157
168
1 6 9
170
171
172
173
174
175
176
377
178
```

146 ** MOVE ZEROES TO MONTHLY-NET-INCOME-WS.

```
146 ** MOVE ZEROES TO MONTHLY-NET-INCOME-WS.
147 ** MOVE zEROES TO MONTHLY-PAYMENTS-WS.
147 ** MOVE zEROES TO MONTHLY-PAYMENTS-WS.
14日 ** MOVE 2EROES TJ DISCR-INCCME-WS.
14日 ** MOVE 2EROES TJ DISCR-INCCME-WS.
```

    OS FILLER PIC X(14)
    ```
 OS FILLER PIC X(14)
 VALUE ! DEPENDENTS *
 VALUE ! DEPENDENTS *
 OS PILLER VALUE 'OTHER PAYMENTS S'.
 OS PILLER VALUE 'OTHER PAYMENTS S'.
 05 OTHER-PSYMENTS-L3
 05 OTHER-PSYMENTS-L3
 PIC X(16)
 PIC X(16)
 PIC 9(3).
 PIC 9(3).
PROCEDURE DIVISION.
PROCEDURE DIVISION.
AO-MAIN-BODY.
AO-MAIN-BODY.
 PERSORM AI-INITIALIZATTON.
 PERSORM AI-INITIALIZATTON.
 PERFORM A2-PR:NT-PROFILES
 PERFORM A2-PR:NT-PROFILES
 UNTIL CARES-EEFT = 'NO'.
 UNTIL CARES-EEFT = 'NO'.
 PERFORM AJ-END-CF-JOB.
 PERFORM AJ-END-CF-JOB.
 STOP RUN.
 STOP RUN.
AI-INITIALIZATION.
AI-INITIALIZATION.
 OPEN INPUT APPLICATION-CARDS-FILE
 OPEN INPUT APPLICATION-CARDS-FILE
 OUTPUT PROFILE-LISTING.
 OUTPUT PROFILE-LISTING.
** USEEESS INITIAEIZATIONS HAVE BEEN COMAENTED OUT
** USEEESS INITIAEIZATIONS HAVE BEEN COMAENTED OUT
** MOVE zEROES FS ANNUAL-INCOME-WS.
** MOVE zEROES FS ANNUAL-INCOME-WS.
* MOVE zEROES ?O ANNUAL-TAX-WS.
* MOVE zEROES ?O ANNUAL-TAX-WS.
 MOVE 'YES' TO CARDS-LEPT.
 MOVE 'YES' TO CARDS-LEPT.
 AEAD APPEICATYON-CARDS-TILR
 AEAD APPEICATYON-CARDS-TILR
 AT END MOVE 'NO TO CARDS-LEPT.
 AT END MOVE 'NO TO CARDS-LEPT.
* THE EIRST CARD OP A PAIR IS NOW IN THE BUEPER.
* THE EIRST CARD OP A PAIR IS NOW IN THE BUEPER.
A2-PRZNT-PROFILES.
A2-PRZNT-PROFILES.
 PERECRM B1-GET-A-FAIF-OR-CARDS-INTO-WS.
 PERECRM B1-GET-A-FAIF-OR-CARDS-INTO-WS.
 PERFORM B2-CALC-DISCRETNRY-INCOME.
 PERFORM B2-CALC-DISCRETNRY-INCOME.
 PERFORM BI-ASSEMBLE-PRINT-LINES.
 PERFORM BI-ASSEMBLE-PRINT-LINES.
 PEREORM SA-WRITE-PROFILE.
 PEREORM SA-WRITE-PROFILE.
A3-END-OF-JOB.
A3-END-OF-JOB.
 CLOSE APPLICATION-CARDS-FILE
 CLOSE APPLICATION-CARDS-FILE
 PROFILE-LISTING.
 PROFILE-LISTING.
B1-GET-A-PAIR-OF-CAROS-INTO-WS.
B1-GET-A-PAIR-OF-CAROS-INTO-WS.
 MOVE NAME-IN TO NAME-WS.
 MOVE NAME-IN TO NAME-WS.
 MCVE ADDRESS-IN TO ADDRESS-WS.
 MCVE ADDRESS-IN TO ADDRESS-WS.
 MOVE PHONE-IN TO PHONE-WS.
 MOVE PHONE-IN TO PHONE-WS.
 MOVE ACCT-NUM-IN1 TO ACCT-NUM-WS.
 MOVE ACCT-NUM-IN1 TO ACCT-NUM-WS.
 READ APPLICATION-CARDS-PIEE INSO CREOIT-INPORMATION-IN
 READ APPLICATION-CARDS-PIEE INSO CREOIT-INPORMATION-IN
** AT ENS MOVE 'NO TO CARDS-LEFT.
** AT ENS MOVE 'NO TO CARDS-LEFT.
 AT END MOVE ** MISSING SECOND CARD OF PAIR ***
 AT END MOVE ** MISSING SECOND CARD OF PAIR ***
 TO PRINT-LINE-OUT
 TO PRINT-LINE-OUT
 WRITE PRINT-LINE-OUT AETER ADVANCING 2 LINES
 WRITE PRINT-LINE-OUT AETER ADVANCING 2 LINES
 PERFORM A3-END-OF-JOB
 PERFORM A3-END-OF-JOB
 STOP RUN.
 STOP RUN.
* the second card op the pain is mod in the bupfer.
* the second card op the pain is mod in the bupfer.
 HOVE CREDIT-INPO-IN TO CREDIT-INPO-HS
 HOVE CREDIT-INPO-IN TO CREDIT-INPO-HS
 READ APPLICATION-CARDS-FILE
 READ APPLICATION-CARDS-FILE
 AT END MOVE 'NO TO CARDS-LEET.
 AT END MOVE 'NO TO CARDS-LEET.
* THE PIRST CARD OP THE NEXT pAIR IS NOM za THE EUFPRR.
* THE PIRST CARD OP THE NEXT pAIR IS NOM za THE EUFPRR.
B2-CALC-DISCRETNRY-INCOME.
B2-CALC-DISCRETNRY-INCOME.
 COMPUTE ANNUAL-INCOME-WA - INCOME-MUNDREDS-WS * 100.
 COMPUTE ANNUAL-INCOME-WA - INCOME-MUNDREDS-WS * 100.
 COBPUTE ANNUAL-TAX-WS - ANNUAL-INCOME-WS TAX-RATE-HES.
 COBPUTE ANNUAL-TAX-WS - ANNUAL-INCOME-WS TAX-RATE-HES.
 COMPUTE MONTHLY-NET-INEOME-NS ROUNDED
 COMPUTE MONTHLY-NET-INEOME-NS ROUNDED
 - (ANNUALIINCOAE-WS - ANNUAL-TAX-WS) / HONTRS-IR-YEAR.
 - (ANNUALIINCOAE-WS - ANNUAL-TAX-WS) / HONTRS-IR-YEAR.
 COPPUTE MONTHLY-PAYMZNTS-WS - MORTGAGE-OR-RENTAL-WS
 COPPUTE MONTHLY-PAYMZNTS-WS - MORTGAGE-OR-RENTAL-WS
 * OTHER-PAYMENTSNS.
 * OTHER-PAYMENTSNS.
 COMPUTE DISCR-INCOME-WS - MONTHLY-NET-INCOAE-WS
```

    COMPUTE DISCR-INCOME-WS - MONTHLY-NET-INCOAE-WS
    ```

ON SIZE ERROR MOVE 999 TO DISCR-INCOME-WS.
- DISCRETIONARY INCOMES OVER S999 PER MOATH ARE SET AT S999.

B3-ASSEMBLE-PRINT-LENES.
MOVE MAME-WS TO NAME-LI.
MOVE STREET-WS TO STREET-L2.
MOVE CITY-WS TO CITY-L3.
move state-ws to state-l.
MOVE ZIP-WS TO 2IP-L3.
MOVE AREA-CODE-WS TO AREA-CODE-L. 1.
MOVE NUABR-ing TO NUMBR-i. 1.
mOVE ACCT-NUM-WS TO ACCT-NUM-i3.
If SEX-WS = 'm' NOVE 'MALE ' TO SEX-L1.
If SEX-WS = 'f' mOVE 'female' to SEX-Li.
if marital-status-us - 's' move 'single ,
TO MARYTAL-STATUS-L2.
ip marital-stafus-ws - m' move 'martied TO MARITAL-STATUS-I2.
If MARITAL-STATUSWS - 'D' MOVE 'DIVORCED' TO MARITAL-STATUS-L2.
if maritai-status-us - 'W' MOVE 'GIDCRED. TO marital-Status-Lz.
MOVE NUMBERMEEENS-WS TO NUMBER-DERENS-L3.
MOVE INCCME-HUNDREDS-WS TO INCOME-GUNDREDS-61.
IF YEARS-EMPLOYED-idS IS EQUAL TO O
move 'IESS than 1 year' to years-employed-il
ELSE
MOVE YEARS-ETPLOYED-WS TO YEARS-LI
MOVE YEAFS \(T O\) DESCN-Ll.
IP WN-OR-RENT-WS = 'O' MOVE 'MCRTGACE: S'
fo OUTCO-DESCY.
: OMN-OR-RENT-WS ' 'R' MOVE 'RENTAL: S'
TO OUTGO-DESEN.
MOVE MCRTGAGE-CR-RENTAL-WS TO MORTGAGE-OR-RENTAL-E2.
MOVE OTHER-PAYMENTS-WS TO OTHER-PAYMENTS-L3.
MOVE DISCR-INCCME-WS TO DISCR-INCOME-L2.
B4-WRTEEPROFI:E.
* move spaces to prtht-line-out.

WRITE PRINT-LINE-CUT PROM LINE-I-WSB3 aeter advancing 4 lines.
** NOVE SpACES TO pRyRT-LYE-OUT.
WRITE PRINT-LINE-OUT FROM IINE-2-WSBI apter ajvancing 1 innes.
** MOVE SPACES TO PRINT-LINE-OUT.
WRITE PRINT-LINE-OUT FROA LIME-3-WSB3 afgen dovancyag : Lymes.

\section*{Progran A4}
```

l
2
3
4
6
7
9
90
il
12
13
14
15
2
27
18
1 9
20
21
22
23
24
25
26
27
28
29
30
31
32
3
34
35
36
37
38
39
4 0
4 1
4 2
4 3
44
4 5
4 5
4
4 9
50
31
52
53
54
55
56
57
58

```

\section*{59}
```

IDENTIPICATION DIVISION.

```
IDENTIPICATION DIVISION.
PROGRAM-ID. SRMFREP.
PROGRAM-ID. SRMFREP.
AUTHOR. R A OVEREEEK.
AUTHOR. R A OVEREEEK.
REMARRS. THIS PROGRAM IS USED TO PRODUCE THE STATUS REPORTS
REMARRS. THIS PROGRAM IS USED TO PRODUCE THE STATUS REPORTS
 by depARTAENT, fOR ALL OF the STUDENTS RECORDED IN
 by depARTAENT, fOR ALL OF the STUDENTS RECORDED IN
 THE SRAP.
 THE SRAP.
 ADAPTED TO THE COBCL MUTATION SYSTEM BY ALLEN ACREE.
 ADAPTED TO THE COBCL MUTATION SYSTEM BY ALLEN ACREE.
 ERRORS DISCOVERED:
 ERRORS DISCOVERED:
 (1) ERAORS IN the input file SETUP, ChECKED for
 (1) ERAORS IN the input file SETUP, ChECKED for
 IN THE PROGRAM, CAUSE REFERENCES TO UNDEFINED
 IN THE PROGRAM, CAUSE REFERENCES TO UNDEFINED
 dATA, pARTICULARLY LINE-COLNT. CORRECTED WITH
 dATA, pARTICULARLY LINE-COLNT. CORRECTED WITH
 a value ciause.
 a value ciause.
 ENVIRCNMENT DIVISION.
 ENVIRCNMENT DIVISION.
 CONPIGURATION SECTICN.
 CONPIGURATION SECTICN.
 SOURGE-COMPUTER. CMS.
 SOURGE-COMPUTER. CMS.
 OBJECE-GOMPUTER. CMS.
 OBJECE-GOMPUTER. CMS.
 SPECIAL-NAMES. COL IS TOP-OF-PAGE.
 SPECIAL-NAMES. COL IS TOP-OF-PAGE.
 INPUT-OUTPUT SECTION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 FILE-CONTROL.
 SELECT MASTER ASSIGN TO INPUTO.
 SELECT MASTER ASSIGN TO INPUTO.
 SELECT PRINT-PILE ASSIGN TO OUTPUTO.
 SELECT PRINT-PILE ASSIGN TO OUTPUTO.
DATA DIVISION.
DATA DIVISION.
PILE SECTION.
PILE SECTION.
fD master
fD master
 RECORD CONTAZNS 141 CiARACTERS.
 RECORD CONTAZNS 141 CiARACTERS.
 LABEL RECORDS ARE STANDARD.
 LABEL RECORDS ARE STANDARD.
 DATA RECORD IS ITEM.
 DATA RECORD IS ITEM.
01 ITEM.
01 ITEM.
 02 SOC-SEC-IN.
 02 SOC-SEC-IN.
 03 SOC-SEC-IN-1 PIC x(3).
 03 SOC-SEC-IN-1 PIC x(3).
 03 SOC-SEC-IN-2 PIC X(2).
 03 SOC-SEC-IN-2 PIC X(2).
 03 SOC-SEC-IN-3 PIC X(4).
 03 SOC-SEC-IN-3 PIC X(4).
 02 NAME-IN
 02 NAME-IN
 02 ADDR-IN-1
 02 ADDR-IN-1
 O2 ADOR-IN-2
 O2 ADOR-IN-2
 O2 KAJOR-IN
 O2 KAJOR-IN
 O2 STATUS-IN
 O2 STATUS-IN
 02 NO-COURSES PIC 99.
 02 NO-COURSES PIC 99.
 PIC X(S).
 PIC X(S).
 PIC X(5).
 PIC X(5).
 PIC X(5).
 PIC X(5).
 PIC X(4).
 PIC X(4).
 PIC X(I).
 PIC X(I).
 02 COURSE-ENTRY OCCURS 11 TIMES.
 02 COURSE-ENTRY OCCURS 11 TIMES.
 03 DEPT-OFF FIC X(2).
 03 DEPT-OFF FIC X(2).
 03 COURSE-NO PIC X(2).
 03 COURSE-NO PIC X(2).
 03 CREDITS PIC 99.
 03 CREDITS PIC 99.
 03 SEMESTER PIC x(1).
 03 SEMESTER PIC x(1).
 03 YEAR PIC X(2).
 03 YEAR PIC X(2).
 03 GRADZ PIC X(1).
 03 GRADZ PIC X(1).
 FO FRINT-FIEE
 FO FRINT-FIEE
 RECORD CONTAIXS 89 CHARACTERS
 RECORD CONTAIXS 89 CHARACTERS
 LABEL RECORDS ARE OMITTED
 LABEL RECORDS ARE OMITTED
 DATA GECOAD IS PRINT-BUPP.
 DATA GECOAD IS PRINT-BUPP.
 0) PRINT-BUPY PIC x(89).
 0) PRINT-BUPY PIC x(89).
 HOREINGGETCRAGE SECTION.
 HOREINGGETCRAGE SECTION.
 77 END-ALL PIC 99.
 77 END-ALL PIC 99.
77 EMD-MARKER PIC 99.
77 EMD-MARKER PIC 99.
77 P-INDEX
77 P-INDEX
77 POINTS
77 POINTS
77 CR-HRS
77 CR-HRS
PIC 9.
PIC 9.
 PIC 999.
 PIC 999.
 PIC 999.
```

                                    PIC 999.
    ```


```

    EOF.
        MOVE ' EOF CN mASTER FILE ****' TO PRIHT-LINE.
        PERFORM PRINT2-ROUTIHE THRU PRINT2-EXIT.
        GO TO ClOSE-FILES.
    - sub-routine secticn.
PRINTI-ROUTINE.
IF LINE-COUNT IS < 16 GO TC NORMAL-PRINT.
PERFORM HEADER-ROUTINE THRU HEADER-EXIT.
HRITE PRENT-EUEF EROM PRINT-LINE AFTER ADVANCING 2 LINES.
MDD 2 TO EINE-COUNT.
GO TO COMMON-POINT.
NORMA:-PRINT.
WRITE PRINT-BUEF FROM PRENT-LINE AFTER ADVANCING 1 LINES.
ADD I TO LINE-COUN%.
COMACN-POINT.
MOVE SPACES TO FAIST-LINE.
PRINTI-EXIT. EXIT.
PRINTZ-ROUTINE.
IF LINE-COUNT IS ; 14
PERECRM HEADER-ROUTINE THRU HEADER-EXIT.
wfite fRINT-bUFF fRCM pRINT-line after adVANCing 2 LinES.
AgD 2 TO LINE-COUN".
MOVE SPACES TO PAINT-LINE.
PRINTZ-EXIT. EXIT.
MEAIER-NOUTINE.
MOVE PAGE-NO TO pAGE-0.
WRITE PRINT-BUFF FROM PACE-HEADER
agten agvancing top-cf-bace.
ADD 1 TO PAGE-NO.
WRITE PR:NT-EJFE FROM COE-HDR-I AFTER ADVANCING 2 LINES.
WRITE PRINT-GUFF FRCM COL-HDR-2 AFTER ADVANGING 1 LINES.
mOVE o to EINE-COUNT.
HEADER-EXIT. EXIT.
ITEm-ROUTINE.
MOVE SOC-SEC-IN-1 TO SOC-5EC-01.
MOVE SOC-SEC-IN-2 TO SOC-SEC-O2.
MOVE SOC-SEC-IN-3 TO SOC-SEC-O3.
MOVE '-' To soc-sec-ml.
MOVE '-' TO SOC-SEC-E2.
MOVE NAME-IN TJ NAME-ACDA.
MOVE MAJOR-IN TO MAJOR-D.
move status-in to status:0
calculate the gPa.
mOVE o TO poINTS.
MOVE O :3 CR-HPS.
FERFORM GPA-ACCUM THRU GPA-EXIT VARYING C-INDEX
FROM 1 EY \ UNTIL C-INDEX IS > NO-COURSES.
IF CR-HRS IS n O GO TO NO-GPA.
DIVIDE POINTS EY CR-HRS GIVING GPA ROURDED.
IN THE FOLIONENG THESE INDICES ARE USED:
ENDGALL: TRE INDEX OF THE FIRST UNUSED COURSE
EHTAY: tH:S MARKS THE END OF THE COURSES
TO PRINT:
END-mARKEA: WHEN EILL-LINE IS CALLED EMD-MARKER
PO:NTS AT THE PIRST COURSE ENTAY PAST THE
LAST EWARY TO BE PJT INTO THE LIGE?
C-INDEX: WHEM FILL-LINE IS CALLED C-INDEX POINTS
AT THE PIRST COURSE ENTRY WHICH GETS
PUT INTO THE PRINT-LINE, THUS, IP C-INDEX

```
```

- IS EQUAL TO END-MARKER, NO COUREE ENTRIES

```
- IS EQUAL TO END-MARKER, NO COUREE ENTRIES
- GET PUT INTO THE PRINT LINE,
- GET PUT INTO THE PRINT LINE,
P-IMOEX: INDEXES THE SPOT IN THE PRINT-LINE
P-IMOEX: INDEXES THE SPOT IN THE PRINT-LINE
WHERE THE ENTRY POINTED TO BY C-INDEX
WHERE THE ENTRY POINTED TO BY C-INDEX
 IS TO &E MOVED: THUS. ITS RANGE IS 1 TO 3.
 IS TO &E MOVED: THUS. ITS RANGE IS 1 TO 3.
NO-GPA.
NO-GPA.
 MOVE & TO C-INDEX.
 MOVE & TO C-INDEX.
 ADD 1 NO-COURSES GIVING END-ALL.
 ADD 1 NO-COURSES GIVING END-ALL.
 MOVE 4 TO END-MARKER.
 MOVE 4 TO END-MARKER.
 IF END-ALL IS < END-MARKER MOVE ENR-ALL TO END-MARKER.
 IF END-ALL IS < END-MARKER MOVE ENR-ALL TO END-MARKER.
 pERFORM FILl-LINE THRU FILL-EXIT.
 pERFORM FILl-LINE THRU FILL-EXIT.
 PERFORM PAINT2-ROUTINE THRU PRINT2-EXIT.
 PERFORM PAINT2-ROUTINE THRU PRINT2-EXIT.
 MOVE ADDR-IN-1 TO NAME-ADER.
 MOVE ADDR-IN-1 TO NAME-ADER.
 MOVE }7\mathrm{ TO END-MARKER.
 MOVE }7\mathrm{ TO END-MARKER.
 IP END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
 IP END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
 PERFORM PILL-LINE THRU FILL-EXIT.
 PERFORM PILL-LINE THRU FILL-EXIT.
 PERFORM PRINT:-ROUTINE THRU PRINTI-EXIT.
 PERFORM PRINT:-ROUTINE THRU PRINTI-EXIT.
 MOVE ADDR-IN-2 TO NAME-ADDR.
 MOVE ADDR-IN-2 TO NAME-ADDR.
 MOVE 10 TO END-HARKER.
 MOVE 10 TO END-HARKER.
COURSE-LOOP.
COURSE-LOOP.
 IF END-ALL IS < ENDMARKER MOVE END-ALL TO END-MARKER.
 IF END-ALL IS < ENDMARKER MOVE END-ALL TO END-MARKER.
 pERfORM FIL!-LINE THRU FIL:-EXIT.
 pERfORM FIL!-LINE THRU FIL:-EXIT.
 PERFCRM FRINTI-ROUTINE THRU PRINTI-EXIT.
 PERFCRM FRINTI-ROUTINE THRU PRINTI-EXIT.
 IF C-INDEX - END-ALL GO TO ITEM-EXIT.
 IF C-INDEX - END-ALL GO TO ITEM-EXIT.
 ADD 3 C-INDEX GIVING END-MARKER.
 ADD 3 C-INDEX GIVING END-MARKER.
 GO TO COURSE-LOOP.
 GO TO COURSE-LOOP.
:TEM-EXIT. EXIT.
:TEM-EXIT. EXIT.
pILL-LINE.
pILL-LINE.
 MOVE & TO p-INDEX.
 MOVE & TO p-INDEX.
CHECR-END.
CHECR-END.
 IF C-INDEX IS - END-MARKER GO TO FILL-EXIT.
 IF C-INDEX IS - END-MARKER GO TO FILL-EXIT.
 MOVE DEPT-OFF (C-INDEX) TO C-DEPT (P-INDEX).
 MOVE DEPT-OFF (C-INDEX) TO C-DEPT (P-INDEX).
 MOVE CCURSE-NO (C-INDEX) TO C-NO (P-INDEX).
 MOVE CCURSE-NO (C-INDEX) TO C-NO (P-INDEX).
 MOVE CREDITS (C-INDEX) TO CREDITS-O (P-INDEX).
 MOVE CREDITS (C-INDEX) TO CREDITS-O (P-INDEX).
 MOVE SEMESTER (C-INDEX) TO SEMESTER-O (P-INDEX).
 MOVE SEMESTER (C-INDEX) TO SEMESTER-O (P-INDEX).
 MOVE --' TO DASH-O (P-INDEX).
 MOVE --' TO DASH-O (P-INDEX).
 MOVE YEAA (C-INDEX) TO YEAR-O (P-INDEX).
 MOVE YEAA (C-INDEX) TO YEAR-O (P-INDEX).
 MOVE GRADE (C-INDEX) TO GRADE-O (P-INDEX).
 MOVE GRADE (C-INDEX) TO GRADE-O (P-INDEX).
 ADD 1 TO C-INOEX.
 ADD 1 TO C-INOEX.
 ADD 1 TO P-INDEX.
 ADD 1 TO P-INDEX.
 GO TO CAECR-ENC.
 GO TO CAECR-ENC.
PILL-EXIT. EXIT.
PILL-EXIT. EXIT.
GPA-ACCUA.
GPA-ACCUA.
 IF GRADE (C-INDEX) IS NOT . 'A' GO TO NOTA.
 IF GRADE (C-INDEX) IS NOT . 'A' GO TO NOTA.
 mULTIPLY CREDITS (C-INDEX) BY & GIVING INCR.
 mULTIPLY CREDITS (C-INDEX) BY & GIVING INCR.
 GO TO CONMCS-ADD.
 GO TO CONMCS-ADD.
NOTA.
NOTA.
 IP GRADE (C-IMDEX). IS NOT = 'B' GO TO NOTB.
 IP GRADE (C-IMDEX). IS NOT = 'B' GO TO NOTB.
 MULTIPLY CREDITS (C-INDEX) BY 3 GIVING IMGR.
 MULTIPLY CREDITS (C-INDEX) BY 3 GIVING IMGR.
 GO TO CORMCM-ADD.
 GO TO CORMCM-ADD.
mOTB.
mOTB.
 If GRADE (C-INDEX) IS NOT - 'C' GO TO NOTC.
 If GRADE (C-INDEX) IS NOT - 'C' GO TO NOTC.
 MULTIPLY CREDITS (C-INDEX) BY 2 GIVING IMCR.
 MULTIPLY CREDITS (C-INDEX) BY 2 GIVING IMCR.
 GO TO COMMON-ADD.
 GO TO COMMON-ADD.
nOTC.
nOTC.
 If GRADE (C-INDEX) IS NOT - 'D' GO TO MOTD.
 If GRADE (C-INDEX) IS NOT - 'D' GO TO MOTD.
 muLTIPLY CREDI'S (C-INDEX) BY 1 GIVING INCR.
 muLTIPLY CREDI'S (C-INDEX) BY 1 GIVING INCR.
 GO TO COMmON-ADD.
 GO TO COMmON-ADD.
NOTD.
NOTD.
 If GRADE (C-IMDEX) IS NOT - 'F' CO TO GPA-EXIT.
 If GRADE (C-IMDEX) IS NOT - 'F' CO TO GPA-EXIT.
 MOVE O TO INCR.
 MOVE O TO INCR.
CONMON-ADD.
```

CONMON-ADD.

```

\section*{318 ADD INCR TO ROINTS. \\ 319 ADD CREDITS (C-INDEX) TO CR-HRS. \\ 320 GPA-EXIT. EXIT.}

321

\section*{Program A5}
```

    IDENTIFICATION DIVISION.
    * 
* REPORT CONTAINS the inPUT dATA ALONG WITH the
CURRENT COMMISSION POR EACR SALESMAN. AT THE
END OF THIS SINGLE SPACED REPORT THE FOLLOWING
TOTALS ARE PRINTED: YEAR TO DATE SALES, CUR-
EENT SALES, CURRENT COMMISSION.
CURRENT COMMISSION IS CALCULATED AS FOLLOWS:
CURRENT-COMMISSIO* CURRENT-SALES *
(COMAISSION-RAFE + VOLUME-BONUS + DEPARTMENT-BONUS )
WITH DEPARTMENT BOSUS DETERMINED AS FOLLOWS:
OEPT BONUS
01 0.10
02 0.18
0 4 ~ 0 . 7 4
05 0.6%
06 0.4%
07 0.6%
09 0.4%
OTHER 0.0%
WITH VOLUME BGNUS DETERMINED AS FOLLOWS:
AVERAGE MONTHLY SALES BONUS
UNDER SSCO
0.0%
\$500 TO \$979.99
\$1000 TO \$1999.93
OVER \$2000 0.6%
HITH AVERAGE MONTRS SALES DETERMINED AS FOLLOWS:
AVERAGE-MONTHLY-SALES a
(YEAR-TO-DATE-SALES * CURRENT-SALES) / MONTHS-EMPLOYED
PROCRAM-ID. CORMISSION-REPORT.
AUTHOR.
DANIEL CASTAGNO,ICS 3400.STUDENT NUMBER 654,PROGRAM 1.
REMARRS. SLIGRTLY MODIPIED FOR CMS.I BY A.ACREE.
MUTATION TESTING UNCOVERED THE FOLLONING ERRORS AND
INEPFICIENCIES:
(1) REPORT HEADER WITH PMGG ADVANCE WAS NOT PRINTED
APTER FULL-PAGE CONDITION RAISED BY INVALID DATA RECORD
EXTRA PERPCRM INSERTED.
(2) DATA ITDHS DERIMED AND NEVER USED -- DELETED.
(3) MOVE STATEMENT REPEATED -- SECOND VERSION DELETED.
(4) TWO USEKESS INITIALIZATIONS DELETED.
ENVIRONMENT DIVISIOM.
COMPIGURATION SECEION.
SOURCE-COMPUTER.
CYBER-74.
OBJECT-COMPUTEN.
CYBER-7*.
SPECIAL-NAMES.
COI IS TO-TOF-OF-PAGE.
INPUT-OUTPUT SEC%TON.

```


\begin{tabular}{|c|c|c|c|c|}
\hline 190 & 02 & FILLER & PIC & X(4) \\
\hline :91 & & value spaces. & & \\
\hline 192 & 02 & FILLER & PIC & \(x(5)\) \\
\hline 193 & & VALUE 'Store'. & & \\
\hline 194 & 02 & FILLER & PIC & \(x(4)\) \\
\hline 195 & & value spaces. & & \\
\hline :98 & 02 & PILLER & P1C & X(10) \\
\hline 197 & & VALUE 'DEPARTMENT'. & & \\
\hline 198 & 02 & EILEER & PIC & \(x(4)\) \\
\hline 199 & & value spaces. & & \\
\hline 200 & 02 & flliza & PIC & \(\mathrm{x}(3)\) \\
\hline 201 & & value 'salesapn'. & & \\
\hline 202 & 02 & Filler & PIC & X(9) \\
\hline 203 & & valle spaces. & & \\
\hline 204 & 02 & FILLER & PIC & \(x(8)\) \\
\hline 235 & & value 'salesman'. & & \\
\hline 206 & 02 & Fillea & PIC & X(10) \\
\hline 207 & & value spaces. & & \\
\hline 298 & 02 & FILIER & PIC & X(12) \\
\hline 239 & & VALUE 'yEAR to date'. & & \\
\hline 210 & 02 & FILLER & PIC & X(5) \\
\hline 2:1 & & value spaces. & & \\
\hline 212 & 02 & FILLER & PIC & \(\times(7)\) \\
\hline 2:? & & value 'Current'. & & \\
\hline 214 & 02 & EILIER & PIC & \(\mathrm{x}(4)\) \\
\hline 2:5 & & value spaces. & & \\
\hline \(2: 6\) & 02 & Friler & PIC & \(x(10)\) \\
\hline 217 & & VALUE 'COmmission'. & & \\
\hline 219 & 02 & FILEER & PIC & x(5) \\
\hline 219 & & value spaces. & & \\
\hline 220 & 02 & FiLLER & PIC & X (7) \\
\hline 221 & & value 'current'. & & \\
\hline 222 & 22 & FILIER & PIC & X (6) \\
\hline \(22 \%\) & & value spaces. & & \\
\hline 22: & 02 & filiea & PIC & \(x(6)\) \\
\hline 225 & & VALUE 'months'. & & \\
\hline 225 & 02 & FILIER & PIC & \(x(8)\) \\
\hline こ2- & & value spaces. & & \\
\hline -28 & & & & \\
\hline 229 & hea & DING-LINE-2. & & \\
\hline 230 & 02 & F!ELER & PIC & X(4) \\
\hline 231 & & value spaces. & & \\
\hline 232 & 02 & FILEER & PIC & \(\mathrm{X}(6)\) \\
\hline 233 & & VALUE 'Numser'. & & \\
\hline 234 & 02 & FILEER & PIC & x(18) \\
\hline 235 & & value spaces. & & \\
\hline 236 & 02 & FILIER & PIC & X 36) \\
\hline 237 & & VALUE 'NUMBER'. & & \\
\hline 238 & 02 & PILLER & PIC & X(12) \\
\hline 239 & & VALUE SPACES. & & \\
\hline 240 & 02 & pilier & PIC & \(\mathrm{X}(4)\) \\
\hline 241 & & VALUE 'NAAE'. & & \\
\hline 242 & 02 & FILEER & PIC & X(16) \\
\hline 243 & & value spaces. & & \\
\hline 244 & 02 & FILEER & PIC & \(x(5)\) \\
\hline 245 & & vaiue 'Sales'. & & \\
\hline 245 & 02 & PILLEP & PIC & \(x(9)\) \\
\hline 247 & & value spaces. & & \\
\hline 248 & 02 & PILLER & PIC & X(5) \\
\hline 249 & & value 'sales'. & & \\
\hline 250 & 02 & FILLER & PIC & X(8) \\
\hline 251 & & VAlUE SPACES. & & \\
\hline 252 & 02 & Fillep & PIC & X(4) \\
\hline 253 & & value 'rate' & & \\
\hline
\end{tabular}

```

    PERFORA COMMISSION-CALCULATION
                UNTIL MORE-DATA-REMAINS-FLAG * "NO'.
    PERFORM CALCULATED-TOTALS-OUTPUT.
    CLOSE CARD-PILE
        PAINT-FILE.
    STOF RUN.
    * CHECK VARIABLES TO SEE ZF THEY CONTAIN VAZID INFORMATION
VALIDATEON.
IE I-STORE-NUMEZA IS NLUMERIC
AND I-SACESMAN-NUMBER IS NUMERIC
AND I-YEAR-TO-DATE-SALES IS NLMERIC
AND I-CURAENT--SALES IS NUMERIC
AND I-COMMISSION-RATE IS NUAERIC
AND I-NONTHS-EMPLOYED IS NUMERIC
MOVE 'YES' TO VALID-DATA-FLAG
EL5E
MOVE 'NO' TJ VALID-DATA-FLAG.
* MOVE TNPUT INTORMATYON TO WORKING STORAGE
* variAules
DATA-mOVE.
MOVE T-STCRE-NUMBER TO W-STORE-NUMBER.
MOVE I-DEPARTMENT TO W-DEPARTMENT.
MOVE I-SAEESMAN-HUABER TO W-SALESMAN-NUMBER.
MOVE I-YEAR-TO-SATE-SALES TO W-YEAR-TO-DATE-SALES.
-OVE I-CURRENT-SALES TO W-CURRENT-SALES.
MOVE I-CCMMISSISN-RATE TO W-COMMISSION-RATE.
MOVE I-MONTHS-EMPGOYED TO W-MONTHS-EMPLOYED.
CALCULATE-DEPARTMENT-GCNUS.
IFW-DEPARTMENT = O1' OR
W-DEPARTMENT = 'O2'
KOVE DEPT-I-OR-2 FO W-NEPARTMENT-BONUS
ELSE IF W-DEPARTMENT = 06'ON
W-DEPARTMENT * 'C9'
MOVE DEFT-E-OR-9 TO W-DEPARTMENT-BONUS
ELSE IF W-DEPAPTME:IT : 05' OR
W-DEPAHTMENT = 107'
HOVE DEPT-5-OR-7 TO W-DEPARTMENT-BCNUS
ELSE IF W-DEPARTNENT - '04'
HOVE DEPT-G TO 'A-DEPARTMENT-BONUS
ELSE
MOVE DEPT-OTREA TO M-DEPARTMENT-BONUS.
CALCULATE-VOLUME-BONUS.
COMPUTE W-AVERAGEHONTHLY-SALES RCUNDED -
(W-YEAR-TO-DATE-SALES + W-CURRENT-SALES )
/ W-MONTHS-EMPLOYED.
IF M-AVERAGE-MONTHEY-SALES < 500
MOVE LEVEL-1 TO W-VOLUME-EONUS
ELSE IT W-AVERAGE-MOHTHLY-SALES < 999.99
MOVE LEVEL-2 TO W-VOLUME-BONUS
ELSE IF W-AVERAGE-MONTHLY-SALES < 1999.99
HOVE LEVEL-3 HO W-VOLUME-BONUS
ELSE
MONE LEVEL-S TO H-VOLUME-BONSS.
COHMISSION-CALCULATION.

```
```

    PERFORM VALIDATION.
    if valid-data-flag e 'yes'
    PERFORM DATA-MOVE
    PERFORM CALCULATE-DEPARTMENT-BONUS
    PEREORM SALCULATE-VOLUME-BONUS
    COMPUTE W-CURRENT-COMMISSION ROUNDED w W-CURRENT-SALES *
                ( W-COMMISSION-RATE + W-VOLUME-BONUS +
                G-DEPARTMENT-BONUS)
        ADE W-YEAR-TO-DATE-SALES TO W-TOTAL-YEAR-TO-DATE-SALES
        ADD W-CURRENT-SALES TO W-TOTAL-CURRENT-SALES
        ADD W-GURRENT-CCMMISSION TO W-TOTAL-CURRENT-COMMISSION
        PERFORA VACID-DATA-OUTPUT
        ELSE
            pERFORA INVALID-DATA-OUTPUT.
    READ CARD-FILE
        at end move 'no' to more-oAta-remains-plag.
    VALID-DATA-OUTPUT.
MOVE W-STORE-NUMEER TG O-STURE-NUMBER.
MOVE W-DEPARTMENT TO ODEPARTMENT.
MOVE W-SALESMAN-NUMBER TO O-SALESMAN-NUMBER.
MOVE S-SALESMAN-NAME TO O-SALESMAN-NAME.
MOVE W-YEAR-TO-DATE-SALES TO O-YEAR-TO-DATE-SALES.
MOVE W-CURRENT-SALES TO O-CURRENT-SALES.
HOVE W-COMM:SSION-RATE TO O-COMMISSION-RATE.
MOVE W-CURRENT-COMMISSION TO OCURRENT-COMMISSION.
MOVE W-MONTHS-EMPLOYED TO OHONTHS-EMPLOYED.
MOVE I-SALESMAN-NAME TO O-SALESMAN-NAME.
mOVE valid-data-line to line-record.
WRITE LINE-RECORD AFTER ADVANCING l LINES.
ADD 1 TO LINE-COUNT.
IF LinE-COLNT IS gREATER than }1
MOVE O TO LINE-COUNT
PERFORM REPORT-HEADER-OUTPUT
PERECRM HEADING-OUTPUT.
INVALID-DATA-OUTPUT.
MOVE I-CAED-DATA TO O-BAD-DATA.
MCVE INVALID-DATA-LINE TO LINE-RECORD.
WRITE LINE-RECORD AFTER ADVANCING 1 LINES.
ADD 1 TO IINE-COUNT.
if line-count is greater than }1
MOVE O TO LINE-COUNT
PERPORM REPCRT-HEADER-OUTPUT
PERFCRA HEADING-CUTPUT.
READ:NG-OUTPUT.
MOVE HEADING-LINE-1 TO LINE-RECORD.
WRITE LINE-RECORD AFTER ADVANCING 1 LINES.
MOVE HEADING-IINE-2 TO LINE-RECORD.
WRITE LINE-RECORD APTER ADVAHCING 1 LINES.
MOVE SPACES TO LINE-RECORD.
WRITE LINE-RECORD AFTER ADVANCING 2 LINES.
ADD 4 TO LINE-COUNT.
calculated-totals-ouTput.
MOVE W-TJTAL-YEAR-TO-DATE-SALES TO O-TOTAL-YEAR-TO-DATE-SALES
MOVE W-TOTAL-CURRENT-SALES TO O-TOTAL-CURRENT-SALES.
MOVE W-TOTAL-CURRENT-CORMISSION TO O-TOTAL-CURRENT-COMAISSION
MOVE FIMAL-TOTAL-LINE TO LINE-RECORD.
WRITE LINE-RECORD AFTER ADVANCING 2 IIMES.

```

446
447
448
449

REPORT-GEADEA-OUTPUT. ADO \& TO O-PAGE-NUAEER. MJVE REPORT-IINE-I TO IINE-RECORD. WRITE LINE-RECORD APTER ADVANCING TO-TOP-OR-PAGE. MOVE REPORT-LINE-2 TO LINE-RECORD. WRITE LINE-RECORD AFTER ADVANC:NG 1 LINES. move spaces to line-record. WRITE LINE-RECORD AFTEF ADVANCING 3 LINES. move TO LINE-COUNT.
```

IDENTIPICATION DIVISION.
PROGRAM-FD. MAINTAFS.
REMARKS. THIS PROGRAM IS MDAPTED FROA YOURDAM'S LEARNING
TO PROGRAM IN STRUCTURED COBOL*.
(1) THE PROGRAM AS PUBLISHED DID NOT WORK. THE LAST
PAIR OF APPLICATION CARDS WAS IGNORED. IP THEFE
WAS NO LAST PAIR (EMPTY FILE) THE PROGRNM EOMBED.
THIS ERROR WAS FIXED BY ADDING ANOTHER FILE-CONTROL
FIAG ARIN ADDING LOGIC IN BI-GET-A-PAIR...*
(2) THE NOTE ABOUT CHECKING PAIR VALIDITY
IN PARAGRAPH *AR-UPDATE MASTER' SHOULD BE REPEATED
IN IHE ANALOGOUS PARAGRAPH *A-ADD-REMAINING-CARDS".
(3) IF THE FIRST CARD IS INVALID, ITS LOG ENTRY
HOULD HAVE BEEN WRITTEN BEEORE TGE LOG PILE HEADER.
(4) THE PUBLISHED PROGRAM CONTAINED MUCH EXTRANEOUS
CODE. THE REASON FOR SOME OF THIS WAS THE FREE USE OF
THE COPY" VERB. THESE PRODUCED MANY UNNECESSARY
MUTANTS, AHD HAVE gEEN COMMENTED OUT WITR *****.
(S) THE PROGRAM DID NOT DO ANY*RING SENSIBLE WREN
THE END-OF-FILE WAS ENCOUNTERED APTER TGE PIRST OF A
PA:R OF CARDS.
ENVIRONMEN* DI'JESION.
CONFIGUEATION SEGTION.
SOURCE-GOMPUTER, PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTQYG SECTION.
FILE-CONPROL.
SELECZ APPLICATION-CARDS-FILE ASSICN TO INPUTI.
SELEGT UPDAT:-I.SSTING
SELECT GRED:T-MASTER-OLD-PILE ASSIGN TO INPUT2.
SELECT GREDIT-MASTER-NEW-PILE ASSIGN TO OUTPUTZ.
DATA DIVYSION.
FILE SECTION.
FD APPLICATION-CARDS-P:LE
RECCAD CONTAINS 8O CHARACTERS
LABEE RECSRES ARE OMIETED
DATA RECORD IS NAME-ACDRESS-AND-PHONE-IN.
O1 NAME-ADDRESS-AND-PHONE-IN.
OS NAME-AND-ADORESS-IN.
10 NAME-IN PIC X(20).
** IO ADDRESS-IH.
** 15 STREE%-IN
** 15 CITY-IN
** 15 STATE-IN
** IS 2IP-IN
10 ADDRESS-IN PYC X(40)
05 PHONE-IN PIC X(11).
OS PILEER
O5 CHANGE-CODE-IN
PIC x.
O5 ACCT-NUM-IN1
PIC 9(6).
PD UPDATE-LISTING
RECORD CONTAINS 132 CMARACTERS
LABEL RECORDS ARE OAITTED
DATA RECORD IS PRINT-LINE-OUT.
01 PRINT-LINE-OUT
PIC X(132).
PD CREDIT-MASTER-OLO-PILE

```

```

```
\0 CREDIT-LIMIT-KAS-NEWM
```

```
\0 CREDIT-LIMIT-KAS-NEWM
MOREING-STORAGE SECTION.
MOREING-STORAGE SECTION.
 01 CREDIT-INFORMATION-IN.
 01 CREDIT-INFORMATION-IN.
 05 CARD-TYPE-IN PICX.
 05 CARD-TYPE-IN PICX.
 05 ACCT-NUM-IN2
 05 ACCT-NUM-IN2
 05 FILLER
 05 FILLER
 05 CREDIT-INFO-IN
 05 CREDIT-INFO-IN
 05 Filler
 05 Filler
0: COMMON-WS.
0: COMMON-WS.
 OS CARDS-LEPT
 OS CARDS-LEPT
 O5 NEXT-CARD-THERE
 O5 NEXT-CARD-THERE
 O5 OLD-MASTEA-RECORDS-LEFT PIC X(3).
 O5 OLD-MASTEA-RECORDS-LEFT PIC X(3).
 05 NEW-MASTER-RECORDS-LEFT PIC X(3).
 05 NEW-MASTER-RECORDS-LEFT PIC X(3).
 05 FIRST-CAFD
 05 FIRST-CAFD
 O5 SECOND-CARD
 O5 SECOND-CARD
 O5 ACCT-NUM-MATCH PIC X(4).
 O5 ACCT-NUM-MATCH PIC X(4).
 PIC X(4).
 PIC X(4).
 OS PAIR-VALIDITY PIC X(4).
 OS PAIR-VALIDITY PIC X(4).
 21 LOG-HEADER-*SA1.
 21 LOG-HEADER-*SA1.
 05 FILLER PIC X(47) VALUE SPACES.
 05 FILLER PIC X(47) VALUE SPACES.
 05 PILLER PIC X(38)
 05 PILLER PIC X(38)
 O5 FILLER PIC X(47) VALUE SPACES.
 O5 FILLER PIC X(47) VALUE SPACES.
**01 heajer-wsa5.
**01 heajer-wsa5.
** 05 fllLEÉ pIC X(SI) VALUE SpACES
** 05 fllLEÉ pIC X(SI) VALUE SpACES
** 05 TITLE PIC X(30)
** 05 TITLE PIC X(30)
** VAlue 'CONTENTS OF CREDIT MASTER EILE'.
** VAlue 'CONTENTS OF CREDIT MASTER EILE'.
** 05 filLEA PIC X(51) valuE SpACES
** 05 filLEA PIC X(51) valuE SpACES
 *: APPLICATION-DATA-WSB2.
 *: APPLICATION-DATA-WSB2.
 OS NAME-AND-ADCRESS-WS.
 OS NAME-AND-ADCRESS-WS.
 10 NAME-WS
 10 NAME-WS
** jo ADDRESS-wS.
** jo ADDRESS-wS.
** l5 STREET-WS
** l5 STREET-WS
*** i5 SITY-WS
*** i5 SITY-WS
** l5 State-ws
** l5 State-ws
** 15 2IP-WS
** 15 2IP-WS
 10 ADDRESS-WS
 10 ADDRESS-WS
 05 PHONE-WS .
 05 PHONE-WS .
 10 AREA-CODE-WS PIC 9(3).
 10 AREA-CODE-WS PIC 9(3).
 10 NUMBR-WS PIC X(8).
 10 NUMBR-WS PIC X(8).
 05 PILLER
 05 PILLER
 OS CHANGE-CODE-WS
 OS CHANGE-CODE-WS
 05 ACCT-NUM-WS
 05 ACCT-NUM-WS
 05 CREDITT-INPO-WS.
 05 CREDITT-INPO-WS.
 10 sex-ws
 10 sex-ws
** 88 MALE F VALUE 'M'.
```

```
** 88 MALE F VALUE 'M'.
```

```


```

```
 lo TILLER
```

```
 lo TILLER
 PIC X.
 PIC X.
 PIC }x\mathrm{ .
 PIC }x\mathrm{ .
* 88 SINGLE VALUE 'S'.
* 88 SINGLE VALUE 'S'.
* 8a MARRIED VALUE *m*.
* 8a MARRIED VALUE *m*.
** 88 DIVORCED VALUE 'D..
** 88 DIVORCED VALUE 'D..
** ag wiDOWED VALUE *W`.
** ag wiDOWED VALUE *W`.
 10 FILLER
 10 FILLER
 10 NUMBER-DEPENS-WS
 10 NUMBER-DEPENS-WS
 10 PILLEA
 10 PILLEA
 10 INCOFE-HUNDREDS-WS
 10 INCOFE-HUNDREDS-WS
 Filler
 Filler
 PIC X(20).
 PIC X(20).
PIC X(20)
PIC X(20)
 pIC x value space.
 pIC x value space.
 PIC XX.
 PIC XX.
 PIC XX.
 PIC XX.
 PIC }x\mathrm{ .
 PIC }x\mathrm{ .
* 88 male
```

* 88 male

```
```

    PIC 9(6).
    ```
 PIC 9(6).
 PIC X.
 PIC X.
 PIC X(22).
 PIC X(22).
 PIC x(50).
 PIC x(50).
 PIC X(3).
 PIC X(3).
 PIC x(3).
 PIC x(3).
 pIC X(4).
 pIC X(4).
 - 10 MARSTALLSTATUS-WS
 - 10 MARSTALLSTATUS-WS
 PIC X.
 PIC X.
 PIC 9.
 PIC 9.
 PIC X.
 PIC X.
 PIC 9(3).
 PIC 9(3).
 PIC X.
```

    PIC X.
    ```
180
181

PIC 99.
PIC \(x\).
PIC \(x\).

PIC \(x\).
PIC 9(3).
PIC \(x\).
PIC 9(3).

PIC \(\times(15)\).

PIC \(\times(4)\) VALUE SPACES.
PIC \(\times(129)\).

PIC \(X(4)\) VALUE SPACES. PIC \(X(102)\).
PIC X(4) VALUE SPACES. PIC \(X(15)\).

PIC 9(5).
PIC 9(5).
PIC 9V79 VALUE 0.25.
PIC 99 VALUE 12.
PIC 9(4).
PIC 9(4).
PIC 59(3).

PIC 9.
PIC 9 VACUE 1.
PIC 9 VALUE 2.
PIC 9 VALUE 3.
PIC 9 VALUE 4.
PIC 9 VALUE 5.
PIC 9(4).
PIC 9(4) VALUE 2500.
PIC 9(7).

Prc 9(3).
PIC \(X\).
PIC 9(4).
PIC 9(3).
PIC 9(4).

PIC \(X(5)\) VALUE SPACES.
PIC \(X(12)\)
PIC \(\mathrm{X}(4)\).
PIC \(X X\) VALUE SPACES.
PIC \(x(20)\).
PIC \(\times(40)\).
PIC \(\times(11)\).
PIC \(X(3)\) VALUZ SPACES.
PIC 9(5).

```

    READ CREDI*-mASTER-OLD-FILE
    AT END MOVE 'NO, TO OLR-MASTER-RECORDS-LEFT.
    - pirst cld master record is in buffer
A2-UPDATE-MASTER
* bEFORE COMPARING THE UPDATE WITR THE MASTER, WE MUST CHECK
- that we fave a valid pair of cards - if your program does
* NOT mAKE THIS TEST. IT WILL ONLY WORK WITH VALID PAIRS OF
- cards.
IF PAIR-VALIDITY = BAD'
PERFORM BI-GET-A-FAIR-OF-CARDS-INTO-WS THRU BI-EXIT
ELSE IF ACCT-NUM-WS IS GREATER THAN ACCT-NUM-MAS-OLD
ACCT-NUK-INS IS CARD ACCOUNT NUMSER
MOVE CREDIT-MASTER-OLD-RECORD TO
CREDIT-YASTER-NEN-RECORD
WRITE CREDIT-MASTER-NEW-RECORD
READ SREDIT-MASTER-OLD-FILE
AT END MOVE 'NO TO OLD-MASTER-RECORDS-LEPT
ELSE IF ACCT-NUM-WS = ACCT-NUM-MAS-OLD
PERFORM B2-CHANGE-OR-DELETEEMASTER
PERPORM BI-GET-A-PAIR-OE-CARDS-INTO-WS THRU BI-EXIT
READ EREDIT-MASTER.OLD-FILE
AT END MOVE *N 'TO OLD-MASTER-RECORDS-LEET
ELSE
ACCT-NUM-WS IS LESS THAN
ACCT-NUK-MAS -OLD
PERFCRM B3-ADD-NEW-MASTER
PERFCRM 31-GET-A-PAIR-OF-CARDS-INTO-WS THRU BI-EXIT.
A3-COPY-REMAINING-OLO-MASTER.
MCVE CREDIT-MASTER-OLD-RECORD TO
CREDIT-MASTER-NEW-RECORD
NRITE CREDIT-MASTER-NEN-RECORD.
READ CREDIT-MASTER-OLD-FILE
AI END MOVE 'NO ' TO OLD-MASTER-RECORDS-LEFT.
A4-ADD-REMAINING-CARDS.
IF PAIR-VALIDITY - 'BAD ' NEXT SENTENCE
ELSE PERECRM E3-ADD-NEW-NASTER.
PERFCRM S:-GET-A-PAIR-OF-CARDS-INTO-WS THRU B1-EXIT.
AT-END-OF-JOB.
C\&OSE APPLICATION-CARDS-PILE
CREDIT-MASTER-OLS-PILE
CREDIT-MASTER-NEW-FILE
UPDATE-IISTING.
81-GET-A-FAIR-OP-GARSS-INTO-KS.
IF NEXT-CARD-THERE m 'NO.
HOVE 'NO ' TO CARDS-LEPT
GO TO B1-EXIT.
PERFORM CI-EDIT-PIRST-CARD.
PERRORA C2-MOVR-PIRST-CARD-TO-WS.
READ APPLJCATION-CARDS-FILE INTO CAEDIT-INFORMATION-IN
AT END MONE 'NO ' TO CARDS-LEFT.
MOVE SPACES TO CREDIT-INYORMATION-IN
ACCT-NUM-MATCH
MOVE 'HONE' TO SECOND-CARD
PERYORM CA-FLUSH-CARDS-TO-ERROR-LINES
CO TO Bl-EXIT.
PERFORM CJ-EDIT-SECOND-CARD.
IF (FIRS%-CARD - 'GOOD')
AND (SECOND-CNRD = "COOD")
AND {ACCT-NUM-MATCH- 'GOOD')

```

382
383
384 385 386 387 388 389 390 391
```

            MOVE 'GOOD' TO PAIR-VALIDITY
            MOVE GREDIT-INFO-IN TO CREDIT-IMIO-HS
    ELSE
        MOVE 'SAD ' TO PAIR-VALIDITY
        PERFORM CA-FIUSH-CARDS=TO-ERROR-LINES.
    READ APPLICATION-CARDS-FILE
        AT END MOVE 'NO 'TO NEXT-CARD-FHERE.
    BI-EXIT. EXIT.
B2-CHANGE-OR-DELETE-MASTER.
IF CHANGE-CODE-WS = 'CH'
PERFORA CS-MERGE-UPDATE-WITH-OLD-MAST
MONE 'RECORD CHANGED' TO UPDATEMESSAGE-AREA
PERFGRM CS-LOG-ACTION
WRITE CREDIT-MASTER-NEW-RECORD
ELSE IF CHANGE-CODE-WS = DE'
CHECR IF DELETE IS VALID
IF CREDIT-INPO-WS IS EQUAL TO SPACES
MOVE 'RECORD DEEETED' TO UPDATE-MESSAGE-AREA
PERFORM CG-LOG-ACTION
ELSE
MOVE 'REC NOT DELETED' TO UPDATE-MESSAGE-AREA
MOVE CREDIT-MASTEA-OLD-RECORD TO
CREDIT-MASTER-NEW-RECORS
PERFORM CS-LOG-ACTICN
WRITE CREDIT-MASTER-NEW-RECORD
ELSE
MOVE 'BAD CHANGE CODE' :O UPDATE-MESSAGE-AREA
MOVE CREDIT-MAS*ER-OLD-RECORD TO CREDIT-MASTER-NEW-RECORD
PERFORM CG-LOG-ACTION
WRITE CREDIT-MASTER-WEW-RECORD.
BJ-ADD-NEM-MASTER.
PERFORM C3-CALC-DISCRETNRY-INCOME.
PERFORM C9-CALC-CRESIT-LIMIT.
PERFORM CIO-ASSEMBLE-NEW-MASTER-RECORD.
MOVE 'RECORD ADDED " TO UPDATE-MESSAGE-AREA.
PERFORM CG-LOG-ACTION.
WRITE GREDIT-MASTER-NEW-RECORD.
CI-EOIT-FIRST-CARD.
MOVE 'GOOD' TO FIRST-GARD.
IF NAME-IN IS EQUAL TO SPACES
MOVE '** NAME MYSSING ***'TO NAME-IN
MOVE 'BAD ' TO PIRST-CARD.
IF ADJRESS-IH TS EQUAL TO SPACES
MOVE '** ADDRESS MJSSING ***'TO ADDRESS-IN
MOVE 'gAD " TO FIRST-CARD.
IF PHONE-IN IS EQUAL TO SPACES
MOVE 'NO PHONE ** TO PHONE-IN
MOVE 'BAD TO PIRST-CARD.
C2-MOVE-PIRST-CARD-PO-WS.
MOVE NAME-IN TO NAMEWS.
MOVE ADDRESS-IH TO ADDRESG-HS.
MOVE PHONE-IN TO PHONE-WB.
MOVE CHANGE-CODE-IN TO CHANGE-CODE-WS.
MOVE ACCT-NUM-INJ TO ACCT-NUM-WS.
C3-EDIT-SECOND-CARD.
MOVE 'GOOD' TO SECOND-CARD.
MOVE "GOOD" TO ACCT-NUP-MATCH.
IP CARD-TYPE-I\& IS NOT EQUAL TO 'C'

```
```

            mOVE 'BAD ' TO SECOND-CARD.
            IF ACCT-NUN-IN2 IS NOT EOUAL TO ACCT-NUM-WS
            MOVE 'BAD ' TO ACCT-NUM-MATCH.
    C4-FLUSH-CARDS-TO-ERROR-LINES.
            MOVE FIRST-CARD TO FIRST-CARD-ERRI.
    MOVE NAME-WS TO NAME-ERRI.
    mOVE ADDRESS-WS TO ADDRESS-ERRI.
    MOVE PHONE-WS TO PHONE-ERRI.
    MOVE ACCT-NUM-WS TO ACCT-NUM-ERRI.
    mOVE SECOND-CARD TO SECOND-CARD-ERR2.
    ** MOVE CREDIT-INFO-HS TO CREDIT-INRO-ERR2.

* the previous line was in error (by a sincle mutation) in the
* PUBLISHED PROGRAM. THE CORRECT STATEMENT IS:
MOVE CREDIT-INFO-IN TO CREDIT-INFO-ERR2.
IF ACCT-NUM-MATCH = BAD.
mOVE 'ACCCUNT NIMMERS DO NOT MATCH'
TO mESSAGE-ERR-CINE-2
E:SE
mOVE SFACES to mESSACE-ERR-LINE-2.
*** MOVE SPACES TO PRINT-LINE-OUT.
WRITE PRINT-LINE-OUT FROM CARD-ERROR-LINEI-WS
AFTER ADVANCING 3 LINES.
** mCVE SPACES to pRINT-LINE-OUT.
WRITE PRINT-LINE-OUT FRCM CARD-ERROR-LINE2-WS
AETER ADVANCING }1\mathrm{ LINES.
C5-MERGE-UPDATE-WITH-OLD-MAST.
MCVE ACCT-NUM-MAS-OLD TO ACCT-NUM-MAS-NEW.
MOVE NAME-AND-ADDRESS-WS TO NAME-AND-ADDRESS-MAS-NEW.
mOVE AREA-CODE-NS TO AREA-CODE-MAS-NEW.
PERFORM O1-REMOVE-HYPHEN-PRCM-TEL-NUM.
* the secono input card has gredit data, if this has to ae
* upEATED the:% the giscretionary income calC has to be rúN
:E SRED:T-INFO-NS IS EGUAL TO SPACES
MOVE EREDIT-INPOMMAS-OLD TO CREDIT-INPOMAS-NEW
mOVE ACCOUNT-INFO-MAS-OLD TO ACCOUNT-INFO-MAS-NEW
E:SE
PERFORM Cg-CALC-OISCRETNRY-INCOME
PERPCMM C9-CALC-CREDIT-LIMIT
MCVE SEX-WS TO SEX-mAS-NEW
mOVE mARITAL-STATUS-WS TO MARITAL-STATUS-MAS-NEW
MOVE NUMBER-DEPENSWS TO NUMBER-DEPENS-MAS-NEW
MOVE INCOME-HUNDREES-WS TO INCOME-HUNDREDS-MAS-NEW
MOVE TEARS-EMPLOYED-WS TO YEARS-EMPLOYED-MAS-NEW
MOVE OWN-OR-RENT-WS TO OWN-OR-RENT-MAS-NEW
MOVE MORGAGE-OR-RENTALLWS TO MORGAGE-OR-RENTAL-MAS-NEN
MOVE OTHER-PAYMENTS-WSS TO OTHER-PAYMENTS-MAS-NEW
MOVE DISCR-INCOME-WS TO EISCR-INCOME-MAS-NEW
MOVE CREDIT-LIMIT-WS TO CREDIT-LIMIT-MAS-NEW.
MOVE CURRENT-RALANCE-OWING-OLD TO CURRENT-BALANCE-OWING-NEW.
mOVE SPARE-CHARACTERS-OLD TO SPARE-CHARACTERS-NEW.
CG-LOG-ACTION.
If ChAnge-CODE-WS - 'CH'
* WAITE OLD TAPE record
WRITE CARD CONTENTS MESSACE
WRITE NEW TAPE RECORD
*.* mOVE SPACES TO CAEDIT-MASTER-PRINT-LINE
MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-OUT
WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LINE
AFTER ADVANCING 3 LinES
*.O mOVE SPACES TO UPDATE-RECORD-FPINT-LINE

```

510
\(51:\) 512 513 514 515 516 517 518 519
520
521
522
523
524
525
526
527
528
529
530
```

            MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT
            MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
            WRITE PRINT-LINE-OUT FROG UPOATE-REGORD-PRINT-EINE
                AFTER ADVANGING 1 LINES
    MOVE SPACES TO CREDIT-MASTER-PRINT-LINE
    MOVE CREDIT-MASTER-NEW-RECORD TO CREDIT-MASTER-OUT
    WRITE PRINT-LINE-OUT FROM CREDIT-NASTER-PRINT-LINE
                                    AFTER ADVANCING 1 LINES
    ELSE IF CHANGE-CODE-WS = 'DE'
                                    WRITE OLD TAPE RECORD
                                    WRITE CARD CONTENTS & MESSAGE
    * 

**
MOVE SPACES TO CREDIT-4ASTER-PRINT-LINE
MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-OUT
WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LINE
AFTER ADVANGING 3 LINES
** MOVE SPACES TO UPDATE-RECORD-PRINT-IENE
MOVE APPLICATION-DATA-WSB2 TO APPEICATION-DATA-OUT
MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE
AFTER ADVAHEING }1\mathrm{ LINES
ELSE IF CHANGE-CODE-WS = "
WRITE CARDS FOR ADLITION

- WRITE NEW TAPE RECORD
** MOVE SPACES TO UPDATE-RECORD-PRENT-GINE
MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT
MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
MRITE PRINT-LINE-UUT FROM UPCATE-RECORD-PRINT-EZNE
AFTER ADVANGING 3 LINES
** MOVE SPACES TO CREDIT-MASTER-PRINT-LINE
MOVE CREDIT-MASTER-NEW-RECORD TO CREDIT-MASTER-OUT
WR:TE PRINT-LINE-OUT FROM GREDIT-MASTER-PRINT-LINE
AFTER ADVANCING 1 LINES
E:SE
WRITE CARD CONTENTS \& MESSAGE
MOVE APPIICATION-DATA-WSB2 TO APPLICATION-DATA-OUT
MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
WRITE PRINT-LINE-OUT FROM UPDATE-RESORD-PRINT-LINE
APTER ADVANCING 3 LINES.
C\&-CALC-DISCRETNRY-INCOME.
COMPUTE ANNUAL-INCOME-W'S = INCOME-HUNCREDS-WS 100.
COMPUTE ANHUAL-TAX-WS I ANNUAL-INCOME-WS * TAX-RATE-WS.
COMPUTE MONTHIY-NET-IMCCME-WS ROUNDED
- (ANNUAL-INCOME-WS - ANNUAL_TAX-WS) / MONTHS-IN-YEAR.
COMPUTE MONTHLY-PAYMENTS-N'S G MORGAGE-OR-RENTAL-WS
* OTAER-PAYMENTS-WS.
COMPUTE DISCR-INCOME-WS * MONTHLY-NET-INCOME-WS
- \#ONTHLY-PAYM ENTS-WS
ON SIZE ERROR MCVE 999 TO DISCR-INCOME-WS.
D DISCRETICNARY INCOMES OVER \$999 PER MONTR ARE SET AT S999.
C9-CALC-CREDIT-LIMIT.

```

```

    IP MARITAL-STATUS-WS = M*
        IF OWN-OR-RENT-WS='O'
    ```
```

            IF YEARS-EMPLOYED-WS IS NOT LESS THAN 02
                MOVE FACTORS TO CREOIT-PACTOR
            ELSE
                                    KOVE PACTOR4 TO CREDIT-RACTOR
            ELSE
            IF YEARS-EMPLOYED-WS IS NOT LESS THAN O2
                MOVE FACTCRA TO CREDIT-FACTOR
            ELSE
                MOVE FACTORZ TO CREDIT-FACTCA
    E:SE
            IF OWN-OR-マENT-WS= 'O'
                    IF YEARS-EMPLSYED-WS IS NOT LESS THAN 02
                MOVE EACTOR3 TO CRECIT-FACTOR
                    ELSE
                        MOVE FACTCR2 TO CREDIT-FACTOR
            ELSE
            MOVE FACTORI TO CREDIT-FACTOR.
        COMPUTE CREDIT-LIMIT-WS O DISCR-INCOME-WS CREDIT-FACTOR.
        IE CREDIT-LIMIT-WS IS GFEATER THAN UPPER-LIMIT-WS
            MOVE UPPER-:EMTT-WS :O CREDIT-IIMIT-WS.
    ** ADS CREDIT-LIMIT-WS TO TOTAS-GREDI*-GIVEN-WS.
C:O-ASSEMSLE-NEW-MASTEN-RECORD.
MOVE ACCT-NUM-NS TO ACET-NUM-MAS-NEW.
MOVE NAME-MND-ADDRESS-NS TO NAME-AND-ADDRESS-MAS-NEN.
MOVE AREA-COJE-WS TO AREA-COJE-MAS-NE%.
FERFORM DI-NEMOVE-HYPYEN-FRCM-TEL-NUM.
HOYE SEXTWS TO SEX-MAS-NEW
MOVE MARITAL-ETATUS-WS TO MARITAL-STATUS-MAS-NEW
MOVE NUMBER-DEPEIS-WS TO NUMBER-DEPENS-MAS-NEW
MOOE INCCME-HUNDREDS-WS TO INCOME-HUNCREDS-MAS-NEN
MOVE YEARS-EMPLOYED-NS TO YEARS-EMPLOYED-MAS-NEN
MOVE OWN-OR-RENT-iNS TO OWN-OR-RENT-MAS-NEN
MOVE MORGAGE-CR-RENTAL-WS TO MCRGAGE-OR-RENTAL-MAS-NEN
MOVE OTHER-PAYMENTS-WS TO OTHER-PAYMENTS-MAS-NEW.
MOVE こISこR-INCOME-WS TO DISCR-INCOME-MAS-NEW.
MCVE CREDIT-LIMIT-WS TO CREDIT-LIMIT-MAS-NEW.
MOVE ZEROES TC CURRENT-GALANCE-ONING-NEW.
MOVE SPACES TO SPARE-CHARACTERS-NEW.
D:-REMOVE-HYPHEN-FROA-TEL-NUM.
MOVE NUMBR-WS TO TEL-NUMBR-WITH-HYPHEN
MOVE EXCHNNGE-IN TO EXCHANGE
MOTE FOUR-EIGIT-NUABR-IN TO FOUR-DIGIT-NUMBR
MOVE TEL-NUMER-WITHOUT-HYPHEN TO NUMBR-MAS-NEW.

```

\section*{Appendix B}

\section*{Program B1:}

The first program is written in an Algol dialect and initially appeared in a paper by Henderson and Snowden [Henderson, 1972]. Its intent is to read and process a string of characters that represent a sequence of telegrams, where a telegram is any string terminated by the keywords "ZZZZZ ZZZZ." The program scans for words longer than a fixed limit and isolates and prints each telegram along with a count of the number of words it contains, plus an indication of the presence or absence of over-length words. The program has also been studied in Ledgard [Ledgard, 1973] and Gerhart and Yelowitz [Gerhart, 1976]. The program contains the following loop, which is intended to insure that blank characters are skipped and that following the loop the variable LETTER contains a non-blank character.

WHILE input \(\neq\) emptystring AND FIRST(input) \(="\)
DO input := REST(input);
IF input \(=\) emptystring THEN input \(=\) READ \(+\cdots\); LETTER = FIRST(input);

The WHILE loop terminates either on an empty string or on a nonblank character. If it terminates on an empty string and the first character in the buffer loaded by the READ instruction is blank, LETTER can contain a blank character.

When this program is translated into Fortran and executed, the error is not necessarily caught. The reason for this failure is not so much a failure of mutation testing as it is of Fortran. Algol treats strings as a basic type, whereas in Fortran they are simulated by arrays of integers. The fact that strings are basic to

Algol means that if we were constructing a mutation system for Algol instead of Fortran we would have to consider a different set of mutant operators. A natural operator one would consider can be explained by noting that blanks play a role in string processing programs analogous to that played by zero in numbers. Hence we might hypothesize a "blank push" operator similar to ZPUSH. If we had such an operator, an attempt to force the expression FIRST(input) to blank would certainly reveal the error.

\section*{Progran B2:}

The second program appears in a paper by Wirth describing the language \(\mathrm{PL}-360\) [Wirth, 1968]. It is intended to take a vector of N numbers and sort them into decreasing order. It was also studied by Gerhart and Yelowitz [Gerhart, 1976]. As the outer loop is incremented over the list of elements, the inner loop is designed to find the maximum of the remaining elements and set register R 3 to the index of this maximum. If the position set in the outer loop is indeed the maximum, then \(k 3\) will have an incorrect value and the three assignment statements ending the loop will give erroneous results.
```

Sort(R4)
For R1 = 0 by 4 to N begin
R0 := a(R1)
for R2= R1 + 4 by 4 to N begin
if a(R2) > R0 then begin
R0 := a(R2)
R3 := R2
end
end
R2 := a(R1)
a(R1) := R0
a(R3) := R2

```

There are three matants that cannot be eliminated without discovering this error. The first two change the statement R0:= A (R1) into \(R O:=A(R 1)-1\) and \(R 0:=-A B S(A(R 1))\). The third mutant changes the statement into \(A(R 1):=A(R 3)\). We leave it as an exercise to verify that none of these mutants can be eliminated without discovering the error.

Program B3:

The third program is written in Fortran and computes the total, average, minimum, maximum, and standard deviation for each variable in an observation matrix. The program is adapted from the IBM scientific subroutines package [IBM, 1966]. It was analyzed and three artificial errors were inserted in a study by Gould and Drongowski [Gou1d, 1974]]. As in the study by Fowden [Howden, 1978] we considered only one of these errors. It occurs in a loop that computes standard deviations. The program has the statement
\(\operatorname{SD}(I)=\operatorname{SQRT}(\operatorname{ABS}((\operatorname{SD}(I)-(\operatorname{TOTAL}(I) * T 0 T A L(I)) / S C N T) / S C N T-1\)

A pair of parentheses has been left off the final SCNT - 1 expression. Let \(x\) stand for the quantity
\(\operatorname{ABS}(S D(I)-(\operatorname{TOTAL}(I) * T 0 T A L(I)) / S C N T)\)

The correct standard deviation is \(\operatorname{SQRT}(X /(S C N T-1))\). The only way this can be made zero is for \(X\) to be zero. But the program containing the error computes the standard deviation as SQRT(1-X/SCNT). If \(X\) is zero this quantity is 1 ; hence the standard deviation is wrong.

\begin{abstract}
Or if the incorrect expression is forced to be zero, then the correct standard deviation should be greater than one. Hence by forcing the standard deviation in this line to be zero the error is easily revealed.
\end{abstract}

\section*{Program B4:}

The fourth program appeared in an article by Geller in the Communications of the ACM [Geller, 1978]. The program contains a predicate that decides whether a year is a leap year. In the paper this predicate is given as
((YEAR REM \(4=0\)) OR
(YEAR REM \(100=0\) AND YEAR REM \(400=0)\))
when the correct predicate is
(\((\) YEAR REM \(4=0\) AND YEAR REM \(100 \neq 0)\) OR
(YEAR REM \(400=0\)))

If YEAR is divisible by 400 then it must also be divisible by 100.
In the incorrect predicate, therefore, the second part of the OR clause is true if and only if YEAR REM 400 is true. If a branch analysis method attempts to follow all the "hidden paths" [DeMillo, 1978a], the error will be discovered when an attempt is made to make YEAR REM 400 true and YEAR REM 100 false. With mutation analysis the error is discovered when we replace YEAR REM 100 with TRUE.

The fifth program computes the Euclidean greatest common divisox of a vector of integers. It appeared in an article by Brad1ey in the Communcations of the ACM [Bradley, 1970]. The progran contains the following four errors: (1) If the 1 ast input number is the only non-zero number and it is negative, then the greatest common divisor returned is negative. (2) If the greatest common divisor is not 1 , then a loop index is used after the loop has completed normally, which is an error according to the Fortran standard. (3,4) There are two DO loops for which it is possible to construct data so that the upper Iimit is less than the lower imit, which causes the program to produce incorrect results since Fortran Do loops always execute at least once. None of the errors is caught using branch analysis. All are caught with mutation analysis.

The next three programs are adapted from the IBM Scientific Subroutines Package [IBM, 1966]. In each program three errors were artificially inserted in a study conducted by Gould and Drongowski [Gould, 1974].

\section*{Program B6:}

The first program conputes the first four monents of a vector of observations. One of the errors would be detected using branch analysis, the other two can be overlooked. All three errors would be discovered using mutation analysis.

Program B7:

The second program computes statistics from an observation table. Again, one error would be discovered using branch analysis but all three errors are discovered with mutation analysis.

Program B8:

The third program compates correlation coefficients. Two of the eriors are detected with branch analysis; all three are detected with mutation analysis.

\section*{Program B9:}

The next program takes three sides of a triangle and decides whether it is isosceles, scalene, or equilateral. It first appeared in a paper by Brown and Lipow [Brown, 1975]. Lipton and Sayward [Lipton, 1978] describe a bug where two occurrences of the constant 2 are replaced with the variablek. This bug is very subtle, but it can be detected with the test case 6,3,3. Neither branch analysis nor mutation analysis would force the discovery of this error

\section*{Program B10:}

The tenth program is the FIND program from an article by C.A.R. Hoare [Hoare, 1961]. The bug has been studied by the group developing the SELECI symbolic execution system [Boyer, 1975]. The bug is very subtle and neither branch analysis nor matation analysis would guarantee its discovery. This bug was, however, easily discovered by mutation analysis (in the normal debugging situation) during some early experiments on the coupling effect [DeMi110, 1978a].

\section*{Program B11:}

This program, also written in Algol, appeared in a paper by Naur [Nauer, 1969] and has also been studied widely [Foster, 1978], [Gerhart, 1976], [Goodenough, 1975]. The program is intended to read a string of characters consisting of words separated by blanks or newline characters or both, and to output as many words as possible with a blank between every pair of words. There is a fixed limit on the size of each output 1 ine, and no word can be broken between two lines. The version studied here is that of Gerhart and Yelowitz [Gerhart, 1976], containing five errors. Three of these (1, 3, and 4 in the numbering of [Gerhart, 1976]) are canght by mutation analysis.

\section*{Program B12:}

This program maintains a stack. The user can select to enter data on the stack (PUSH), remove information from the stack (POP), examine the topmost stack element (TOP), or initialize the stack (CLEAR).
```

Appendix C
LISTING THE PROGRAM UNIT "MOVENW " WITH SPECIFIED EQUIV MUTANTS
SUBROUTINE MOVENW(SOURCE,SLEN,DEST,DLEN)
INTEGER MLEN, K, SUB2, SUB1, LOOPHI, I, IHI, IER
INTEGER STMT(3,10), CODE(30), SYMTAB(10,9)
CHAR MEMOKY(425)
INTEGER DLEN, DEST, SLEN, SOURCE
INPUT OUTPUT IER, MEMORY
INPUT DLEN, DEST, SLEN, SOURCE
MLEN = DLEN
$755$ MLEN = ABS DLEN
IF(SLEN .LT. MLEN) MLEN = SLEN
2 3
$43$ IF(SLEN .LT. DLEN) MLEN = SLEN
$630$ IF(- SLEN .LT. MLEN) MLEN = SLEN
$632$ IF(SLEN .LT. ++ MLEN) MLEN = SLEN
$727$ IF(SLEN . IE. MLEN) MLEN = SLEN
$758$ IF(ABS SLEN .LT. MLEN) MLEN = SLEN
$760$ IF(ZPUSH SLEN .LT. MLEN) MLEN = SLEN
$761$ IF(SLEN .LT. ABS MLEN) MLEN = SLEN
$763$ IF(SLEN .LT. ZPUSH MLEN) MLEN = SLEN
$764$ IF(SLEN .LT. MLEN) MLEN = ABS SLEN
$766$ IF(SLEN .LT. MLEN) KLEN = ZPUSH SLEN
LOOPHI = (DEST + MLEN) - 1
$767$ LOOPHI = (ABS DEST + MLEN) - 1
$769$ LOOPHI = (ZPUSH DEST + MLEN) - 1
$770$ LOOPHI = (DEST + ABS MLEN) - 1
$772$ LOOPHI = (DEST + ZPUSH MLEN) - 1
$773$ LOOPII = ABS (DEST + MLEN) - 1
$775$ LOOPHI = ZPUSH (DEST + KLEN) - 1
$776$ LOOPHI = ABS ((DEST + MLEN) - 1)
$778$ LOOPHI = ZPUSH ((DEST + MLEN) - 1)
SUB2 = SOURCE - 1
5
$779$ SUE2 = ABS SOURCE - 1
$781$ SUB2 = ZPUSH SOURCE - 1
$782$ SUB2 = ABS (SOURCE - 1)
$784$ SUB2 = ZPUSH (SOURCE - 1)
D0 20 SUB1=DEST, L00PHI
$\$ 785 \$$ DO 20 SUB1 =ABS DEST, LOOPHI
$\$ 787 \$$ DO 20 SUB1 $=$ ZPUSH DEST, LOOPHI

```
\begin{tabular}{|c|c|c|c|}
\hline \$788\$ & DO 20 SUB1=DEST, ABS LOOPHI & & \\
\hline \$790\$ & DO 20 SUB1=DEST, ZPUSH LOOPHI & & \\
\hline \multirow[t]{2}{*}{\$892\$} & FOR 20 SUB1=DEST, LOOPRI & & \\
\hline & SUB2 \(=\) SUB2 +1 & & 7 \\
\hline \$791\$ & \(\mathrm{SUB} 2=\mathrm{ABS}\) SUB2 +1 & & \\
\hline \$793\$ & SUB2 \(=\) ZPUSH SUB2 +1 & & \\
\hline \$794* & SUB2 \(=\mathrm{ABS}(\mathrm{SUB} 2+1)\) & & \\
\hline \multirow[t]{2}{*}{\$796\$} & SUB2 \(=\) ZPUSH (SUB2 +1) & & \\
\hline & \(\mathrm{X}=\mathrm{MEMORY}\) (SUB2) & & 8 \\
\hline \multirow[t]{3}{*}{\$797\$
\(\$ 799 \$\)} & \(\mathrm{K}=\mathrm{MEMORY}(\mathrm{ABS}\) SUB2) & & \\
\hline & \(\mathrm{K}=\) MEMORY (ZPUSH SUB2) & & \\
\hline & IF(K .EQ. '\#') IER = 4 & 9 & 10 \\
\hline \$554\$ & & & \\
\hline \multirow[t]{2}{*}{\[
\$ 800 \$
\]} & IF (ABS K . EQ . '\#') \(\mathrm{IER}=4\) & & \\
\hline & IF (ZPUSH K .EQ. '\#') IER = 4 & & \\
\hline 20 & MEMORY (SUB1) \(=\mathrm{K}\) & & 11 \\
\hline \$559\$ & MEMORY(SUB1) \(=\) MEMORY (SUB2) & & \\
\hline \$803\$ & MEMORY (ABS SUB1) \(=\) E & & \\
\hline \$805\$ & REMORY (ZPUSI SUB1) \(=\mathrm{K}\) & & \\
\hline \multirow[t]{2}{*}{\$803\$} & MEMORY(SUB1) \(=\) ZPUSH K & & \\
\hline & IF(IER . NE. 0) GOTO 9999 & 12 & 13 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \$ 745 \$ \\
& \$ 876 \$
\end{aligned}
\]} & IF(IER . GT. 0) GOTO 9999 & & \\
\hline & IF (IER .NE. 0) RETURN & & \\
\hline & IF (DLEN . LE. MLEN) GOTO 9999 & 14 & 15 \\
\hline \$254\$ & IF(DLEN .LE. SLEN) GOTO 9999 & & \\
\hline \$749\$ & IF (DLEN . EQ. MLEN) GOTO 9999 & & \\
\hline \$809\$ & IF (ABS DLEN . LE. MLEN) GOT0 9999 & & \\
\hline \$811 \$ & IF (ZPUSII DLEN .LE. MLEN) GOTO 9999 & & \\
\hline \multirow[t]{2}{*}{\$812\$} & IF (DLEN . LE. AES MLEN) GOTO 9999 & & \\
\hline & IF (DLEN .LE. ZPUSH MLEN) GOT0 9999 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \$ 814 \$ \\
& \$ 878 \$
\end{aligned}
\]} & IF (DLEN .LE. MLEN) RETURN & & \\
\hline & \(\mathrm{I}=\) LOOPHI +1 & & 16 \\
\hline \$815\$ & \(\mathrm{I}=\mathrm{ABS}\) LOOPHI +1 & & \\
\hline \multirow[t]{2}{*}{\$817\$} & \(\mathrm{I}=\) ZPUSH LOOPHI +1 & & \\
\hline & \(\mathrm{I}=\mathrm{ABS}\) (LOOPHI + 1) & & \\
\hline \multirow[t]{2}{*}{\$820\$} & \(\mathrm{I}=\mathrm{ZPUSE}\) (LOOPHI +1) & & \\
\hline & LOOPHI \(=(\) DEST + DLEN \()-1\) & & 17 \\
\hline \$821\$ & LOOPHI \(=(\) ABS DEST + DLEN \()-1\) & & \\
\hline \$823 \$ & LOOPHI \(=\) (ZPUSH DEST + DLEN \()-1\) & & \\
\hline \$824\$ & LOOPHI \(=(\) DEST + ABS DLEN \()-1\) & & \\
\hline
\end{tabular}
```

$826$ LOOPHI = (DEST + ZPUSH DLEN) - 1
$827$ LOOPHI = ABS (DEST + DLEN) - 1
$829$ LOOPEI = ZPUSK (DEST + DLEN) - 1
$830$ LOOPHI = ABS ((DEST + DLEN) - 1)
$832$ LOOPHI = ZPUSH ((DEST + DLEN) - 1)
DO 30 SUB1=I, LOOPIII
$833$ DO 30 SUB1=ABS I, LOOPHI
$835$ D0 30 SUB1=ZPUSH I, LOOPHI
$836$ DO 30 SUE1=I, ABS LOOPHI
$838$ DO 30 SUB1=I, ZPUSH LOOPHI
$891$ D0 9999 SUB1=I, LOOPHI
$893$ FOR 30 SUB1=I, LOOPHI
30 MEHORY (SUB1) = ''

```
\$839\$ MEMORY (ABS SUB1) = '\$841\$ MEMORY(ZPUSI SUE1) = '
9999 CONTINUE 20
\$883\$ RETURN
RETURN21
```MUTANT STATE FOR MOVENW
```

FOR EXPERIMENT "MOVENW " TIIIS IS RUN 7
NUMBER OF TEST CASES = 11
NUMBER OF MUTANTS = 893
NUMBER OF DEAD MUTANTS = 821 (91.9%)

```NUMBER OF LIVE MUTANTS \(=0(0.0 \%)\)NUMBER OF EQUIV MUTANTS \(=72(8.1 \%)\)
```

NUMBER OF MUTANTS WIIICI DIED BY NON STANDARD MEANS 313
NORHALIZED MUTANT RATIO 821.0%
NUMBER OF MUTATABLE STATEMENTS $=$ 21
GIVING A MUTANTS/STATEMENT RATIO OF 42.52
NUMBER OF DATA REFERENCES = 48
NUMBER OF UNIQUE DATA REFERENCES = 16
ALL kUTANT TYPES HAVE BEEN ENABLED
LISTING THE PROGRAN UNIT "MOVENM

INTEGER X(5), PTNEGD, PTNEGS, K, SUB2, SUB1, LOOPHI, LEND INTEGER LENS, I, IHI, DDECPT, SDECPT, IER, STMT(3,10) $\operatorname{INTEGER} \operatorname{CODE}(30), \operatorname{SYMTAB}(10,9)$ CIIAR MEMORY (425)
Integer typpe, ddec, dLEN, DEST, SDEC, SLEN, SOURCE INPUT OUTPUT IER, MEMORY
INPUT TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE PTNEGS = (SOURCE + SLEN) -1
$\$ 4650 \$$
$\$ 4652 \$$
$\$ 4653 \$$
$\$ 4655 \$$
$\$ 4656 \$$
$\$ 4658 \$$
$\$ 4659 \$$
$\$ 4661 \$$

PTNEGS $=($ ABS SOURCE + SLEN $)-1$
\$4652 $\$$ PTNEGS $=$ (ZPUSH SOURCE + SLEN $)-1$
\$4653\$ PINEGS $=($ SOURCE + ABS SLEN $)-1$
\$4655\$ PTNEGS $=($ SOURCE + ZPUSH SLEN $)-1$
\$4656 $\$$ PTNEGS $=$ ABS $($ SOURCE + SLEN $)-1$
\$4658\$ PINEGS = ZPUSH (SOURCE + SLEN) - 1
$\$ 4659 \$$ PTNEGS $=\mathrm{ABS}(($ SOURCE + SLEN $)-1)$
$\$ 4661 \$$ PTNEGS $=$ ZPOSH $(($ SOURCE + SLEN $)-1)$
PTNEGD $=($ DEST + DLEN $)-1$

\$4662\$	PTNEGD $=($ ABS DEST + DLEN $)$
\$4664\$	PTNEGD $=$ (ZPOSL DEST + DLEN)
\$4665\$	PTNEGD $=($ (DEST +ABS DLEN $)$
\$4667\$	PTNEGD $=$ (DEST $^{\text {+ }}$ ZPUSH DLEN)
\$4668\$	PTNEGD $=$ ABS (DEST + DLEN)
\$4670 \$	PTNEGD $=$ ZPUSH (DEST + DLEN)
\$4671\$	PTNEGD $=$ ABS ($($ DEST + DLEN) - 1)
\$4673\$	PTNEGD $=$ ZP

CALL UNPACK (MEMORY (PTNEGS) , X,5)
\$4674\$ CALL UNPACK (MEMORY (ABS PTNEGS), X,5)
\$4676\$ CALL UNPACK (MEMORY (Z:PUSH PTNEGS), X,5)
NEGNO $=X(2) \quad$.EO. ' - '
\$4545\$ NEGNO $=X(2)$.GE. ${ }^{\prime}$-'
\$4677\$ NEGNO $=\operatorname{ABS} X(2)$.EQ. ${ }^{\prime-}$ '
$\$ 4679 \$$ NEGNO $=$ ZPUSH X (2) $. E Q . \quad$ '-'
$X(2)=, \quad \prime$
IF(NEGNO) CALL PACK (X, MEMORY (PTNEGS) ,5)
\$4680\$ IF(NEGNO) CALL PACK (X, MEMORY(ABS PTNEGS),5)
\$4682\$ IF(NEGNO) CALL PACK (X, MEMORY (ZPUSH PTNEGS),5)
LENS = SLEN - SDEC
\$4683\$ LENS $=$ ABS SLEN - SDEC
\$4685 \$ LENS = ZPUSH SLEN - SDEC
\$4686\$ LENS $=$ SLEN - ABS SDEC
\$4689 $\$$ LENS $=$ ABS (SLEN $-\operatorname{SDEC})$
LEND = DLEN - DDEC
\$4692\$ LEND $=$ ABS DLEN - DDEC

DO 20 SUB2=SDECPT, IHI

\$4755\$ DO 20 SUB2=ABS SDECPT, IHI			
\$4757\$ D0 20 SUB2=ZPUSH SDECPT, IHI			
\$4758\$ D0 20 SUB2=SDECPT, ABS IHI			
\$4760\$ DO 20 SUB2=SDECPT, ZPUSH IHI			
\$5092\$	FOR 20 SUB2=SDECPT, IHI		
	SUB1 $=$ SUB1 +1		41
\$4761\$ SUB1 $=$ ABS SUB1 +1			
\$4763 \$ SUB1 = ZPUSH SUB1 +1			
\$4764\$ SUB1 $=$ ABS (SUR1 + 1)			
\$4766\$ SUB1 = ZPUSH (SUB1 + 1)			
	$\mathrm{K}=\mathrm{MEMORY}(\mathrm{SUB} 2)$		42
\$4767\$ K MEMORY (ABS SUB2)			
\$4769 \$ K MEMORY(ZPUSH SUB2)			
	IF (K.EQ. '\#') IER = 4	43	44
\$2242\$	IF (K. EQ. '\#') IER = DLEN		
\$2244\$	IF (K . EQ. '\#') IER = LENS		
\$2245\$	IF (K.EQ. 'H') IER = SDEC		
\$2247\$	IF (K . EQ. '\#') IER = DDEC		
\$3467\$			
\$4770\$	IF (ABS K . EQ. '\#') IER $=4$		
\$4772\$	IF (ZPUSII K .EQ. '\#') IER = 4		
20	MEMORY (SUB1) $=\mathrm{K}$		45
\$3484\$	MEMORY (SUB1) = MEMORY (SUB2)		
\$4773\$	MEMORY (ABS SUB1) $=\mathrm{K}$		
\$4775\$	$\operatorname{MEMORY}($ ZPUSH SUB1) $=\mathrm{K}$		
\$4776\$	MEMORY (SUB1) $=$ ABS K		
\$4778\$	MEMORY (SUB1) $=$ ZPUSII K		

IF (IER .NE. 0) GOTO 50
\$4581\$ IF (IER .GT. 0) GOTO 50
\$5026\$ IF (IER .NE. 0) GOTO 40
22 IF (DDEC .LE, SDEC) GOTO 30 48 48
\$4779\$ IF (ABS DDEC .LE. SDEC) GOTO 30
\$4782\$ IF (DDEC . IE. ABS SDEC) GOTO 30
$I=\operatorname{SUBI}+1$
\$4785\$ $\quad \mathrm{I}=\mathrm{ABS} \mathrm{SUB} 1+1$
\$4787\$ $\quad I=$ ZPUSH SUB1 +1
\$4788\$ $I=A B S(S U B 1+1)$
$\$ 4790 \$ \quad I=$ ZPUSH $($ SUB $1+1)$

```
IHI \(=(\) DEST + DLEN \()-1\)
\(\$ 4791 \$\) IIII \(=(\) ABS DEST + DLEN \()-1\)
\(\$ 4793 \$\) IHI \(=(\) ZPUSH DEST + DLEN \()-1\)
\(\$ 4794\) IHI \(=(\mathrm{DEST}+\mathrm{ABS}\) DLEN \()-1\)
\$4796 IHI \(=(\) DEST + ZPUSH DLEN \()-1\)
\$4797\$ IHI \(=\mathrm{ABS}(D E S T+\mathrm{DLEN})-1\)
\(\$ 4799\) IHI \(=\) ZPUSL \((D E S T+\) DLEN \()-1\)
\$4800 \(\$ \mathrm{IHI}=\mathrm{ABS}((\mathrm{DEST}+\mathrm{DLEN})-1)\)
\$4802\$ IHI \(=\) ZPUSH \(((D E S T+\operatorname{DLEN})-1)\)
```

DO 25 SUB1=I, IHI
\$1168\$ DO 25 SUB1=I, PTNEGD
\$4803\$ DO 25 SUB1=ABS I, THI
$\$ 4805 \$$ DO 25 SUB1=ZPUSH I, THI
\$4806\$ DO 25 SUB $1=\mathrm{I}$, ABS IHI
$\$ 4808 \$$ DO 25 SUB1 $=1$, ZPUSH IHI
\$5073\$ D0 30 SUB1=I, IHI
$\$ 5093 \$ \mathrm{FOR} 25 \mathrm{SUB1}=\mathrm{I}$, IHI
25 MEMORY(SUB1) $=0^{\prime}$
$\$ 4809 \$ \mathrm{MEMORY}\left(\mathrm{ABS}\right.$ SUB1) $={ }^{\prime} 0^{\prime}$
$\$ 4811 \$$ MEMORY (ZPUSH SUB1) $={ }^{\circ} 0^{\prime}$
30 LOOPII $=$ LEND $\quad 54$
\$4812\$ LOOPHI = ABS LEND
IF (LENS .LE. LEND) LOOPHI = LENS 55
56
\$1283\$ IF(LENS . LE. LOOPHI) LOOPHI = LENS
\$4359\$ IF (++ LENS . LE. LEND) LOOPIII = LENS
\$4591\$ IF (LENS .LT. LEND) LOOPHI = LENS
\$4815\$ IF (ABS LENS . LE. LEND) LOOPHI = LENS
\$4818\$ IF (LENS .LE. ABS LEND) LOOPHI = LENS
\$4821\$ IF (LENS . LE. LEND) LOOPHI = ABS LENS
SUB1 = DDECPT
\$4824\$ SUB1 = ABS DDECPT
\$4826\$ SUB1 = ZPUSH DDECPT
SUB2 $=$ SDECPT
$\$ 4827 \$ \quad \mathrm{SUB} 2=\mathrm{ABS}$ SDECPT
\$4829\$ SUB2 = ZPUSH SDECPT
IF (LEND . FQ. 0) GOTO $50 \quad 5960$
$\$ 2338$ IF (LEND. EQ. IER) GOTO 50
\$4599\$ IF (LEND . LE. 0) GOTO 50
IF (LENS . EQ. 0) GOTO 41

```
Appendix C
C-8
```

\$1443\$ IF(LOOPHI .EQ. 0) GOTO 41
\$4606\$ IF(LENS .LE. 0) GOTO 41
DO $40 \mathrm{I}=1$, LOOPHI 63
\$1446\$ DO 40 SOURCE=1, LOOPHI
\$1447\$ DO 40 SLEN=1, LOOPHI
\$1450\$ DO 40 DLEN=1, LOOPHI
\$1453\$ DO 40 SDEC=1, LOOPHI
\$1455\$ DO 40 DDEC $=1$, LOOPHI
\$1456\$ DO 40 SDECPT=1, LOOPHI
\$1457\$ DO 40 DDECPT $=1$, LOOPHI
\$1459\$ DO 40 THI=1, LOOPHI
\$1461\$ DO $40 \mathrm{~K}=1$, LOOPHI
\$1463\$ DO 40 LOOPHI=1, LOOPHI
4 MORE
SUB1 = SUB1 - 1 64
\$4833 \$ SUB1 = ABS SUB1 - 1
\$4835\$ SUB1 = ZPUSH SUB1 - 1
$\$ 4836$ SUB1 $=$ ABS (SUB1 - 1)$\$ 4838$ SUBI $=$ ZPUSH $($ SUB1 -1$)$SUB2 = SUB2 - 165
$\$ 4839 \$$ SUE $2=$ ABS SUB2 -1$\$ 4841 \$$ SUB2 $=$ ZPUSH SUB2 -1$\$ 4842 \$$ SUB2 $=\mathrm{ABS}(\operatorname{SUB} 2-1)$
$\$ 4844$ SUB2 $=$ ZPUSH $($ SUB2 -1$)$
$\mathrm{K}=\mathrm{MEMORY}(\mathrm{SUB} 2)$ 66
\$4845\$ K = MEMORY (ABS SUB2)
\$4847 $\$ \quad \mathrm{~K}=$ MEMORY (ZPUSH SUB2)
IF (K .EQ. '\#') IER = 4 6768
\$3670\$ IF (MEMORY (SUB2) .EQ. '\#') IER = 4
\$4848\$ IF (ABS K.EQ. '\#') IER = 4
$\$ 4850 \$$ IF(ZPUSH K .EQ. '\#') IER $=4$
40 MERORY (SUB1) $=K$ 69
\$3688\$ LEMORY(SUB1) = MEMORY(SUB2)
\$4851\$ MEMORY(ABS SUB1) = K\$4853\$ MEMORY(ZPUSH SUB1) $=\mathbb{K}$\$4856\$ MEMORY (SUB1) = ZPUSH K
IF (IER .NE. 0) GOTO 50 $70 \quad 71$
\$4623\$ IF (IER .GT. 0) GOTO 50
$\$ 5050 \$$ IF (IER .NE. 0) GOTO 20
IF (LEND .LE. LENS) GOTO 50 72 73

```
$1743$ IF(LEND . LE. LOOPIII) GOTO 50
$4857$ IF(ABS LEND .LE. LENS) GOTO 50
$4859$ IF(ZPUSH LEND .LE. LENS) GOTO 50
$4860$ IF(LEND .LE. ABS LENS) GOTO 50
$4862$ IF(LEND . LE. ZPUSH LENS) GOTO 50
41 IHI = SUB1 - 1
```

\$4863\$ $\mathrm{IHI}=\mathrm{ABS}$ SUB1 - 1
\$4865\$ IHI $=$ ZPUSH SUB1 -1
\$4866\$ $\mathrm{IHI}=\mathrm{ABS}(\mathrm{SUB} 1-1)$
$\$ 4868 \$$ IHI $=$ ZPUSH $($ SUBI -1$)$

D0 $45 \mathrm{I}=\mathrm{DEST}$, IHI
\$4869\$ DO $45 \mathrm{I}=\mathrm{ABS}$ DEST, IHI
\$4871\$ DO $45 \mathrm{I}=$ ZPUSH DEST, IHI
$\$ 4872 \$$ DO $45 \mathrm{I}=\mathrm{DEST}$, ABS IHI
\$4874\$ DO $45 \mathrm{I}=\mathrm{DEST}$, ZPUSH IHI
$\$ 5091 \$$ DO $50 \mathrm{I}=\mathrm{DEST}$, IHI
\$5095\$ FOR $45 \mathrm{I}=\mathrm{DEST}$, JHI
$45 \operatorname{MEMORY}(I)={ }^{\prime} 0^{\prime} \quad 76$
$\$ 4875 \$ \operatorname{MEMORY}(\mathrm{ABS} \mathrm{I})={ }^{\circ} 0^{\circ}$
$\$ 4877 \$ \mathrm{MEMORY}(Z P U S H ~ I)=0^{\prime}$
$50 \quad X(2)='-$ '
IF (NEGNO) CALL PACK (X, MEMORY (PTNEGS) ,5)
\$4878\$ IF (NEGNO) CALL PACK (X, MEMORY (ABS PTNEGS) ,5)
\$4880\$ IF (NEGNO) CALL PACK (X, MEMORY (ZPUSH PTNEGS),5)
IF (. NOT. (NEGNO .AND. TYPPE .EO. 2)) RETURN
$80 \quad 81$
\$4881\$ IF (.NOT. (NEGNO .AND. ABS TYPPE .EQ. 2)) RETURN
\$4883\$ IF (.NOT. (NEGNO .AND. ZPUSH TYPPE .EQ. 2)) RETURN
CALL UNPACK (MEMORY (PTNEGD) , X,5)
\$57 CALL UNPACK (MEMORY (PTNEGD), X, 4)
$\$ 2560 \$$ CALL UNPACK (FEMORY (PTNEGD), X, SDEC)
\$2572\$ CALL UNPACK (MEMORY (PTNEGD), X,TYPPE)
\$3015\$ CALL. UNPACK (MEMORY (PTNEGD), $X, 1$)
\$3016\$ CALL UNPACK (MEMORY (PTNEGD), $X, 2$)
$\$ 4884 \$$ CALL UNPACK (MEMORY (ABS PTNEGD), $X, 5$)
\$4886 CALL UNPACK (MEMORY (ZPUSH PTNEGD), $\mathrm{X}, 5$)
$X(2)=$ '-'
$\$ 2593 \$ \mathrm{X}(\mathrm{TYPPE})=1$ '
CALL PACK (X, MEMORY (PTNEGD) ,5)
84

REIURN

MUTANT ELIMINATION PROFILE FOR MOVENM

ALL MUTANT TYPES HAVE BEEN ENABLED
Appendix D
LISTING TEE PROGRAM UNIT "MOVEED "SUBROUTINE MOVEED (SOURCE, SLEN, SDEC, IEST, DLEN, PLEN, PDIG, PDEC,

* PIC, IER)
LOGICAL SUPRES, NEGNO
INTEGER X(5), SUB2, SUB1, IHI, PLDIG, IVAR, I, SCOUNT, DESTHI
INTEGER CHAR, PDIGLN, SDIG, SARRAY(50), PICST, DDEC
INTEGER STMT $(3,10), \operatorname{CODE}(30), \operatorname{SYMTAB}(10,9)$
CHAR AEMORY (310)
INTEGER IER
CHAR PIC(10)
INTEGER PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE
INPUT OUTPUT MEMORY, IER
INPUT PIC, PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE
SUPRES $=$.TRUE. 87
D0 $5 \mathrm{I}=1$, PLEN 88
5 SARRAY (I) $={ }^{\prime} 0^{\prime}$ 89
PLDIG = PDIG - PDEC 90
SDIG $=$ SLEN $-\operatorname{SDEC}$ 91
IF (SDEC . FQ. 0) GOTO 11 9293
SUB1 = PLDIG 94
SUB2 $=($ SOURCE + SDIG $)-1$ 95
DO $10 \mathrm{I}=1$, SDEC 96
SUB1 $=$ SUB1 +1 97
SUB2 $=$ SUB2 +1 98
IF (MEMORY (SUB2) . FQ. '\#') IER $=4$ 99100
10 SARRAY (SUB1) = GEMORY (SUB2) 101
IF (IER . NE. 0) GOTO 101 102
11 IF (SDIG . EO. 0 . OR. PLDIG .EQ. 0) GOTO 16104105
IHI = PLDIG106
IF (SDIG .LT. PLDIG) IHI = SDIG 107108
SUB1 $=$ PLDIG +1 109
SUE2 $=$ SOURCE + SDIG 110
DO $15 \mathrm{I}=1$, IHI 111
SUB1 $=$ SUB1 -1 112
SUB2 $=$ SUB2 -1113
IF (MEMORY (SUB2) .EQ. '\#') IER = 4 114115
15 SARRAY (SUB1) = MEMORY (SUB2) 116
IF (IER . NE. O) GOTO 101 117118
16 SUB1 $=($ SOURCE + SLEN $)-1$ 119
CALL UNPACK (MEMORY (SUB1), X,2) 120
NEGNO $=\mathrm{X}(2)$. $\mathrm{EQ} . \quad$ ' - ' 121
SUB1 = DEST 122
SCOUNT $=0$ 123
DO $100 \mathrm{I}=1$, PLEN 124
SUB1 $=$ SUB1 +1 125
IF (SUB1 .GT. DLEN + DEST) GOTO 101 126127
CHAR = PIC(I) 128
IF(PIC(I) .EQ. '9') SUPRES = .FALSE. 129130
IF (SARRAY (SCOUNT + 1) .NE. '0') SUPRES = .FALSE 131132
IF (CHAR .NE. '-') GOTO 20 133134
MEMCRY (SUB1 - 1) = ' ' 135
IF (NEGNO) MEMORY(SUB1 - 1) = '-' 136137
IF (I .EQ. 1) GOTO 100 138139
SCOUNT $=$ SCOUNT +1 140
IF (.NOT. SUPRES) GOTO 99 141142
IF (MEMORY (SUB1 - 2) .EQ. '-') MEMORY (SUB1 - 2) = ' 143144
GOTO 100 145
20 IF (CIAR .NE. '+') GOTO 30 146147
IF (NEGNO) MEMORY (SUB1 - 1) = 1 -' 148149
IF (.NOT. NEGNO) MEMORY (SUB1 - 1) $=1+{ }^{\prime}$ 150151
IF (I .EQ. 1) GOTO 100 152153
SCOUNT $=$ SCOUNT +1 154
IF (.NOT. SUPRES) GOTO 99 155156
IF (MEMORY (SUB1 - 2) .EQ. '+') MEMORY (SUB1 - 2) $=$ ' 157158
IF (MEMORY (SUB1 - 2) .EQ. '-') MEMORY (SUB1 - 2) = ' 159160
GOTO 100161
30 IF (CHAR .NE. '\$') GOTO 40 162163
$\operatorname{MEMORY}($ SUB1 -1$)=1 \$$, 164
IF (I .EQ. 1) GOT0 100 165166
SCOUNT $=$ SCOUNT +1 167
IF (. NOT. SUPRES) GOTO 99 168169
IF (MEMORY (SUB1 - 2) .EQ. '\$') MEMORY (SUB1 - 2) = ' 170171
GOTO 100 172
40 IF (CHAR .NE. 'w') GOTO 50 173174
SCOUNT $=$ SCOUNT +1 175
IF (. NOT. SUPRES) GOTO 99 176177
MEMORY(SUB1 - 1) = '*' 178
GOTO 100 179
50 IF (CHAR .NE. 'Z') GOTO 55 180181
SCOUNT $=$ SCOUNT +1 182
IF (. NOT. SUPRES) GOTO 99 183184
MEMORY (SUB1 - 1) = ' 185
GOTO 100 186
55 IF(CIIAR .NE. '9') GOTO 60 187188
SCOONT $=$ SCOUNT +1 189
MEMORY(SUB1 - 1) = SARRAY(SCOUNT) 190
GOTO 100 191
60 IF (CHAR .NE. 'B') GOTO 70 192193
MEMORY(SUD1 - 1) = ' 194
GOTO 100 195
70 IF (CHAR .NE. '/') GOTO 80 196197
MEMORY (SUB1 - 1) = '/' 198
GOTO 100 199
80 IF(CHAR .NE. 'V') GOTO 81 200 201
SUB1 = SUB1 - 1 202
GOTO 100 203
81 IF (CHAR .NE. '.') GOTO 82 204205
MEMORY (SUB1 - 1) = '. 206
GOTO 100 207
82 IF(CHAR .NE. ',') GOTO 83 208209
IF (. NOT. SUPRES) MEMORY (SUB1 - 1) = '.' 210
212213
IF (SUPRES) MEMORY (SUB1 - 1) = ' 213
GOTO 100 214
IER = 3 215
GOTO 101 216
99 MEMORY (SUB1 - 1) = SARRAY (SCOUNT) 217
100 CONTINUE 218
101 RETURN 219
[Acree, 1979]
A.T. Acree, R.A. DeMillo, T.A. Budd, R.J. Lipton, and F.G. Sayward. "Mutation analysis." Technical Report GIT-ICS-79/08, Georgia Institute of Technology, 1979.
[Acree, 1980]
A. T. Acree, On Mutation, Ph.D. Thesis, Georgia Institute of Technology.
[Agarwal, 1979]
VinodK. Agarwal and Gerald M. Masson, "Recursive Coverage Projection of Test Sets,", IEER Transactions on Compreters, Volume C-28(1): 865-870, November 1979.
[Aho, 1975]
A. Aho and J. U11man. The Theory of Parsing Translation and Compiling, Vol 2: Compiling, Prentice-Ha11, 1975.
[Ba1dwin, 1979]
D. Baldwin and F. Sayward. "Heuristics for Determining Equivalence of Program Mutations," Yale University, Department of Computer Science Research Report, No. 276, 1979.
[Boyer, 1975]
R.S. Boyer, B. E1spas, and K.N. Levitt. "SELECT: A formal system for testing and debugging programs by symbolic executgion." SIGPLAN Notices 10(6):234-245, June 1975.
[Bradley, 1970]
G.H. Bradley. "Algorithm and bound for the greatest common divisor of n integers." Commications of the ACM 13 (7): 433436, July 1970.
[Brooks, 1979]
Martin Brooks, Autoatic Generation of Test Data for Recursive Programs having Simple Errors, Ph.D. Thesis, Stanford University.
[Brown, 1975]
J.R. Brown and M. Lipow. "Testing for software reliability." Proceedings of the 1975 International Conference on Reliable Sof tware (IEEE catalog number 75 CHO 940-7CSR), pages 518-527.
[Budd, 1978]
T.A. Budd and R.J. Lipton. "Matation analysis of decision tab1e programs." Proceedings of the 1978 Conference on Information Sciences and Systems, pages 346-349. The Johns Hopkins University, 1978.
[Budd, 1978a]
T.A. Budd and R.J. Lipton. "Proving LISP programs using test data." Digest for the Vorkshop on Software Testing and Test Documentation, fages 374-403, 1978.
[Budd, 1978b]
T.A. Budd, R.A. DeMillo, R.J. Lipton and F.G. Sayward. "The Design of a prototype mutation system for program testing," Proc. 1978 NCC, AFIPS Conference Record, pp. 623-627.
[Budd, 1980]
T.A. Budd. Mutation analysis of program test data. PhD thesis, Yale University.
[Budd, 1980a]
Timothy A. Budd and Dana Angluin, "Two Notions of Correctness and their Relation to Testing," Report TR 80-19, Department of Computer Science, University of Arizona.
[Budd, 1980b]
T.A. Budd, R.A. Demillo, R.J. Lipton and F.G. Sayward. " Theoretical and empirical studies of using program matation to test the functional correctness of programs." Proc. 1980 ACM Symposium on Principles of Programming Langrages, January, 1980, pp. 220-233.
[Budd, 1981]
Timothy A. Budd, Mutation Analysis: Ideas, Examples, Problems, and Prospects," in Computer Program Testing, B. Chandrasekaran and S. Radicchi (eds.), North-Holland, pp. 129-148.
[Budd, 1982]
Timothy A. Budd, "A Portable Matation System", manuscript, Department of Computer Science, University of Arizona.
[Burns, 1978]
J. Burns. "The stability of test data from program mutation," Digest for the Workshop on Software Testing and Test Documentation, Fort Lauderdale, F1a. 1978. pp. 324-334.
[Chang, 1970]
H.Y. Chang. Fanit diagnosis of digital systems. Wiley- Interscience, 1970.
[Davis, 1958]
Martin Davis, Compotability and Unsolvability, McGraw-Hill.
[DeMillo, 1978]
R.A. DeMillo and R.J. Lipton. "A probabilistic remark on algebraic program testing," Information Processing Letters, Vol. 7(4). (June, 1978). pp 193-195.
[DeMi11o, 1978a]
R.A. DeMillo, R.J. Lipton, and F.G. Sayward. "Hints on test data selection: Help for the practicing programer." Compater 11(4): 34-43, April 1978.
[DeMi11o, 1979]
R.A. DeMillo, R.J. Lipton and A.J. Perlis. "Social Processes and proofs of theorems and programs," CACM Vo1 22(5), (May, 1979), pp. 271-280.
[DeMi11o, 1979a]
R.A. DeMillo, R.J. Lipton and F.G. Sayward, "Program mutation: A new approach to program testing," INFOTECH State of the Art Report on Software Testing, Vo1. 2, INFOTECH/SRA, 1979, pp. 107-127 [Note: also see comentaries in Volume 1].
[Duran, 1982]
Joe W. Duran and Simeon C. Ntafos, "An Evaluation of Random Testing", manuscript, Department of Mathematical Sciences, University of Texas at Dallas.
[Foster, 1978]
K. Foster. "Error sensitive test cases." Digest for the Workshop on Software Testing and Test Documentation, pates 206-225, 1978.
[Gannon, 1983]
Carolyn Gannon, "Software Error Studies", Proceedings NSIA National Conference on Software Test and Evaluation pp. I-1 -I-7.
[Ge11er, 1978]
M, Geller. "Test data as an aid in proving program correctness." Commnications of the ACM 21(5):368-375, May 1978.
[Gerhart, 1976]
S.l. Gerhart and L. Yelowitz. "Observations of failibility in applications of modern programming methodologies." IEEE Transactions on Software Engineering SE-2(3): 195-207, September 1976.
[Gi1b, 1977]
T. Gilb. Softvare Metrics, Winthrop, 1977.
[Goodenough, 1975]
J.B. Goodenough and S.L. Gerhart. "Towards a theory of test data selection." IEEE Transactions on Software Engincering SE-1 (2):156-173, June 1979.
[Goodenough, 1979]
J.B. Goodenough. "A survey of program testing issues." In P. Megner, editor, Research Directions in Software Technology, pages 316-340, MIT Press, 1979.
[Gonld, 1974]
J.D. Gould and P. Drongowski. "An exploratory study of compoter program debugging." Human Factors 16(3):258-277, May 1974.
[Ham1et, 1977]
R.G. Hamlet. "Testing programs with the aid of a compiler." IEEE Transactions Softrare Engineering, Vol, SE-3 (4), (July 1977), pp.
[Hamlet, 1978]
R.G. Hamlet. "Critique of reliability theory". Digest for the Workshop on Software Testing and Test Documentation, pages 5769. 1978.
[Hanks, 1980]
Jeanne M. Hanks, Testing Cobol Programs by Mntation, M.S. Thesis, Georgia Institute of Technology.
[Hardy, 1975]
S. Hardy. "Synthesis of LISP programs from examples." Procecdings of the Fourth International Joint Conference on Artificial Intelligence, pages 240-245. Veld in Tbilisi, Georgia, USSR, 1975.
[Henderson, 1972]
P. Henderson and R. Snowden. "An experiment in structured programing". BIT 12:38-53, 1972.
[Hoare, 1961]
C.A.R. Hoare. "Algorithm 65: FIND." CACM, Vol. 4(1), (January, 1961), p. 321.
[Hoare, 1971]
C.A.R. Hoare. "Proof of a program: FIND." Commancations of the ACM 14(1): 31-45, January 1971.
[Hopcroft, 1969]
J.E. Hopcroft and J.D. UlIman. Formal Larguages and Their Relation to Automata. Addison-Wesley, 1969.
[Howden, 1975]
W.F. Howden. "Methodology for the generation of program test data." IEEE Transactions on Computers c-24(5): 554-560, May 1975.
[Howden, 1976]
W.E. Howden. "Reliability of the path analysis testing strategy." IEEE Transactions on Software Engineering SE-2(3):208-214, September 1976.
[Howden, 1976a]
W. E. Howden, "Algebraic Program Testing", Technical Report, University of California, San Diego.
[Howden, 1978]
W. E. Howden. "An evaluation of the effectiveness of symbolic testing." Softrare: Practice and Experience 8:381-397, 1978.
[Howden, 1982]
W. E. Howden, "Weak Mutation Testing", IEEE Transactions on Software Engineering, Volume SE-8(4): 371-379, July, 1982.
[Huang, 1975]
J.C. Huang. "An approach to program testing." Journal of the ACM 7(3):113-128, September 1975.
[IBM, 1966]
International Business Machines. System/360 Scientific Subroutine Package. IBM App1ication Program H20-0205-3,1966.
[Kernhigan, 1978]
B.W. Kernhigan and P. Plauger. The E1ements of Programing Sty1e. McGraw Hil1, 1978 (Second Ed).
[Knuth, 1971]
D.E. Knuth. "An empirical study of fortran programs." Software Practice and Experience, Vol. 1(2), (1971), pp. 105-134.
[Ledgard, 1973]
H. Ledgard. "The case for structured programming." BIT 13:4557, 1973.
[Linger, 1979]
R.C. Linger, H.D. Mi11s and B.I. Witt. Structured Programming Theory and Practice, Addison-Wes1ey, 1979.
[Lipton, 1978]
R.J. Lipton and F.G. Sayward. "The status of research on program mutation". Digest for the Torkshop on Software Testing and Test Documentation, pages 355-378, 1978 .
[Manna, 1974]
Z. Manna. The Mathematical Theory of Compatation, McGraw-Hil1, 1974.
[Minsky, 1967]
Marvin Minsky, Compotation: Finite and Infinite Machines, Prentice-Hall.
[Montalbano, 1974]
M. Montalbano. Decision Tables. Science Research Associates, 1974.
[Naver, 1969]
P. Nauer. "Programming by action clusters." BIT 9, 250-258, 1969.
[Osterweil, 1974]
L.J. Osterweil and L.D. Fosdick. "Data flow analysis as an aid in documentation, assertion generation, validation and error detection." University of Colorado, Department of Computer Science, Technical Report No. CU-CS-055-74, 1974.
[Osterweil, 1978]
L.J. Osterweil and L.D. Fosdick. "Experiences with DAVE -- A FORTRAN program analyzer." Proceedings of the 1978 AFIP National Computer Conference, pages 909-915, 1978.
[Ostrand, 1978]
T.J. Ostrand and E.J. Weyuker. "Kemarks on the theory of test data selection." Digest for Workshop on Software Testing and Test Documentation, Fort Lauderdale, F1a, 1978, pp. 1-18.
[Pol1ack, 1971]
S.L. Poliack, H.T. Hicks, and W.J. Harrison. Decision Tables: Theory and Practice. John Wiley and Sons, 1971.
[Schaefer, 1973]
M. Schaefer. A Mathematical Theory of Global Program Optimization, Prentice-Ha11, 1973.
[Shaw, 1975]
D.E. Shaw, W.K. Swartout, and C.C. Green. "Inferring LISP programs from examples." Proceedings of the Fourth International Joint Conference on Artificial Intelifigence, pages 260-267. Held in Tbilisi, Georgia, USSR, 1975.
[Summers, 1975]
P.D. Summers. Program Construction from Examples. PhD thesis, Yale University, 1975.
[Tanaka, 1981]
Akihiko Tanaka, Equivalence Testing for Fortran Mutation System using Data Flow Analysis, M.S. Thesis, Georgia Institute of Technology.
[Thayer, 1978]
T.A. Thayer, M. Lipow, E.C. Ne1son. Software Reliability, North-Ho11and, 1978.
[Thibodeau, 1978]
R. Thibodeau, "The State-of-the-Art in Software Error Data Col1ection." General Research Corporation, January, 1978.
[White, 1978]
L.J. White, E.I. Cohen, and B. Chandrasekaran. A Domain Strategy for Compater Program Testing. Technical Report OSU-CISRC-TR-78-4, Ohio State University, 1978.
[Wirth, 1968]
N. Wirth. "PL360: A programming language for the 360 computer." Journal of the ACM 15(): 37-74, 1968.
[Youngs, 1974]
E.A. Youngs. "Human errors in programming," International Journal of Man-Machine Studies, Volume 6 (1974), pp. 361-376.

[^0]: Conditional Branch/Execution: Most of these errors resulted from testing incorrect variables or using the wrong test in a conditional expression. These errors accounted for 5% of the total.

[^1]: Practice may dictate so many error types that the calculation of mutation scores becomes intractable. By concentrating only on "simple" mutants of P the technique becomes manageable. For example, in the case of computing magnitudes of vectors, $P 1$ is not a simple mutant of P, but $M 1$ and $M 2$ are simple:

