GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT INITIATION

Date: May 3, 1979

Project Title: Experimental and Theoretical Research on Program Mutation

Project No: G-36-636 Sri. vl
Project Director: Dr. R. A. DeMillo

Sponsor: Office of Naval Research; Code 613B:WRB; Arlington, VA 22217 S

-

)

/~—-L ”7
,«,la+/sa~

Type Agreement: Contract No. N0O0O014-79-C-0231 through GTRI. //3,/{%

Agreement Period: From 3/1/79 Until

Amount: $29,280.00

Reports Required: Progress Reports; Final Report

Sponsor Contact Person (s):

Technic_;l MatteE Contractual Matters
(thru OCA)

Marvin Denicoff
Director, Information Systems
Program — Cole 437
Matﬁ€”2t1"87 & Information Sciences Div,
Office of Naval Researc
800 North Quincy Street
Arlington, VA 22217

Office"of Naval Research

Resident Representative
Georgia Institute of Technology
Rocm 325, Hinman Research Building
Atlanta, Georgia 30332

Defense Priority Rating: DO-89 undor DM Reg. 1

Assignedtor Information & Computer Sclence (School/Laboratory)
COPIES TO:

Project Direcior Library, Technical Reports Section

Divisian Chief (EES) : EES Information Office

Schooi/Laboratory Director EES Reports & Procedures

Dsan/Director—EES Project File {OCA)

Accounting Office Project Code {(GTRI)

Procurement O¢fice Other

Security Coorginator {(QCA)

Reports Coordinator 10CA)

Ce—-313.76)

GE((’)RGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION

TN
'\.’;‘\"\‘ SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

A

s Lo
L /
.]l

i

Date May 11, 1984

Y

i |
| Project No. G-36-636 School/KXX 1CS

Includes Subproject No.(s)

Project Director(s) Dr. R.A. DeMillo | GTRI / BXX
Sponsor Office of Naval Research
Title "Experimental and Theoretical Research on Program Mutation”
. 3
7
Effective Completion Date: 1/31/84 (Performance) 1/31/84 (Reports)

Grant/Contract Closeout Actions Remaining:

ED None

Fina! Invoice or Final Fiscal Report

Closing Documents

Final Report of inventions

Govt. Property Inventory & Related Certificate

Classifred Mater.a! Certificate

HRERERERERE

Other
Continues Project No. Continued by Project No. G-36-661
COPIES TO:
Project Director Library
Research Administrative Network GTRI
Research Property Management Research Communications (2)
Accounting Project File
Procurement/EES Supply Services Other

Resgarch Security Services
T e e o
“Reports Coordinator {OCA) !

Legal Services

Form OCA 601028

Program Mutation:
An Approach to Software Testing

Richard A. DelMillo
School of Information and Computer Sciemnce
Georgia Institute of Techmnology

1.

Program Mutation: An Approach to Software Testing

Table of Contents

Chapter
Testing for Correctness

Computability and Programming Systems
The Programning Model

Deductive and Inductive Inferences
Reliability of Test Data

Adequacy and its Measurement
Bibliographic Notes

. Frrors and Mutations

The Competent Programmer Assumption

Error Classification

Mutant Operators

Procedure for Developing Adequate Test Data
Error Coupling

Bibliographic Notes

Theoretical Studies

Decision Tables
Lisp Programs
Bibliographic Notes

A Mutation Analyzer

System CQverview

A Mutation Analyzer for Cobol
Internal Form Specifications
Processing Algorithms

A Testing Session
Bibliographic Notes

The Complexzity of Program Mutation

Estimating |u(P)|

Mutant Instability

Reducing Complexity by Sampling
Efficiency and Redundancy in Operators
Bibliograpkic Notes

2-1
2- 6
2-11
2-21
2-22
2-32

4- 2
4-11
4-2

4-34
4-42
4-52

Program Mutation: An Approach to Softynro Testing

Table of Contents

Chapter
Further Experimental Studies

Beat the System Experiments
Experiments on the Coupling Effect
Uncoupled Errors

Coupling and Complexity Measures
Bibliographic Notes

. Mutant Fquivalence

Human Evaluvation of Equivalence
Autometed Equivalence Checking
Bibliographic Notes

Error Detection

Simple Errors

Dcad Statements

Dead Branches

Data Flow Errors

Domain Errors

Special Values
Coincidental Correctness
Missing Path Errors
Missing Statement Errors
Bibliographic Notes

. Field Studies

Mutation on Mutsation
Testing Operational Software

Appendix A
Appendix B
Appendix C
Appendix D

Eibliography

Page

6— 2
6-10
6-16
6—17
6-21

o]
!
Ju—y

Bibliography— 1

Testing for Correctness 1-1

Chapter 1

Testing for Correctiness

Computability and Programming Systems

Turing Machines, We will assume familiarity with elementary
computability theory. A Turing machine decides or solves a com—
putational oproblem in the following way: when the machine is
presented an input x, the machine eventually halts and either

accepts or rejects the input. We say that a decision problem is

solvable (or, equivalently, a predicate is decidable) if there is a
Turing machine which accepts exactly those inputs which are
solutions to the decision problem and rejects all others. Such a

machine is said to be a decision procedure. A problem is said to be

unsolvable if nc decision procedure exists,

During its operation, a Turing machine carries out a number of
basic operations {e.g., moving its read/write heads). The basic
operations are called steps. If a Turing machine on input x carries
out m basic operations and enters a halt state, the machine is said

to have halted after exactly m steps.

We assume some canonical indexing of Turing machines. That is,
an effective procedure whereby the ith Turing machine can be listed,

for all i 2 0. This indexing is fixed throughout.

Testing for Correctmess 1-2

The Kleene T-predicate is the predicate T(i,j,k) which is true

exactly when the ith Turing machine (in the canonical listing of
Turing machines), when given input j, halts in exactly k steps. The

halting problem for Turing machines is the problem of deciding the

truth of the the predicate (3 x)(T(i,j,x)). The halting problem is
unsolvable, The fundamental techmnique for showing that a problem is
unsolvable will be to reduce the halting problem (or some other
problem known to be vunsolvable) to the problem in question. In
general terms, such a proof involves showing how an aribtary
instance of the halting problem can be transformed or reduced to an
instance of the problem which is to be shown unsoclvable in such a
way that the Turing machine halts (or fails to halt) exactly when
the transformed instance is 2 solution to the problem. The argument
then proceceds as follows. If the problem is solvable, then the hal-
ting problem can be solved by applying the transformation to its
instances and wusing the (assumed) decision procedure. Since this
contradicts the umsclvability of the halting problem, the problem in

guestion must also be unsolvable.

A Turing machine may also function as a transducer, That 1is,
given an input x such that T(i,x,k), the ith Turing machine will
write onto a designasted portion of one of its tapes a value y. The
function f determired by f(x} = y is said to be computed by the ith
Turing machine, A function which is computed by some Taring machine

is said to be computable.

An oracle Turing machine contains designated guery states. In
a query state, the machine submits a fixed value x to an oracle. If

the oracle is for a function f, in one step the machine will respond

Testing for Correctness 1-3

to the query with f(x). Notice that the oracle f need not be com—
putable. The canonical indexing cam be modified to include all

oracle machines.

Programming Systems. Any model of effective computation is

called a programming system. In a programming system, it 1is pos—

sible to construct representations for algorithms; each such
representation is said to be a program. We identify a programming
system P with the set of programs it definmes. It is not necessary
that a programming system be universal, only that all programs be
effective. We will usually identify a programming system with the
set of programs that can be written in the system. Thus examples of
programming systems are the set of Markov alpgorithms, the set of
straightline programs which compute polynomials of some fixed
degree, the set of linear recursive programs schemcs, and the set of

syntactically correct APL programs,

We assume that each program in a programming system presented
in & uniform way, (and, like Turing machines, can be uvniformly
indexed) and that each program is defined on an input space, D. The
programming system defines a method of interpreting programs. If a
program P & P is started on an input x & D, the semantics of the
programming system defines the manner in which values are assigned
to input wvariables, machine states are altered and output is
delivered. Since the input spaces of programming systems vary, we
will assume that each input space D can be coded in a natural way

into the nonnegative integers N.

Testing for Correctness 1-4

Let P be a programming system. Te each P in P, there
corresponds a computable function P* , The correspondence is as
follows: for each = & D we determine the n(x) & N that encodes x,
and execute P on x to obtain an output y; then P*(n{x))=n(y). Ve

sometimes extend this notation to P: P* = {P#|PsP].

The equivalence problem for a programming system P is the fol-

lowing decision problem. Given programs P,Q ¢ P determine whether

or not for all x £ D, P*(x) = Q*(x).

The Programming Model

The testing theory described here differs from most theoretical
studies in that we make some assumptions about how programs (in a

programming system) are produced.

We assume that the intended behavior of a program is given by a

function f — the specification. In practice, describing f is very

difficult, perhaps as difficult as programming itself, For our
purposes, however, we need only assume that some functional
specification exists and it 1is that function which is to be

implemented by the programmer,

The programming task itself resembles a root-finding procedure.

Testing for Correctness 1-5

produce

initial program

S

PO)
<§iif?>———c> modify P i

—

Figure 1.
The lterative Programming Process

The initial program produced in Figure 1 corresponds to the
initial guess of a rcot-finding procedure. During the initial
iterations, the fact that the program at hand does not satisfy the
specification will be obvious (e.g., the program 1is syntactically
incorrect or has a run—time error). During 1later iteratioas,
however, the F*=f test is carried out by direct comparison of the

current version of P with f.

In the case that f is uniformly presented — for example, by a
predicate calculus formula — the direct comparison may take the
form of a proof of correctness. In the situation encountered most

frequently in practice, however, f is mnot nuniformly presented.

Testing for Correctness 1-6

Rather, the programmer has available a number of instances of f of
the form (x,f(x)). In this case, the determination of whether or
not P* = f is made by observing a finite number of executions of P
on instances of f. Since we want the theoretical devclopment to be
independent of any specific implementation of testing procedures, we
will mnot distinguish these alternatives. Rather, we assume the
existence of an oracle for f, i.e., a device for supplying instances

of the form (x, f(x)) for finitely many x & D.

A finite subset of D for which values of f are available is

said to be a test set for P and f. Conceptually, f is an oracle for

a procedure which executes P on an input x, queries f and checks

P*(x) = £(5).

Deductive and Inductive Inferences

We let P be an arbitrary but fixed programming system. We are
interested in testing a program P with specification f during the

interative process of producing a correct program.

Definition: P is correct with respect to a specification f if

P*(D) = £(D). If P is correct with respect to f, the P is said to

compute f.

A natural requirement for a test set that is wuseful in
determining program correctness is that execution of the program on
the test set should demonstrate the correctness of the program. Not
every test set carries the same weight in demonstrating correctness.

The testing process itself can be described by a rule of inference:

Testing for Correctness 1-7

P*(a;)=f(ay) AP*(ag)=f(ag) A... AP (ap)=flap) A ...

P*(D) = £(D)

That is, from the observations P*(ai) = f(a;), the tester wishes to

infer the generalization ¥xeD P*(x) = f(x). Clearly, if the values
a4, run through all of D, the inferemnce is deductively wvalid. But,

in general, D is either infinite or large enough to make such

procedure impractical.

Another way to view such an inferemce is in the context of an
experiment. To establish the truth of the conclusion, the tester

looks for confirming instances of the form P*(a)=f(a). If an

experiment ever results in a value b such that P¥(b) # f(b), then P
is not correct, and the experiment has rejected the conclusion, On
the other bLand, the existence of a confirming instance does not
guarantee correctness: there might be an undiscovered experiment
that will show that P is incorrect. So the guestion arises: when
does the tester stop experimenting and infer the correctness of P?
In order to insure objective standards for testing P, these con-

ditions should be stated in general terms as a stopping rule,. We

distinguish two forms of inference allowed by such rules. Suppose
that a stopping ruie R for a program P results in a set of values

R(P) and experimental trials P¥(x)=f(xz) for x & R(P).

Deductive Form: From R(P) to infer that P is correct

Testing for Correctness 1-8

Inductive Form: From R(P) to infer that P is correct with

probability 6.

Beyond the observation that the stopping rule should be wuseful
in meking either deductive or inductive inferences of this form, it
is not at all clear what other properties stopping rules should
have. Typical naive stopping rules (e.g., make voluminous tests,
make tricky tests) have limited effectiveness. Useful rules are
based on the following principle: the stopping rule should force
the tester to produce a strong set of confirming instances. The
notion of strong and weak confirming instances is particularly
important in the context of testing program correctness since by
simply compiling a finite table {(ai,f(ai)l 0£iln)}, a program can be
easily modified to give correct output on a finite set of test

cases.

To see the underlying problem in assessing the strength of con-
firming instances, consider the following thought experiment,. By

experimental observation, we are to determine whether or not
¥z (A(x) & B(x)) ‘ (1)

is true. This entails finding confirming instances x such that A(x)
is true and checking to see that B(x) also holds. But (1) is

logically eguivalent to
Yz (=B(x) & ~A(x). (2)

Therefore, another experiment to check the validity of (1) might
entail finding confirming instances y such that B(y) fails and chec-

king to see that A(y) also fails. The problem is that strong con-

Testing for Correctness 1-9

firming instances of (2) need not be strong confirming instances of

{(1). Suppose, for example, that (1) is the statement
""All ravens are black”
Then (2) states,

"All non-black objects are non—ravens."

Thus, while an experiment to verify (1) involves finding ravens and
checking their colors, an experiment to verify (2) need not involve
ravens at all. Strong confirming instances of (2) can be red shoes
or gray walls, and such observations, while supporting a logically
equivalent proposition, should provide no rational support for

proposition (1).

To insure that the stopping rules which guide testing provide
strong confirming instances of correctness, a number of pos-

sibilities have been suggested.

Input Space Partitioning: A path through a program P is a
secuence of computations that <correspond to a possible flow of
control through the program. If a program contains 1loops, then
differing numbers of iterations through loops give rise to different
paths., It is possible to asscciate with every path n a subset Dn of
D which causes that path to be executed. Thus, P*® can be decomposed
into a set of functionms P*n, where n runs through all paths in P,
and the correctness of P can be determined by testing whether or not

p* = f

n x» Wwhere f. represents the specification for the path =,

Testing for Correctness 1-10

Consider a programming system P in which each program P satis-
fies the following condition: for each pair of paths ng, ny°

P*no(x) # P*nl(x), for all x ¢ D. Suppose that we have obtained a

stopping rule for each of the (possibly infinitely many) P, #nd that

we car infer the correctness of each of them from the tests. Then
we can use these tests to infer the correctmness of programs in P if
and only if P* (p_) = £ (D;), for all paths n implies that P* = £,
This latter conditior is equivalent to requiring that domain of £

and D be disjoint for all paths =, i.e., the path domains D

partition the domain D and the selection of points omn which an

incorrect program fails can be made randomly from the partitionms.

Since the number of distinct paths in a program can be infinite
the conditions given above are mnot particularly useful. On the
other hand, it may be possible to choose a subset of all paths for
consideration which is sensitive enough to guarastee that the
inference can be made with a high degree of confidence. For exam
ple, the set of paths to be tested may involve only single

iterations of loops and all non—looping paths,

Random Testing: Suppose that D is supplied with a probability
distribution and that p(x) is the probability that P*(x) # f(x},
when x is chosen according to this distribution, Since p can be
expected to converge to the failure rate when P is executed on x ¢ D
chosen according to the given distribution, we wish to derive a
stopping rule which gives an indication of whether p = 0, after =n
tests. One way to derive an appropriate value of n is to calculate
a quantity g based on the results of the tests so that g is greater

than p with prohebility 1-a. If n tests are carried out and k

Testing for Correctness 1-11

instances x such that P*(z) # f(x) are observed, then g is the lar-

gest value of r such that

n
E (’il)ri(l--r)n"i > a.

i=0
Therefore, in a testing experiment, if no errors are observed

q = 1~a1/n.

The testing experiment, then, is to set the statistical limits on
the confidence desired from the test (i.e., 1-a) and derive the
appropriate valwe for n. Checking correctness on the random domain
elements completes the test and allows the inference of correctness

to be made.

If D is partitioned into m subsets Dl"'°Dm' then it may be

possible to assess the probability d; that a random x ¢ D is in Dy

For example, if the D, are path partitions and the paths correspond

to functions that the program is to carry out, each function being
selected with known distribution then di is simply the probability

that the ith functionm is selected. Similarly, if p; is the failure

rate for the ith function determined by Di' we have:

m

P = Edipi'

i=1

Now, comsider an experiment in which D is partitioned and for each

D; P*;(x) = f;(x), where f; is the specification for the ith

partition, for a random choice of x. Then regardless of the

Testing for Correctness 1-12

distribution of the di's'
qz 1 - 0.1/’1.

In this way a simple stopping rule can be used to give an inductive

inference of correctness,

Reliability of Test Data

The point of these techniques is to insure that the test set
chosen allows the inference of correctness to be made with a high
degree of confidence. HDowever the test set is chosen, it should
allow such an inference. Two versions of a stopping rule which are
useful for such an inference are obvious generalizations of the

rules given in the examples above.

Deductive Stopping Rule: Choose & set of test data so that

correct performance on the test data implies correctness.

Inductive Stopping Rule: Choose a set of test data so that
correct performance on the test data implies correctness with

probability 1-p.

The first version provides a convenient characterization of
test data which is strong enough to allow a2 wvalid inference of

correctness.

Testing for Correctness 1-13

Definition: A test set T is reliable for a program P and

specification £ if P*(T) = f(T) implies that P computes f.

Suppose that T is a reliable test set. If P*(T) = f£(T), then
by definition P is correct. On the other hand, if P* = f, then
P*(T) = f£(T) for any subset of D. Thus, if a test set T is reliable
for P and f, then P#(T) = £(T) if and only if P is correct. In
essence, reliability of test data restetes program correctness. For
example, a proof that T is reliable for a correct program is by
definition a proof of correctness. Unlike pure correctness proofs,
finding a reliable test set for an incorrect program involves locat-
ing a program erzyor, since P¥ and f must differ on at least one

point of a reliable test set.

Theorem 1: For any P,f there is a reliable test set,

Proof: If P computes f then any test set will do. If P does
not compute £, let x & D be any point for which P*(x) # f(x).

Clearly T= {x} is reliable. []

Given a program P to be tested, two related problems arise. Oa
cne hand we may be called upon to judge from available evidence
whether or mnot P is correct. On the other hand, we may be called
upon to produce evidence that is certain to convince such a judge.
If the acceptance criteria is the existence of a reliable test set,
the problems reduce to the following. Since P 1is correct exactly
when it performs correctly on a reliable test set, a proof that T is
reliable for P is a proof of correctness for P, provided only

P*(T)=£(T). By the same token, a mechanical way of producing

Testing for Correctness 1-14

reliable test sets, implicitly provides mechanical proofs of correc—
tness. Since e¢very program has a reliable test set, procedures to
prove that a test set is reliable and to generate reliable test sets

are possible.

Definition : The decision problem for reliable test sets is to

determine for program P, test set T, and specification f whether or

not T is recliable for P and £.

Definition : Let G be a mapping from program—specification

pairs to finite subsets of D. G is said to be a reliable test

strategy if G(P,f) is reliable for P and f.

In referring to the decision problem for reliability and
reliable test strategies we will not mention the underlying program—
ming system or the specification when there is mno danger of con—
fusion. Thus, we will often refer to a test strategy for P, when

the specification is clear from context.

A decision procedure for reliable test sets consists of a Tur—
ing machine with oracle £. P is encoded into the input alphabet of
the machine (using, for example, the indexing functiomn of oracle
machines) . When presented with P and an encoding of T, the

procedure either accepts or rejects T.

Theorem 2: Assume that the decision problem for reliable test
sets 1is solvable,. Then there is a computable reliable test

strategy.

Testing for Correctmess 1-15

Proof: Let T; c D consist of the first i elements of D under
some effective ordering of D. By Theorem 1, there is a reliable

test set for any (P,f), and any test cortaining it is also reliable,

Thos, for some i, Ti is reliable. The test strategy simply

generates Tg, Tyr--- at each stage testing to see whether or not

the test set so far genmerated is reliable for (P,f). [1]

Theorem 3: If a programming system has a computable reliable
test strategy, then the corresponding decision problem for reliable

test sets is solvable.

Proof: Assume a reliable test strategy G. We decide whether
or not T is reliable as follows. Given (P,f), we first produce a
reliable test set G(P,f), By defimition, if P*(G(P,f))=f(G(P,£)),
then P is correct and so every test set is reliable, The decision
procedure thus should accept T as reliable. Suppose P*(G(P,f)) #
f(G(P,f)). Since P is not correct, T is reliable exactly when P*(T)
f£(T). Since the process of checking P*(x)=f(x) for finitely many
values of x can be carried out by a Turing machine which simulates P
and queries an oracle for f, this procedure is a decision

procedure.[]

Notice that the decision procedure above, does not really use

any information about T when P 1is correct. This is simply a
consequence of the fact that relisble test sets do not demonstrate
correctness in any meaningful way. Indeed, if we have any indepen—
dent prcof that P is correct, then we can choose T as we please —
P

as a source of evidence to a third party who must be convinced of

P's correctness this is not very satisfying. Furthermore, since the

Testing for Correctness 1-16

decision problem is equivalent by this argument to the decision
problem for a powerful system of logic (e.g., the logic wused to
prove that P is correct), we weculd expect om intuitive grounds that

the decision problem for reliability is, in general, unsolvable.

Theorem 4: There are classes of programs which have neither

sclvable decision problems nor computable test strategies.

Proof: Consider the following programming system P = {Pi|

i20}. Each program P, is defined by the following specification:

0, if i=0
p*i(x) = 0, if i>0, and x # i

1, if i>0, and x = i

It is easy to see that, since P, gives output 1 only when given its

own index as input, P*i = P*j exactly when i=j. It follows from

this observation that the equivalence problem for P is solvable.

We claim that there is no computable test strategy for P, Sup-
pose otherwise. A strategy G for (Pp,fy) queries fg 2 finite number
of times and halts with some reliable T. Let i be an integer
greater than any elemert of T and any element involved in a query

for £, Them G(Py, £;) = T. Clearly T is not reliable for

(Py.f;)), contradicting our choice of G.

By Theorem 2, the existence of a decision procedure for
reliable test sets would also prodace a computable test strategy, so
the decision problem for reliable test sets is also unsolvable for

P.[]

Testing for Correctness 1-18

compiler certification) the expense of constructing a specification—
sensitive device is justified by the number of programs which will

be validated. Thus the non—uniform problem may be of interest.

Definition : Let the specification f be fixed and let P be a

programming system. The f-decision problem for reliability in P is

the problem of deciding, given p ¢ P and test set T, whether or not

T is reliable for P,f.

Definition : Let the specification f be fixed and let P be a
prograrming system, An f-reliable test strategy is a mapping Gy
from P to finite subsets of D such that, for ecach P ¢ P, Gf(p) is

reliable for P and f.

The proof of the following theorem is nearly identical to the

uniform case, and we omit it here.

Theorem 6: Let P be a2 programming system and let f be a
specification, Then P has an f-decision procedure for reliability

if and only if P has a reliable test strategy Gf_

Furtbermore, just as in the uniform case, we can effectively

cbtain a test strategy from any f-decision procedure and conversely.

Thke equivalence problem for P also has the same relevance for
the non~uniform problems, provided that we limit specifications to
functions that are actuwally computed by some program in the program-—

ming system,

Testing for Correctncss 1-19

Theorem 7: If a programming system, P, has a decidable
equivalence problem then its f-decision problem for ~reliability is

solvable for each f & P*,

Proof: Let f be a specification in P*, Then some program P0 e
P computes f£. Since we are dealing here with the non—uniform
decision problem, no procedure for determining P0 needs to be sup~
plied. To decide whether T is reliable for P and f, we will use the
decision procedure for equivalence: decide whether or not P = PO'
If so, then P is correct and T is thereforc reliable. If P # Py’
test P against specification f = PO*' If P*(T) = f(T), then since T

does not contain a point on which P fails, it is not reliable. On

the other hand, if P*(T) # £(T), then T is clearly reliable.[]

Not surprisingly (given Theorem 7), the ability to decide
equivalence also gives enough power to compute a non—uniform test
strategy. The proof of this fact follows closely constructions we

have secen already, so we will not reproduce it here.

Thecrem 8: If a programming system, P, has a decidable

equivalence problem, then for each f ¢ P*, there is a computable

f-test strategy.

It might be hoped that restricting the decision or strategy
problems to the non-uniform cases will make them easier.
Unfortunately, reliability is such a strong property that, even in
the non—uniform case, the decision (and hence the test strategy)
problem is formally as hard as testing equivalence in the program—

ming system,

Testing for Correctness 1-20

Theorem 9: Let f & P* and suppose that P computes f. If some
f-test strategy is computable, then the problem of deciding

equivalence to P is solvable for all programs in P.

Proof: Suppose that G, jis a reliable test strategy. Let T =

tt

Gf(Q)- If Q%(T) = P*(T) = f(T), then, since T is reliable, Q* = f
P, On the other hand, if Q*(T) # f(T), then P # Q. Therefore, to
decide equivalence to P generate T and run the test for Q on T with
specification P#*=f, The result of the test is the result of the

decision procedure.[]

Adeguacy and its Measurement

Our first éoal is to find a stopping rule which is as useful as
reliability in inferring correctness, but which is also useful as
evidence that a program is correct. Recall that the chief defect of
reliability is that, if a program is correct, a reliable test set
does not have to make any case at all for correctmness, Our strategy
will be to require that a test set provide an "explanation” of why
the program is believed to be correct. For adequate test sets, this
explanation simply states that the program is not incorrect and
demonstrates this conclusion with test cases causing incorrect

programs to fail but on which the original program does not fail.

Definition: Let f be a specification with domain of definition
D for a program P (vwhich may not be correct). A set of test data T
is adequate for P with respect f if (a) P*¥(T) = f(T), andé (b) for

all programs Q such that @*(D) # f£(D), Q*(T) # £(T).

Testing for Correctness 1-21

In other words, T is adequate for P if P behaves correctly on T
and all incorrect programs behave incorrectly on at least omne
element of T. Notice that the definition of adequacy incorporates
correct execution on the test set as part of the definition while
reliability does not. This makes comparisons between reliability
and adequacy somewhat awkward. If T is adequate, them it is a sim-
ple consegquence of the definitions that T is also reliable, On the
other hand, suppose that P is correct. Then T = P is reliable but
not adequate, On the other hand, if P is incorrect, then it has no
adequate test set, but it always has a reliable test set. Most of
the theoretical developments based on adequacy can be are left
intact if we use only part (b) of the definition. However, the goal
of testing based on adequacy and related notions is to infer correc—
tness. The usefulness of the process of deriving adequate test sets
in revealing errors im incorrect programs is incorporated into

experimenal implications of the theory,

Theorem 10: If T is adequate (for P), then T is reliable, but

not conversely.

Recall from the previous scction that reliable test sets always
exist, Adeguate test sets, ona the other hand, must distinguish a
program from a possibly infinite set of incorrect programs, Since
this may reguire infinitely many test points, we cannot guarantee

adequate test sets always exist even for correct programs,

Theorem 11: There are programming systems P such that for any
program P & P, and any (finite) test set T, there is a functiom f

such that P*(T)=f(T) but P*(x) # f(x) for all x g D-T.

Testing for Correctness 1-22

Proof: Comnsider the set of straightline programs that compute
polynomials. Let P be such a program and let f=P* be a polynomial
of degree d., If T is any finite set, there is a program Q and
polynomial g=Q¢* of degree d' > d such that f(T)=g(T) but f and g

disagree on all points not in T. [I

Notice that although T is reliable for P and f, it is recliable

for neither (P,g) nor (Q,f), even though all agree on T.

Corollary: Let P be a set of straightlime programs to evaluate
polynomials. Then ne program in P has an adequate test set for the

specifications in P*,

Proof: The proof of Theorem 11 gives an example of a program
which for every finite test set agrees with an incorrect program.

[]

So far, we have been dealing exclusively with the deductive
form of the inference problem. There is a probabilistic algorithm
for the set of programs in Theorem 11, Denote by TJ{m,d) the class
of m variable mnonzero polynomials of degree d, Notice that the
problem of determining whether or not P¥ = f can be turned into a
problem about zeroes of polynomials by checking P*¥-f = 0, Define

p{m,d,r) to be

min Prob{lixlir, f(xq,...,x,) # 0}

where the minimum is taken over all f & JJ(m,d). We derive a lower
bound on P = p(m,d,r) to get an upper bound 1-p on the error in

selecting a random point from the m—cube. The procedure is then

Testing for Correctness 1-23

iterated t times to obtain an error probability of (1-p)t. Since a

polynomial of degree d has at most d roots, ignoring multiplicity,

the largest probability of finding a root must be at least the
probability of findirg a root by random sampling in the interval

1$xlir, and hence p(l,d,r}) 2 1-d/r. Now, consider some f &TT.

There are polynomials {gi}i<d such that

d

fxq,...x,,y) = 2 gi(xl,....xm)yl-
=0

Suppose that gy e T Then we have:
Prob{lixiﬁr, f(xi""’xm'y) £ 0} 2
PrOb{gk(xl....,xm) # 0, y not a root} 2

p(m,d, r)(1-d/r).
Continuing indectively gives
P(ms d: 1') ->— (1—d/r)mp
and
lim (1-d/r)® = cxp(—dm/r)
m—>®
Thus, for large m and r=dm, we have p(m,d,dm) 2 e_l. Therefore,
with t evaluations of f for independent choices from the m—cube with

sides r, a (fimite) test set can be constructed which is adequate

with probability (1-e¢~1)t,

Testing for Correctness 1-24

In the previous section, we examined the problem of deciding
whether or mnot a test set is reliable and generating reliable test
sets. We have the same interest in deciding test data adequacy and
generating adeguate test sets, if they exist. The definitions adapt

readily to our purpose.

Definition: Let P be a programming system. The decision
problem for adequacy in P is the problem of determining for a
program P ¢ P, a specification f and test set T, whether or not T is

adequnate for P,f.

Theorem 12: There is a programming system P suck that the

decision problem for adequacy in P is unsolvable.

Proof: We define a programming system P = {Pi| i 2 0} as fol-

lows,

0, if i=0
pti(x) = 1, if i>0 and T(i,i,x)

0, if i1>0 and -T(i,i,x)

Notice that for a2ll values of i, pti(x) is defined for all values of

x. P*i is the constant zero if and only if the ith Turing machine

fails to halt on all inputs, so the problem of deciding equivalence

to PO is unsolvable.

¥e «claim that an adeguate test set exists for P and P* just in
case P # Py- Suppose P#*(x} = 1 and suppose that Q*¥(x) = 1, Then @
and P both give the results of simulating some ith Turing machine

for exactly x steprs and must be equivalent. Thus {x} is an adequate

Testing for Correctness 1-25

test set. If P* is the constant zero function then there is no
finite adequate test set since for every m there is a machine which

halts on its index in more than m steps. Therefore, an adequate

test set for Pi exists if and only if P*; is not identically zero,
that is, Pi is not cquivalent to PO. But equivalence to PO is

undecidable, so the problem of deciding whether Pi has an adequate

test set must be unsolvable. []

Thus, two problems arise in connection with test data adeguacy.
First, adequate test sets mneed not exist. Second, as with
reliability, adequacy is a deductive concept, and by virtue of this
fact has an unsolvable decision problem., We would 1like to weaken
the mnotion of adequacy slightly in order to remove both defects.
The discussion following Theorem 11 provides some clues as to how
this might be done. We would like a property of test sets that
allows an inductive inference of correctness, preferably one that
can be <carried out with a fixed a priori probability of error. In
practice, the probability of error may be determined by obser-
vations; imn such situvations, the inference of correctness will be a
statistical inference whose strength depends on the strength of a

fixed sct of empirical observations.

Definition: Let f be a2 specification with domain D, let P be a
program and let A be a set of programs (possibly depending on P). A
set of test data T is adequate relative to A (with respect to f) if
(a) P*{T) = £(T), and (b) for all programs Q ¢ A, if Q¥(D) # £(D),

then Q*(T) # f(T).

Testing for Correctness 1-26

Thus, a set of test data is adequate for a program P relative

to A if the data distinguishes P from all incorrect programs imn A,

That adequacy relative to A is formally weaker than either

adequacy or reliability is established by the following Theoren.

Theorem 13: If T is adequate for P relative to A, then either

T is reliable or P £ A,

Proof: Let T be adequate relative to A and suppose that T is
not reliable, Then P*(D) # £(D). But for all Q ¢ A, if Q is not

correct, then Q*(T) # f£(T). Since P*(T) = f(T), P cannot be in A.[]

For example, A might represent a certain set of errors which
are likely to be introduced into P. Then the existence of a test
set T adequete relative to A demonstrates one of two things. Either
P is correct (i.e., T is reliable) or P doces not contain an A-type
error. This property of relative adequacy fits nicely into induc—
tive inferences. Suppose that P ¢ A with probability 1-6, Then if
P has a test set T adequate relative to A, the probability that P
subsegquently fails is at most & (if T is reliable then P fails with
probability O, and if P is not correct, then it is not in A, =an

event of probability 8).

Therefore, if a set A can be found (or generated) which is
extensive enough to insure that & is small, the inductivec inference

can be made with a well-defined level of confidence.

Testing for Correctness 1-27

Unlike adequacy,relative adequacy requires only "altermatives”
in A be considered. If A has a particularly simple structure, then
the problem of distinguishing P from A might be considerably easier
than the problem of distinguishing P from all programs in the
programming system. At this point, it is not at all clear what sim—
ple structure can be imposed upon A. However, two possibilities are
likely candidates. The first is to require that A have a decidable

equivalence problem. The second is to require that A Le finite.

Definition: The decision problem for relative adequacy is the

problem of determining for program P, subset A(P) of the programming
system, and test set T, whether or not T is adeguate relative to

A(P).

Definition: Let G be a function that for program P, subset
A(P) of the programming system, and specification £, defines T =
G(P,A(P),f) D, If all such T are adequate relative to A(P), then

the function G is said to be an adequate test strategy (relative to

A(P)).

If A = P, then adequacy relative to A is simply adequacy.
Therefore, it is possible that relatively adeguate test sets do not
exist, and & computable test strategy may be only a partial func—

tiomn,

Theorem 14: Assume that A € P, that every program in P has an
adequate (relative to A) test set and that there is a decision

procedure for adequacy relative to A for P. Then there is a com—

Testing for Correctness

putable adequate test strategy for all programs in P,

1-28

Proof: As in the proof of Theorem 2, consider any decision

procedure for relative adeguacy. Given P, A and a specification,

a

test strategy simply cnumerates subsets of D, deciding for each sub—

set whether or mnot it it adequate relative to A. If a relatively

adequate test set exists, the enumeration procedure will eventually

discover a test set containing it, and output that set as the result

of the strategy.l[]

However, the converse does not hold

Theorem 15: The existence of & (total) computable adequate

test strategy does not imply that the decision problem for

is solvable.

adequacy

Proof: Define a programming system P = {Pi [0£i,j} as follows.

J
P*., is the function that is i on input O and 0 otherwise,
j >0 let Pij compute the function P*ij defined below:

/‘
i, if x =0,

j, if x=1,
ptij(x) = < 0, if x=2, and T(i,i,j),

1, if x=2 and =T(i,i,j),

0, if x>2.

For all

For each P;., let A = A(Pj;) be the set of programs {Pj: k 2

0}. Since {0,1} distingvishes any two programs in A,

adequate relative to A, Hence the strategy that produces

{0:1} is

{0,1}

is

Testing for Correctness 1-29

adequate and is clearly computable.

To show that adeguacy relative to A is undecidable, mnotice that
if the ith Turing machine halts in k steps, then P‘ik(2)=0’ and the
test set {2} fails to distinguish P.o and P;,. But P¥. (1) #

Ptik(l). If the ith Turing machine fails to halt on input i, then

for all m, P*, (2) =1 and {2} is adequate for P;;5. Suppose there

is a decision procedure. Then the procedure announces that {2} is

adequate relative to A for P, iff the ith Turing machine fails to

balt on imput i. {1

Corollary: There are programming systems with a decidable
equivalence problem and for which every program has an adequate test

set for which adegquacy is not decidable.

Proof: Since the equivalence problem for the programming
system P constructed above is decidable, the corollary follows

irmediately.{]

Theorem 16: There are programming systems with a decidable
equivalence problem and for which adequate test sets exist for each

program that do not have a computable adequate test strategy.

Proof: Let P = {Pijlo £i,j} be a programming system defined

as follows, For each i,j, define

i, if x=0

P*. (x)

i 1, if 0<x%j end T(i,i,x)

0, otherwise.

Testing for Lorrectness 1-36

By comstruction, Pjj Py exactly when i=k and +T(i,i,n), where

min(j,m) < n ¢ max(j,m). Clearly equivalence is decidable.

Choose A(P;;) = (Pyy: = 2 0}. For given i, if the ith Turing
machine fails te halt on input i, then all elements of A compute the
same function, and so any nonempty test set is edequate for Pij
relative to A, Qu the other hand, if T(i,i,m}, tken {0,m} is
adequate. Thus, each program, P, has an adequate test set relative
to A(P). Assume that a computable strategy, G,, exists, and
consider GA(Pij)° The ith Turing machine halts on input i iff it
halts at the mth step, for some m in GA(Pij)

. Since test sets are

finite, this is impossible. []

Therefore, there are some very bad choices for A, indeed. Even
assuning that A has a decidable eguivalence problem does not improve
the situvation much, We will now examine the effects of requiring

only that A be finite.

Definition: Let P be a programming system. For each program
P, 1let p(P) be & finite subset of P. Assume further that p is com—
putable in the sense that there is an effective procedure that lists

u(P) for all P. p{P) is said to be a set of mutants of P,

Theorem 17: Every correct program has a test set adegquate

relative to p(P).

Proof: There are only finitely many programs Q in p(P) and
each such @ is either correct or not. If f(x) = P*(x) # Q(x), add x

to the test set. Only finitely meny points need be added to obtain

Testing for Correctness 1-31

an adequate (for p(P)) test set. [1]

Definition: The p equivalence problem is that of deciding

whether or not Q ¢ p(P) and P = Q.

Theorem 18: The following statements are equivalent.
(a) the p(P)—adequate decision problem is solvable,
(b) there is a computable p(P) test strategy.

(¢) the p equivalcnce problem is decidable,

Proof: If there is a pu(P) decision procedure, then a com-—
putable p(P) test strategy may be constructed as in the proof of

Theorem 2., Thus, (a) implies (b).

To show that (b) implies (c) assume a computabe strategy.
Given programs P,Q decide p—equivalence as follows. Compute p(P)
and check @ ¢ p(P), and reject if mnot, Otherwise, generate a test
set which is adequate relative to p(P) and check equality of P* and
Q* on this set. By the definition of adequacy, equality on the test

set implies equality over D,

Suppose that we are given a decision procedure for p(P)
equivalence, and we are to decide whether a test set T is p(P)-
sdequate for specification f. Assume that P#=(T)=f(T). First,
construct the set p(P) and determine those Q e p(P) which are not
equivalent to P, This procedure is effective. For each such Q # P,
we search for some x ¢ T suck that P*(x) # Q%(x). GCbviously, T is
adequate if and only if each such search is successful. Therefore,

(¢) implies (a).[]

Testing for Correctness 1-32

Althougk there is an equivalence between the decision problems
for p(P) adeguacy, equivalence and test strategies, the finiteness
of p(P) alone is not sufficient to guarantee that any of these

problems are solvable.

Theorem 19: There are programming systems P and functions p so

that none of (a)-(c) in the stetement of Theorem 18 are true,

Proof: Let P be as constructed in the proof of Theorem 12, and
let p(P) = (Py,P} for all P ¢ P. Then {0} is adequate for P; iff
the ith Turing machine on input i does not halt. Since the decision
problem for adequacy is unsolvable, Theorem 18 can be used to com—

plete the proof. I[]

In order for p(P)-adequacy to be wuseful in practice, we
evidently have to excrcise some care in defining p, insuring that
either the appropriate decision problems are ecasily decidable, or

that heuristics are available.

A key aspect of p(P)-adequacy is that it admits measurement of
how <close a given test set is to being adequate, This is a relaxa—
tion of the decision problem for adequacy which is frequently
encountered in testing situations. Since p(P)-adequacy may itéelf
be a (statistically) strong predictor of program correctmess, it may
not be cost effective to develop a test set ‘which is p—adequate.
Rather, the inference of correctness may be made on much more slen—
der foundations: the test set is "almost"” adequate. We will
consider the definition of such a measure here. In later chapters

we will consider the evidence for its effectivenmess as a stopping

Testing for Correctness 1-33

rule,

Let Hp(P) be the set of those programs in p(P) which are func-
tionally equivalent to P; that is, Q ¢ “E(P) if P*(D) = Q*(D). For
a set of test data T, we defime A(P,T) to be the set of programs Q ¢
u(P) which disagree with P on at least ome point in T. We will con-
fuse the size of =& set with its cardinality; in particular, p(P)

will be used to dencte Ip(P)I. Then the mutation score of T is the

fraction of the nonecgquivalent elements of u(P) which differ from P

on one or more points in T:

Definition: The mutation score of T for P is defined to be

m(P,T) = A(P,T)/p(P)—pg(P).

Notice that once p{P) is fixed, uE(P) and A(P,T) are determined
by the semantics of the programming system. We want m to be a
measurement of test data guality. That is, the function m should be
useful in a stopping rule for inductive inferences of correctmness:

it should be possible to choose a function p so that

(a) u(P) is relatively easy to compute, and
(b) wm(P,T) approaches one as our confidence in the
correctness of P increases by virtue of P's

correct execution on T.

It is an easy observation that m(P,T) is a direct measurement

of how close the test set T is to being adequate for P relative tc A

= u(P).

Testing for Correctmness 1-34

Theorem 20: Assume that p(P) contains a correct program., Then
P*(T) = £(T) and m(P,T) = 1 implies that T is adeguate for P

relative to p(P).

Proof: Assume that pu(P) contains a correct program Q, and sup-
pose that P*(T) = f(T) and m(P,T) =1, If P is correct, then for
any program R, R # P iff R# f. If Re p(P) and R# f = P and if
m(P,T) = 1, then R*(T) # f(T). Ve claim that P cannot be incorrect,
for suppose otherwise, Since (P} contains a correct program Q,

mn(P,T) cannot be 1 unless P*(T) # Q*(T) = £(T), a contradiction.[]

The assumption that p(P) contains a correct program is called

the Competent Programmer Assumption. The competent programmer

assumption is a limiting empirical hypothesis, In a previous sec—
tion (see Figure 1) we defined the programming model by analogy with
a root finding procedure inm which the process .of creating and debug-

ging a program can be stated

Pf = (valid representation of program correct for f).

The program playing the role of the iterative in this process camn be
expected to change less and less as the programming process
continues, When the program is '"close” to a correct program, the
process stops. Thus, a program to be evaluated by any of the tech-—
niques described above is not a random response to a specification:
if it has Dbeen produced by a competent programmer, it has already
been subjected to the iterative programming process. Therefore if
p(P) represents those programs which are close (in the sense of
root—-finding) to a correct program, with high probability, P will

either be correct or within a small neighborhood of a correct

Testing for Correctness 1-35

program. Our goal in subsequent chapters will be to define p(P) so

that this assumption is useful in practice.

Theorem 20 can be restated in another form which is often more
useful. The specific function p we will deal with later behaves in
a "reversible” manner; that is, P ¢ p(Q) if and only if @ & p(P).

Theorem 21 follows by an argument similar to the omne above.

Theorem 21: If P*(T) = f(T) and m(P,T) = 1, then either T 1is

correct or for all correct programs Q, P ¢ p(Q).

Therefore, by analogy to Theorem 13, we have a measurement of
test quality which either accurately reflects the reliability of the
test data or requires the violation of a specific empirical

hypothesis.

Bibliographic Notes

There are several good references on elementary computability
thecry. Perhaps the most accessible of these are the classic texts
by Davis [Davis, 1958] and Minsky [Minsky, 1967]. The notions deal-
ing with idinductive and deductive inferences are implicit in most
systematic treatments of logical and mathematical matters, and
nearly any logic text provides the basic definitions. The
relationship of deductive techniques to program correctness is
discussed critically in [DeMillo, 1979]. Budd's dissertation [Budd,
1980] gives a good overview of the importance of inductive reasoning

in program testing and uses the example of the black ravens.

Testing for Correctness 1-36

Many additional sources of information concerning altermative
test technigues can be found in the literature. Input space
partitioning methods are discussed by Howden [Howden, 1976] and
VWhite, Chandrasekaran and Cohen [White, 1978]. The probabilistic
algorithm for testing zeroes of polynomials is due to DeMillo and
Lipton [DeMillo, 1978]. Tke algorithm is related to a problem in

algebraic program testing [Howden, 1976].

Test data reliability was defined by Howden [Howden, 1976] and
similar concepts have been given formal treatment by a number of
authors. The paper [Goodenough, 1975] also treats the notion of
reliable test set generation., Test set adequacy was formulated by
DeMillo, Lipton and Sayward in [DeMillo, 1978a] and has been refined
in a series of papers [Acree, 1979], [Budd, 1980a], DeMillo, 1979%al.
The relationship between adequacy and mutant programs was developed
concurrently and this development can be traced in [DeMillo, 1978al,
[Acree, 19791, [Budd, 19801, [DeMillo, 1979al, [Acree, 1980].
Related concepts bLave appeared in [Foster, 19781, [Hamlet, 19781,
[Howden, 19821, and [Brooks, 1980]. The relationship between
program e¢quivalence, test generation and recognition problems was

worked out in a paper by Budd and Angluin [Budd, 1980].

Errors and Mutations 2-1

Chapter 2

Errors and Mutations

The Competetent Programmer Assumption

Let us recall the following definitions from Chapter 1. If p
is a mapping which associates a set of programs with & given program
P, Pp(P) € p(P) is the set of programs in p(P) which ‘are func—
tionally equivalent to P, and if for a givern test set T, A(P,T)
consists of those programs in p(P) which disagree with P on at least

one poirt in T, then the measure
n(P,T) = A(P,T)/u(P)—uE(p)

can be defined. Theorem 1.21 guarantees that if P executes correc—
tly on the test set T and m(P,T)=1, then either P is correct or P

does not belong to p(Q) for any correct program Q.

For a given program P, the set p(P) is called a set of mutants
of P, Thus, if every program P is a mutant of some correct program,

calculation of the measure m(P,T) can be used to infer correctness.

The assumption that any program beinpg tested is a mutant of a

correct program is called the Competent Programmer Assumption. The

Competetent Programmer Assumption formalizes an observation of human
activity. In this case, the observation is that programmers do not
create programs at random. Rather, programs that are written by
experienced prograrmers, are writter in response to formal or
informal understandings of what the program is intended to do.

Thus, in response to specifications for a payroll system, a com—

Errors and Mutations 2-2

petent programmer will produce a program that is very much 1like a
correct payroll system, The program produced may be incorrect,
inefficient or sloppy, but in the final analysis, it will be more
like & correct payroll system than a compiler. The competent
programmer assumption asserts that programmers create programs that
are close to being correct. During the iterative programming
process, competent programmers constantly whittle away the distance
tetween what their programs look like now and what they are intended

to look like.

Suppose that the task at hand is to design a Fortran program to
compute the (Euclidean) magnitude of an N—-dimensional vector X in a
Cartesian coordinate system with fixed origin. Then the subroutine
Pl below certainly could have been produced by a competent program—

ner.

SUBRCUTINE P1(X,MAG)
MAG = 1
D01 I=1,N
MAG = MAG+X(I)*%2

1 MAG = SQRT(MAG)
ELETURN
END,

Ve would question the competence of & programmer who produced

subroutine P2:

SUBROUTINE P2(X, MAG)
¥AG = X(1)
D01 I=1,N

1 MAG = MAX(X(I), MAG)
EETURN
END,

Errors and Mutations 2-3

There is no reasonable sense in which P2 is a "buggy” version of the
program asked for. Pl can casily be debugged, but P2 is not even a
program of the same kind — it is so radically incorrect that its

incorrectness can be discovered without testing it!

The competent programmer assumption states that a program is
assumed to be either correct or a mutant of a correct program. For
example, in the problem of computing magnitudes of N-vectors,

subroutine Pl is a mutant of the correct P below.

SUBROUTINE P(X,MAG)
MAG = 0.0
no11=1,N

1 MAG = MAG+X(I)®**2
MAG = SQRT(MAG)
RETURN
END

Subroutine P2, on the other hand, is not a mutant of P.

The notion of <c¢loseness is summarized by the function p.
Informally speeking, the set of mutants of a program P should
reflect the possible errors that might have been made in the crea-—
tion of P by a competent programmer. If a gemeral concept of error
can be derived in such a way that the Competent Programmer
Hypothesis can be shown to hold with probability 1~& then the cal-
culation of m(P,T)=1 allows an inference of correctness with the

same level of confidence.

The <classification of programming errors is not a well under—
stood process. However, it appears that there are at least four

mechanisms responsible softwsare errors,

Errors and Mutations 2-4

1. failure to satisfy specifications due to an

implementation error,

2. failure to satisfy a requirement,

3. failure to write specifications that correctly represent

2 design, and

4, failure to understand a requirement,

The problems surrounding requirements and specification testing and
evaluation are beyond the scope of this book and are probably not
within the domain of correctness testing. The mechanisms referred
to in (1) and (2), however, are always reflected in specific program
errors: either a program carries out an action that it should not,
fails to <carry out a necessary action, or carries out an action
improperly. This suggests that errors resulting from (1) and (2)
are reflected in programs as missing control paths, inappropriate

path selection, and inappropriate or missing actioms.

In order to satisfy the Competent Programmer Assumption, carry
out the following conceptual experiment. We observe a community of

programmers and classify the errors they make into categories

Ey +Eg,.0., Eg-

We are free to observe the programmers for as long as we wish and
make whatever specialized assumptions we wish about the programming

task they will be called upon to perform, It jis, in principle, pos-—

Errors and Mutations 2-5

sible to gain whatever degree of confidence we desire that among the
k classifications we have encountered the errors most likely to be
made by this particular group of programmers. Given a program P to
test in this setting, we must derive a relatively adequate set of
test data, T, for P, If P is incorrect, we will never be able to
find an adequate set; indeed, the point of testing P is to find a
set of test data that calls attention to the fact that P is
incorrect. If P is correct, however, adequate T should at least
convince us that P does not contain the errors most likely to be

made.
Let

H(P) = {Pln P2,..,, Pm]

differ from P only in each containing a single error chosen from one
of the error categories. Then an adequate set of test data T should
at least provide the following assurance, For each Pj which is mnot
equivalent to P, P*(D) #Pj*(D). In other words for each of the most
likely errors, it should be possible to show that P does not contain
that specific error. This experiment is specialized to the original
group of programmers whose errors we observed and recorded. To
attempt such an experiment for all programmers is surely hopeless,
uniess we can be assured that typical programmers tend to make the

same, classifiable errors.

Errors and Mutations 2—6

Error Classification

The strength of the technique described above rests on our
ability to assess the errors that programmers are most likely to
make. Rather than speculate on the sources of errors, it is

probably more fruitful to examin the errors that programmers

actually do make.

A number of studies of programmer errors have been conducted
over the years., These studies have been carried out using a variety
of programs, error classification schemes, and methods for detecting
errors. While several researchers have pointed out methodological
flaws in the reporting, classification, and documenting of program
errors, at least 46 independent, large—scale error data gathering
efforts have been carried out and reported. For the most part,
problems arising from error classification erise when data gatherers
try to interpret the errors arising from the mechanisms (3) and (4)
described above. Bowever, the data on errors arising from

mechanisms (1) and (2) show remarkable comnsistency.

The following data is based on E.A. Young'’s analysis of 69

programs and a total of 1,258 errors in several languages.

Errors and Mutations 2-17

{ Error Type E No. of Errors I Rel. Freq. E
! i
| Job ldent. | 1 | 0.00 |
| Exec. Request | 1 ! 0.00 |
| External 1/0 | 0 i 0.00 I
| Other System i 0 ! 0.00 |
| Subrout. Ident. | 3 I 0.00 |
| Allocation I 189 I 0.15 |
Label	20	0.02
Computation	343	0.27
Non-comput. ! 2	0.00	
Iteration	117 I 0.09	
i Go TO	13	0.01]
Conditional	59	0.05
1/0 Format	71	0.06
Other I/0	91 f 0.07	
System Call	35 I 0.03	
Subrout. Call	22	0.02 I
Pax/Sub List	62	0.05 i
! Subrout. Term.	7	0.01
Other/Multiple	12	0.06
Data I 27	0.02	
Vert. Delim.	54	0.04
None i 69 i 0.05 !		
— | I I

E 1258 | 1.00 !

Table 1. E. A. Young's Error Data

WVhat is is striking about this data is the relatively small
contribution of sophisticated error conditions. Errors such as
operating system interface errors, imcorrect job identification, and
erroneous external I/0 assignments accounted for only mnegligible
quantities of the c¢bserved errors. It might be the case, however,
that the significant contributors to the major error categories were
themselves complicated errors. Ve will describe in a 1little more

detail the nature of the errors which Youngs discovered.

Allocation: These included errors in declaring shapes and
sizes of data structures as well as errors in allocating and deal-

locating 1local storage for named data objects. These errors

ce

Errors and Mutations 2-

accounted for 15% of the total. Almost all of them appeared in

Algol, Cobol, or PL/I programs.

Computation: These errors occurred within assignment
statements and comprised 27% of the observed errors. Almost half of
them were caused by the use of a wrong variable or other data
object. Wrong variable usage constituted the highest percentage. A
large number of errors in this class stemmed from failures to

initialize variables properly.

Jteration: Iteration sequence difficulties were semantic in
nature (111 of 117). A typical example of such an error is an error
in the number of loop iterationsresulting from a confution of DO and
FOR loop semantics. Other examples include errors in loop scope and

nonterminating lcops. These errors accounted for 9% of the total.

1/0: 13% of the errors were due to I/0 deficiencies, although
most of these were syntactic in nature. Other common errors include

the reading or writing of incorrect variables.

Parameter/Subscript List: Although 5% of the total were
attributed to these errors, more than than sixty percent of the
errors in this category were due to mismatching formal and actual

parameters,

Conditional Branch/Execution: Most of these errors resulted
from testing incorrect variables or using the wrong test in a con-

ditional expression. These errors accounted for 5% of the total.

Errors and Mutations) 2-9

A second study was conducted by T. A, Thayer and his col-
leagues at TRW's Space Systems and Defense Group. The TRW clas-—
sification broadly groups errors into twenty categories. We will
concentrate on 4 categories which altogether account for 80% of the
errors recorded in a study of two large—scale software development
projects. The following distribution of reported errors is shown in

Table 2.

Pcrcent of Total Errors

] l |
I I |
| | |
} Major Error Catepgories I Project A ; Project B E
- -1
| Computational | 9.0 | 1.7 |
| Logic] 26.0 | 34.5 |
| Data Handling | 34.6 | 36.1 I
| Interface I 17.0 | 22.5 |
| DPata Definition i 0.8 | 3.0 |
: [12.6 I 2.2 {

All Others

Teble 2. TRW Error Data

Computational Errors: These were errors introduced into arith—
metic computations (the classification is imsensitive to the mnature
of the computation; the computation could be the actual calculation
of a physically interpretable quantity or merely a bookkeeping <cal-
culation of no significance outside the program). The calculations
themselves occurred in assignment statements. The errors which make
up this category include the incorrect use of an operand in an
equation, the incorrect use of parentheses, an error in sign comn—
vention, an error in units or data conversion, the production of
over/under flow in a computation, the application of an incorrect or
inaccurate equation, and the 1loss of precision due to mixed mode

arithmetic, and missing computations.

Errors and Mutations 2-10

Logic Errors: The TRW classification scheme is vague about
exactly what constitutes a logic error. Indeed, the assignment of
specific errors to the logic category varied with the data gathering
procedures. However, the studies published using this classifica-
tion all seem to point toward errors which somehow affect logical
decisions in the source code, even though the error under considera—
tion may, in fact, be the result of failing to include a decision.
Thus errors in this category included missing logic or condition
tests. Logic errors also resulted from a lack of code to perform
logical functions. Other errors which were classified as logical
errors related to code written to carry out some particularly
troublesome function (e.g., checking the settings of switches), or
code which was erronmeous due to misunderstandings of requirements or
specifications. These resulted in incorrect operands in 1logical
expressions, logic activities coded out of sequence, checking wrong
variables, errors in the scope of loops, errors in the number of

loop iterations, and duplicated logic.

Data Handling Errors: These errors included errors in input
and output operations and errors in internal data handling. Typical
data input errors included errors due to reading invalid input from
the correct data file and reading from incorrect files. Also of
significance were exrors due to incorrect input formats and end of
file processing. Internal data handling errors included errors in
initializing data storage areas, using variable before they had been
properly set, incorrect type wusage, and subscripting errors,
Finally, the data output errors mirrored the input errors. Errors

such as garbled output or output not matching requirements were also

Errors and Mutations 2-11

considered. In addition, data definition errors such as errors in
dimensions, referencing out of array bounds and pointer handling

were also be classified as data handling errors,

Interface Errors: These errors roughly correspond to those
that were introduced in the process of integrating program units or
modules. These included calls to incorrect subroutines, misplaced
subroutine calls, and errors in parameter passing during an invoca-—

tion of a module.

The remaining errors considered in the TEW studies involved
errors which were introduced and detected at other phases of the
software lifecycle. They included operator/user errors, documenta-
tion errors, errors in interfacing to systems software, and
requirements errors. In contrast, the remainihg errors tended to be
fairly complex and difficult to associate with specific program

characteristics.

Mutant Operators

Practice may dictate so many error types that the calculation
of mutation scores becomes intractable. By concentrating only on
Ysimple” mutants of P the technique becomes manageable. For exan—
rle, in the case of computing magnitudes of vectors, Pl is mnot a

simple mutant of P, but Ml and M2 are simple:

Errors and Mutations 2-12

SUBROUTINE M1(X,MAG)
MAG = 1
Do 1 I=1,N

1 MAG = MAG+X(I)#*%2
MAG = SQRT(MAG)
RETURN
IND

SUBROUTINE M2 (X, MAG)
MAG = 0.0
§0 1 1=1,N
MAG = MAG+X(I)**2

1 MAG = SQRT(MAG)
RETURN
END.

The mutants we will consider arise from the single application of a
mutant operator, a simple syntactic or semantic program transforma-
tion such as changing a particular instance of a relational operator
to one of the remaining cperators or changing the target of an
unconditional transfcr to another labelled target. A problem that
arises immediately is that this is apparently & violation of the
Competent Programmer Assumption., While error classification data
indicates that programmer errors fall into & small number of
identifiable categories, there is little to suggest that programmers
make errors one at a time. Thus, while concentrating on simple
errors may allow a tester to derive adequate test sets relative to a
small <class of errors, the data may not be adequate relative to a
set of errors that are most likely to occur in practice. In fact,
there is 1little 1lost in restricting mutants to those which can be
defined by simple errors. As we will discuss below there is an
observable coupling of simple and complex errors so that test data

that causes all nonequivalent simple mutants to die is so sensitive

Errors and Mutations 2-13

that likely complex mutants alse die. The coupling of simple and
complex errors implies that if P is correct for an adequate test T
while M1 and M2 disagrec with P, then Pl must also disagree with P

on T.

A sct of mutants p(P) is defined by a set of mutant operators
that model & set of errors according to the Competent Programmer
assumption, That is, for each error category Ei there is a set of
programs p;{(P) which corresponds to the errors defined by E;- Thexe
is no single correct set of mutant operators —— the Competent
Programmer Mypothesis is specialized to a given community of
programmers., In practice, however, it is usually only necessary to
consider a fixed set of mutant operators which are derived from

error data such as the data presented above.

One way to view mutation operators is a mapping between
representations of source programs (see Chapter 4 for details on
implementation strategies). Let the tree Ty represent some program
P, parsed into a tree—structured form as shown in Figure 1(a). Then
8 mutation operator when applied to Ty produces a8 new tree Ty by

modifying a single leaf t of T1 as shown in Figure 1(b).

Errors and Mutatioas 2-14

A /\\

i

AN AN AN

Y

(a) (b)
ce T Tree T2

Figure 1.
Mutation by Modifying a Leaf
of o Parse Tree

The tree T, remains a valid internal representation of some
mutant prbgram of P. In practice, mot all of the mutant operators
fit exactly into this model, but it is nevertheless a helpful
organizing principle.

The result of applying such an operator is a l-order or simple
motant of thé original program. 2-order mutants are the result of
two applications of (not necessarily the same) mutant operators,
Continuing inductively, the notion of a k-order mutant can be
defined for any k 2 1. Since the result of applying a mutant
operator always results in a syntactically correct program, the num-—

ber of k—order mutants is given by §§, where
£y = max{p(P) | size(P) = n}

and size(P) is any coanvenient size measure (see Chapter 5).

Errors and Mutations 2-15

Unless specified otherwise, the term mutant will apply to sim—
ple mutants, and the set of mutants of P, p(P), will be defined in
terms of (simple) mutant operators. VWhen we want to distinguish
p(P) from k-order mutants for some k 2 2, we will use ¢(P) for the

set of complex mutants.

Ve now define a set of mutant operators which will form a basis
for much of the =rest of this book. These operators are mainly
language independent with appropriate adaptation can be used as a
core of mutant operstors for machine implementation., Furthermore,
the operators introduced below are designed to model error
categories as described above. The effectiveness of the operators
in modelling and detecting errors will be taken up in more detail in

later chapters.

Mutant operators can be classified according to whether they

affect operands, operators, or statements as a whole.

Operand Mutants: Mutations which affect operands alter the
data objects of the program. For simplicity, we assume that there
are three kinds of data objects: constants, scalar variables, and
arrays. Thus there are mnine mutant operators which replace a
variable x with each distinct occurrence of y, where x and y range
over all constants, scalar variable and array references in the

program being tested.

Jn addition to these operators, there is an operator which
alters the values of constants appearing in the program. The fol-
lowing table defines the alterations according to the type of the

object to which the operators is applied.

Errors and Hutations A 2-16

| | by adjacent character in
| ! collating sequence

iIntegers i +1 I
[| |
INonzero reals | + 10% i
i |- I
IReal zero I + .01 |
| -1- |
IBoolean ; ccnplement |
I - - I
IStrings | replace first character |
|
I
|
|

| Table 3. Data Mutations

A third type of operand mutation replaces array names in each
occurrence of an array expression with all other array names of the
same dimensiorality. In specializing these operators to particular
languages, additional operators which account for language dependent
features may be needed to augment this list {(cf. data mutations for

Cobol).

Operator Mutations: Arithmetic operator mutations are formed
by replacing each aritkmetical operator with an operator chosen from
the set {+,-,/, *,**,[,7}, where [and | are operators described

below.

Relational operators are mutated by replacing each relational
operator with an operator chosen from the set {<,$, =, #, 2.7,
trueocp, falseop}, where trueop and falseop are the operators
described below. Similarly boolean operator mutations are formed by
replacing each boolean operator with an operator chosen from the set

{V, A, leftop, righttop, trueop, falseop].

Errors and Mutations 2-17

Each unary operator may be remcved by a uwnary operator removal
mutation. Insertions are formed by inserting the elements of the

set {—, 7, ++, ABS, —ABS,ZPUSH}, whenever appropriate,.

Several operator mutants are intended to model the errors clas—
sified above., These operators produce mutants which are not stric—
tly internal forms of any coerrect program, but are nometheless

useful in detecting certain categories of errors.

The first two opcrators are bimary operators [and 7 which can
stand instead of cecither arithmetic or logical operators. The effect
of these operators is to evalunate both operands and to return either

the right or left hand argument, ignoring the other one.

A second pair of binary operators, trueop and falseop, can be
of boolean type only. These operators evaluate both operands and
return either the ccnstant value TRUE or FALSE, depending on which

operator is applied.

There are several unary operators. Twiddle (denoted ++ or —--)
is an operator which returns its argument + 1 if the argument is an
integer and + .01% or .C1 (whichever is greater) if the argument is
real., The operator —ABS returns the negative of the absolute value.
The ZPUSH(X) operators returns X if X is nonzero. However, if X is
zero, ZPUSH by defirition causes the mutant to be eliminated, thus

forcing the expression X to be zero.

Statement and Control Mutations: A sequence of unlabelled non-
decision statements in a program is called a basic block. It is a

property of a basic blocks that if any ome of the statements in a

Errors and Mutations 2-18

block is ever executed, them all statements in the block must also

be executed.

One type of statement mutation determimes whether or mnot the
initial statement of each basic block is ever executed. The
statement operators replaces the first statement of a basic block
with a special statement called TRAP. The semantics of the TRAP
statement is that if it is ever executed, it immediately causes the
mutant to be elimimated. On the other hand, if such a mutant ever
survives, then the corresponding basic block has never been
executed. In this fashion, mutants can model a basic statement

coverage measure of test data adeguacy.

Statement coverage is strengthened by using a mutation operator
which rceplaces each statement with a statement that has no effect,
such as the Fortran CONTINUE statement. These mutants are designed
to determine whether, in addition to being executed, the mutated

statement has any effect on the program’s execution.

A third statement operator changes the labels on control trans-
fer statements and arithmetic conditionals to other labels which

appear in the program.

The final statement operator to be discussed here modifies the
structure of 1loops. One form of this operator changes the final
label om Fortran DO loops to other 1labels which 1lie between the
beginning of the loop and the end of the program. A second form of
the operator changes the loop statement semantics. Recall, for
example that the difference between a Fortran DO and an Algol FCR

statement is that if the initial value of the FOR loop variable is

Errors and Mutations 2-19

smaller than the final value, the FCR loop is not executed, but a DO
loop body is always executed at least once. Confusing this two loop
constructs 1is a common programming error. A mutation operator that

models such an error simply changes a DO statement to a FOR

statement.

A set of mutant operators that is applicable to Fortran

programs includes the following:
Operand Mutations

Constant Replacement (by +1, -1)

Scalar for Constant Replacement

Source Constant Replacement

Array Reference for Constant Replacement
Scalar Variable Replacement

Constant for Scalar Replacement

Array Reference for Scalar Replacement
Comparable Array Name Replacement
Constant for Array Reference Replacement
Scalar for Array Reference Rcplacement
Array Reference for Array Reference Replacement

O WOt & Wk

e

Gperator Mutations

12. Arithmetic Operator Replacement
13. Relational Operator Replacement
14, Logical Connective Replacement

15. Unary Operator Replacement

16. Unary Operator Removal

17. Unary Operator Insertion

Statement Mutations

18, Statement Execution (replacement by TRAP)
19. Statement Deletion

20. RETUEN Statement Replacement

Control Structure Mutations

21. Jump Statement Replacement
22. DO statement Replacement

Errors and Mutations 2-20

Adapting this set of operators to other languages involves
analyzing the errors which can occur due to language features not
present in Fortran, For example, to expand the Fortran operators to
the simple Cobol subset discussed in Chapter 4, the following

mutants should be considered,

Operand Mutations

1. Move implied decimal point in numeric items ome place to
the left or to the right.

2. Add or subtract one from an OCCURS clause count.

3. Insert FILLER of length one between two adjacent
record items; also change FILLER lengths by one.

4. Reverse adjacent elementary items in records.

5. Alter file references.

Operator Mutations

6. Change ROUNDED TO truncation in arithmetic
assignments

7. Change the sense of a MOVE

Corntrol Structure Mutations

8. Interchange PERFGRM and GOTO

We wuse the notation a==>B to indicate the application of a
mutant operator to construct a to produce mutation B. In general «a
can be a statement, group of statements, program or program frag-—
ment. If ¢ is not a complete program, a==>B is to be interpreted so
that o is changed to P and the remaining context of o remains intact

if tke result is a syntactically correct progrem,

Errors and Mutations 2-21
A Procedure for Developing Adequate Test Data

Given a program P to test and a set of test data T, apply the
mutant operator ﬁ to obtain the set p(P) of mutants. The first step
is to execute the program P using test data, If P does not perform
as specified on T, then certainly P is in error. If P performs as
specified on T, we must determine whether T is adeguate relative to

u(P). Only two possibilities arise,

1. a mutant G ¢ p(P) gives different results from P, or

2. a nutant Q@ & p(P) gives the same results as P,

In case (1), Q is said to be dead, while in case (2), the mutant is
called 1live. Obviously, if T 1leaves only live mutants that are
equivalent to P, m(P,T)=1, and therefore T is adequate relative to
the set of muetants. If T leaves live, nonequivalent mutants, then
either T can be augmented by some test strategy to amn adequate
(relative to p(P}) test set, or there is an error in P that has not

yet been revealed.

Yt is not apparent from this description that the procedure is
either feasible or effective in detecting errors. As we will show
in later chapters, there is a methodocleogy for implementing this
procedure which makes it computationally attractive. By the same
token, we will demorstrate the error detection capabilities of this
procedure, In 1lieu of these developments, however, the reader
should notice that we have ocutlined a principle which can provide
inferences of correctness. The inductive strength of those
inferences is directly related tc a single set of experimental

observations -— the observations which support the Competetent

Errors and Mutations 2-22

Programmer Assumption with a specified degree of confidence.

Error Coupling

A coupling effect asserts that test data that is sensitive
enough to cause all simple mutants to fail is also sensitive enough
to cause a2ll complex mutants to fail, Note that error coupling is
not a provable rhenomenon in a mathematical sense; indeed, there are
very simple counterexamples to it. It is, however, a useful
principle that can be observed to hold for broad classes of programs

and which can be measured in typical programming environments.

Since error classifications result in sets of mutants, it may

help to define error coupling in terms of mutant operators.

Definition: Let p(P) and ¢(P) define sets of mutants for cach
P in a programming system. Then p is said to be coupled to ¢ if

It may have occurred to the reader that program mutation is the
software version of fault detection: that is the origin of a
hypothesized coupling effect. The fault detection problem may be
specified as follows. Given a digital circuit C and Boolean func-—
tion f (the specification of the circuit), determine whether or not
the <circuit C realizes the functionm f. A natural way of solving a
fault detection problem is to submit inputs to C, If C works as
expected then the circuit is most likely to be fault—free. Suppose
C determines the ccmplement of a 32 bit number. Exhaustive testing

of an arbitrary circuit might require as many as 232 inputs.

Errors and Mutations 2-23

However, the faults (or errors) that are assumed to occur are
usually constrained in some way. For example, it is commonly
assumed that all faults are of the fomm: a single wire 1is

permanently "stuck a2t"” 0 or 1, These are called single faults., The

single fault assumption reduces the number of test case to under
100, Such assumptions are derived on the basis of experience, the
independence of the components of C and the statistical amalysis of
similar circuits. Using a single fault assumption in a given fault
detection problem, a tester obtaims a test set I such that C per-
forms correctly on I and no other single fault circuit performs
correctly on X. Then cither C is correct or it is not in the set of

single fault circuits for a circuit correctly realizing f.

The problem that arises in fault detection is how close a
single fault test set comes to detecting multiple faults which might
actually occur (circuit testers call this phenbmenon coverage of the
multiple faults). In many circumstances single fault tests sets
provably cover many or all multiple faults., For example, there are
classes of circuits (e.g., cascaded two—level networks and intermnal
fanout—free mnetworks) such that if X is a set of test data which
solves the single fault detection problem on a given set of k wires,
then I also solves all multiple fault detection problems. on those
wires. As a concrete example, consider the combimational logic cir—

cuit shown in Figure 2 below.

AT

N

4D

4N

A

jotpanpierpicrioy

0

@

:

41N

SHOT1EINY PUB SIOIIY

M O WO~ 0 [ew)
MM Mmonm <

(o))
o

—
(a2 Map!

OO
[aV R aNap]

O M~
[N R qN]

— N OO < LD
[9N VRN NoN NN

NSO OO OO
Ll as B B B B K B [N]

—
—i

— oM st W0 OO
—

Errors and Mutations ' 2-25

Let X = {1,3,6,8,11,13,16,18,21,23,26,28,31,33,36,38} denote
the indicated 16 inputs of the circuit, and let I be the test set of
56 input vectors shown in Table 4, The entries under i denote the
nunber of the input vector., The vector and parity entries must be
read together to determine the value of the vector. For example an
entry with vector entry @, ,a,,a; and parity entry B ¢ {0,1} denotes

an input vector in which inputs numbered ays 1 £i£3, are set to

and the remaining inputs are set to F+1 mod 2.

Errors and Mutations

I
| i lParityi Vector ;; i }Parity! Vector
I | —1]
| 11 o | 3,5,11,13,15 1291 1 | 12,18,19,31,32,38,39
| 21 o | 1,5,11,13,15 Il 301 1 | 14,16,17,33,34,36,37
| 351 o | 8,10,16,18,20 1 321 1 | 13,14,17,33,34,36,37
| 41 ¢ | 6,10,16,18,20 Il 321 1 | 11,12,19,31,32,38,39
| 51 o 1 1,3,5,13,15 iI133 1 1 1| 1,8,9,21,22,28,29
| 61 o | 1,3,5,11,15 i34 1 | 3,6,7,23,24,26,27
l 71 o | 6,8,10,18,20 i1 351 1 | 3,4,6,23,24,26,27
| 81 o | 6,8,10,16,20 Il 36 1 12 | 1,2,8,21,22,28,29
| 91 o 11,2,3,4,11,13,15 i 371 1 | 11,18,19,31,32,38,39
|l 10l o | 6,7,8,9,16,18,20 Il 381 1 | 13,16,17,33,24,36,37
l 12) o | 1,3,5,11,12,13,14 i1 391 12 | 13,14,16,33,34,36,37
|12 o 1| 6,8,10,16,17,18,19 |l 40| 1 | 11,12,18,31,32,38,39
13] o | 23,25,31,33,35 Il 421 1 1| 1,2,8,9,22,28,29
| 141 o | 21,25,31,33.35 It 421 1 | 3,4,6,7,24,26,27
| 151 ¢ | 28,30,36,38,40 i1 431 1 | 3,4,6,7,23,24,217
| 16 | o | 26,30,36,38,40 il 4| 1 1 1,2,8,9,21,22,29
l 171 o | 21,23,25,33,35 Il 451 1 1| 11,12,18,19,32,38,39
| 101 o | 21,23,25,31,35 Il 46 | 1 | 13,14,16,17,34,36,37
l19 1 ¢ | 26,28,30,38,40 Il 471 1 | 13,14,16,17,33,34,37
| 20} o | 26,28,30,36,40 Il 48 1 1 | 11,12,18,19,31,32,39
{211 o | 21,22,23,24,31,33,35 11 491 1 | 1,2,8,9,21,28,29
| 221 o | 26,27,28,29,36,38,40 |l so | 1 | 3,4,6,7.23,26,27
| 231 o | 21,23,25,31,32,33,34 |l 52| 1 | 3,4,6,7,23,24,26
| 241 o | 26,28,30,36,37,38,39 |l 52 | 1 | 1,2,8,9,21,22,28
|l 251 1 | 2,8,9,21,22,28,29 Il 531 1 | 11,12,18,19,31,38,39
| 26 | 1 | 4,6,7,23,24,26,27 Il s4 1 1 | 13,14,16,17,33,36,37
271 1} 3,4,7,23,24,26,27 Il 551 1 | 13,14,16,17,33,34,36
; 28 1 1 | 1,2,9,21,22,28,29 {: s6 | 1 | 11,12,18,19,31,32,38
|

Table 4. Single Fault Test I

v E— —— Go——n S By S— — Gncn TN M — — — — — et P— —— — — ——— —— —] — 0 ——

It can be shown that I also covers every multiple fault involv—
ing every k—tuple of the lines from K, for k=2,3. Furthermore, I
covers 90% of the multiple faults involving m of these lines for
=4,5,6. For multiple faults simultancously involving all 16 wires,
however, less than half of the 216 faults are covered. It is
essentially a problem in electrical engineering to determine whether
or not k simultaneous faults are likely for kX £ ¢, If so, then it

would seem appropriate to use the 56 test vectors in I.

Errors and Mutations 2-27

The coupling of errors in programs has much in common with the
notion of test set coverage. It appears that test data which is
adequate for simple errors is also adequate for many complex errors.
In fact, the assumptions made about the programming process in Chap-
ter 1 give us scme hope that erxror coupling in programs is a
stronger effect than coverage of multiple faults in digital cir-
cuits., A fault in a circuit is an event of mature -—— it is
essentially random. However, since programs are not created ran—
domly, it seems unlikely that errors are created randomly Neither
are errors created by an adversary. Rather, errors are introduced,
corrected and reintroduced by programmers diligently creating
programs which they intend to be error—free. The result of this
activity is that errors are not created specifically to avoid error
coupling. There 1is a pgreat deal of information sharing within a
program, and textually distant source statements can exert subtle
influences on eack other during program execution. The net effect
of this interdependence 1is that complex erfors can make their
presence known through their effects on single statements and single
syntactic items within those statements. Hence, a test that deals
with an an error through a simple mutant in one portion of a program
can implicitly reveal errors in portions of the program that depend
or affect the statement to which the mutant is explicitly applied.
Test set coverage also illustrates a theme that runs through our
treatment of the coupling effect: the interplay between subcases
for which simple crrors cover complex errors and statistical

estimates for the general case.

Errors and Mutations 2-28

We will illustrate this principle with a simple example.
Consider the Fortran program B7 for computing statistics from a

table of cobservations.

SUBROUTINE TAB1 (A, NV,NO,NINT, S, UBO, FREG,PCT, STATS)
INTEGER INTX
REAL TEMP, SCNT, SINT
INTEGER INN,J, 1T
(EAL VMAX, VMIN
INTEGER I,NOVAR
REAL %BO(3),STATS(5) ,PCT(NINT) ,FREQ(NINT)
REAL TBOC(3), S(NO)
INTEGER NINT,NO, NV
REAL A(600)
NOVAR = 5
PO 5 I=1,3
5 WBO(I)=UBO(I)
VMIN = 0.1000000000E+11
VHAX =— 0.10000600000E+11
IJ=NO* (NCOVAR-1)
DO 30 J=1,NO
17 = 1IJ+1
IF(8(J)) 10,30,10
10 IF(A(1Y)-VMIN)15,20,20
15 VMIN = A(IJ)
20 IF(A(IJ}-VMAX)30,30,25
25 VHAX = A(IX)
30 CONTINUE
STATS(4) VHIN
STATS(5) VHAX
IF (UBO(1)-UB0(3)40,35,40
35 UBO(1) = VMIN
UBO{3) = VHAX
40 INN = UBG(3)
DO 45 I=1,INN

/]

FREQ = 0.0000
45 PCT(I) = 0.0000
Do 50 1=1,3

50 STATS(I) = 0.0000
SINT = ABS((UBG(3)-UB0(1))/(UBO(2)-2.0000))
SCNT = 0.6000
IJ = NO*(NOVAR-1)
DO 75 T=1,NO
IJ = IJ+1
IF(S(X))55,75,55

55 SCNT = SCNT+1,0000
STATS(1) = STATS(1)+A(1J)
STATS(3) = STATS(3)+A(IJ)*A(1J)
TEMP = UBO(1)~SINT
INTXT = JINN-1
B0 60 I=1,INTXT
TEMP = TEMP+SINT
IF(A(IT)-TEMP)70,60,60

Errors and Mutations 2-29

60 CONTINCE
IF{A(1IY)-TEMP)75,65,65
65 FREQ(INN) = FREQ(INN)+1,0000
GO TO 75
70 FREQ(I) = FREQ(I)+1.0000
75 CONTINUE
IF(SCNT)79,105,79
7% DO 8¢ I=1,INN
g0 PCT(I) = (FREQ(I)*100.C000)/SCNT
IF{SCNT-1.0000) 85, 85,90

85 STATS(2) = STATS(1)
STATS(3) = 0.0000
GO TO 95
90 STATS(2) = STATS(1)/SCNT
STATS(3) = SQRT(ABS((STATS(3)~(STATS(1)*STATS(1)/

SCNT)/{(SCNT-1.0000)))
95 DO 100 I=1,3
130 UBO(I) = WBO(I)
105 RETURN
END
This program is adapted from a collection of statistical and

scientific programs and contains an artificially inserted error. An

error occurs in the line that reads

40 INN = UBO(3).

The statement should be

40 INN = UBO(2).

Consider,

the mutant
IF (A(IJ) - TEMP)75,65,65 ==) IF (A(IJ) - 1.000)75,65,65

Control reaches this point only if A(LJ) is bigger than TEMP, so
control always passes to 65, By tracing the flow of control we
discover that TEMP is equal to the value of the input parameter

UBO(3) at this point. To eliminate this mutant, then, we must find

Errors and Mutations 2-30

a value where A(IJ) is 1less than one but larger than TUBO(3).
Therefore UB0(3) must be 1less than one. There is nothing in the
specifications that rules out UBO(3)'s being less than one, but the
error causes UBQ(3) to be assigned to the integer variable INN. All
the feasible paths that go through the mutated statement also go
through label 65, which references FREQ(INN). Since INN is 1less
than or equal to zcro, an array index out of bounds error is detec—

ted.

As we bave alrcady mentioned, there is no useful sense in which
errors are provably coupled in real programs. Therefore, it makes

sense to inquire into the extent tc which errors are coupled.

Definition: Let P be a program and consider p(P) and ¢(P) as
defined above. We will say that p is coupled to ¢ with coupling

coefficient (1-uv) if @ is the largest number such that for any test

set T with mlsub p(P,T) =1 ¢(P)—A¢(p,T) Seld@)|.

We plan on using this definition in experimental investigations
intc the coupling effect. The goal of these investigations is to
determine whether or mnot a tester can assume with a reasonable
degree of confidence that test data which is adequate for simple
mutants is also adequate for mutants which explicitly satisfy the
competent programmer assumption., Examining all possible test cases
is not feasible, so this definition needs some modification to be
cxperimentally useful. We will ,therefore, wusually work with

another ccefficient, z.

Errors and Mutations 2-31

Definition: The coefficient =z 1is the fraction of the
nonequivalent members of ¢ that are not killed by some particular

test case.

z is then a random variable distributed over the space of pairs
(P,T), where P is a program, and T is adequate relative to u(P).
Clearly v is an upper bound on z. An experiment on the coupling
effect is a measurement of the strength of that effect by
neasurement of z. The measurement of z is in turn, an estimate on
w, In practice, z itself can only be estimated by sampling. The
usual case is that we will determine a confidence interval for z.
The conclusion of an experiment organized in this way will then be
of the following form. For programs selected from a given popula-
tion and test data gemerated by process G (adequate for p) the
values of z were e¢stimated by sampling from ¢ and found to range

between x and y.

Thus, if the population from which we sample is similar to the
population of programs about which we want to make quantitative
estimates, and G is the method available for generating test data
whose strength we want to determine, and if ¢ is an estimate of the
distribution of likely mutants, we can use the estimated values of z

to bound the probability that errors remain in a given program.

Errors ard Mutations 2-32
Bibliographic Notes

The Competent Programmer Assumption was first articulated by
DeMillo, Lipton and Sayward [DeMillo, 1978al. The concept was
refined and related to the correctness of mutation testing in a
series of papers which followed [Acrce, 19791, [Acree, 19801, [Budd,

1980].

The treatment of error data and data gathering over the past
decade has been surveyed by Gannon [Gannon, 1983]. See also
Thibodean [Thibodeau, 1982] for a critical evaluation of exzisting
data gathering efforts. The data cited in this chapter was taken

from [Youngs, 1974] and [Thayer, 1978].

The form of many of the mutant operators presented above was
implicit in [Budd, 1978b]. As experience with constructing
automated systems grew, many new operators which are sensitive to
specialized error conditions or language features were designed.
The background on these designs can be found in [Acree, 19791,

[Acree, 19801, [Budd, 19801, and [Hanks, 1980].

The notion of error coupling was proposed in [DeMillo, 1978al.
Budd's thesis [Budd, 1980] and several subseguent papers have (see,
e.g., [DeMillo, 1979]1) have given heuristic arguments which support
error coupling in software. The operational definitions of coupling
coefficients are due to Acree [Acree, ;980]. Experimental
justifications for coupling are discussed in Chapter 6. The example
uwsed for logic circuit test set coverage appeared in a paper by
Agarwal and Masson [Agarwal, 1979] in which an number of special

cases of single fault coverage of multiple faults are derived along

Errors and Mutations

with a2 general technique for calculating test coverage.

2-33

Theoretical Studies 3-1

Chapter 3

Theoretical Studies

There are two possible approaches to applying mutation: (1)
For fixed programming system P define the mutants of P in terms of
syntactic and semantic transformation rules that alter P’s syntax
and interpretation in a way that formally reflects the errors a com-
petent programmer could have made in producing P, or (2) define p =
P. Notice that, by virture of Theorems 1.20 end 1.21, (2} has the
effect of reducing test data adequacy relative to a set of errors to
simple test data adequacy. For theoretical studies, (2) is often
the more tractable approach since many useful properties of programs

can be inherited from their programming systems,

We recall the following fact from Chapter 1:

Theorem 1.18: The following statements are egquivalent, (a)
the p(P)-adequate decision problem is solvable. (b) there is a com-—

rutable p(P) test strategy. (c) the p—equivalence problem is

decidable.

Trhen the following corollary is immediate.

Corollary: If there is a computable test strategy to generate
p(P) adequate test data T, then the equivalence of P and any program

Q in p(P) must be decidable,

At first glance the result of this theorem appears to cast
serious deubt on our ability to derive any interesting positive

results, since the equivalence problem is undecidable for most

Theoretical Studies 3-2

interesting languapge classes. As will be seen in this chapter,
however, we <can obtain useful theoretical results by choosing the
set p(P) to capture some special properties of the original program

P.

For the remainder of this chapter we will consider two specific

programming systems: decision tables and LISP programs.

Decision Tables,

A decision table is a structured way of describing decision

alternatives. Decision tables are mainly used for data processing
applications although from time to time they have been suggested as
tools for certain analytic studies and for organizing test data

selection predicates.

A decision table is conposed of a set of conditions, a set of
actions, and a table divided into two parts. Entries in the wupper
part are chosen from the set {YES, NO, DON'T CARE} (denoted Y, N,
and *); entries in the lower table are either DO or DON'T DO
(denoted X and 0). Each column in the matrix is called a rule. An

example is shown in Figure 1,

Theoretical Studies 3-3

RULES
T2 3 4
' condition 1 Y Y N *
condition 2 * Y Y
condition 3 * Y N
condition 4 N * %
action 1 X X 0 X
action 2 X 0 0
cction 3 0 0 X X

Figure 1.
A Typical Decision Table

To execute such a program on an input, the conditions are first
simultaneously evaluated, forming a vector of YES—NO entries. This
vector is then compared to every rule, If the vector matches any
rule, the indicated actions are performed. If, for each possible
data item, there is at least ome rule that can be satisfied, we say
the decision table is complete. We say it is consistent if there is

at most one rule.

Definition: Let P be a decision table with rules Rl""'Rn'
and for each x ¢ D, the domain of P, let v(x) be a sequence with
values in the set {YES,NO} such that v(::)i is the value of condition

i when evsluated on input x. Rule Rj (1 £ £ n) is said to be

Theoretical Studies 3-4

satisfied by input x if whenever R;; & {YES,NO}, Rj; = v{x) ;"

Definition: Let P be a decision table with domain D, P is a

complete decision table if for all x & D, there is at least one rule

of P that is satisfied by =x.

Definition: Let P be a decision table with domain D. P is a

consistent decision table if for all x ¢ D, there is at most one

rule of P that is satisfied by x,.

We define the programming system P to be the set of consistent
decision tables. 1In this case, the behavior of programs on D can be
characterized functionally. Without loss of generality, we assume
that P consists of complete decision tables, since amn incomplete
decision table can always be simulated by a complete decision table
by adding actions that return error flags and rules that are satis-
fied by previously unmatched inputs in such a manner that the domain

of the incomplete table is consistently extended to all of D,

Without 1loss of gemnerality, we may also assume that no two
rules specify exactly the seme set of actions. Suppose that P is a
decision table with two such rules R and R'. Then by the addition
of at most one new condition to P, R and R’ can be combined into a
single rule, With this assumption, we can — given an example of
input-output behavior — always determine which rule was applied to

give the required output.

Theoretical Studies : 3-8

Definition: For each P ¢ P, we define a set of mutants of P as

follows: $(P) =P is the set of all consisent decision tables hav—

ing the same conditions and actions as F.

Notice that the mutants of P differ from P only in the tabular
portion of the program. The number of rules may be different, the
assignment of actions to satisfied rules need not be correlated, and
the cccurrences of YES, NO and * entries may be unrelated. This
rotion of mutant program models the concept of an aribtrary coding
error in a decision table: since the conditions and actions must be
preserved, it is assumed that the source of errors is not in under-
standing requirements or specifications, but rather in implementing

the seguences of actions to be invcked.

Definition: For each P ¢ P, the set of simple mutants of P,
u{P) < §(P) is defimed as follows: P’ e p(P) if P' is a mutant of P
such that if some entry Rij in rule i of P is *, then the correspon—

ding entry R';. in rule i of P' is either YFS or NO and all other

rules and actions are identical.

The simple mutants of P are those members of ¢ that are formed
by changing a single * entry into either a YES or NO entry. If P is
consistent then all simple mutants are consistent. Some of these
mutants may be equivalent to P. The mutant that changes position j
in rule i from 2 * to a8 Y is equivalent to P only if it is impos-—
sible for any input to satisfy rule i and not satisfy this con-

dition.

Theoretical Studies 3-6

Suppose we test decision table programs by applying Theorem
1.21, That is, we determine the relative adequacy of a test set by
computing the mutation score of the test set for a givem set of
mutants. By naively modelling all possible errors, we have a mutant
set ¢(P) that can be as large as 3% + 28, if P has n conditions and
m actions, Since each mutant in ¢$(P) could require a distinct test
set to distinguish it from P, the number of tests required in a test
set adequate relative to ¢(P) could be exponential in the size of P,
On the other bhand, there are at most two simple mutants for every
table entry in P, This means there are mno more than 2mm simple
mutants. Each mutant requires at most a single +test case to
differentiate it from P, Therefore, even though there are
potentially 2m different inputs, a test set that is adequate

relative to p(P) need have only at most 2nm inputs.

Since ¢ models arbitrary coding errors while p models a rather
more restricted class of errors, the relative advantage computing
the mutation score on the set of simple mutants cannot really be
exploited wunless there is a coupling of simple and complex errors

for programs in P.

Cur goal will be to derive a provable coupling effect for the

programming system P. In particular, we wish to show that if mg and
mu are the mutation scores computed over $(P) and p(P), respec—
tively, then for all P ¢ P,

m(?(P,T) =1 if and only if m (P, T) = 1.

Theoretical Studies 3-7

Assume we bhave such a set T. We require that T satisfy a
minimal test requirement, the decision table analog of statement
coverage. We will assume that every rule in P is satisfied at lecast
once by some member of T, adding points if necessary to meet this

condition. If all =rules contain *'s, then this condition is met

initially.

This condition on T can be insured in test sets adequate
relative to a rich cnough mutant set. Indeed, if ¢ had been defined
to allow modifications to the actions of decision tables, then it
would have been possible to defime ¢ so that mé(P'T) =1 only if T
satisfies each rule of P at least once. This expansion of ¢ does
not change the error coupling properties of u, but it would add

considerable complexity to the arguments to follow.

Definition: Let P and Q be decision tables, Q ¢ 4(P), and let

T be a test set. If P*(T) = Q*(T), then @ is said to test equal to

PonT.

Since each rule in P has a unique set of actioms, it follows by
e simple counting argument that, if @ tests equal to P, then for
each rule in P there is a corresponding rule in Q with exactly the

same actions. Using this fact, we can show the following:

Theorem 1: Suppose mu(P,T)=1, and Q tests equal to P (on T).

Let V(P); be the set of inputs satisfying rule R; if P and let V(Q);

be the set of imput satisfying the corresponding rule of Q. Then

V(P); € V(@) ;-

Theoretical Studies 3-8

Proof: First note that it is not possible for a rule to have a
Y entry in P and for the corresponding rule in Q to have an N, or
vice versa. Otherwise, no data that satisfied the rule in P could

satisfy thke rule in Q,

Consider eackh * entry in P. There are two cases, If the
change that replaces this * by a Y (the same argument holds for N)
results ir an equivalent program, then the conjunction of the other
conditions implies a YES in this position. In this case, it doesn't
matter whether Q has a Y or a * (and these are the only two pos-—
sibilities}) — this change cannot contribute to decreasing the size

of the set V(Q)i. On the other hand, if this change does not result
in an equivalent mutant, then D corntains points that satisfy the
rule and both satisfy and fail to satisfy this particular condition.
Both these must be accepted by the same rule in Q. Therefore Q must

also have a * in this position.

The only remaining possibility is that some rule Ri in P hes a
Y (or N) and the corresponding position in @ has a *. This strictly

increases the size V(Q)i' giving our result. []

Theorem 2: Let P ¢ P and let T be a test set. If mp(PrT)=1'

then m¢(p'T) =1,

Proof: Let V(P)i be the set of inputs satisfying rule Ry in P.
Since P is consistent, the V(P); are disjoint. Since P is complete,
they cover the entire space of inputs. Each rule in Q must be
satisfied by at least the set satisfying the corresponding rule in

P, Since Q is comsistent, it can satisfy no more. []

Theoretical Studies 3-9

Recall that Theorem 1.18 stated that we could form an adequate
test set relative to the set of mutants only. if we could decide
equivalence of P and each of its mutants. Obviously there are some
cases where this is true (for example, when all conditions are
independent and therefore none of the mutants are equivalent). We
can easily find examples where this 1is not true. Consider, for

example, two conditions where the implication

condition; % conditiony

is undecidable,and construct a decision table as shown in Figure 2,

condition 1 Y

condition 2 *

print "YES" X
Figure 2.

Example of Undecidable Equivaience

We «can replace the * in the condition 2 row with a Y if and
only if condition 1 always implies condition 2, In this fashion
using almost amy undecidable question we can construct a program
with the property that the equivalence question for it and one of

its mutants is undecidable.

Theoretical Stiudies 3-10

The most restrictive assumption made in proving Theorem 2 seems
to be that cach rule must have a distinct set of actions. To show
that this restriction cannot be eliminated altogether, consider the
two decision tables shown in Figure 3, The two programs are not
equivalent {(they process the input NNYN differently), yet they agrce
on a set of test inputs {NNYY,NYYN,YYNN, YINNY,NNNN,NYNY, YYYY, YNYN},

which is adequate relative to p(P).

Program P Program Q@
NY O ONOY ¥ ok ¥ *
* kX X N Y N Y
Y N N Y * *x K %
e Y N N Y
XooX 0 0 X X 0 0
c o0 X X 0 X X

|

Figure 3.

A Case not Covered by Mutction

It is not known whether the restriction to =rules having
distinct actions can be replaced with a weaker assumption, or
whether there is any test method that can be used to demonstrate

correctness in this case other tham trying all O(2") possibilities.

Theoretical Studies 3-11
Lisp Programs

In this section we will consider the programming system P
consisting of programs written in the subset of LISP containing the

functions CAR, CDR, and CONS and the predicate ATOM.

We will refer to S—expressions as points. Wec assume that all
points have wunique atoms. Clearly if two programs agree on all
points then they are cquivalent over the entire domain, so there is

no generality lost in this assumption,

Definition: A LISP program is a selector program if it is com—

posed of just CAR and CDR. We inductively define a straight—line

program as & selector program or a program formed by the CONS of two

other straight—-line programs.

Straight—line programs: We will show in this section that in
the subsystem consisting of straightline programs, if p is the
constant mapping onto the entire subsystem, then mu(p,{x}) = 1,

provided only that X is a point such that P(X) is defined.

We first mnote that the power of a selector program is very

weak,

Theorem 3: If two selector programs test equal on any input
for which they are both defined, they must compute identical values

on all points.

Theoretical Studies 3-12

Proof: The only power of a selector program is to choose a
subtree out of its input and returm it. We can view this process as
selecting a position in the complete CAR/CDR tree and returning the
subtree rooted at that position. Since there is a uniqgue path from
the zroot to this position, there is a unigue predicate that selects
it. Since atoms are unique, by merecly observing the output we can

determine the subtree that was selected. []

DPefinition: A straight-line program P(X) is well formed if for
every occurrence of the construction CONS(A,B) it is the case that A

and B do not share an immediate parent in X,

The intunitive idea of this definition is that a program is well
formed if it does mnot do any more work than it meeds to. Notice

that being well formed is a structural property of programs.

We now define a complexity measure for straight—1line programs.

Definition: The CONS-depth of & program is defined induc-

tively.

1. The CONS-depth of a selector program is zero,

2, The CONS-depth of a straight—-line program

P(X) = CONS(P1(X),P2(X))

1 + MAX(CONS—depth(P1(X)),CONS-depth(F2))).

Theoretical Studies 3-13

Theorem 4: If two well formed selector programs test equal on

any point for which they are both defined, then thcy must have the

same CONS—depth.

Proof: Assume we have two programs P and @ and 2 point X such
that P(X) = Q(X), yet the CONS—depth(P) < CONS-depth(Q). This
implies that there is at least one subtree in the structure of Q
that was produced by CONSing two straight-line programs while the
same subtree in P(X) was produced by a selector. But then the
objects Q CONSed must have an immediate ancestor in X, contradicting

the fact the Q is well formed. []

Theorem 5: If two well formed straight—line programs test
equal on any point X for which they are both defined, then they must

test equal on all points.

Proof: The proof will be by induction on the CONS—-depth. By
Theorem 4, any two programs that agree on X must have the same CONS-
depth, By Theorem 3 the theorem is true for programs of CONS—-depth
zero. Hence, we will assume it is true for programs of CONS-depth n

and show the case for n+l.

If program P has CONS-depth n+l then it must be of the form
CONS(P,Q@) where P and Q have CONS-depth no greater than n. Assumc

we have two programs P and @ in this fashion. Then for all Y:

P(Y) = Q(Y) if and only if
CONS(P1(Y),P2(Y)) = CONS(@1(Y),Q2(Y)) if and only if

P1(Y) = Q1(Y) and P2(Y) = Q2(Y)

Theoretical Studies 3-14

Hence by the induction hypothesis P and Q must test equal for

all Y. [1

We can easily generalize Theorem 5 to the case where we have
multiple inputs. Recall that each atom is unique; therefore given a
vector of arguments we can form them into a list and the result will
be a single peint with unique atoms. Similarly, a program with mul-
tiple arguments can be replaced by a program with a single argument
by sssuming the inputs are delivered in the form of a list, ard
replacing each occurrence of an argument name with a selector func-—
tion accessing the appropriate position in this 1list. Using this
construction and assuming that Theorem 5 does not hold in the case
of multiple arguments, it is possible to construct two programs with

single arguments for which Theorem § fails, giving a contradiction.

To summarize this section: for any well formed straight-line
program, any unigue atomic point for which the function is defined
is adequate to differentiate the program from all other well formed

straight line programs.

Recursive programs: The type of programs we will study in this
section can be described as follows. The input to the program will

consist of selector variables, demnoted X4,...,%x,, and constructor

variables, denoted Y1 eee¥p® A program will consist of a program

body and a recurser, A program body consists of n statements, each

statement composed of a predicate of the form ATOM(t(xl)) where t is

a selector function and X4 a selector variable, and a straight—line

output function over the selector and constructor variables. A

recurser is divided into two parts., The constructor part is com—

Theoretical Studies 3-15

posed of p assignment statements for each of the p constructor

variables where y; is assigned a sraight-line function over the

selector variables and y. The selector part is composed of m

assigonment statements for the m selector variables where x; is

assigned a selector function of itsclf,

The example in Figure 4 should give a more intuitive picture of
this class of programs, Given such a program, execution proceceds as
follows: Each predicate of the execution; otherwise if any
predicate is TRUE the result of execution is the associated output
function., Otherwise, if no predicate evaluates TRUE then the
assignment statements in the recurser and constructor are performed

and execution continues with these new values.

Theoretical Studies ’ 3-16

Program P(X 4 ey X s ¥ 1 v ¥p) =

Fpy (xi7) THEN f3 (Xques X ins Y 10 ¥ p)
ELSE IF ...

ELSEIF p o (Xin) THEN £ (X g0 X Y g0 ¥ p)

Y1 '= 97@71 X g aeen Xm)

Yp T g;QCyp, X gy Xpm)

X, = ny(x 7)

Py s Xopn s Y g0 Y p)

Figure 4.
A Recursive Program

We will make the following restrictions on the programs we will

consider:

1. All the recursion selector and recursion constructor functions must

be non—trivial.

2. Every selector variable must be tested by at least one predicate.

3. There is at least one output function that is not a constant.

4, (Freedom) For each 1 < k £ n and A 2 0 there exists at least

one input that causes the program to recurse A times before exiting

with output function k.

Theoretical Studies 3-17

Let ¢ be the set of all programs with the same number of
selector and constructor variables as P, the same number of
predicates, and output functions no deeper than some fixed limit
olimit, Qur goal is to construct a set of test cases T that is
adequate rclative to ¢, The set of simple mutants p will be
described in the course of the proof, as they enter into the
arguments., The procf will proceed in several smaller steps: We
first give some basic definitions and demonstrate some tools that we
will wuse in later sections. ¥e then show how to use testing to
bound the depth of the selector functions. We then narrow the form
of the selector functions still further, and finally show that they
must exactly match P, In preparation for the mein theorem, we first

deal with the points tested by the predicates.

As in the previocus section, we will use <capital letters from
the end of the alphabet to represent vectors of imnputs. Ilence we
will refer to P(X) rather than P(xl....,xm,yl,...,yp)- Similarly we
will abbreviate the simultaneous application of constructor func—

tions by C{(X) and recursion selectors by R(X).

¥e will use letters from the start of the alphabet to represent
positions in a wvariable, where a position is defined by a fimite
CAR-CDR path from the root. When no confusion can arise we will
frequently refer to ''position a in X", whereby we mean position a in
seme X, or yj in X, We will sometimes refer to position b relative
to position a, by which we mean to follow the path to a and starting

from that point follow the path to b.

Theoretical Studies 3-18

The depth of a position will be the number of CARs or CDRs
necessary to reach the position starting from the root. Similarly
the depth of a straight—line function will be the deepest position
it references, relative to its inputs. Let w be the maximum depth
cf any of the selector, constructor, recurser, or output functions
in P. The size of an input X will be the maximum depth of any of

the atoms in X.

We can extend the definition of £ to the space of inputs by
saying X £ Y if and only if all the selector variables in X are
smaller than their respective variables in Y, and similarly the
constructor variables, We will say Y is X "pruned' at position a if
Y is the largest input less than or equal to X in which a is atomic,
This process can be viewed as simply taking the subtree in X rooted

at a and replacing it by a unique atom.

If a position (relative to the origimal input) is tested by
some predicate we will say that the position in question has been

touched. Call the n positions touched by the predicates of P

without going into recursion the primary positions of P.

The assumption of freedom asserts only the existence of inputs
X that will cause the program to recurse a specific number of times
and exit by a specific output function. OQur first theorem shows

that this can be made constructive,

Theorem 6: Given A 2 0 and 1 £ i £ n we can construct an input
X so that P(X) is defined and when given X as an input P recurses A

times before exiting by output functionm 1.

Theoretical Studies 3-19

Proof: Consider m+p infinite trees corresponding to the mt+p input
variables. Mark in BIUE every position that is touched by a
predicate function and found to be non-atomic in order for P to
recurse A times and rcach the predicate i. Then mark in RED the

point touched by predicate i after recursing A times,

The assumption of freedom implies that npo BLUE vertex can
appear in the infinite subtree rooted at the RED vertex, and that
the RED vertex carnot also be marked ELUE. Now mark in YELLOW all
roints that are used by constructor functions in recursing A times,
and each position used by output function i after recursing A times.
The assumption of freedom again tells us that no YELLOW vertex can
appear in the infinite subtree rooted at the RED vertex. The RED
vertex may, however, also be colored YELLOW, as may the BLUE

vertices.
It is a simple matter themn to construct am input X so that

1. =all BLUE vertices are interior to X (nop—atomic),
2. the RED vertex is atomic, and

3. all YELLOY vertices are contained in X (they may be atomic). I[1]

Notice that tke procedure given in the proof of Theorem 6
allows one to find the smallest X such that the indicated conditioms
hold. If a is the implies that no point can be twice touched; hence

the minimal a point is a well defined concept.

Given an input X such that P(X) is defined, let Fy(Z) be the

straight—1line functicn such that FX(X) = P(X). Note that by Theorem

5, Fx is defined by this single point.

Theoretical Studies 3-20

Theorem 7: For any X for which P(X) is defined, we can

construct an input Y with the properties that P(Y) is defined, Y 2 X

and FX ?l-' Fy'

Proof: Let A and i be the constants such that on input X, P

recurses A times before exiting by output function i, Let the

predicate P, test variable xj.

There are two cases, First assume f is not a constant func-—
tion, Now it is possible that the position that would be tested by
Pi after recursing A+l times is an interior position in X, but since
X is bounded there must be a smallest k > A such that the predicate
Pi(R(xj)) is either true or uvndefined. Using Theorem 6 we can find
an input Z that causes P to recurse k times before exiting by output
function 1. Let ¥ be the union of X and Z. Since Y 2 Z, P must
recurse at least as much orn Y as it did on Z. Since the final point
tested is still atomic P(Y) will recurse k times before exiting by

output function i. Since
£, (RMX),BMY)) # £ (RE (D),CK(D)

we have that Fy # Ty-

The second case arises when f.1 is a constant function. By
assumption 3 there is at least one output function that is not a
constant function. Let fi be this function. Let the predicate 1
test variable X We can apply the same argument as befoge, except
that it may happen by chance that P(Y) = P(X), i.e. P(Y) returns
the constant value. In this casec increment k by 1 and perform the

same process and it caanot happen again that P(Y) = P(X). []

Theoretical Studies ’ 3-21

Theorem 8: If P touches a location a, then we can comstruct
two inputs X and Y with the properties that P(X) and P(Y) are
defined. Then for any Q in ¢, if P(X) = Q(X) and P(Y) = Q(Y), then

Q must touch a,

Proof: Let Z be the minimal a point. Using Theorem 7 we can

construct an input X such that P(X) is defined, X 2 Z, and Fy # Fgz-

Let Y be X pruned at a,

We first claim that P(Y) is defined and FY = Fy. To sce this,
note that every point that was tested by P in computing P(Z) and
found to be non-atomic is also mnon-atomic in Y. Position a is
atomic in both, and if the output function was defined on Z then it

must be defined on ¥, which is strictly larger.

Suppose that, given input Y, a program Q recurses A times
before exiting by cutput function i but does not touch position a.
Since X is strictly larger than Y, on X, Q must recurse at least as
much and at least reach predicate i. Let the position in Y that was
touched by predicate i and found to be atomic be b, Since position
b is not the same as position a, position b is also atomic in X,
Therefore, given input X, Q will recurse) and exit by output func-
tion i. But this implies by Theorem 5 that FX = Fy, a contradic—

tion. []

Bounding the depth of the recursion and predicate functions:
Our first set of test inputs uses the procedure given in Theorem 8
to demonstrate that each of the n primary positions in P are indeed

touched.

Theoretical Studies 3-22

Next, for each selector variable, use the procedure given in
Theorem 8 to show that the first ntl postions (by depth) must be
touched. Let d be the maximum size of these m{n+l) positions. (We

will assume d is at least 3 and is larger than both 2w and olimit.)

Theorem 9: If Q@ is a program in ¢ that correctly processes
these 2m(n+l) points, then the recursion selectors of Q have depth d

or less,.

Proof: Consider each selector variable separately. At least
one of the nt+l points touched in that variable must have becn
touched after @ had recursed at least once. If the recursion selec—
tor had depth greatcr than d, the program could not possibly have

touched the point in guestion. []

Theorem 10: If @ ¢ ¢ correctly processes these 2m(n+l)
points, then none of the selector programs associated with the

predicates can have a depth greater than d.

Proof: At least ome of the inputs causes Q to recurse at least
once; hence all the predicates must have evaluated FALSE and
theretfore were defined. If any of the predicates did have a depth

greater than d, they wounld have been undefined on this input. []

Since d > olimit we also know that d is a bound on the output

functions of Q.

Theoretical Studies 3-23

Ve are now in a position to make a comment concerning the size
of the points computed by the procedure given in Theorem 8. Let A
be the maximum depth of the "relative rcot” (the current variable
position relative to the original variable tree) at the time posi-
tion a is touched. We know the minimal a tree is no larger than
1+w, This being tke case, to find an atomic or undefined point (as
in the procedure associated with Theorem 7) we will at worst have to
recurse to a position 1l+w deep, but no more than l+w+d deep. Hence
neither of the two points constructed in Theorem 8 need be any laz—

ger than 1+2w+td. This fact will be of use in proving Theorem 13.

Narrowing the form of the recursion selectors: We¢ will say a
selector function f factors a selector fumction g if g is eguivalent
to f composed with itself some number of times. For example, CADR

factors CADADADR, We will say that f is a simple factor of g if f

facters g and mno function factors t other than f itself. Let us

denote by S{, i =1,...,m, the simple factors of r;, the recursion

selector functions. That is, for each variable i there is a

constant ki so that the recursion selector r; is s; composed with

itself Ay times. Let q be the greatest common divisor of all tke
As. Hence the recursion selectors of P can be written as 89 for

some recursion selector E.

We mnow comstruct a second set of data points in the following

fashion: For each selector variable x,» let & be the first position
touched with depth greater than 2d2 in xi. Using Theorem 8,
generate two points that demonstrate that position a must be

touched. Let TO be the set containing all the (2n + 2m(n+l + 2m)

points computed so far.

Theoretical Studies 3-24

Theorem 11: If Q ¢ ¢ computes correctly on Ty then recursion

selector i of Q must be a power of si_

Proof: Assume the recursion selector of xj in Q‘is not a power
of Si. Recall that the depth of the selector cannot be any greater
than d. Once it has recursed past the depth d, it will be in a
totally different subtree from the path taken by the recursion

selector of P.

Since 4 > 3, it is required that Q touch a peint that has depth
at least 3d. Q must therefore touch this point prior to recursing

to the depth d. By Theorem 9 this is impossible. []

¥We can, in fact, prove a slightly stronger result.

Theorem 12: If G & ¢ computes correctly on Ty then there

exists a constant r such that the recursion selcctors of Q are exac—

tly SY,

Proof: By Thecorem 11, the recursion selectors of Q must be

powers of sj- For eack selector, construct the ratio of the power

of 5; im @ to that in P. Theorem 12 is equivalent to saying that

all these ratios are thc same. Assume they are different and let x4

be the variable with the smallest ratio and xj the veriable with the

largest.

Let X and Y be the two inputs that demcnstrate that a position
a of depth greater than 2d2 jp x4 is touched. Both P and Q must
recurse at least 2d times on these inputs. In comparison to what P

is doing, x; gains st least one level every time Q recurses. By the

2
!
[7
Lh

Theoretical Studies

time xj is within range to touch a, x; will have gone 2d levels too
far. Since 24 > d + 2w, xj will have run off the end of its input;

hence Q cannot have received the correct answer on X and Y. []

Theorem & gave us a method to demonstrate a position is
touched. We now give a way to demonstrate a position is not

toucked.

Theoxem 13: If Q@ e ¢ computes correctly on all the test
points so far comstructed, then for any position a not touched by P
ve can construct two inputs X and Y so that if P(X) = Q(X) and P(Y)

= Q(Y) then & does not touch a.

Proof: Let position a be imn variable X;, Let m be the smal-
lest number such that after recursing m times the recursion selector
i is deeper than a. Let A be the maximum depth of any recursion
selectors at this point, Let X be the complete tree of depth 1+2d

pruned at a.

There are two cases: If P(X) is not defined, assume @ touches
a. The relative roots of Q cannot be deeper than i+d at the time
when a 1is touched. Hence the minimal a point is no deeper than
1+2d. Since X is strictly larger than the minimal a point we know
that Q(X) must be defined, which contradicts the fact that Q(X) =

P(X).

The second case arises if P(X) is defined. Using Theorem 7 we
construct an input Z 2 X such that Fx # Fy: Let Y be Z pruned at a.

Assume Q touches a. Since Y 2 X, Q(Y) must be defined, so assume

P(Y) is defined. By comstruction Fy = F; # Fy- But since Q touched

Theoretical Studies 3-26

a, Fx = Fy’ which is a contradiction., 11

Recur#ion selectors must be the same as P: If Q ¢ ¢ executes
correctly on Tgy’ then by Theorem 12, the recursion selectors of @
must be S for some constant r. From Theorem 9 we know the depth of
S is no larger then d; hence there are at most d/(depth of §)
choices. For each possible r (not equal to ¢q), construct a mutant

program P', which is equal to P in all respects but the mutant

selectors, which are ST,

In this section we will consider test cases as pairs of inputs,
generated using the procedure given in Theorem 12, whichk returm
either the value YES, saying they were generated by the same
straight-1ine program, or the value N0, saying they weren't. Other

than this we will not be concerned with the output of the mutants.

If each mutant touches a point that P does not, then construct
two points (using Theorem 13) to demonstrate this. If any mutant
touches only points that P i1tself touches, then we will say P camnnot

te shown correct by this testing method, Call this set of test

cases Typ-

Theorem 14: If Q ¢ ¢ executes correctly on Ty and Ty, then

the recursion selectors of Q must be exactly 5S¢,

Proof: Assume not, and that the recursion selectors are ST for some
constant r # ¢. No matter what the primary positions of Q are, we
know it must touch at some point the primary kpositions of P. It
therefore must always touch the primary positions of P relative to

the position it has recursed to. But, therefore, it must at least

Theoretical Studies 3-27

touch the points that the mutant associated with r does. [l

Testing the primary positions of P: Consider each primary
position separately. Assume that in some program Q@ in ¢ the posi-
tion is not primary, but that it is touched after having recursed XA
times. Let b be thc position of a relative to S%*. This means in Q
that b is primary. Now b cannot even be touched (let alome be
primary) in P because of the assumption of freedom. Using the
procedure given in Theorem 13, construct two points that demonstrate
that b is not touched, which demonstrates that a must bé primary.
Taken together, these test points insure that the primary positions

of P must be primary in all other progranms.

Notice that we nced to make no other assumptions about - the
other primary positions in Q; we can treat each of them indepen—
dently. We, therecfore, have at most n(d/{depth of 89 mutant

programs, hence at most twice this number of test points. Call this

test set TZ'

Theorem 15: If Q@ & ¢ executes correctly on Ty, Ty, and Ty

then the primary positions of Q are exactly those of P.

Notice that by Theorem 5 this also gives us the following.
Theorem 16: The output functions of Q are exactly those of P.
Main Theorem: Once we have the other elements fixed, the

constructors are almost given to us. Remember one of the assump-

tions is that each of the constructor variables appears in its

Theoretical Studies 3-28

entirety in at least ome of the output functions. All we neced do is
to construct P data points so that data point i causes the program P
to recurse once and exit using an output function that contains the

constructor variable i, Call this set T3- Using Theorem 5 we then

have

Theorem 17: Tkhe recursion constructors of Q must be exactly

those of P.

The only remaining source of variation is the order im which
the primary positions are tested. The only solution we have been
able to find here (short of making more severe restrictions on ¢)
is to try all possibilities. There are n! of these, some of which
may be equivalent to the original program. Let T4 be a set of data
points that differentiztes P from all non-equivalent members of this

set,

Putting all of this together gives us our main theorem:

Theorem 18: Given a program P in ¢, if Q ¢ ¢ executes correc—

tly on the test points constrected in Theorems 9, 14, 15, and 17,

then G must be equivalent to P.

Corolliary: Either P is correct or no program in ¢ realizes

the intended function.

Even though the depth of the output functions is bounded, we
did not bound the number of CONS functions they contain; hence there
are an infinite number of programs in the set ¢, This is true even

after we have bounded the depth of the recursion selectors and the

Theoretical Studies 3-29

predicate selectors in Theorem 10,

The most important aspect of this result is the method of the
proof. Once we have fixed the recursion selectors via test set Ty
the remainder of the arguments can be proved by comstructing a small
set of mutants and showing that test data designed to distinguish
these from the coriginal actually will distinguish P from a much lar—

ger class of programs. In all we constructed

d(1/(depth of 8) + n/(depth of 8%} + p + n!

mutants, and we proved that test data that distinguished P from this
set of mutants actually distinguished P from the infinite set of

programs in ¢.

Bibliographic Notes

The 1results in this chapter were developed in Budd’'s thesis
[Budd, 1980] and in papers by Budd and Lipton [Budd, 1978] and Budd,

DeMillo, Lipton and Sayward {Budd, 1980bl.

A Mutation Analyzer 4-1

Chapter 4.

A Mutation Analyzer

In overall structure, & mutation analyzer serves as a test har-
ness and aids in performing mutation analysis. This chapter
provides a detailed description of the implementation of a mutation

analyzer,

Although existing mutation analyzers differ in certain
respects, there are essential similarities. Briefly, the systems
allow an interactive user to enter a program to be tested. The
program is parsed to a comvenient intermnal form and appropriate data
files are created. The user then enters test .data, executing the
program on the test data to check for errors. At the point of cal-
culation of the mutation score, the user "turns on” or enables a
subset of the mutant operators. The system creates a list of mutant
éescription reccrds, descriptions of how the internal form is to be
modified to create the required mutant. The changes are induced
sequentially with additional heuristics to speed up processing and
the modified internal form is executed. The results arc compared to
the original results to determine whether or not the mutant survives
the execution on that data. At the completion of the pass, summary
reports are presented to the user, and several options are provided
for examining the remaining live mutants. The user may also declare
mutants to be equivalent and therefore remove them from future
consideration. This function c¢an be partially automated with
considerable improvement in performance. The issue of equivalent

mutants will be discussed more fully in Chapter 8.

A Mutation Analyzer 4-2

System Overview

The wuser interface of a mutation amalyzer is interactive.
Tasks are assigned to both the user and the analyzer which are Dbest
suited to their capabilities. One way to see how this might be
acconplished is to imagine the system as an adversary who, when con-
fronted with a propgram asks the user a set of questions about the
program (e.g., "Why did you use this type of statcment here when an
alternative statement works just as well?”). The task of the wuser
is then to provide justification in the form of test data which will

give an answer to such a question.

An overview of the structure of such a system is shown in

Figure 1,

A Mutation Analyzer 4--3

| FILE |
HANDLER

USER , _ REPORT
INTERFACE MANAGER GENERATOR

| MUTANT |
INTERPRETER

-

Figure 1.
System Organization

The hcart of a mutation analyzer is roughly that portion of the
system which lies within the dotted box in Figure 1. This portion
is largely 1language independent since it is driven by an internal
form of the source program rather than the source program itself.
Given a sufficiently general intermal form, it is possible to
implement a mutstion analyzer for a new language by modification of
the input/output interface., In later sections, we will describe the

details of a mutation analyzer for a simple subset of Cobol.

A single run of a mutation analyzer divides naturally into
three phases: the run preparation pkase, in which the information

which is required by the analyzer is prepared, the mutatior phase,

A Mutation Analyzer 4-4

during which the mutations are generated and a mutation score is
calculated, and a post run phase in which results are analyzed and

reports are gemerated,

Run Preparation, The role of the run preparation phase is to
initialize various files and buffer areas. This phase is charac-
terized by its high degree of user involvement. The user is first
asked to supply the name of the file which contains the source
program to be tested, Depending on whether orAnot the system has
previously been run on this file the program file is either parsed
to an internal form or a previously generated internal form file is
retrieved. This internmal form is subsequently interpreted to
simulate program execution. A fragment of a typical internal form

generated by the Fortran statement
IF (A LT. X(2)) P =1

is shown in Figure 2.

A Mutation Analyzer 4-5

trf.CJ

rop.it] f assign.OJ

2

[aop.subl /
N

[scalar.Al [array.X] [const.2] [scalar.P] [const.1]

Figure 2.
Internal Form

The wuser is then interactively prompted for the test data on
which the program is to be tested (and against which the mutation
score is to be calculated), After each test case has been specified
{eitker by direct user entry at the keyboard or by reference to a
test file), the original program is executed on the test case and
the results of execution are displayed (or written onto an output
file for later ezamination). The role of the oracle who determines
whether or not the calculated output of the program is satisfactory
may be played by either the user or the system. If the wuser plays
the role of +the oracle, then bhe must literally examine the input—

cutput relation determined by the program’s execution to determine

A Hutation Analyzer 4-6

whether the computed input—output relation is the one required by
the specification, If the system plays the role of the oracle, it

must be supplied with &a predicate subrountine. A predicate

subroutire is an executable, uniform specification of input-output
behavior, The system invokecs the predicate subroutine each time the
subject program is cxecuted on a test case to detcrmine if the
input-cutput relation computed during that execution is the cmne
required by the specification. In either case, if the test casec 1is
processed satisfactorily, the wuser is allowed to either enter
additional test cases or to compute the mutation score and

associated statistics.

After the wuser has entered test data, he is prompted for a
specification of which mutant operators he wishes to apply. Instead
of constructing multiple copies of the program (one for each
mutant), a short descriptor of ecach mutation to be performed is
generated and stored in an auxiliary file. Each time the mutant is
to be run, the intermnal form is modified according to the informa-
tion stored in the descriptor and the modified program is
interpreted in the mutation phase. The user may also specify a per-

centage of the mutant operators to be applied.

Experience has shown that it is best to partition the task of
developing test data which is adequate relative to the entire set of
mutants in stages. Each stage further refines the test data to
distinguish the program under test from a more extemsive class of
mutants. A convenient partitioning of the mutant operators is the

following:

A Mutation Analyzer 4-7

Level 1: Statement Analysis

Goal: Insure that every branch is taken and
that every statement is necessaxy

Mutants: all statement and control mutants

Level 2: Predicate Analysis
Goal: Exzercise predicate boundaries
Mutants: Alter prediceate and loop limit
subexpressions by small amounts
ABS insertions in predicates

Relational operator substitutions

Level 3: Domain Analsysis
Goal: Exercise data domains
Mutants: Alter comstants and subexpressicns
by small amounts

ABS insertions

Level 4: Coincidental Correctness Analysis
Goal: Determine coincidental correctness conditions
Mutants: Operand substitutions

Operator substitutions,

In addition, the user may specify that certain of the mutants
are to be randomly sampled in computing the mutatiom score. ¥hile
there is some loss of effectiveness in randomly sampling mutants (as
opposed to exhaustively exzecuting all mutants), experimental

evidence (cf. Chapter 5) suggests that test data which delivers a

A Mutation Analyzer 4-8

high mutation score under the sampling strategy also results in a
high mutation score when computed according to the definitions in
Chapter 1. The advantage to the user in reducing processing time

can be considerable, especially for large monelithic programs.

Motation Phase. Once the user has specified the program, test
data and level of test (mutation operztors and pcrcentage) to be
applied, the system enters the mutation phase. During this phase
there is virtually no user interaction. Mutation descriptor records
are processed sequentially or randomly sampled depending on whether
or not the user has specified a percentage other than 100%. The
mutant program is generated by modification to the internal form of
the source program. The mutant is then executed ocn the test data
and is either marked ‘‘dead” or 'alive”. A mutant is marked dead if
it has delivered results which differ from the program being tested
—— by, for exzample, producing different output, viclating a
predicete subroutine, or inducing a runtime error — on at least one
test case. Otherwise the mutant remains alive., The mutation score
is then the ratio of dead mutants to the total number of
nonequivalent mutants, A dynamic record is kept of the number and
percentage of 1living mutants of each type. These records are
organized to allow access in a number of dimensions (e.g., live
mutants by statement, by mutant type, randomly sampled). Since the
final mutation score is the ratio of dead mutants to the total num-
ber of nonequnivalent mutants, equivalent mutants must be deleted
before the score is correctly interpretable. There are two times
when it is appropriate to delete equivalent mutants. Many

equivalent mutants car be detected automatically (cf. Chapter 8).

A Mutation Analyzer 4-9

If a mutant can be deleted automatically it is deleted during the
mutation phase. Equivalent mutants car also be deleted wunder wuser

control during the post run phase.

Post Run Phase. When the mutant programs have been run on the
current test cases, the system enters a post run phase. In this
phase, statistics are displayed indicating the results of the muta-
tion run to thet point. The user can interactively select descrip—
tions of live and dead mutants and display them on the screen. Dur-
ing the post rumn phase certain reports may also be generated; these

reports provide a detailed permanent record of the mutaticn run,

The user may also declare certain mutants to be equivalent.
Equivalent mutants do not enter into the mutation score calculation.
There arc two reason a user may declare a mutant to be equivalent,
First, the user may have actually determined that the mutant belongs
to up- Such a mutant has not been automatically eliminated during
the mutation phase, but the system provides some automated help in
the post run phase for determining equivalence, Some
implementations provide data flow analyzers and various static
analysis tools that allow the user to determine equivalence (see
Chapter 8} Second, the user may choose to ignore a portion of the
progrem being tested. For example, a subroutine or module may
already have been tested adequately during a previous phase. The
decision to mark all mutants which change code in that subroutimne
then essentially eliminates that portion of the program from further
consideration ever though the routine is still present ir executable
form and delivers results to modules which invoke it during the

mutatior. and pre run phases,

A Mutation Analyzer 4-10

The user can re—run the system and augment the test cases in an
attempt to improve the mutation score. The user may also specify
that additionsl mutation operators are toc be applied to the program.
This cycle can continue until the user is satisfied that the current
test data is adequate relative to the given set of mutation

operators.

Several files hold information betwecen system runs, These are
shown in Figure 3, which outlines the functions of each phase. The
internal form file stores the parsed version of the source program
being tested. The test data file stores for each test case the test
data input and the results of execution of the preogram being tested
on the test data. The mutation information file sorts the mutation
descriptor records and other statistics generated during the muta-

tion and post run phases.

A Mutation Amalyzer 4-11

PRE~RUN MUTATION

FHASE PHASE

MUTANT
INFORMATION

Figure 3.
Major Files

A Mutation Amalyzer for Cobol

Ve will now describe in some detail the organization of a muta—
tion analyzer for & subset of Cobol which we refer to as "Level 1"
Cobol. A Level 1 Cobel program is written in the standard Cobol
format (columns 1-6 containing sequence numbers, column 7 containing
continuvation marks, cclumns & through 72 containing Level 1 Cobol

statements).

A Mutation Analyzer 4-12

The following syntax chart defines Level 1 Cobol:

IDENTIFICATION DIViSICN.
PROGRAM-ID. program-name
[AUTHOR. comment—cntry.]
[DATE-WRITTEN. comment—entry.]
[DATE-CGHMPILED, comment—entry.]
[SECURITY. comment-entry.]
[REMARES. comment—entry.]

EKVIRONMENT DIVISION,

CONFIGURATION SECTION.

[SOURCE~COMPUTER. comment—-entry.]
[OBJECT-COMPUTER. comment—entxy.]
[SPECIAL~-NAMES. 1[C01 IS mnemornic—name.]

INPUT-CUTPUT SECTION.
FILE-CONTROL.
[SELECT file-name ASSIGN TO {INPUTi|OUTPUTi}...]

DATA DIVISION.
FILE SECTION.
{FD file~name RECORD CONTAINS integer CHARACTERS]
[LABEL RECORDS ARE {STANDARD|OMITTED}]
DATA RECORD 1S data—name
level-number {data—name | FILLER)
[REDEFINES data-name-2]
[{PICTURE {PIC} IS character—string]
[OCCURS integer TIMES]

[WORKING STORAGE SECTION.
[77 level entries.]
[record entries.J]...]

PROCEDURE DIVISION.
[paragraph—name.]

ADD {identifier—1)literal-1)[identifier—2]}1-2]... {TOIGIVING) identifierm

[ROUNDED]ION SIZE LRROR imperstive—statement].
CLOSE file—name—1 [file-name~-2]... .

COMPUTE id [ROUNDED] = arithemtic—expression
[CN SIZE ERROR impcrative—statement]

DIVIDE {identifier—1}literal-1} {INTOIBY}} {identifier—2])literal-2}
{GIVING identifier—3J[ROUNDED][ON SIZE ERROR imperative—statement].

EXIT.
GO TO paragraph-name
GO TG paragraph-name—~1 [[paragraph-name-2]... DEPENDING ON id].
IF condition { statcment-1|NEXT STATEMENTS}
[ELSE statement—2 {|NEXT STATEMENT}]
MOVE identifier—1 TO identifier—2 [identifier—3]
MULTIPLY {identifier-1}literal-1)} BY {identifier-2}|1-2}

[GIVING identifier-3][RCUNDED][CN SIZE ERROR imperative—statement].

OPEN [INPUT file-mame-1 [file-name-2]]
[OUTPUT file—name—3 [file—name-—4]]
PERFORM paragraph-name—1[THRU paragraph—name-2]

PERFORM percgraph-name-1 [THRU paragraph-name -2] {identifier-1] int-1}

TIMES

A Mutation Analyzer 4-13

PERFCRM paragraph-name-1 [THRU paragraph-name-2]
[VARYING identifier—-1 FROM {identifier-2|literal-1}
BY {identifier—-3]literal-2} UNTIL condition]
READ file—name RECORD [INTO identfier]
AT END imperative—statcment
STOP RUN
SUBTRACT {identifier-illiteral-1}[identifier—2|literal-2]1...
FROM f{identifiermiliteral-m}
[GIVING identifier—n][ROUND]J[ON SIZE ERROR imperative—statement].
WRITFE record-name [FROM identifiex-—1]
[AFTER ADVANCING {identifier—2lintegcr|mnemonic} LINES].

Implementation Overview. The wuser provides the name of the
file containing the source program, Of course this program should
be a legal Level 1 Cobol program. The program is parsed to its
internal form. The system then produces all mutation descriptors,

The legal mutations are the following:

Decimal Alteration: move implied decimal in numeric items one

place to the left or right, if possiblec.

Dimensions: reverse two—level table dimensions

OCCURS clause alteration: add or subtract a constant (usually

1) from an occurs clause,

Insert FILLER: insert a FILLER of length 1 betwecen adjacent

items of a record.

FILLER size alteration: add or subtract a comnstant (usually 1)

from tke length of a FILLEER.

A Mutation Analyzer 4-14

Elementary item reversal: reverse adjacent elementary items in

a record.

File reference alteration: interchange names of files at the

point of reference.

Statement deletion: replace a statement by the null statement.

GO TO —> PERFORM: change GOTOs to PERFORMS

PERFORM —> GOTO: change PERFORMs to GOTOs

Conditional reversal: negate the condition in an IF-THEN

clause.

STOP statement substitution: replace a statement by a STOP

statement.

THEY] clause extension: expand the scope of the THRU clause by

a fixed number of stztements (usually 1)

TRAP statement replacement: replace cach statement by a
statement. TRAP stetements are not included in Level 1 Cobol. The
effect of a TRAP statement is to call a routime which ceases normal
program operation and returns control to the mutation analyzcr with

the information that a statement has been TRAPped.

A Mctation Analyzer 4-15

Substitute arithmetic verb: interchange arithmetic verb with

all other arithmetic verbs.

Substitute operator in COMPUTE: interchange arithmetic
operator with all other arithmetic operators im am arithmetic

expression,

Parenthesis alteration: move one parenthesis one character to

the right cor left.

ROUNDED alteration: interchange ROUNDED and truncation.

MOVE reversal: rcverse the sense of a move in a simple MOVE

statement if the resulting statement is legal.

Logical operator replacement: interchange all Boolean

operators.

Scalar for scalar replacement: substitute omne tablular item
reference for another when the result is a legal expression in Level

1 Cobol.

Constant for constant replacement: interchange constants that

appear in the program.

Scalar for constant replacement: replace constant references

with non-tabular item references.

A Mutation Anelyzer 4-16

Constant for Scalar replacement: replace mnon—tabular item

references with constant.

Constant adjustment: adjust the value of a constant by a fixed

percentage (always at least 1 if the constant is an integer).

Mutants may be enabled selectively and a fixed precentage of
the mutants to bc processcd may be specified as described in the

previous sectiomn,

Mutants may die in a variety of ways. A mutant may deliver
incorrect results (i.e., it may fail to match the output of the
program being tested or may fail to satisfy the predicate
subroutine) . Mutants may also die by prodecing runtime faults
(e.g., attempting to read unopened files oxr dividing by 0).
Infinite loops in mutants are detected by setting a timing constant
which sets an absolute upper bound orn the number of iteratioms of a
single lcop whick are allowed. A typical setting of the timing
constant might be three times the number of statements executed by

the program being tested of the test case currently being processed.

Level 1 Cobol is limited to a fixzed numbér of sequential input
and output files. Tecn nonrewindable files seem to be sufficient for
suchk common data processing applications as posting sorted transac-—
tions against a master file and updatihg the master. For this sim—
ple system there should be a limit set on the amount of storage
allccated for each file for each test case. Files are packed into
arrays by replacing each string of repetitions of a single character
(such as a string of blanks) by storing a token which represents the

character ard a repeat count.

A Mutation Analyzer 4-17

As described ir the previous section, the system should create
a number of auxiliary files. Some of these files are random access
files used to process the mutants and test cases. Others are needed
for the restart capability. A convenient naming scheme is to . use
the name of thce auxiliary file as an eztension to the name of the
program file provided by the user. For example, if the user submits
TEST-PRGG-1 to the system, the system might store the intermal fomm

of the program in the file TEST-PROG-1.if.

A file that deserves special attention is the logfile. This

file cortgins:

1. a listing of the program with line numbers assipgned.

2. a record of the percentage of mutants to be created.

3. a summary of test case and mutant tramsactions, in the
order in which they occurred (whenever a test case is
submitted a message is logged about that transaction,
including the location of the test case and whether the
test case was accepted or rejected by the user; mutants

are entered as they are emabled),

4. a summary of muotant status after each mutation phase,

5. a listing of live mutants after each mutation phase,

6. an optional listing of test cases after each pre run

phase.

A Mutation Analyzer 4-138

These files should not be automatically deleted after a rum is com—
pleted, but rather should be available for a possible resumption of

testing.

Suggested File Formats, The files which are required for
processing have been described above. In this sectiom, we will
examine the structure of those files in enough detail to permit easy

implementation of an analyzer for Level 1 Cobol.

SCURCE PROGRAM <filename>

The source program is assumed to be in a sequential system

file, in the standard Cobol format.

INPUT FILE (EXTERNAL)

Input file carn either be supplied by the user as a standard
sequential file or can be entered directly from the terminal. It
is, of «course, possible to create some input files outside the
system using whatever tools the user has access to, and to create

the otkers interactively.

TEST FILES (INTERNAL)

The internal test files contain all test cases that have been

created at that time. There are +two files containing test

information, the test status file, and the test data file.

A Mutation Analyzer 4-19

TEST STATUS FILE (<{filename)>.ts): The first reccord of this

file contains global information.

after the last, for appending.

| entry ! contents i
f -1 e - -

| 1 t 1 if INPUTO is used in the program |
| I 0 otherwise. :
i |

| 2-20 | similar for INPUT1 to INPUT9 |
| ! and GUTPUTC to OUTPUTS. :
i |

I 21 | The total number of test cases that |
] | have been defined. |
| | |
| 22] The number of test cases that were]
| | defined prior to this pass. l
I !

i 23 | pointer to the next record position I
I i |
! |
| I

Table 1, Test Status Global Information

This record will be followed by two records for each test case.

The first test case record has the format:

the original program on this testcase

] entry | contents I
I - !
i 1 I The starting position of INPUTO in |
i | (filename>.TD (sec below) I

I I
| 2 i The number of records in INPUTO. |
I I |
| 3-40 | Similar for the other files. [
I ! |
= 41 | The number of statements executed by |

i |
| I
! I

Table 2. Test Status File — Test Case Record 1

The second record comntains a bit map for the statements executed by
this test case. This bit map is used to speed up processing during
the mutation phase. If a statement is not executed by a test case,

then nc mutant ¢f that statement shornld be executed. By using the

A Mutation Analyzer 4-20

bit map to record statement executions, the applicability of a

mutant to a given test case can be casily determined.

TEST DATA FILE (<{filename)>.td): The test data file contains
the actual test cases, with the input file(s) first, followed by the
output file(s) of the original program. To save space these should
be stored in packed format with strings of repeated characters

replaced by single characters and repeat counts.

HMUTANT RECORD FILE (<{filename).mr): The mutant records are
stored in Dbinary format, at four integers per mutant record. All
records for a particular mutant type are stored contiguously, fol-

lowed by all records for the next mutant type.

MUTANT STATUS FILE ({filename)>.ms): The first section of the

file contains a total mntant count and headers for each mutant type.

ientryl contents |
I | — I
| 1 | mutant type |
I 2 | on or off ever (initially zero) |
I 3 | on or off this run |
| 4 | mputant stacus file record pointer for status block |
| - |
i Table 3. Mutant Statn~ File Feaders |

For each mutant type there is then a status block, of
one record, The status block contains the following

information:

A Mutation Analyzer

4-21

lentry| contents

‘ - - —_

| 1 | total mutants for this type

| 2 | »bit map length in words

| 3 | mzf pointer for the first mutant record of

| | this type

| 4 | number of live mutants

| 5 | number of dead mutants

i 6 | number killed by trap(%)

{ 7 | nember killed by time—out

| 8 | number killed by data fault

{i 9 | number killed by initialization fault

| 10 | number killed by I/0 fault in OPEN/CLOSE

| 11 | number killed bv attempt to read past EOF

| 12 | number killed by writing too much

i 13 | number killed by output too large for buffer
| 14 | onumber killed by array subscripts out—of-bounds
} 15 | number killed by incorrect output

g 16 ; number killed by garbage in the code array

| Table 4. Status Block

— A S T — L MRS —— e — T — T — e ey — —

The status block is followed by counts indicating live, dead,

and equivalent mutants, indexed by nmutant number.

INTEENAL FORM ({filename).if):

the folliowing tables:
SIMBOL TABLE
STATEMENT TABLE
CODE ARRAY
INIT

HASH TABLE

The intermal form file contains

INIT is the initial segment of memory containing literals, PICTUREs,

and memory initialization

described below.

information.

The remaining tables are

A Mutation Analyzer 4-22

OQUTPUT FILE (<filemame>.lo): This is a file containing
information om the run. Its contents are controlled by the user.
Typical conternts would be a listing of the source program, the test
cases, the status after each pass through the system, and a listing

of some or all of the live mutants,

INITIAL.HASH: This table is the same as HASH-TABLE except that

it contains only the reserved words and their tokens.

Internal Form Specifications

SYMBOL TABLE: The symbol table is an 10xMN array of integers.
A simple data item (group or elementary) is described by one row in
the array. A table item is described in two rows, the second is s
¢ope vector. The following conventions are useful. Entry 1 in each
row (record) points to the hash table entry for the name of the
item. If the item has no mame (such as a filler or literal), entry
1 is zero. Entry 2 is always a code for the type of the record.
Its value determines the meaning of the other entries. The overall

organizaticn of the symbol table entries is as shown in Figure 4.

A Mutation Analyzer 4-23

PROGRAM
NAME
INPUTO
r
FILE INPUTT — OUTPUTE
DEFINITION
OUTPUTS
HASH PICTURE VALUE RE- SOURCE
DATA ITEM ADDRESS | TrPE LEVEL | ADDRESS | ADDRESS | LENGTH | DEPTH | ADDRESS | DEFINE LINE
MAX MAX
] OCCURS
TABLE ENTRY cope | FIRST | SECOND | ggsy | seconp
SUBSCR. | SUSSCR. | sygscr. | susscr. | VE
Tl ~ DECL. LITERAL
LITERAL CODE | posrmon | PooL LENGTH
FIRST LAsT
PARAGRAPH NAME cooE s ot
NAME

Figure 4.
Symbol Table Organization

Table 5 describes the contents of the first 21 rows of the sym—

bol table.

IRow | Purpose | Entry | Contents

Y R —|

| 1| Program Name | 1 | pointer to program name

| 21| 1INPUTO | 1 | hash table pointer to file name

[21 INPUTO i 2 | pointer to symbol table entry for
i | | | data record

| 2 | InpuTO | 3 | record length

I eee 1

| 21 | cuTPUTY | 1 ! hash table pointer to file name

| 21 | oUTPUTY | 2 | pointer to symbol table entry for
| | | | data record

! 21 | OUTPUTY I 3 | record length

i

Table 5. First Rows of Symbol Table

D o —— S S R T e — — ——— . —

A Mutation Analyzer 4-24

DATA ITEMS: The following table describes the orgamization of

the entries for the elementary data items.

item description began

i |
IentryI contents }
I | -

I 1 | Index of the identifier in the hash table, |
| | so that print name can be recalled. For |
| I FILLERS, this is zero. =
i I

| 2 | A code for the type of the object. |
[| 1 for unsigned numeric identifier |
I | 2 for signed numeric identifier |
I I 3 for ron—numeric identifier |
| I 4 for edited numeric item |
| | 5 for group item |
| I I
I 3 | The level number |
| | I
| 4 | Pointer to the PICITURE string in program |
| | memory for edited numeric items. |
| I OR the decimal position (from right) for i
| | unedited numeric items. |
| I OR not used. |
I I I
i 5 | A pointer to the start of the item in progrmmI
| I memory. For an item in a table, this is the |
| | constant term in the address calculation. |
| I I
I 6 | The length of the item, in characters. |
| | All items are stored with usage of DISPLAY. |
I I |
I 7 | The depth of the item in the table structure. |
| i (0 for scalars, 1 for ome-level tables or forl
| | rows in two—level tables, 2 for two—level |
| | tables entries.) |
I I |
I & | Pointer to VALUE string in program memory. |
I I I
oo | The Symbol table row for the item that is Av |
] : REDEFINEG |
[|
[10 | The source program line number om which the |
| I I
[|
] !

Table 6. Symbol Table Data Items

A Mutation Analyzer 4-235

SECOND ROW FOR TABLE ITEMS A second row is required for the

dope vector whern the data item is a table entry.

IentryI contents !
| ——-] —
i 2 | code = € !
I I I
| 4 | the multiplier for the first subscript. |
| I I
| 5 | the multiplier for the second subscript, |
i i |
| 6 | the maximum value for subscript-1. |
| I |
| 7 | the maxzimum value for subscript-2. |
| I I
I 8 | the number of QCCURances of the item. I
| !
I |

Table 7., Symbol Table - Table Items

LITERALS DEFINED IN THE PROCEDURE DIVISION: For cntering
references to literals which are defined in the procedure division,
the following table format is used. SPACES and ZERC (and twiddles
of ZERO) have entries of this format which are present by default,

even if not used in the program.

IentryI contents |
| —— | —- |
i 2 | code = 7 for numeric literals I
| i code = 8 for non-numeric literals |
| ! code = 10 for the twiddle of a numeric literal |
| ! I
I 4 | decimal position, for numeric literal |
| | I
{ 5 | pointer to value in literal pool |
| I |
I 6 | length i
! |
i I

Tables 8. Symbol Table - Literals

A Mutation Amalyzer , 4-26

PARAGRAPH NAMBS Paragraph names are entered in the following

format:

lentry| contents |
i ! |-
| pointer to name |
| | |
I 2 | code = 9 l
| | |
I 3 | statement table index of first statement |
| | |
| 4 | statement table index of last statement i
| !
! |

Table 9. Symbol Table — Paragraph Names

Entries in the symbol table are stored in the same order as the
items are enccuntered . In particular, entries for data items
defined in the DATA DIVISICN are stored almost as they appear in the
source code, with mnesting being implicit in the level numbers and
the sequence. ©One exception to this rule is the inclusion of dummy
FILLER entries of length zero between elementary items. This is to
accommodate the mutant operator that inserts fillers to avoid having

to change procedure division references.

Memory is organized as shown in Figuore 5.

A Mutation Analyzer 4-27

CALCULATOR

CONSTANTS

VARIABLES

Figure 3.

Memory Orgcnization

The first 30 characters of memory are wused as a temporary
aritbmetic register. Following that comes the comstant data area.

This area includes:

PICture strings — for edited numeric items, There are 3+N
descriptors, where N is the length of the picture string. The first
is the length of the string; descriptor 2 is the number of digit
positions; and descriptor 3 is the number of digits to the right of
the decimal roint. Then follows the picture string. An editing
MOVE uses this string to interpretively execute the DMNOVE instruc—

tion.

A Mutation Analyzer 4-28

VALUE literals., for numeric items — descriptor 1 is the number
of digits, descriptor 2 is the number of digits in fraction, and
descripters 3 to n+2 are the digits themselves. An operational sign
is coded in the last descriptor with the lest digit. for nonnumeric
items — descriptor 1 is the lengtk N in characters, end descriptors

2 to N+1 are the characters.

Procedure Division 1literals. These are digits or characters
only. Since these items have individual symbol table rows, the

extra information (e.g., length, decimal position) is stored there.

SPACES and ZERC are stored in positions after the arithmetic
register in a format that can be referenced either as VALUE or

Procedure Division literals, depcnding on the start pointer,

A variable area follows the constant area. All data is stored
on a USAGE IS DISPFLAY basis, one character at a time. Since some
mutations change the data structure, reallocation between ezecutions

is sometimes mnecessary.

STATEMENT TABLE: The statement table is composed of triples of
integers. The first is the starting position of an instruction in
the code table, When a procedure division statement is mutated, the
original code is not modified. Instead, a mnutated copy of the
instruction is <created and appended to the end of tkhe code table.
This entry is then modified to point to this mutant copy of the
instruction. The second entry in the triple is the line number of
the statement or the source listing. The third entry contains a

code. A value of (¢ means this statement is a continvation in a

A Mutation Analyzer 4-29

sentence {(no period after previous statement.) A value of 1 means a
new sentence. A value greater than 1 means the beginning of an ELSE

clause.

INTERNAL FORM OF PROCEDURE DIVISION: The following table
describes the format of the internal form for each Cobol instruc—
tion. The bracketed entries "identifier”,”ident”, and "id", as well
as "op” are pointers to symbol table entries describing identifiers
or literals, The symbol table contains information about tygpe,
length, and location. Notice that an operand can also be a table
reference. In this case, instead of a single integer we would have
[opliindex—1]) or [opllindex~1} [index—2]. The interpreter will know
from the symbol table entries for op whether 0,1, or 2 indices (sub-
scripts) are needed for a valid reference. Index-1 (and index-2)
are also symbol table references to simple (unsubscripted) variables
or to numeric literals. The notations ‘procedure” Vand "proc”
represent pointers to symbol table entries describing paragraph
names. The sywmbol table will contain pointers to the first and last

statements in the paragraph, in the statement table.

Each instruction is preceded by a word containing the length of

that instruction.

A Mutation Analyzer 4-30

| source internal form syntax

l -

|OVE <HOV><{n>{source><{dest-1>.,..<{dest—n)

|ADD <{ADP><rnd><size><n><op-1>...<op-n)
|ADD-GIVING {ADG><{rnd)><{size><{n)><op—1>...<op—n><{dest>
| SUBTRACT (SU><rnd)><{size><n><op-1>...<op-n)

| SUB-GIV (SUGY><{rnd><size><n><op-1>...<op—n><{dest>
IMULTIPLY <MU><rnd><{size)<op-1)<op-2>

[HULT-GIV {MUG><{rnd><size){op—-1><op—-2><{dest>
{DIVIDE {DIX<{rnd><{sized<op—1><op—2>

IBIV-GIV PDIG><rnd><{size>{op—1><op-2><{dest>

{ coMPUTE <C0><{rnd><{sized<ident><arith. exp.>

I60 TO <GO>{procedure>

{GO TO...DEPEND (GOPY><{n><{proc-1>...{proc-n><ident>

|

|

|

|

|

|

|

|

|

|

|

!

I

|

| PERFORM | <PE><procedure)<procedure~2>

| PERFORM-UNTIL | <PEU><proc—1)><proc-2>{condition)

| PREFORM-VARYING | <PEV><proc-1)><{proc-2><ident)<from><by>

| | <REP1><pl-stmt-ptrd<{p2-code-ptr><{condition)

| PERFORM-TIMES | <PET>{procedured{procedure—2><{ident)

| | <REP2)><(count><{start><{stop>

Ino op | <RET><0)

|return | <RETY<addr)

|IF | <IF><else~stmt—ptr><condition)

INEGATED IF | NIF><else-stmt-ptrd><condition)

[OPEN | oPX<1..20

} CLLOSE I <CLy<1..20)

IREAD g <RE><1..10><{from—ident)
|
[

IWVRITE (WR><1..10>{from—ident><{advance)
{STOP RUN (STOP>
| TRAP (TRAP)

] Table 10. Tnternal Form Syntax

!
!
!
!
!
!
!
!
!
!
{
!
|
[
I
|
|
i

e S — SV SR T TN S — — — — T — T) T T — T — — — — T —— T —— o d—

The items <rnd> and <size) are codes. <rnd> is set to 0 fer
truncated values and 1 for rounded values. <size’ is set to 0 if no
SIZE ERROk clause Las been specified and 1 otherwise. 1In the inter—
nal form the SIZE ERROR clause dimmediately follows the current
statement. Aritkmetic expressions are interpreted (see algorithms
below) by & "calculztor” that uses the initial memory locations for

subezpression and intermédiate storage.

In PERFORM-VARYING and PERFORM-TIMES statements <REP1)>
represents the iteration control instruction. On returning from the

PERFCRM, comntrol is returred to this imstruction, <(pl-stmt-ptr} is

A Hutation Analyzer 4-31

a statement table pointer corresponding to the symbol table <{pointer
proc—1>. { p2-code—ptr> is a code pointer for the insertion of the
return. <REP2) is similar to REP1, but <{count) holds the value that
was in <{ident) when the statement was first executed. Start and

stop are statement table pointers for the perform range.

Each paragraph ends with a no op statememt. When a PERFORM
statement is executed, it first changes the no op at the end of its
range to a return by inserting the return address (in the statement
table) and then transferring to the beginning of the range. When a
RETURN is executed, it transfers to the address in the instruction
and also changes itself to a no op by changing its addresg field to
0. No op’s are also inserted whern NEXT SENTENCE is used or implicd

in an YF statement.

Jo the WRITE statement <{advance) is a symbol table pointer,

MUOTANTS: The mutant descriptions are stored in four integers.
The first is the mutant type, and the others (not all types use all
four integers) are vsed for avxilisry information,. The following

motants are defined.

A Mutation Analyzer

4-32

Imutant

semantics

|DECIMAL
|

IpIMENS]
|
IDIMENS2
|
| INSERTF

| ALTERF
IREVERSE
IFILEREF
IDELETE
IGO—PERF
IPERF—GO
Immms
ISTOPINS
ITHRUEXT

| TRAP
IARIVERB
IARIOPER
IPARENTH
IROUND
IMOVEREV
ILaﬂc
IS—FORrS
Ic—Foch
IC—FORfS
ES—FOR—C
| CONSADTY

Move implied decimal in numeric items one place
Reverse row and column OCCURS counts

Increment or decrement (by 1) an OCCURS count.
Insert a filler with PICTURE X.

Alter a filler with PICTURE X(n) to X{(n-1) or X(n+l)
Reverse adjacent elementary items in a record.
Change a file refcrence from one file to another
Delete a statement (change it to a NO-CP).

Change a GO TO to a PERFORM

Change a PERFORM to a GO TO.

Reverse the TEIM and ELSE clauses in an IF

Insert a STOP RUN in the program.

Extend the TRHU range of a PERFORM.

Change a statement to a TRAP

Change ome arithmctic verb to another,

Chenge an arithmetic operator in a CCHPUTE statement.

Alter the parenthesization of an arithmetic expression

Change rounding to truncation, or vice versa.

Reverse the direction of the MCOVE

Change 2 logical comparison to some other comparison.

Substitute one scalar data references

Substitute a constants {(numeric or ancnnumeric literal)

Substitute a constant for a scalar.

Substitute a scalar for a constant.

Increment or decrement a numeric literal by 1 or by 1%

Table 11. Mutant Semantics

I
|
|
[
I
I
|
I
I
|
[
I
I
|
I
!
|
I
I
I
I
I
|
|
I
|
I
I
|
|
I
I
I
I
|
|
I
|
I
I
[
I
I
I
I
|
I
I
I
I
|
I
I

A Mutation Analyzer 4-33

We now describe the effects of each of these mutations on the
internal form entries. The mutations are grouped by the Cobol
syntactic structures affected during the mutation: data, input,
output, control, and procedural. Each mutant is described by four
integers which specify the type of mutation, relevant table entries,
and parameters defining the mutant. In the notation below, blank
entries in the descriptors are indicated by <x>. {field> denotes
the location in the code table relative to the start of the
statement. All other locations and limits are defined through tleir
symbol table entries. Thus, the mutants can be stored in a file of

4xN integers.

DATA MUTATIONS

(1) <DECIMAL><sym.tab.loe><+l | ~1><x>

(2) <DIMENS1><{sym.tab.loc><x><{sym.tab.loc.-2>

(3) <DIMENS2)><sym.tab.loc><+l | -1><x>

(4) <INSERTF><{symbol table location><x><{x>

(5) <ALTERF><{sym.tab.loc)<+1}-1><x>

(6) <REVERSE>{sym.tab.loc.>{next.elementary.loc><x>

INPUT/OUTPUT MUTATIONS

(7) <FILEREF)><{statcment><x)><{new file-code>

CORTROL STRUCTURE MUTATIONS

(8) <DELETE><statement)<x><{x>

(9) <GO-PERF)>{statement><{x><{x>

(10) <PERF-GO>{steztement){x><{x>

(11) <THENELS>{statement)><{z><{x>

(12) <STOPINS)><{statement)<{x><{x)

(13) <(THRUEXT)>{statement><new paragraph limit)><{(x>
(14) <(TRAP>{statement)<{x><{x)

PROCEDURAL MUTATIONS

(15) <ARIVERB)>(statement)<{new operation>{(x>
(16) <ARIOPER)><(statement><field><{new operation>
(17) <PARENTH)(statement><{from—field>{to—field)
(18) <ROUMND>(stztement><{x)><{x)

A Mutation Analyzer 4-34

(19) <MOVEREV><{statement><{x><{x>

(20) <LOGIC>{statement><{field><{new value>

(21) <{S-FOR-S8>{statement><field><new symtadb loc.>
(22) <(C-FCR-C><{statement>{field><{new loc>

(23) <C-FOR-S><{statement>{field><pew loc>

(24) <S-FOR-C>{statement><{field><new loc)

(25) <CONSADJ><{statement><{field><new loc>

Processing Algorithms

In this section, we will describe the principal processing that
takes place during the mutation phase of the analyzer. The overall

organization of these algorithms is as shown in Figure 6.

DRIVER ——— ENTRY ——- PARSE PARSE ID
PARSE DATA
PARSE PROC.
PARSE ERROR ——— ABORT-
— EXIST
— CREATE
— DELETE
— OPENF
— CLOSEF
— WRTRAN
— PREPH GETCMD —— ABORT
EXIST
OPENF
CLOSEF
TESTCAS +—— READLN
PACK
UNPACK
INTERP

F— MUTPH —— MAKMU
GETMU
MUTATE
INTERP
CORREC
PUTMU
RESTCOR
OPENF
— CLOSEF
DSPTT
GETCMD
DSPMU
DSPPRG

[TTTTTT

L POSTPH

T

Figure 6.
Call Structure for Processing Algorithms

A Mutation Analyzer 4-35

Each major algorithm is described below. Minor algorithms are

described briefly in the major algorithms that use them.

In additior to the processing aligorithms described below, an
implementor will need some wutilities for common file processing
operations. The nutilities which are most likely to be helpful are
those which take and replace a given mutant (indexed by its number)
in a mutant buffer, c¢reate and delete files, check to sce if a
specified file (on a specified unit) is open or already exists.

Sequential and random access reads and writes are also required.

ABORT — stop the runm
ABORT prints a message indicated in its call., It then closes all
open files without further processing. No files are deleted. ABORT
then terminates the run and returns control to the operating system.
Be aware that ABORT does not actually cause the output file to be

printed. The user must do that outside the system.

ALCATE — allocate storage
ALCATE scans the symbol table, filling in the fields fof the lengths

of group items, and for the positions and multipliers for all items.

CLOSEF — close a file
CLOSEF closes currently open files. It will also detect if the file

was not opened and return an error message to the calling algorithm,

A Motation Analyzer 4-36

CORREC — check mutant correctness
CORREC compares arn output of the program being executed with the
cutput of the original program. Depending on the mode of correct—
ness checking chosen by the user (or by the defzult methods), this
may be done after each record is "written”, after the program has
completed execution (unless the program has failed by some other
method), or not at all. Also selectable by the uscr should be the
precision of the checking: total agreement, or agreement up to

spacing.

DECOMP - decompile statement
DECOMP decompiles & statement in internal form to its Cobol

equivalent.

DRIVER the main program
This program controls the looping through the mutation process at
the highest level. It controls the prerun, mutation, and postrun

phases of the run. This is the routine that may be altered later if

the '"phase’” concept is dropped.

DSPSTT — displey status
Display the status of the mutants that have been turmed on. This
includes 2 listing by mutant type of the numbers of mutants live and
eliminated, and a listing by elimination method of the number

e¢liminated by each method.

A Mutation Amalyzer : 4-317

ENTRY — entry routine for set—up.
This algorithm is entered only once, at the bepginning of a testing
session. ENTRY first asks the user for the mname of the raw program
file. It then checks to see if the temporary files needed already
exist (their names will be derived from the raw program file mname).
If they do, then the user will be asked if he wants to purge them
for a fresh run. If a fresh run is desired, or if the temporary
files did mnot exist, ENTRY causes the program to be parsed, and

causes the needed temporary files to be created and initialized,.

INITM — initialize core memory
This algorithm initializes program memory for the start of an
interpretive interaction, This routine is called before each execu—
tion of each mutant program, as well as before the execution of the

original program,

INHASH — insert info into hash table
INHASH can only be used after QHASH has already been called to
determine the proper point of insertion for'the name. QHASH also
does the actual insertion of the name. INHASH makes the insertion
permanent. If a pame is not permanently inserted the name will be

overwritten the next time QHASH accesses that location.

INTERP - interpretively execute the program,
INTERP interprets thec intermal form of the program. The program can
fail in INTERP by attempting to read past the end of file, by writ-
ing too many records on an output file, by taking too much time, by

arithmetic fault, or by mode mismatch. The limits for time and out-

A Mutation Apalyzer 4-38

put records are in ERSTAT. For the original oprogram these are
arbitrary values, bet for motant programs, they should be set for
comparisons with the origimal program. INTERP leaves a code for the
mode of failure, or nonfailure, in ERSTAT. Alsc placed in ERSTAT
are counts of the actual time used and records written. INTERP
calls CORREC after each "write'" or after the emd of execution, or
not at all, depending on the correctness checking mode selected by

the user.

HAKEMU - make mutants
MAEFMU creates the descriptor record file, and initializes the
mutant status record. The first time it is called, it writes header
information and the first batch of mutants. Or subsequent calls it

appends mutant records.

MUTATE — mutate the program
MUTATE mutates the program., For a data division mutation, this
means altering one or several entries in the symbol table, and also
possibly the already initialized memory. For the procedure division
the affected statement is copied, in its mutated version, at thke end
of the code table. The statement table is then modified so that the
pertinent entry points to the modified version, rather than the
original. The original statement is not affected, so that restora—

tior is easy.

MUTPH -~ control the mutation phase.
MUTPE first creates the mutants that have ©beer requested by the

user, and then performs the metations and runs the mutants, updating

A HMutation Analyzer 4-39

the mnutant status as it does so. Each test case and each mutant
record carries a flag that indicates whether or mot it was «created
on this pass. While looping through the mutants, each new mutant is
run against all test cases. Each o0ld mutant that has not already

been killed is run only against the new test data.

OPENF - open a file
OPENF opens a file. This algorithm will have concentrated system
dependencies. Typical parameters passed to OPENF include the type
of file (e.g., sequential output file or random input file), the
starting position in the file (e.g., beginning, end, random
address), and a flag to indicate success of the operation.
Extensive wuse should be made of the native operating system file

handling routines in implementing OPENF,

PARSE - driver routine for parsing subrountines.
This routine controls the four divisional routines that actually
perform the parsing. It =also prints error messages. The pilot
system, at least, will abort the parsing when the first error is
detected. The user will be informed of the offending line and the

type of error.

POSTPH — the post run phase
POSTFH is guided by wuser dialogue. Its purpose is to displey
information for the user. The mutant status should be auvtomatically
displayed upon entry, all other information is_by request, The user
may ask to see the program, the test cases (by number), or the

nmutants (all, selected, or one random mutant of each type).

A Mutation Analyzer 4-40

Finally, the user may return to the pre—run phase by command or end

the sessiomn.

PREPH — the controlling routine for the prerun phase
The prerun phase is guided by user dialogue. PREPH will ask about
test cases for this pass. These may be in a file or they may be
entered from the terminal. Several test cases may be entered at
cnce. After each test case the user is presented with the results
of the run and is asked if the test case should be retaimned. After
the +test cases are entered PREPH asks the user which mutants are to
be turned on, The uscr may turn them all on, or he may name a sub-

set, or he may select mutants to be activated.

PRSDAT - parse the data division
PRSDAT parses the data division, building the symbol table for later
use by PRSPRO, INTERP, and MAKEMU. PRSDAT enters one line in the
symbol table for each identifier declared in the DATA DIVISION,
PRSDAT also builds an array for the ipnitialization of memory before

each run,

PRSENV - parse the environment division.
This routine parses the enviromment division, The only 1lines of
importance are the ©SELECT statements, which contain the file
declarations, The file cames are placed irn the symbol table in

entries 2-5.

A Mutation Apnalyzer 4-41

PRSID — parse the identification division.
This routine essentially recognizes a correct identification
division. The only effect on the internal form is to imnsert the
program name (from the PROGRAM-ID statement) into the first location

of the symbol table,

PRSPRO — parse the procedure division
RSPRO parses the procedure division, creating the code array and the

statement array. PRSPRO also adds literals and paragraph names to

the symbol table.

PUTNAM — put name in NAMES array
PUTNAM inserts character string in NAMES for future reference, such

as by decompiler,

GHASH — query hash — is item already in hash table?
QHASE takes a name of 30 characters and checks to see if it is
already in the hash table. If so, it sets and index to the position
ir the table where the pamc was found. If no match is found, arm

index is set to that insertion position.

RESTOR ~ restore a mutant to the original version
Restore the internsl form of the program to its original state. For
a Data Division mutant this means removing a filler, re-reversing
two elementary items, or restoring table attributes. In all of
these cases the symbol table must be modified, and space must be
reallocated. For a Procedure division mutant, restoration is

easier, All that must be dome is to change entry 1 in the statement

A Mutation Analyzer . 442

table entry to its previous value.

SCAN ~ the scanner routine
SCAN passes to the parsing routines tokens from the source file .
For an idenfifier tokem, scan calls the hash query routine to sce if

the symbol is already in the table and if so, where.

TSTCAS — process a test case
TSTCAS inputs one test case from the user, either directly or from a
file, runs the test case, and displays the result to the user. if
the test case is accepted, it is merged into the test file, marked

as "new"”,

A Testing Session

The following is the output of a ievel 1 Cobol system whose
design parallels the design given above., The program under test was
rnodified scmewhat, mainly in the reduction of the record sizes to
nmake a better CRT display. The program takes as imnput two files,
representing an c¢ld backup tape and a new one. The output is a sum-
mary of the changes. The input files are assumed to be sorted on a
key field. The program has 1195 mutants, of which 21 are easily
seen to be eqgunivalent to the original program. Initially ten test
cases were generated to eliminate all of the nonequivalent mutants.
Subsequently a subset of five test cases was found to be adeguate.
The entire run took about 10 minutes of clock time, and 2 minutes

and 13 seconds of CPU time on the PRIME 400.

A Mutation Amalyzer 4-43

VELCOME TO THE COBOL PILOT MUTATION SYSTEM

PLEASE ENTER THE NAME OF THE Cobol PROGRAM FILE:)>log—changes

DO YOU WANT TO PURGE WORKING FILES FOR A FRESE RUN 7>yes

PARSING PROGRAM

SAVING INTERNAL FORM

WEAT PERCENTAGE OF THE SUBSTITUTION MUTANTS DO YOU WANT TO CREATE?>100
CREATING MUTANT DESCRIPTCR RECORDS

PRE-RUN PEASE

DO YOU WANT TO SUBMIT A TEST CASE ? Jprogram

PROGRAM LAST COMPILED ON 1 11 80,

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID, POQAACA.

3 AUTHOR. CPT R W HORFHEAD.

4 INSTALLATION. HQS USACSC.

5 DATE-WRITTEN. OCT 1973.

6 REMARKS.

7 THIS PROGRAM PRINTS OUT A LIST OF CHANGES IN TEE EIF.

8 ALL ETF CEANGES WERE PROCESSED PRIOR TO THIS PROGRAM, THE
9 OLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO
10 FURTHER PROCESSING OF THE ETIF HERE. THE ONLY OUTPUT 1S A
11 LISTING OF THE ADDS, CHANGES, AND DELETES. THIS PROGRAM IS
12 FOR HQ USE ONLY AND HAS NO APPLICATION IN THE FIELD.

13 SREESKEREXHEEZLES

14 MGDIFIED FOR TESTING UNDER CPMS BY ALLEN ACREE

15 JULY, 18792,

16 ENVIRONMENT DPIVISION.
17 CONFIGURATION SECTION.
18 SGURCE-COMPUTER. FRIME.
19 OBJETT-COMPUTER. PRIME.
20 INPUT-OUTFUT SECTION.
21 FILE-CCNTROL.

22 SELECT OLD-ETF ASSIGN INPUT1.
23 SELECT NEW-ETF ASSIGN INPUT2.
24 SELECT PRNTR ASSIGN T0 QUTPUT1.

25 DATA DIVISION.
26 FILE SECTICN.
27 b OLD-LTF

28 RECORD CCNTAINS 80 CHARACTERS
29 LABEL RECCRDS ARE STANDARD

30 DATA RECORD IS OLD-REC.

31 01 OLD-REC.

32 03 FILLER PIC X.

33 03 OLL-KEY PIC X(12).
34 03 FILLER PIC X(67).
35' FD NEW-ETF

36 RECORD CONTAINS 80 CHARACTERS

37 LABEL RECORDS ARE STANDARD

38 DATA RECORD IS NEW-REC.

39 01 NEW-REC.

40 03 FILLER PIC X.

41 03 NEW-KEY PIC X(12).
42 03 FILLER PIC X(67).

43 FD PRNTR
44 RECCED CONTAINS 40 CHARACTERS

A Mutation Analyzer

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
g4
85
§6
&7
88
89
90
21
92
93
94
95
96
87
88
99
100

LABEL RECORDS ARE OMITTED
DATA RECORD IS PRNT-LINE.
01 PENT-LINE
WORKING-STORAGE SECTION.
01 PRNT-WORKE-AREA.
03 LINE1
03 LINE2
03 LINE3
01 PENT-OUT-OLD.
03 WS-LN-1.
05 FILLER
05 FILLER
05 IN1
05 FILLER
03 WS-LN-2.
05 FILLER
05 FILLER
05 LN2
05 FILLER
03 VS-LN-3.
05 FILLER
05 FILLER
05 LN3
05 FILLER
01 PRNT-KEW-OUT.
03 NEW-LN-1.
05 FILLER
05 N-LN1
05 FILLER
03 NEW-LN-2.
05 FILLER
05 N-LMN2
05 FILLER
03 NEW-LN-3.
05 FILLER
05 N-LN3
05 FILLER
PROCEDURE DIVISION.
0100-QOPENS.
OPEN INPUT CLD-ETF NEW-ETF.
OPEN OUTPUT PRNTR.
0110-0LD-EREAD.

PIC

PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC
FIC
PIC

PIC
PIC
PIC

PIC
PIC
PIC

READ OLD-ETF AT END GO TO 0160-CLD-EOF.

0120-NEW-READ,

READ MEW-ETF AT END GO TO 0170-KEW-EOF.

0130-COMPARES.

IF OLDP-KEY = NEW-KEY

NEXT SENTENCE
ELSE GO TC 0140-CK-ADD-DEL.
IF OLD-REC = NEW-REC

GO TO 0110-GLD-EREAD.
MOVE CLD-REC TO PRNT-WORK—AREA.
PERFGRM 0210-OLD-WRT THRU G210-EXIT.
FIOVE NEW-REC TO PRNT-WORE-AREA.
PERFORM 02C0-NW-VWRT THRU 0200-EXIT.
G0 TO 0110-OLB-READ.

4-44

X{40).

X(30).
X(30).
X(20).

X VALUE SPACE.
XXXX VALUE '0 ',
X(30).

XXX VALUE SPACES.

X VALUE SPACE.
XXXX VALUE 'L ',
X(30).

XXX VALUE SPACES.

X VALUE SPACE.
XXX VALUE 'D .
X(20).

XXX VALUE SPACE.

XXXXX VALUE ' N T,
X(30).
XXX VALUE SPACE.

XXXXX VALUE ' E ‘.
X(30).
XXX VALUE SPACES.

XXXXX VALUE ' W .
X(20).
XXX VALUE SPACES.

A Mutation Amnalyzer , 4—45

101 0140—-CE-ADD-DEL.

102 IF OLD-EEY > NEW-KEY

103 HOVE NEW-REC T0 PRENT-WORK-AREA

104 PERFGRM 0200~-NW-WRT THRU 0260-EXIT

105 GC TO 0120-NEW-READ

106 EL.SE GO 1C ¢150-CK-ADD-DEL.

107 0150-CK~-ADD-DEL.

108 MOVE OLD-REC TO PENT-VORE-AREA.

109 PERFCRM (2106~-CLD-WRT THRU 0210-EXIT.

110 READ OLD—-ETF AT END

111 HMOVE NEW-REC T0 PRNT-WORE-ARFA

112 PERFORM 0200-NW~-WRT THRU O0200-EXIT

113 GO T¢ 0160—-OLD-EOF.

114 GO TCO 0130-COMPARES.

115 0160-0LD--LOF.

116 READ NEW-ETF AT END GO TO 01E0-EOJ.

117 MOVE HEW-REC TC PRNT-WOKRR—-AREA.

118 PERFORM 0200-NW~-WRT THRU 0200-EXIT.

116 GO TO 0160—-0OLE-EQF.

120 017 0-NEW-EOF,

121 KMOVE OLD-REU TO PRNT-WORK-AREA.

122 PERFORM 0210~OLD-WRT THRU 0210-EXIT,.

123 READ OLD~ETF AT END GO TG 0180-EGJT.

124 GO TO 0170-NEW-LOF.

125 0180-E0J.

126 CLOSE CLD-LTF NEW-LTF PRNIR.

127 STOP DUN.

128 G200-NW~-VRT.

129 MCVE LINE1 TO N-LN1.

130 KOVE LINEZ TO N-IN2,

131 MOVE LINE3 TO N-LN3.

132 WRITE PRENT-LINE FROM NEW-LN-1 AFTER ADVANCING 2.
133 WRITE PENT-LINE FEOM NEW-IN-2 AFTER ADVANCING 1.
134 WRITE PENT-LINE FROM NEW-LIN-3 AFTER ADVANCING 1.
135 0200-EXIT.

136 EXIT.

127 0210-0OLB-WRT.

138 MOVE LINE1 TO LNI.

139 MGVE LINE2 TO LN2.

146 MOVE LINE3 TO LN3.

141 VRITE PRNT-LINE FROM WS-IN-1 AFTER ADVANCING 2.
142 WRITE PENT-LINE FROM WS-LN-2 AFTER ADVANCING 1.
143 WRITE PENT-LINE FROM VS—-IN-3 AFTER ADVANCING 1.
144 ¢210-EXIT.

145 EXIT.
’yes

WHERE IS OLD-ETE?

>1cH

WHERE IS NEW-ETF?
21c6

OLD-ETF FROVIDED TO THE FROGRAM

1123456789012ITIITITIIITIONIIIIII I JRKRKKEKKKKL LLLLLLLLLNNNNNNNNNNBBBBBEBBBBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFF ODDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

NEW-ETF PRCOVIDED TC THE PROGRAM

A Mutation Analyzer 4-46

11334567 & 9012006G00CC000
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSS SSXXXX XXX XXXEEEER
345678901234 UUUVUUUUUUBHHEHIHIBIGGGGGGGGGGDPDDDDDDPDDDSSSSSSSSSSELEEEEEEEEAAAAA

PRNTIR AS WRITTEN BY THE PROGRAM

0 1123456789012T1IIIIIIIIONTIITY
L JIJKEKKKKEKKEK] LLLLLLLLLNNNNNNN
D NNNBBBBBBBBBBGGGGGGG

I113345678%01200000000000000000
00000000000060600000600000000G0
00006C000C0000000000

=:nZ

J234567890123YYYYYYYYYYGGGGGGG
GGGFFFFFFFFFFCDDDDDDDDDS SSSSSS
SSSXXXXXXXXXXFEEFEEE

gro

J234567890123YYYYYYYYYYGGGGGGE
GCGFFFFFFFFEFDDDDDDDDDDSSSSSSS
SSSXXXXXXXXXXEEEEEEE

=m=

345678901 234UUUUUUVUUUIEHELER
HHHGGGGGGGGGGDDDPDDDDDDDS SSSSSS
SSSEEEEEEFEEEAAAAAAA

=tz

THE PRCGRAM TGOK 84 STEPS
IS THIS TEST CASE ACCEPTABLE ? Jyes
DO YOU WANT TO SUBMIT A TEST CASE ? >no
MUTATIOMN PEASE
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? »select

ENTER THE NUMBERS OF THE MUTANT TYPES YOU WANT TO TUERN ON AT THIS TIME.

4 #%3% INSERT FILLER TYPE *##%%

5 *#&¢3% FILLER SIZE ALTERATION TYPE ##%%3

6 #3x% ELEMENTARY ITEM REVERSAL TYPE ##%#%
7 #x2% FTLE REFERENCE ALTERATION TYPE *###
8 $%#% STATEMENT DELETION TYPE #%+=#

10 #%=3 PERFORM ——> GO TO TYPE #*#¥%
11 $3%¥% THEN - ILSE REVERSAL TYPE *%#*=*
12 see% STOP STATEMENT SUBSTITUTION TYPE *%%#
13 #%*% THRU CLAUSE EXTENSION TYPE *%#*3
14 #*&x TRAP STATEMENT REPLACEMENT TYPE %%%%
19 *s%* MOVE REVERSAL TYPE #*%+#
20 s#%% LOGICAL OPERATOR REPLACEMENT TYPE ¢%#*%
21 *s*% SCALAR FOR SCALAR REPLACEMENT #*#%3%%
22 #32¥ CONSTANT FOR CONSTANT REPLACEMENT *&%%
23 #x+3 (CONSTANT FOR SCALAR REPLACEMENT #%%%
25 *t%% CONSTANT ADJUSTMENT ##¥%=

TYPES ? >4 to 14 stop

——~ TESTCASE 1 —

250

284 CONSITTRED 224 KIiLLED 60 REMAIN

A Hutation Analyzer

HUTANT STATUS

TYPE TCTAL LIVE PCT EQUIV
INSERT 41 7 82.93 0
FILLSZ 38 14 63.16 0
ITEMRV 21 0 100.00 0
FILES 5 1 80.00 0
DELETE 54 13 75.93 0
FER GO 7 2 71.43 0
IF REV 3 1 66.67 0
STOP 53 10 81.13 0
THRU 8 2 75.00 0
TRAP 54 10 81.48 0
TOTALS

284 60 T78.87 0

DO YOU WANT TO SEE TEE LIVE MUTANTS?>no
PO YOU WANT TO SEE THE EQUIVALENT MUTANTS? no
WOULD YOU LIEE TO SEE THE TEST CASES?>nco
LGOP OR HALT ? >loop
PRE-RUN PHASE
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
WHERE IS OLD-ETE?

>1lcls

WHERE IS NEW-ETIF?

>1lcs

GLD-ETF PROVIDED TO THE PROGEAM

CG00000G0C012ITIIITIIIITIIIIIITIIYYY JKKKKKEKKKKL LLLLLLLLLNNNNNNNNNNE BBBBBBBBBGG GGG
1123456785012 XTIITITIXIITIIIIIII I YKKKKKKKEKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J234567890123YYYYYYIYYYGGGGGGGGCGFFEFFFFFFFDDDDDDDDPDS SSSSSSSS SXXXXXXXXXXEEEEE

NEW-ETF PRGVIDED TO THE PROGRAM

1123456789012IIIIIITITIIIIIIIT I ITKKKKKKKKKEKLLLLLLLLLLNNNNNNNNNNB BBBBBBBBBGGGGG
J234567860123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFIDDDDDDDDDDS5SSSSS SSSXXXXXXXXXXEEEEE

PENTR AS WRITTEN BY THE PROGRAM

0 GOO0COOCCOO12IIIIXIXIXIIIIIIIIY
L JJJEEKEEKKKKKLLLLLLLLLLNNNNNNN
b NNNBEBBBBBBBBGGGGGGG

THE PROGRAM TOCK 44 STEPS

IS THIS TEST CASE ACCEPTABLE ? Jyes

PO YOU WANT TO SUBHMIT A TEST CASE ? Jyes
WHERE 1S OLD-ETF?

>lcl4

WHERE IS NEW-LETF?

»lc3d

OLD-ETF PRCVIDED TO TIIE PRCGRAM

11234567890121I1II1IIIIXIIKITITIT YT JEKKKKKEKXKL LLLLLLLLLNNNNNNNNNNBBBBBBBEBBGGGGG
J234567850123YYYYYYYYYYCGGGGGGGGGFFFFFFFFFFDDDDDDDDEDSSSS S8 SSSSXX XX XXXXXXEEEER

NEW-ETF PROVIDED TO THE PRCGRAM

4-47

A Mutation Amnalyzer 4-48

1123456789012 I1IIITIIIITIITIITIITKEKKKEKEKKKLLLLLLLLLLNNNNNNNNNNBBBBBEBBEBGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFIFFDDDDDDDDDDS SSSSSSSSSXXXXXXXXXXEEFEE

PENTE AS WRITTEN BY THE PROGEAHM

0 ¥123456789012I1IITIIIITIEKIJIIIY
L JJJEKEKEEKEKKKLLLLLLLLLLNNNNKENN
D NNNBDBEEBBBBBGGGGGGG

N 112345676201 2ITIIIIIIITIIIIIIIF]
E JIJERKEKKEKKKEXKLLLLLLLLLLNNNMNNN
¥ NNNBBRBBBBEBEGGGGGCG

THE PROGRAM TOOK 48 STEPS

IS THIS TEST CASE ACCEFTABLE ? Jyes
DO YOU WANT TO SUBMIT A TEST CASE ? »>yes
WHERE IS OLD-ETF?

>lcil

WHERE IS NEW-ETF?

>lcl

OLD-ETF PROVIDED TO THE PROGRAM

000000600000000000000000000G0000000000000000

NEW-ETIF PRGVIDED TC THE PROGRAM
1123456789012ITIITITITITIIIIIIT I JKEKEKKKEKKKL LLLLLLLLLNNNNNNNNNNB BBBBBBBBBGGGGG
J234567590123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDEDSSSSSSESSSXXXXXXXXXXEEEEER
34567890123 4UUUUVUUUUUUHEENBEIHEAG GGGGGGGGGPDDDDDDEDDS SSSSSSSSSEEEEEEEEEEAAAAA

PRNTR AS WRITTEN BY THE PROGRAM

000000000000000000000000000000
600000000000C0

=1 =)

N 1123456 78%012IXIIIIIIIINIIIIIT
E JJJEKKEKEREEKLLLLLLLLLLNNKNNNN
W NNNBBBBBBBBBBGGGGGGG

N J234567890123YYYYYYYYYYGGGGGGG
E GGGFFFFFFFFFFDDDDDDDDDDSSSSESS
W SSSXXXXXXXXXXEEEEEEE

N 34567890123 4CUUUVUUUUUUIHHEEHITH
E HHEGGGGGGGGGGDDDPDDDDDDDSSSSSSS
W SSSEEEEEEEEEEAAAAAAA

THEE PROGRAM TCOXK 64 STEPS

IS THIS TEST CASE ACCEPTABLE ? >yes

DO YOU VWANT TO SUBMIT A TEST CASE ? Jyes
VEERE IS OLD-ETF?

slcl

WHERE IS NEV-ETF?

>lcll

A Mutation Analyzer 4-49

OLD-ETF PRGVIDED TO THE PROGRAI
11234567890G12ITTIITIIIIIIIIIIITTJEKERKKKKEKKKLLLLLLLLII NNNNNNNNNNBBBBEBBBBEGGGGG
J234567890123YYVYYYYYYYYGGGGGGGGGGFFFFFFFEFFFDDDEDDDDDBSSSSSSSSSSXXXXXXXXXXEEEEE
34567890123 4UUUVUTUUUUEHEEHEIHHEGGGGGGGGGGRDDDDDDDDDS SSSSSSSSSELEEEEEEEEAAAAA
NEW-EIF PRGVIDED TC TEE PROGRAM
000000000060600006600000600006666066600006000000
PRNTR AS WRITTEN BY THE PROGRAM

N 00600000060000000000006000000000

E ©00060000000000

0 1123456789012 IXTIIIIIIIIIIIIIIT
L JYJEXKKEKKEKEELLLLLLLLLLNNNMNKNN
D NNNBBBBBBBBEBBGGGGGGG

J234567850123YYYYYYYYYYGGGGGGG
GGGFFFFFFFFFFDDDDDDDDDDS SSSSSS
SSSXXXXXXXXXXEEFEEEE

oo

0 345678901234UU0UUUUUUUUREHHEEHE
L HHHGGGGGGGGGGPDDDBDDDDDSSSSSSS
D SSSEEEEEEEEEEAAAAAAA

TEE PROGRAM TCOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE ?)yes
DO YOU WANT TO SUBMIT A TEST CASE ? ’no
HUTATIGN PHASE
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? »all

—— TESTCASE 11—
250
500
750
814 CONSIDERED 6406 KILLED 174 REMAIN
—— TESTCASE 2 —
234 CONSILDERED 82 EKILLED 152 REMAIN
—— TESTCASE 3 -——
152 CONSIDERED 1 KILLED 151 REMAIN
—— TESTCASE 4 —
151 CONSIDERED 61 KILLED 90 REMAIN
—— TESTCASE 5 —
90 CONSIDERED 69 KILLED 21 REMAIN

MUTANT STATUS

TYPE TOTAL LIVE PCT EQUIV
INSERT 41 3 92.68 0
FILLSZ 38 12 68.42 0
ITEMRV 21 0 100.00 0
FILES 5 0 106G.60 0
DELETE 54 1 98.15 Y
PER GO 7 ¢ 100.00 0
IF REV 3 ¢ 100.00 0

A Mutation Analyzer

STOP
THRU
TRAP
MOVE R
LOGIC
SCBSFKES
SUBCFC
SUBCFES
C ADJ

TOTALS

53
8
54
13
15
704
12
58
12

1098

100
100
100

93
100

100
100

SO HhAMHODOOC

21 s8.

100.
.33
99.
.00
.00
.00

.00
.00
.00

00

43

09

SO0 OOCOC

0

DO YOU WANT TO SEE THE LIVE MUTANIS?>yes

THE LIVE MUTANTS

FOR EACH MUTANT :

TYPE ‘EQUIV’

**3+ JNSERT FILLER TYPE

THERE ARE

MUTANTS OF THIS TYPE

DO YOU WANT TO SEE THEM?)>yes

A FILLER OF LENGTH ONE HAS BEEN INSERTED

FRkE

THE ITEM WHICE STARTS ON LINE 52
ITS LEVEL NUMBER IS 3

>

A FILLER OF LENGTH ONE HAS BEEN INSERTED

THE ITEM WHICH STARTS ON LINE 353

ITS LEVEL NUMBER IS

>

A FILLER OF LENGTH ONE HAS BEEN

<
2
~

INSERTED

THE ITEM WHICH STARTS ON LINE 69
ITS LEVEL NUMBER IS 3

**** FILLER SIZE ALTERATICN TYPE

THERE ARE

MUTANTS OF THIS TYPE

PG YOU WANT TGO SEE TEEM?>yes
THE FILLER G LINE 58

>

THE FILLER ON LIKE

>

THE FILLER ON LINE

b

THE FILLER ON LINE

;

THE FILLER ON LINE

58

63

63

68

HIT RETURMN TC CONTINUE.
TC JUDGLE THE MUTANT EQUIVALENT.

L2 2

HAS HAD ITS SIZE

HAS HAD ITS SIZE

HAS BAD ITS SIZE

HAS HAD ITS SIZE

BHAS BAD ITS SIZE

TYPE ‘STOP’

LEFT.

AFTER

AFTER

AFTER

LEFT.

DECREMENTED

INCREMENTED

DECREMENTED

INCREMENTED

DECREMENTED

TO S5TOP.

BY ONE,

BY ONE.

BY ONE.

BY ONE.

BY ONE.

4-50

A Hutation Analyzer

THE FILLER

THE FILLER

THE FILLER

THE FILLER

THE FILLER

THE FILLER

THE FILLER

CN

CN

LINE

LINE

LINE

LINE

LINE

LINE

LINE

68

73

73

77

17

31

81

HAS

HAS

nAS

HAS

BAS

HAD

HAD

HAD

HAD

ITS

ITS

ITS

ITS

ITS

ITS

ITS

S1ZE

SIZE

SIZE

SIZE

SIZE

SIZE

SIZE

INCREMENTED

DECREMENTED

INCREMENTED

DECREMENTED

INCREMENTED

DECREMENTED

INCREMENTED

*e%% CSTATEMENT DELETION TYPE ©%%*3

THERE AREL 1 MUTANTS OF THIS TYPE LEFT.
PO YOU WANT T0 SEE TIEM?>pes
ON LINE 106 THE STATEMENT:
GO T0 0150-CK-ADD-DEL
HAS BEEN DELETED.

s#2% [OGICAL OPERATOR REPLACEMENT TYPE *%#=

THERE ARE 1 MUTANTS OF THYIS TYFE LEFT,
DO YOU WANT TO SEE TIEM?>yes
ON LINE 102 THE STATEMENT:
IF OLD-KEY > NEW-EKEY
HAS BEEN CEANGED TG:
IF OLD-KEY NOT < NEW-EKEY

¥*3% SCALAR FOR SCALAR REPLACEMENT #%%%

TEERE ARE 4 MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TG SEE THEM?>yes
ON LINE 129 TIE STATEKENT:
MOVE LINE1l 70 N-INI1
HAS BEEN CHANGED TO:
MOVE NEW-REC TO N-LN1

>
ON LINE 129 THE STATEMENT:
EHCVE LINF1 TO N-LN3

BY ONE.

BY ONE.

BY ONE.

BY ONE.

BY ONE.

BY ONE.

BY ONE.

4-51

A Mutation Analyzer 4-52
HAS BEIN CHANGED TO:
MOVE PRNT-WGRK—AREA TO N-LN1
>
ON LINE 138 THE STATEMENT:
MOVE LINE1 TO LN1
HAS BEEN CHANGED TC:
MOVE OLD-REC TO LN1
p/
OGN LINE 138 THE STATEMENT:
MOVE LINE1l TO LN1
HAS BEEN CHANGED TC:
MOVE PRNT-WORK~AREA TO LN1
>
DO YOU WANT TO SEE DIE EQUIVALENT MUTANTS?>no
WOULD YOU LIKE TO SEE THE TEST CASES?>no
LOOP OR EALT ? >halt

ss85 STOP

Bibliographic Notes

The paper [Acree, 1979] gives an overview of existing mutation
analyzers. The basic structure described in this chapter was
described in a paper by Budd, DeMillo, Lipton and Sayward [Budd,
1978a] The system described in [Budd, 1978a] accepts a subset of
Fortran,. Subsequent analyzers have been designed and implemented
for AMESI Fortran 74 [Budd, 1980] and Level 1 Cobol [Acree, 1980},
[Hanks, 1980]. Eudd [Budd, 1982] has annocunced the implementation
of a portable Fortran analyzer. Techniques for speeding wup the
mutation phase are described in each of these references.v In
addition, post processors to detect <certain forms of mutant
equivalence were discussed by Baldwin and Siyward [Baldwin, 1979].
Tanaka'’s thesis describes the implementation of an equivalence chec—

ker based on data flow analysis techniques.

The Complexity of Mutation 5-1

Chapter 5

The Complexity of Program Mutation

In this chapter, we will deal with the cost of mutation
analysis and with methods for reducing the cost. The efficiency of
calculating the m(P,T) value for a program T is limited by the num—
ber of mutants in p(P) and, to a lesser extent, by the running time
of P. We will discuss the worst case size of p(P) for the mutation
operators described in Chapter 2 and give observed values for the
size of M(P). Ve will also present some justification for reducing
the total cost of aralysis by random sampling of muntants and discuss

the effects of sampling techniques on the quality of test data.

Estimating lp(P)|

The effects of the ruvnming time of P on the overall complexity
of calculating m(P,T} are difficult to determine in quantitative
terms. DBecause of the varietvy of ways in which a mutant may die,
nutants tend to be very unstable. That is, a2 mutant may not die by
actually producing an output which differs from P, It is more
likely that a mutant will die by executing a trap statement, an
illegal operation (a zero divide, for imstance), or by one of a num—
ber of other “mon-standard” means, Furthermore, mnot every live
nutant is executed on every test case. As described in Chapter 4,it
is convenient to keep a count of executed statements available dur—
ing mutation phases. If a mutant occurs in an unexecuted portion of
a program, then that mutant is not executed or the test case, since

it cannot possibly be killed by the test case, Thus, even though

The Complexity of Mutation 5-2

programs with long running times are more costly to test by mutation
analysis (or by any other dynmamic testing technique, for that mat-—
ter), the best estimate of the cost of calculating m(P.T) is n(P).

It is this quantity on which we will concentrate.

Ifutant operators are chosen to balance two conditions, The
first condition is that p(P) be kept reasomably small —— say, a
small polynomial function of some simple size parameter such as num-
ber of statements or number of data names. The seccnd condition 1is
that p(P) comc as close as possible to satisfying the Competent

Programmer Assumption.

Recall that we have defined simple mutants as follows. Let P
be a program in in a progranming system defined by a grammar G, and
let parse(P) be the syntax tree for P obtained by parsing P accord-
ing to G. Then a 1—order simple mutant operator is a function map—
ping T, to a tree T, so that T; and T, differ by =at most ome
terminal node (i.e., leaf). Ty defines a simple l-order mutant of
P. Proceeding inductively, a k—order mutant is simply a k—fold
iteration of 1l-order mutants. In particular, notice that simple
mnetants do not alter the ''semantic structure’ of a program -—— that
is they do not modify the internal nodes of the parse tree. Error

operators are with few exceptions simple 1-order mutants.

Ve will give & heuristic analysis of the expected number of

nutants of a program as a function of several size parameters.

First, it is possible to derive an order—of-growth expression
for the number of Fortran mutants. Data reference replacements are

asccomplished by interchanging reference names occurring within the

The Complexity of Mutation 5-3

program. In a program with N statements and K distinct data
references this number is F(N,K)= (§)=0(K2)- The reader can con—
vince himself that for each of the constant and operator replacement
schemes there is a constant ¢ so that the number of generated
mutants is bounded by cK. Therefore, F(N,K) dominztes the total
nember of of mutants, and the number of generated mutants is in the

worst case gquadratic in the number of distinct data references.

Observations of typical programs lead to another estimation of
the expected number of mutants generated. In programs that are mnot
inordinately dense each statement contains relatively few data
references, so F(N,E) is more clcsely approximated by F(N,K)= O(NK).
In typical programs, the data references tend to be so sparsely
distributed that the rate of growth is usually closer to quadratic

in N: FN,K) = 0(02).

¥n generating mutants of Ccbol programs, it is possible to more
nearly approach linear growth, since the number of data reference
interchanges is limited by syntactical redundancies. In fact, an
analysis similar to the one carried out above gives the worst case
estimate for the expected number of mutants for a Cobol program as
the number of data division 1lines multiplied by the number of
procedure division lines. For typical Cobol programs this estimate

is C(N,E) << N2.

Observed values of p(P) fall considerably under these
estimates. Tables 1 and 2 show mutant growth rates for some typical
Fortran and Cobol programs. Notice that in both cases {(except for
the variation in small Fortran programs) the estimates given above

are generous upper bounds on the observed nurber of mutants. In

The Complexity of Muvtation

experimental settings the average growth rate for "production”

programs to be more

nearly

linear in the

division lines and K than guadratic in N,

5-4

Cobol

product of procedure

|

| |
I N | N2 | Average Number of Mutants :
I
l12 | 144 | 2508 i
l13 | 169 | 307 |
l1a | 196 | 427 i
li6 | 256 | 360 |
l17 1 289 | 390 |
24 | 576 | 2666 I
l26 | 676 | 649 i
28 | 784 | 3213 |
130 | 900 | 1209 |
133 | 1089 | 12116 |
134 | 1156 | 3361 |
136 | 1296 | 1085 |
142 | 1764 | 1057 I
ias | 2025 | 1658 |
l6s | 4225 | 1514 |
les | 4356 | 2425 I
I71 | 5041 | 2817 |
log | 9604 | 8424 i
I123 115109 { 8838 g
: Table 1. Fortran Mutants :

| —

| | | No.Procedure * ! Total Mutants

; N | N2 | No Data Div Lines | Generated

I 57 | 3249 i 576 | 370

64 | 4096 ! 789 I 679

| 73 | 5329 I 756 | 78

| 74 | 5476 | 800 | 235

| 75 | 5625 | 837 | 225

| 78 | 6084 I 918 | 376

| 99 | 9801 | 1674 | 377

l[102 | 10404 | 1806 [715

Jl111 | 12321 i 2115 | 740

143 | 20449 | 3330 | 628

[170 | 28900 I 5184 | 1195

1453 | 205209 I 46803 | 14639

1670 | 448900 | 92964 | 50983

Table 4.2. Cobol Mutants

The Complexity of Mutation 5-5

Choosing to measure the complexity of mutation analysis on the
basis of a single size measure c¢an, however, be deceptive. For
example, consider a single assipgnment statement. Tf the right hand
side of the assigmment is extremely complex, then the number of data
references and operators will determine completely the nﬁmber of
mutants generated. The 33 line program in Table 1 is an example cf

a program with such a demnse structure.

Another size measure is the complexity of the comtrol struc-
ture. The so-called McCabe metric measures branching complexity.
The Halstead effort measurement is another measure of complexity.
The following teble summarizes the observed relationship between

these six size measures for 16 Fortran programs.

N !

[Nunber | [Nember | MNumber | IMumber |
| of IMcCabeI Data |Distinct] | of |
!Lines :Metrici Refs i Refs { Effort [Mutantsl
e e - I
i N v | x | x | E | TS
| -1 I ! | ———e | [
| 121 1 | 103 21 | 32033 | 2580 !
[131 5 | 27| 8 | 4071 | 317 |-
w7l 4 | 321 8 | 6928 | 386 |
I w7l 7 1 45 9 | 15246 | 634 |
Il 24}t 71 721 40 | 17565 | 2716 |
| 26! 9o | 401 11 | 16270 | 646 |
! 331 12 | 551 13 | 41819 | 859 |
I 331 1 | 407 | 53 | 249701 | 23382 |
I s6 1l o [1291 23 | 138939 | 3657 |
| 661 10 | 1151 15 | 170492 | 2425 |
| 671 15 | 158 28 | 189585 | 5230 |
I 7021 11 | 1351 16 | 166715 | 2888 |
I 98| 22 | 2271 32 | 365851 8457 |
| 1121 26 | 2371 68 | 320331 | 16380 |
I 277 1 122 | 5451 63 | 3024488 | 34657 |
{ 514 | 113 | 1138 | 93 | 19267405 }120000 !
[|

Table 3. Complexity Metric Relationships

The Complexity of HMutation 5-6

The strength of the correlation of the number of mutants with

each of the other measurements is given in the following table.

| | |
[Measurable]Correlationl| Data | Operator | Statement |
| Factor |Coefficientl Mutants { Mutants ! Mutants i
| I I —
| N | .950 I 946 | .953 | .940 |
I v | .798 | 795 | .880 | .764 |
x	.978	.980	.993	.921
K	.826	.836	874	.722
xx	.999 I .999	961	.970	
E	.975	970	.880	.999
M	—	999	953	.940
i i
I [

Table 4. Correlation of Complexity and Mutants

The correlation coefficient is for 2 linear fit between the number
of mutants and the factors discussed above (first column),. The
second, third, and fourth columns represent the correlation between
the number of mutants and the mutants arising from the three
categeries of mutation operators. It is possible to develop useful
linear models to predict the number of mutants in terms of the most
significant factors. For example, the linear model for the data

above is
M = 79+.766XE+4%X+.0008E,

However, this model is correlated only marginally better than the
simple statistic XK. It is unlikely that the coefficients can be

generalized to form a reliable predictive model for other data sets.

The Complexity of Mutation 5-7

Mutant Instability.

Even though the number of mutants generated by these methods is
observed to grow rather slowly as a function of program size, of the
As noted above, however, a mutant seldom runs to completion; rather,
motant programs tend to be rather unstable, dying by executing
"jllegal” statements which are trapped and which cause premature
termination of the programs. The statistics in Table 5 show typical
stability data for Fortran programs tested under a mutation

analyzer.

observation

Average number of test

I ! |
| ! |
I | I
| cases mutants remain live | 1.75 |
I .sp | i
! Average total mutant executions | |
| per session (units = F(N,K)) { 2.00 |
I .sp | |
| Average fraction of nonequivalent | |
| mutants killed by first test case | 68% |
| .sp I I
| Average execution time of live | |
| mutant (percent of priginal test) | 75% |
i |
| |

Table 5. Lifespan of Unstable Fortran Mutants

The instability of mutants has some theoretical basis. From
standard software reliability studies of software we have the work-
ing principle that the probability of failure in a given time inter-
val is proportional to the number of errors in the program.
Whenever this principle holds, the expected time to failure of the
program is inversely proportional to the number of errors present.
If t is the time to failure (measured, say, in number of statements
executed), and if cn is the probability of failure during the execu-—

tion of any given statemecnt, then the expected time to failure is

The Complexity of Mutation 5-8

given by

®

E(t) = E (1—cn)(i—1)(cn)i .

i=1
This reduces to E{t) = cn~1.

Although the speed with which mutants can be eliminated is =&
function of the capabilities of the human tester, it is our
experience that somewhkat more than 30% of the remaining live mutants

are killed by cach test case, yielding rapid convergence.

The following table represents the average number of statements

executed before failure for program with k-order mutants (k22). The

Trograms represented are from the set of sixz Cobol programs

described in Appendix A.

| Program | 2nd ORder | 3rd Order | 4th Order | 5th Order

|
! | -1 I ! |
A1] 30 i 24] 21	19		
A2 [47	27	19	15
a3	50 } 38	31	27
A4	124] 85	67	59
As { 52] 35	27	22]	
a6	132 l 98	74	60
!			

!

i Table 5. Time to Failure Data

As the graph in Figure 1 shows, the analytical model holds
quite well., Not only is there an apparent linear relationship
between 1/Avg(T) and n for each of the programs, but also for all
but one of the programs, the line segments can be extrapolated back-
wards to show the intercepts near zero., That one program is the

smallest of the six and, presumably, the worst simulation of a large

The Complexity of Mutation 5-9

nodule. This data cannot be interpreted as strongly as we would
like, however, since the probabilistic assumptions are based on
typical operational data; the test cases that generated this data
were intentionally chosen to be nontypical: the test cases were

required to exercise the exception—handling code that would rarely

be executed in practice.

1/Avg(T)
.08
Pregram 07 1
AB 7
Progrom -06 - /
AS
Program 05 1
A4
Program 04 ¢
A3
B 03 L
Program
A2
- 02
Program
Al
- .01 | _
e
0.00 ! ! ! 1]
O 1 2 3 4 5

Number of Errors
Figure 1. Failure Rate Data

Reducing Complexity by Sampling

The ©bounds of gpracticality for monolithic programs are
somewkere in the 5,000 to 10,000 line range for Fortran and somewhat
higher for Cobol programs. Even this must be treated as an
optimistic upper limit — certainly mutation is not easy to apply at

the 5,000 statement level, A valuable technique for handling large

The Complexity of Mutation 5-16

programs is to wuse Monte Carlo methods to sample from large
populetions of mutants. A simple argument to support such an
analysis goes as follows. Let f(x) appear in a specific context of
a program undergoing mutation analysis; if a set of test data is too
weak for the program but the program is nevertheless correct, then
there is an adequate set of test data , T, on which [f(x)]1*(T)
#[f(x')1*(T), where x' is some specified data reference replacement
mutation of x and [f(x)]* denctes the functiomal interpretation of
f(x). But x and x' in these expressions are bound wvariables; it
only matters that they refer to distinct positions of a state vector
which has been specially constructed to exhibit the inequality. In
other words, it is important tbat we are able to "explain” with test
data why x is an argument of f, but perhaps less important that we
be able to explain why thc argument is not x’ or any other specific
alternative. PBut this can be accomplished by sampling from enough
alternative choices x’ to insure that identities that we are observ-
ing are mnot mathematical. If the functions involved are at all
well-behaved algebraically then algebraic identities can be discer-

red in this way

Using the Cobol program Al-A6 in Appendix A, we want to study
the effects of testing using only randomly selected substitution
mutants. The table which follows summarizes the results of this
study. The columns labelled "survive” indicate the counts of the
number of mutants (using 100% of the substitution mutants) that sur-
vive the specified testing criteria and are not cquivalent to the

original program,

The Complexity of Mutation 5-11

| Progrem | # Mutants | # Mutants | Survive | Survive |
| | at10% | =at100% | TRAP | 10% |
i | el | | | |
I A i 389 I 1098 | 6 | o |
| A2 i 603 | 2814 | 906 | e |
| A3 I 1125 i 6340 | 129 | 2 |
I A4 | 1609 f 7334 | 97 | i6 |
| A5 | 1527 | 7957 | 4071 | 14 |
{ A6 i 4011 g 28275 ; 789 ! 66 i
I ——— -—

| Table 7. Random Sampling Experiment }
1

]

We have included the strength of data that merely covers all
statements for comparison purposes. While simple statement coverage
does mnot by itself lead to strong test data, generating mutants to
kill only 10% of the substitution mutants is almost as good eas
generating test data to kill 100% of the mutants., This trend is

almost as strong at the 5% and 1% levels for large programs,

The apparent decrecase in the strength of the test as program
size increases is probably due to the naive sampling strategy used
to sample the mutants. A sampling strategy which inserts default
values or avoids selection of mutants which are correlated to
previously selected mnutants shcevld avoid this effect. This
experiment has been repeated several times using differing sets of

programs,

In a similar experiment, three Fortran programs (B1-B3 in
Appendix B) were subjected to mutation using test data that killed
2all noneguivalent mutants. In a double blind experiment, the same
programs were analyzed by three different subjects. Subject 1
analyzed all three programs sampling 10% of the mutants, subject 2
sampled using 25% of the mutants, while subject 3 analyzed all three

programs at the 50% level. The number of nonequivalent mutants left

The Complexity of Mutation 5-12

vndetected by the three subjects is shown in the following table as

a fraction of the total number of mutants.

Programl 1 | 2 | 3
! | !
BT | .0063 | .0037 | .0012
| .0080 | .0027 | .0028
| .co82 | .0028 | .0027

j——- |
Table 8. 3 Subject Experiment

Notice that even using 10% of the total number of mutants, the
strength of the test data is within 1% of the adequate set. This
experiment was repeated using the programs cited in another study
(see Chapter 6). In each case it was determined that the test data

remained within 1% of the adequate test data.

These experiments suggest strongly that a cost effective
approach to generating adequate test data is to generate only 2
small percentage of the total number of mutants and develop test

date which is adequate relative to this set of mutants,

Efficiency and Redundancy in Operators

The results guoted above dealing with random sampling of the
mutants might measure still another effect: redundancy among the
operators. That is, it may be possible to derive strong test data
from a random subset of the mutants simply because so many mutations
deal witk the same error or type of error. Thererfore, it |is

natural to look for efficiency in the mutation process by eliminat—

The Complexity of Mutation 5-13

ing those mutants from consideration which do not add significantly

to the strength of the test data generated.

For an operator to be useful it must force the tester in some
way to produce stronger test date than could have been produced
without it. If all of the mutation produced by & given operator are
eliminated by virtually any test data that executes the affected
line, then it is naturzl to assume that the operator does not

significantly improve on the stutement coverage operators.

Let wus fix a mnutation operator and define the following

parameters. N is the total number of mutants generated by that

operator, Nu is the onumber of mutants that are eliminated on the

first execution by a given data set, and N, is defined to be the

number of equivalent mutants.

A measure of efficiency for such an operator is given by
(Nt-(Nu+Ne))/Nt-

Notice that N_ apd N, depend only on the program being considered

and the mutation operator. Ny, depends on the choice of test data

being supplied. The redundancy of a mutation operator is then given

by:

(N +Ng) /N,

4 procedure for <collecting operator efficiency data is the fol-
lowing. First, select several programs representative of the space
of programs in the intended application. Second, generate test data
that is just strong enough to execute all statements. Third,

generate test datez tc cbtairn a mutatiorn score of 1. The point of

The Complexity of Mutatiom 5-14

the second step is to intentionally produce weak tests, which force

statement coverage but do as little other testing as possible.

After such measuremerts have becn made on several programs and
for multiple independent test data generations for each program, a
set of efficiency measurements for each operator will be obtained.
If an operator consistently has a high redundancy, then the deletion
of the operator from the system appears justified. An operator pos—
sessing high efficiency on all programs and all test sets evidently

forces the tester toward stronger test data and should be retained.

The approach outline above has two limitations. First, it does

not consider interactions between operators. That is, operators may

have the same high efficiencies, but each actually has the same
cffect. In this case, one or the other may be necessary, but
certainly not both. The efficiency measurements will not give an
indication of this condition since they provide only the interacticn
of the TRAP operator with all of the others. Therefore, the
experiment can be widened to indicate operatcr redundancy with any
subset of the operators by replacing step 2 of the data gathering
procedures with the following: generate test data just strong
enough to eliminate all of the nonequivalent mutants generated by
the given subset of error operators. Of course, the definition of

Ny needs to be accordingly modified.

Ideally, we would like to measure the efficiency of operators
relative to all possible subsets in order to find the minimal set of
operators which delivers adequate tests. Since this is not
feasible, a less demanding strategy is required. For example, it is

possible to «chocse the most efficient operator relative to TRAP,

The Complexity of Mutation 5-15

then choose the most efficient relative to TRAP and the first
operator, and so on. The process terminates when there is no

remaining operator whose efficiency relative to the set <chosen is

above a given threshold.

Obviously, this approach applies only to a given class of
program from which the sampling takes place. Changing the Ilanguage
or even the programming discipline might effect operator efficiency.
However, if the sample population is representative it is always
possible to "tune” the set of operators for that populationr by using

only operators which derive useful testing information.

The results of a single data generation experiment for the
Cobol program Al-A6 are given in the following table. An asterisk
indicates that no mutants of that type were generated for the

program.

The Complexity of Mutation 5-16

|
1
!
|
!
!
|
!
!
\
I
|
!

Table 8. Operator Efficiency Data

| i |
| | Program |
[Operator | |- I | | — | |
| | 1V 2 | 3 1 4 t 5 |1 6 |
f-—— | | i ! | | |
Decimal	*	o0.96 1 0.30] 0.21 1 0.331 0.18	
Gccurs { * i * H *	o0.00	*	*
Insert	o0.00	o0.00] o0.00] o0.00] o0.001 o0.00	
! Fi11.siz	o.00	l o0.00! o0.60	90.00 1 o0.00
Ttem Rev	0.05	0.04 1 0.07] o0.001 o0.00] o0.01	
pelete	©0.00! 0.34] o0.00} c.010	o0.04	0.03
Go-Perf.	*	*	*
perf.-Go	0.00) o0.00	o0.00] o0.00] o0.08 1 o0.00	
IF Rev.	0.00	0.67 1 o0.00] o0.06	0.00] 0.00
Stop	o001 o0.00	o0.00	0.00
Thru	oool = } =+	o061 *	o0.00]}
Arith	=	o0.751 =<«	o0.04] 0051 =
Compute	* } o0.501 o0.251 =+	o0.00[o0.00]	
parenth.	*	=	o.00}l =+
Round	+	0.441 o0.20] o0.00] o0.11] o0.17	
tove Rev	0.00 1 o0.001l o0.00	o0.00 1 o0.04	o0.01
Logic	0071 o0.511 o001 0.13] 0.24	o0.05 !	
SFs	o001 0.34}) o0.031 o0.00	0.04	o0.02
CFC	o.ool 0.25	o0.00	o0.010] o0.10] o0.04
} cFs	o.00! 0.36 1 0.03] c¢.01	0.05	0.04
SFC	<«	0.8l o0.00	o0.031 0.09
¢ Adjust	o0.00	o0.50) o0.14] 0.06	0.22
Files	oo0ol =+	=+	s

|

|

|

There is obviously a wide variation in efficiencies between the
programs. This a partly due to the indirect test data selection

procedures and partly due to the inherent differences in the

programs.,

The first five operators are of special interest . These are
Cobol data mutations that force the system into interpretive execu-
tion using a run—-time symbol table. If these mutants can somechow be
eliminated; then a more efficient compiled execution of mutant is
feasible., The first operator moves the implied decimal point in a
numeric item. It is useful primarily in that it forces the tester

to provide nonzero values for that variable. The same c¢ffect can be

The Complexity of Mutation 5-17

achieved by an operator which resembles ZPUSH. The second operztor
alters the OCCUBS count in a table descriptiom. Since the sample
programs make little use of tables, nothing can be inferred from the
data for this operator. Inserting an extra filler in a record is of
little use, as is alterimg the size of a filler. Peversing two
adjacent elementary items within & record is sometimes a useful
operation, but the same effect can most likely be achieved by sub-

stituting one field for another in the procedure divisionm.

In the procedure division, changing a GOTO to a PERFGRM usually
provides no testing power., Perhaps most of the testing effort in
trying various path alternatives is already achieved by simple
statement coverage. Inserting a STOP statement is not helpful
because in most program files, files will be left open which is an
error. STOP insertion thus play essentially the same role as TRAP,
THRU clesuse alteration, reparenthesization of arithmetic expressioms
and the reversal of the direction of a binary HOVE and changing an
I/6 reference from one file to another are also rarely useful in
this study. It may be that these mutatiomns are too drastic. Errors
this large may be detected by almost any test case that xercises
all rprogram statements. The errors sought after simple statement
coverage are rather more subtle ones. The major errors have already

been ruled out.

A non—redundant set of Cobol operators then might be the fol-
lowing: statement deletion, IF reversal, and the substitution
operators for arithmetic operators, scalar for constants, constants
for scalars, constants for constants, scalars for constants, and

constant adjustment.

The Complexity of Mutation 5-18

Bibilographic Notes

An overview of practical experiences with mutation analyzers
which support the analytic and ezperimental bounds discussed in this
chapter «c¢an be found in the papers [Acree, 19791 ,[Acree, 1580], and
[Budd, 1980]. The datz relating to the number of mutants gemnerated
as a function of program size was developed by Acree, Budd, Delillo,
Lipton anrd Szyward and is reported in [Acrece, 1979]. The data
relating complexity with the number of mutants appears in Budd's

thesis [Budd, 19801.

Experimental results on mutant stability and the effectivemess

of sampling have been treated by Budd and Acrce in [Acree, 1980] and

{Rudd, 1980] and are also reported ir [Acree, 1979].

The notion of operator efficiency was developed in Acree's

thesis [Acree, 198G].

Further Experimental Studies 6—-1

Chapter 6

Further Experimental Studies

In experimental studies of program testing, the problems of

interest are:

1, What is the cost of performing the test?

2. What is gained from performing the test?

In general, quantitative answers to these guestions are the most
desirable, but that seems to be beyond the state—of-the—art, A less
precise but still valuable solution is to discover how testing costs
relate to the performance of the test, In practice, this cost—
benefit ratio is the one that will be of most use in determining

which testing technigue to apply.

The cost of program mutation is ultimately constrained by the
number of mutants which must be executed. As described in previous
chapters, the set of mutants p of a program is defined by a set of

mutant operators that result in a set p whose size is bounded

roughly by the product of the number of data references and the num—
ber of distinct data references, As discussed in Chapter 5, it is
generally not necessary to execute all mutants in p, since random
sampling yields test data whose mutation score is only slightly

inferior to an adeguate test set.

However,one should gquestion the effectiveness of applying
program mutation with only simple mutants since other more com-—
plicated (but reasonable) alternmatives are apparently overlooked,.
This is an apparent violation of the Competent Programmer Assump-

tion., The coupling effect indirectly addresses the more complicated

Further Experimental Studies 6-2

mutants of P: test data that causes all simple mutants of P to fail
is so semsitive that it implicitly cavses all complex combinations
of them to fail. In Chapter 3, we examined two situations in which
error coupling guararntees that test data adequate for a simple set
of mutants is also adequate for mutants which satisfy the Competent
Programmer Assumption. In this <chapter we will examine some
experimental evidence for the address the observable properties of

error coupling,.

Beat the System Experiments

Evidence against error coupling is any event in which incorrect
program are successfully tested agasinst an adequate test set. Since
such examples can always be '‘cooked—up” for any test technique, a
problem of more practical importance may be what kind of errors are

always detected and what kind of errors are overlooked.

At present these questions can only be studied empirically
because of the lack of any widely accepted formal models of program—

ming errors,

One sort of experiment is a many-subject experiment. The
experiment has N subjects with varying levels of programming and
testing skill and M programs that have zero or more errors known
only by the experimenter, and each subject reports on the errors

detected in trying to pass the mutant test.

Further Experimental Studies 6-3

Another useful experimental technique is a single-subject
experiment. We c¢all such an experiment a beat the system
experiment. The single subject is someone having a very high level
of programming expertise and much femiliarity with the concepts of
program mrutation. The M programs have one or more errors, and the

subject has complete knowledge of what the errors are. The subject

tries to becat the mutation system — to pass the mutation test with
an incorrect program by developing test data on which the program is
correct but on which all mutants of the program fail., If there are
error types for which the highly skilled subject cannot beat the
system, then these error type will probably be detected by any user
of the system, On the other hand, if there are error types for
which the subject can consistently beat the system, then the given
set of mutant operators has a certain weakness in detecting these

errors.

A beat the system experiment is an attempt at =2 worst—case
analysis, We attempt to find out how the system will perform under
the worst system circumstances. Beat the system experiments are
extensions of experimental reliability studies. A testing techniqgue
is said to be reliable for for an error type if the use of the test—
ing technique is guaranteed to reveal the presence of the errors of
that type. Relieble studies are aimed at comparing two or more com—
peting methodologies and deriving statistical information of the
form '"On the following examples of programs, method A discovered X%
of the errors and method B discovered Yoh.” In the beat the system

experiments we are more concerned with the type of errors missed,

Further Experimental Studies 6-4

For example, several of the programs studied in early
experiments revealed that a significant number of errors in Fortran
are caused by programmers' treating the DO statement as if it were
an Algol FOR statement. These errors are detected by introducing a
mutant that changes a DO statement into a FOR statement, bringing
this fact to the programmer’'s attention and forcing bhim to derive

data that indicates he had knowledge of this potential pitfall.

We will describe two sets of experiments. The first set is a
beat the system experiment using the Fortran programs Bl1-Bl1l. These
programs are described in Appendix B. Appendix B =also contains
descriptions of the errors in these programs. The second set of
experiments adapts earlier reliability studies in a comparative
analysis of program mutation and a number of other testing tech-

nigues,

It is difficult to construct a classification scheme for error
types that is neither so specific that each error forms its own type
nor so general that important patterns cannot be detected (cf.
Chapter 2), If the classification is based on logical mistakes,
then it is oftem hard to relate errors to mistakes in the code. On
the other hand, it seems difficult to base a scheme just on mistakes
in the code, since often a single logical mistake will be
responsible for <changes in several locations in the program. Fol-
lowing the classification scheme in Chapter 2, we grouwp errors into

the following categories:

Missing path errors: These are errors where a whole sequence of
computations that should be performed in special circumstances is

omitted.

Further Experimental Studies © 6-5

Incorrect predicate errors: These are errors that arise when all
important paths are contained in the program, but a predicate that

deternined which path to follow is incorrect.

Incorrect computation statement: These are errors that arise from a

computation statement that is incorrect in some respect,

Missing computation statement: These are errors that arise from the

omission of one or more computational steps.

Missing claugse in predicate: This is a special case of an incorrect
predicate error, but, since it is hard to detect, we give it special

treatment.

The 25 errors in the program B1-Bll range from simple to subtle
€rrors, Because of the worst-case nature of the experiment, the
fact that 5 errors are not discovered does mnot mean that these
errors would always remain undiscovered if mutation analysis was
used in a normal debugging situation. Table 1 gives the mnumber of
errors detected by error type. Of these 25 errors, only § would be

caught using branch analysis.

| Table 1: HNumber of errors detected by error type

| Error Type | Number ! Caught ‘
I - -— — - | |
IMissing path error | 6 | 5 !
|Incorrect predicate error | 3 | 2 I
|Incorrect computation statement | 12 | 11 |
IMissing computation statement | 3 | 2 |
IMissing clause in predicate | 1 | 0 |
|
I

In three of these categories, the errors are caused by the lack
of certain constructs in the program. Since the testing method 1is

asked to guess at something that is not in the program, we should

Further Experimental Studies 6-6

really be surprised that it does as well as indicated. Nonetheless,
missing path errors and missing clauses in predicates are probably

the most difficult errors for any testing method to discover.

The failure of the mutation in detecting these 5 errors is
probably not an indication of a weakness in the method, rather, it
reflects on our choice of mutant operators. It is quite possible
that with another set of mutant operators many of these errors would

be caught.

The second experiment is derived from an earlier reliability
study by Howden and uses two sources of data. The first is the book

Elements of Programming Style by B, Kernighan and P, Plauger. In

a chapter entitled "Common Blunders” EKerighan and Plauger offer
twelve program fragments, each containing. errors inserted to
illustrate common programming mistakes. In a beat the system
experiment, these twelve program fragments were subjected to sym—
bolic evaluation, path analysis (ecach loop executed at least twice),
a combination of symbolic evaluation and path analysis, and program
mutation. Once path domains are identified, the experimenter uses a
random choice of test data for the domains, Therefore, it is pos—
sible that more sensitive input partition tests will yield slightly

different results,

The following table summarizes the results of this experiment

Further Experimental Studies 6-1

|
| Table 2, First Reliability Study

! Test Method { Error Caught , Total Error g

| - !

| Symbolic Evaluation | 13 | 22 !

|Path Testing | 9 ! 22 |

|Combine Methods I 16 ! 22 |

|[Program Mutation | 20 | 22 |
|
I

The 20 errors detected by program mutation are detected in sixz ways.
The interpreter of an automated mutation analyzer was responmnsible
for detecting 8 errcrs, 5 were detected by spoiling coincidental
correctness expressions (cf. Chapter 10), 2 were caught by finding
a correct mutant of the incorrect program, 2 are caught by ABS
insertion, two are detected by predicate testing (see Chapter 4) and
1 error was detected by an explicit branch analysis mutant. The two
errors not detected consisted of a two stetement interchange in a
routine for computing the sine function and an error invelving an
equality test betfeen reals. The following table describes the

errors and the mutants which detect them.

Further Experimental Studies

6-8

oo ot — — — — — . —— T S — — — — O —

— — — —— i ———— Y — — — —— — —— — T m—— — — . " Moy S T —— i WAL Mo S ey W —

Error

Me thod of Detection

variable SUM uniritialized
DABS operator needed

~1##(I/2) used instead
of (-1)**(1/2)

interchange of statements
variable E uninitialized
type mismatch

variable C not reset

errcr when CI = 0
expression should be NUM(1)

override of DATA statement
initialization

failure on 46 transactions
2 should be >

undefined variable

error if B+C { ,01

locop exits incorrectly

uninitialized variable

one entry tables cause error

failure to match A{1)

J=MARKS(I)-1/10 should be
J=(MARES(I)-1)/10

missing parthentheses around

expression AN-1.0
10%.1 = 1

equality test on reals

interpreter
explicit mutant

I/2 ==> I/1 or 1/2
with no effect

not detected

interpreter

interpreter

to eliminate branch analysi
mutants, SC+CI nust be

less than or =qual to TC
caught by ZPUSH nmutant

interpreter

interpreter

1\ %
i
]

~

~

1==>2 on lower DO loop 1limi
twiddle B+C by .01

increase iterations by 1

interpreter
(LOW+HIGH)/2 ==> LOW+HIGH-2
(LOW+BIGE)/2 ==> LOW+HIGH-2

I/10 ==> 0/10
ZPUSH (SUMSQ-(SUMSQ**2/AN))

caught by all data

not detected

S

t

Table 3.

I
|-
I
|
I
I
I
I
I
I
I
I
I
I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
!
|
I
I
|
|
!
I
|
I
I
I
I
|
I
I
I
I
I
I
I
|

Mutants Detecting Errors

— —— — —— — — T S——— ——— — — — v T— Ny — — — — —— ———r S— —

Further Experimental Studies 6-9

Error 19 is one of the errors mnot detected by either path
analysis or symbolic evaluation, although a symbolic evaluator with
a special two dimensional output could have caught the error. In
Fortran, the expression 1/10 evaluates to 0. Therefore, the mutant
which replaces 1/10 with 0/10 catches the error. Neither path
analysis mnor symbelic evaluation detect error 2, which is an

explicit mutant of a correct program.

A second experiment uses the programs Bl — B4 in a comparison
of the error detection capabilities of path analysis, branch
analysis, functional testing, special wvalues testing, anomaly
testing, and black-box analysis. The path analysis discipline for
this experiment requires each loop to be executed at least once.
Special wvalues testing is a collection of heuristics (e.g., force

every expression to 0j,

Table 4 presents the results of this experiment.

i Test Method Error Caught Total Errors

I
I
[Path Analysis |
IBranch Aralysis |
|Functional Testing |
|Static Analysis |
IBiack Box Testing |
|Program Mutation |

I Table 4, Second Reliability Study

WO wo
Lt th th b

St S S — — — —— — ———

The error which was not detected by program mutaticn
is a missing path error (see Appendix B). Apparently these errors
are the most difficult for dynamic testing techniques. On the
other hand test techniques which work from functional descriptions

or specifications of program behavior seem to do quite well at

Further Exzperimental Studies 6-10

detecting these errors.

Experiments on the Coupling effect

We begin with an example of the experimental evidence for the existence
of error coupling.
The subject program is Hoare's
FIND program (see Appendix B, Program B10). FIND was used in

the following experiment.

1. A test data set of 49 cases was derived and
shown to be adequate.

2, The test data set from 1 was heuristically
reduced to a set of 7 test cases which also
turned out to be adequate,.

3. Random simplc k—order mutants were sclected
(x > 1).

4, The higher order mutants of step 3 were

executed on the reduced test data set.

It would be evidence against the coupling effect if it was pos-—
sible to randomly generate very many higher order mnon—equivalent
mutants on which the reduced test data set behaved in a manner
indistinguishable from FIND. Notice that Step 2 biases the
experiment against the coupling effect since it removes the man—
machine orientation of mutation analysis. We concentrated first on

the case k=2, with the following results:

Table 6. 2—order Mutants

| Property | Number of Mutants %
| —

| 2Z-corder mutants | 21,100 }
| indistinguishable from FIND { 19 |
| equivalent toc FIND | 19 i
[

[!

However, a limited analysis of higher order mutants produced the

following results:

| Property :Mutantsi
l.__._._._.__._-_u...,ﬂ, - R
| Number of k—order mutants (k>2) | 1,500 |

Number irdistinguisheble from FIND | 0.1

!
{ | |
| Table 7. Higher Order Mutants I

The following argament shows a defect in this expesriment. Just as
the competent programmer assumption states that programs are not
written at random, the couplimg effect is implied by the fact that
program statements are mncet composed at random; indeed, there is
considerable flovw and sharing of information between statements cf &
program, so that a ckange to cne portion of a program is likely to
have observable, zlbeit snbtle, effects on its global context. Now
for the problem with this experiment: the k-order mnutants are
chosen randomly and by independent drawings of l1-order mutants.
Therefore, the resulting higher-order mutant is very umstable and
sebject to quick failure. The experiment should also be conducted
when the higker—order mutants contain subtley related errors. To

this end, the experiment was repeated using the following

replacement for step 3:

Further Experimental Studies 6-12

3': Randomly generate correlated k—order

mutants of the program,

In Step 3', "correlated” means that each of the k applications of
1-order mutant operators will be related in some way to all of the
preceding applications, 21l affecting the same 1line, for example,
As before, if a program is successfully subjected to mutation
analysis on a test data set, then the coupling effect asserts that
the ccrrelated k-order mutants are also likely to fail on the test

data.

To broaden the experiment we use, in addition to FIND, the
programs (B12) STKSIM which maintains a stack and performs the
operations clear, push, pop, and top, and TRIANG (B9) which clas-—
sifies integers as either not representing the lengths of sides of
any triangle or as representing the sides of scalar, isosceles or

equilateral triangles.

Table 8 contains a summary of the results of the experiment.
The data suggests strongly that there is a meaningful sense in whick

errors are coupled by an appropriate choice of error operators.

i			
PROGRAM	k=2	k =3	
NAME	- I		
INUMBER NUMBER	NUMBER NUMBER	NUMBER NUMBER	
	GENERATED ALIVE	GENERATED ALIVE	GENERATED ALIVE
	!	I	
3000 2	3000 o	3000 o	
]			
!

k =4

|IFIND |

IsTRsIM | 30600 3 | 3000 0 | 3000 0

ITRIANG | 3000 1 | 3000 1 | 3000 0
|

Table 8. Correlated k—order Mutants

The results are for the most part self explanmatory. Except for the

correlated three—order wutant of TRIANG, all of the correlated

Further Experimental Studies 6-13

k-order mutants described in the table are equivalent to their sub-
ject programs. The remaining 1live TRIANG mutant would have been
eliminated with a2 more sophisticated error operator for detecting

loop boundaries.

Essentially the same study was repeated using Al1-A6. The basic
format of the experiment remained the same: develop adequate test
data, randomly generate a large number of complex mutants, execute
the selected mutants on the test data, keeping track of those not
eliminated, and remove equivalent mutants from the list of uncoupled

complex mutants.

In all cases the strategy in randomly selecting complex mutants
was to use uniform sampling with replacement from the given space of
conplex mutants. The parameters of each experiment are the program
being tested, the tester, the types of complex mutants considered
and the sample size. It is possible that the effects of the human
tester are relevant, The repetition of this experiment by other
investigators should determine the variation in the strength of

error coupling due to test data generatiorn.

As before, we concentrate on second order mutants, both
correlated and uncorrelated. The statistic that is developed is a
confidence interval on the fraction of second order mutants that are
uncoupled. Since error coupling is not expected to be total in
practice, this gives us an estimate of the probability that a second
order mutant escapes detection by mutation analysis. If we find any
uncoupled mutants, we obtain a two—sided confidence interval and if
we find mnone we still obtain a one—sided — upper bound —- con-

fidence intervsl.

Further Experimental Studies 6-14

For the experiments with uncorrelated pairs of mutants, a sam~
ple size of 50,000 meaningful second order mutants was used for each

of the six programs. Table 5 summarizes the results.

Pairs Survive 95% Confidence

| |-
Table 9. 50,000 Uncorrelated Mutants

! -1 ! |

| | | |

| Program | 1st Order | Not Equiv. | Interval on |
| } Test Data l I (z 10,000)% l
| — | | —_

| A | 26 | 0 | 0.0 — 7.4 |
V) | 12 | 0 | o0 — 7.4 |
A3	22	5	3.2 — 23.3
A4	10	2	0.5 — 14.4
A5	45	0	0.0 — 7.4
[aAs	13] 0	0.0 — 7.4	
	i		
i			

Test data generated to kill first order mutants proved to be
sufficient to kill at least 99.976% of all second order mutants in
all cases considered, and 99.992% in most cases. Significantly,
program size does not seem to be an important factor in the strength
of error coupling. If these results hold over a broad range of
programs, the addition of second order mutants can be expected to
give almost no additional power mnot already present in simple

mutants, and certainly not enough to justify their cost.

The experiments on second order mutants used 10,000 mutants for
each program., The format of the experiments is otherwise identical
to the ones above, The results of these experiments are summarized

in Table 10.

Further Experimental Studies 6-15

Pairs Survive 95% Confidence!

I I
Table 10, 10,000 Correlated Mutants

1 | ! |

| Program | 1st CGrder | Not Equiv. | Interval on |
| | Test Data I | (z 10,000)* |
| |~ e l | -
a1 I 0 | 0 | 0.0 — 36.9 |
V) | 3 I 1 | 0.3 —~55.7 |
| 43 | 60 | 19 i114.4 --296.6 |
[A4 | 3 ! 3 | 6.1 — 87.6 |
| As | 1 | 0 | 0.0 — 36.9 |
| a6 | 1 | 0 | 0.0 — 36.9 |
| ! |
{ |
| !

The same six programs were subjected to a final series of
experiments to look for uncoupled mutants of orders 2 through 5.
20,000 complex substitution mutants were generated for each program
and each order. Intuition suggests that it is not mnecessaary to
carry out such experiments for extremely large values of k: the
more errors introduced into a program, the more the Competent
Programmer Assumption is violated., On the other hand, the behavior
of extremely high order mutants is not well understood, and it seems
prudent to examine some data on multiple mutations, if omnly to

insure that there ar: no unexzpected processes at work,

For this experiment, 20,000 complex substituion mutants of
order k (2 £ x £ 5) wecre gecnerated for each of the six Cobol
programs. All mutazts examined were uncorrelated. The mutants were
randomly selected and then examined to insure that all mutations
applied to distinct data refcrences., The folowing table shows the
number of mutants that passed the first order test data for each
program, and the number that were mnot eguivalant -—— these are

uncoupled mutants,

Further Experimental Studies 6-16

B
B
&
z
&
S

Number
that
Pass Test

jy
[&

2nd Orde
Mutants

I

I

|

I

|
Uncoupled |
Errors |
)

-1

|

!

<

(Nomeqiv.

Number

<

that

Pass Test |
I
Uncoupled |
Errors I o
(Nomneqiv.)|

!
|
I
rl
|
!
|
|
I
|
|
3rd Order!
|
|
|
|
I I
|
|
|
|
|
I
I
|
|
]
|
|
|
|
|

Mutants

D A S— — — —— T —— — — — — S— P — e S — — —— — ———§ — ——— ——— t —— —— v v fm—

Number

<

that
4th Orderi Pass Test

Mutants

o

Errors
(Noneqiv.)

Number
that
5th Order| Pass Test

Mutants

Uncoupled
Errors
(Noneqiv.)

|
!
Uncoupled |
|
I
|

0

<

|
|
I
!
|
I
I

Table 11, Kigher Order Mutants

VA — ————— ———n ——— — — — —— ——— —— - —— — —— V. N f—— — . W v — e S S——— —

Uncoupled Errors:
The nuncoupled errors discovered inm the last three series of
experiments described above involved alterations to predicates in

conditional expressions. They can be classified as follows,

Type I Errors: Changing both operands in a comparison

IF(a operation b) =) IF(a' operation b')

Further Experimental Studies 6-17
Type II Errors: Changing an operand and operation in a comparison
IF(a operation b) ==) IF(a' new-operation b)

Type III Errors: Changes to non—interacting comparisons

IF(Py(a) APy(b) A ...) ==) IF(NOT Py(a) APy(b) V ...)

If an uncoupled error is thought of as a potential error in the
program, then these three types of uncoupled errors represent a form
of coincidental correctness (see Chapter 10): taking the right path
for the wrong reason. A plausible reason that these are the only
known types of uncoupled errors is that mutation analysis does not
explicitly test higher level path coverage. Indeed the problem of
testing higher level path coverage is so complex (due simply to the
number of paths) that it is probably out of reach of any systematic

testing technigue.

Coupling and Complexity Measures

There are frequent references in the literature to a possible
relationship betweer program reliability and structural charac—
teristics of the program. If such a relationship exists, then it is
possible that there is a similar reletionship between those struc—
tural characteristics and error coupling. One such characteristic
is structural complexity, measured, for instance, by the number of

program branches).

Forther Experimental Studies 6-18

Consider the following simple test strategy, often called DD
path coverage. The goal is to develop test date that forces the
program down every path from decision point to decision point. This
strategy may require test data which drives the program down a
particularly complex patk to discover an error. For example,
consider the following program, which sorts the triple (A,B,C).

I1: if A { B then goto 12;
T:=A; A:=B;B:=C;
1.2: if B < C then gotto L3;
T:=A; A:=C;C:=T;
L3: if B ¢ C then goto L4;
T:=B; B:=C;C:=T;
L4: stop
The program is incorrect. The condition at L2 should be A<CC. The
input (1,2,3) and (3,2,1) both give correct results and force the
execution of =all decision to decision branches. (1,2,3) takes the
TEGE branches at L1-L3 while (3,2,1) takes the FALSE branches. The
error is not uncovered in this way: what is needed is a test case
that forces executicn of a complex path corresponding to differing
outcomes at L1 and L2 , Thus simply covering all branches leaves
some errors undetected. It is possible that mutation conteins the
same weakness, since mutations tend to be localized in the program
(note, however, that mutation analysis contains DD path coverage as
& special case, so it can be no weaker; cf. Chapter 2)., The number

of test cases required for exhaustive testing of all possible con-

ditions in this program is 23 = g,

To test the relationship between the number of branches and
error coupling, we hypothesize that the more branches a program has,
the harder it is to develop adequate test data, In more concrete

terms: the proportion of uncoupled errors rises with the structural

!

|
| | Number | Number | Number | Number | Number |
| Program | of | of | of | that | Uncoup-!
| | Branches | Records | Mutants| Pass | led |
| ! e e | -1 ! |
| c1 | 0 | 1 | 474 | 329 | o !
I oc-2 | 1 | 3 | 480 | 153 | 1 |
i 3 | 3 i 7 I 492 | 84 | 1 |
[¢4 | 5 | 12 | 504 | 50 | 3 |
| o5 | 7 I 15 | 516 | 18 | 9 E
| -
| Table 12. Complexity Metric Data !
Eleven of the surviviag uncoupled mutants are of type
other three are of type II, The relatively large

I. The

number of

equivalent mutants in these programs is due to the padding that was

Further Exzperimental Studies 6-19

complexity of the program. An experiment to test this hypothesis
would match program for length and number of mutants and would allow
the ©bGranching count to vary, measuring the coupling coefficient,

defined in Chapter 2,

If the <confidence intervals on the estimates of the
coefficients overlap, them mno relatioanship may be inferred. If
there is no overlap, then there is a statistical relationship. If,
in addition, there is a causal mechanism responsible for the
statistical relationship, an argument could be made for simplicity

in program structure for program to be tested by program mutation.

For this experiment, & sequence of small programs was written,
all using the same data items and data references, but with ar
increasing number of branches, The experiments examined 50,000
pairs of mutants for ecach program, The following table shows the
number of Dbranches, test cases , mutants, pairs passing the test

data and uncoupled mutants for each program

Further Experimental Studies ' 6-20

used to insert extra branches without greatly affecting the number
of mutants gemerated. The 95% confident interval on z(100,000)

plotted against the number of branches is shown in Figure 1.

Z*(100,00)
40
-
30 -
20
10
-‘ ———
£
0 ¥ T T T T T T
0 1 2 3 4 5 6 7

Number of Branches

Figure 1.
95% Confidence Intervals

It is apparent that in this set of programs, the effect of
adding complexity is very slight. It can be accounted for by the
type of uncoupled mutants seen in the experiments described above.
If this relationship holds in practice, then the branching com—
plexity of programs has little impact on the difficulty of mutation

analysis.

Further Experimental Studies 6-21
Bibliographic Notes

The beat the system experiments were designed by Budd and
Sayward. The data reported here is taken from Budd'’s thesis [Budd,
1980] and a paper by Budd, DeMillo, Lipton and Sayward [Budd,
1980b]. The experiments on the coupling effect were designed by
Acree [Acree, 1980] and DeMillo, Lipton and Sayward [DeMillo,
1978al. The data also appeared in [Acree, 1979]. Ezxperiments on

program complexity were carried out by Acree [Acree, 1980].

Mutant Equivalence 7-1

Chapter 7

Mutant Equivslence

Experience indicates that in production programs, the number of
equivalent mutants can vary between 2% and 5% of the total mutant
count, In more finely tuned programs, however, it is common for
source statements to appear in a particular form solely for
efficiency reasons. In these program such statements can be altered
without affecting the output behavior. A typical example of this
behavior is beginning a loop at 2 instead of 1 or 0, so that a muta-
tion which changes "2" to "1", for example, causes an extra itera—
tion but does not alter the outcome of the looping operation. 1In
tuned programs, the equivalent mutants can comprise as much as 10%

of the total.

Equivalent mutants are not distributed with respect to their
operators in the same proportion as other mutants. In fact, a samll
vumber of mutant types account for the preponderance of equivalent
mutants, The following table provides some data on the distribution

of equivalent mutants for typical Fortran programs,

| I
| Mutant Type | % Equiv. | % of al1 |
I ! I : I
| Absolute Value Insertion | 715 | 4.0 |
| GOTO Replacement | 12 | 0.7 I
| Relational Operator Replacement | 5.5 | 0.5 |
| A1l Other Mutant Types | 5.5 | 0.5 |

| ! I

Table 1, Distribution of Equivalent Mutants by Type

It has become increasingly clear that determining mutant
equivalence ranges from very difficult to very easy. It is helpful

to classify the tvpes of equivalence which must be judged. At the

Mutant Equivalence 1-2

first level are mutants which are detectable as equivalent by noting
that (1) if a parameter has a variable uppcr bound, the value of the
upper bound must be positive, and (2) the values on loop variable
limits determine the range of values of the loop variable for the

extent of the lcop. At the second level are mutants which can be

judged equivalent by examining.

It is easy to show that egqguivalent mutant detection is an
undecidable problem Assume a fixed programming langunage which 1is
expressive enough to allow the programming of all recursive func—
tions, and let P1 and P2 be arbitrary procedures written in the
language. Since "goto” mutations are meaningful and likely
mutations, consider the following program to which goto feplacement

has been applied.

goto L; go to M;
L:P1;halt; == L:Pl;halt;
M:P2;halt; M:P2;halt;

Clearly, these two programs are equivalent (that is, they either
halt together and deliver the same output or they diverge together)
if and only if P1 and P2 are equivalent, and that is undecidable for

the language described above,

In spite of this, most equivalent mutants which arise in prac-—
tice are stylized and rather easy to judge equivalent., This is per-
haps due to the Competent Programmer Assumption: the subject
program and an allegedly equivalent mutant are not chosen randomly
— in fact, they are chosen by a very carcful sieving of all pos—

sible programs and the structure of this relationship should be

Mutant Equivalence 7-3

something that one can exploit in determining mutant equivalence.

Human Evaluation of Equivalence

It would be desirable to measure in an experimental setting the
accuracy of human testers in judging mutant equivalence. This sec—
tion describes an experiment conducted using the programs A-3,A-4,A-
5, and A—6 . For each program, a séquence of test cases was used to
eliminate mutants, but testing was stopped when the number of
mutants remaining was approximately twice the number of remaining
mutants. This process elimirated most of the obviously inequivalent
mutants. From the remaining mutants, for each program, a subset of
fifty mutants was randomly selected. Two subjects were used in this

experiment.

Both subjects had been involved in the development of mutation
nalysis systems, and both were competent programmers. Neither sub-
ject had been exposed to the programs used in the experiment, Each
subject was given the 1list of mutants and the source listing for
each of the programs and was instructed to mark each mutant
equivalent or not equivalent. There were no other intructions or

restrictions placed on the subjects.

There are two kinds of errors that can be made in judging
equivalence. The first type of error is the marking of a non—
equivalent mutant as equivalent. The second type of error mistakes
equivalent mutants as pon—equivalent. Errors of the second type are

not very serions, since in the process of mutation analysis, the

Mutant Equivalence T-4

nutant remains in the system and can be reconsidered at >any later
time. However, when =2 type 1 error occurs, a mutant which can be
valuable in detecting errors is prematurely removed from the system.
Premature removal of mutants dincreases the 1likelihood that anmn

erronecus program will be accepted as correct by the tester.

The results of human evaluation of the four programs is shown

in the following tabie.

| | Subject 1 Subject 2
ProgramiNo. [No.

] I
I !
|Equiv |Not !CorrectlTypelType[CorrecthypeiType
| | | 1 | | 1] 2
| f———-1 ! I | i i
3 20 (301 4 | ol 6l 42 | 21 s
4 |21 |29 | 36 | 21121 33 [6111
5 20 130 | 46 | ol 41 40 | 51 s
6 |13 |37 | 33 l16l16!} 45 | 11 4

e M w— — S S —— — i m—— — & —

Table 2., Human Evaluation of Equivlance

The tables show the number of equivalent and mnom—-equivalent
nutants in the mutant sample present late in the testing process,
and the nuomber of correct identifications of errors., More
significantly the table documents the number of errors of cach type

in judging mutant equivalence.

Subject 1 was more variable in accuracy that Subject 2, but
overall their results were similar. Subject 1 identified 79.5% of
the mutant correctly. Subject 2 was correct on 80% of the mutants.
In measuring type 1 errors the best computation is probably the
total type 1 errors as a percentage of the total number of non-

equivalent mutants, since thesc represent the potential type 1

Mutant Equivalence 7-5

errors. Subject 1 made type 1 errors on 14.3% of the nom—equivalent
nmutants, while Subject 2 made type 1 errors on 11.1%. On the other
hand, Subject 1 made type 2 errors on 31.5% of the equivalent

mutants, and Subject 2 made type 2 errors on 35.1%.

The number of type 1 errors may be high encugh to significantly
reduce cenfidence in the abilities of human evaluators if it is an
accurate reflection of the frequency of such errors in practice. It
should be remembered, however, that the subjects were required to
mark each mutant as eguivalent or ndt with only the evidence at hand
{(the source listing), while a tester in practice may postpone the
decision pending further testing and thought. In addition, the sub-
jects worked in isolation and thus were denied both helpful consul-
tation and the motivation of accountability for potential errors.
These are important factors im actual testing situatioms. High
error retes for type 2 errors indicate that the subjects were being
conservative in their judgements, marking mutants as non—equivalent

when in doubt.

This observation leads us to consider automated techniques for
judging mutant cguivalence. An automated technique will have the
desirable properties of the human evaluators. Namely, an automated
technique will make type 2 errors, On the other hand, an automated

equivalence tester never makes type 1 errors,

Mutant Equivalence 7-6

Automated Equivalence Checking

Before we proceed it may be instructive to examine & few
instances of equivalent mutants which show this structure. In the
analysis of the FMS.1 scanner (see Section 2), =a relatively large

number of mutants resulting from the transformation
X ==> RETURN

appear as live mutants on even very good test data. On closer

examination, however, most of these reveal that
X = GO TO 90,

where statement labelled 90 is itself a RETURN. The programmer's
style is to always jump to a common RETURN statement, allowing an

easy '"'proof” of equivalence.

For another example, let wus return to the NXILIV routine
described in Chapter 9. A principal source of equivalent mutants in
that example was the troublesome test for a word of zeroes. Its
only purpose is to save the effort of looking through the words bit
by bit. If the condition in the test is replaced by any identically

true expression,
IF(L.NE.0)GOTO 23 ==)> IF(12.NE.0)GO TO 23‘

the program runs a bit longer but is otherwise identical., Similarly

the mutation

IF(MUTNO.GT.MCT)GOTO 40 ==> IF(MUTNO.GE.MCT)GOTO 40

Mutant Equivalence T-1

changes the performance of the program only, ©but this time it

improves it!

These last two examples are not accidental, Mutations of a
program are similar to simple transformations that are made in code
optimizetion; it is not surprising that some of them should turn out
to be optimizing or de—optimizing transfoimations. Conversely,
correctness preserving optimizing transformations should be
applicable to detecting equivalent mutants. If this is a useful
heuristic then the task of identifying eguivalent mutants can be
reduced to detecting those which are equivalent for an interesting

reason.

Almost all of the techniques used in optimizing compiled code
cen be applied ip some way to decide whether a mutant is equivalent
to the subject program, Some optimizing transformations are widely
applicable while others are limited in scope. We will give a sampl-

ing of the useful transformationms.

Constant Propagation: Constant propagatiom involves replacing
constants to eliminate run—time evaluation. A typical optimizing

transformation would replace statement 3 as shown below

1 A=1 1 A=1
2 B=2 == 2 B=2
3 C=A+B 3 C=3

There are several elegant schemes for global transformatioms of this

form,

Mutant Equivalence 7-8

Constant propagation is most useful for detecting cases in
which a mutant is not equivalent to the subject program; any change
which can affect the known value of a variable can be detected in
this fashionm,. The mechanism for testing equivalence of mutants
using constant propagation is to compare at all points after the
mutation site the constants which are globally propagated through
the program. If they differ it is likely that the programs are not
eguivalent. The test is certain if therc is a RETURN, HALT or some
other exit statemernt in which the set of associated comnstants
contains an output variable and if there is a path from the entry
point of the program to the exit point. This is resolvable by dead

code detection,

Invariant Propagation: Invariant pfopagation generalizes
constant propagation by associzting with each statement a set of
invariant relations between data elements (e.g., X<0 or B=1).
Although invariant propagation has met with limited applicability in
compiler design, it is a powerful technique for detecting equivalent
mutants, particularly those involving relational mutant operators.,
These operators frequently affect an expression only if it has a
certain relationship to 0. For example |x]| changes the value of x

only if x<0. In the program-mutant pair

IF(A.LT.0)GOTO1 IF(A.LT.0)GCTO1

B=A == B=ABS(A)

the conditional allows us to determine the invariant (A>0) and this
allows us +to determine that the program and its mutant are

equivalent since the absolute value of a positive number is that

Matant Edunivalence 7-10

Consider the mutation

A=B+C (partition = A;B+C) ==) A=B~C (partition = A;B-C)

Comparing the partitions shows that A has a different value in the

twvo programs,

The same ideas are used to show equivalence. If a mutation has
changed part of expression E to an expression E' but E and E’ are in

the same equivalence class, then the mutant is equivalent.

Loop Invariants: Another common transformation removes code
from inside loops if the executiocn of that code does not depend on
the iteration of the loop. Since many mutations change the boun—
daries of loops techkniques for recognizing this invariance is useful
for detecting equivalent mutants. In those cases where the mutation
either increases or decreases the code within a loop, loop invariant
recognition can be used to decide whether or not the effect of the
loop is changed., In the following mutation, excess code is brought

within the scope of the DO statement,

Do 1 I=1,10 == bo 2 1=1,10
A(I)=0 A(I)=0

1 CONTINUE i CONTINUE

2 B=0 2 =()

Since the assignment B=0 is loop invariant, it does mot matter how

many times it is executed,

Hoisting and Sinking: MHoisting and sinking is a form of code
removal from loops in which code which will be repeatedly executed
is moved to a point where it will be executed only once; this is

accomplished by & calculus which gives strict conditions on when a

Mutant Equivalence 7-11

block of code can be moved up (hoisted) or down {(sunk),

The applications for eguivalence testing are similar to the
applications for loop invariants. The major differemce is that
hoisting and sinking applies to cases in which code is included or
excluded along an execution path by bramching changes. These are
the sorts of changes obtained by GOTO replacement and statement
deletion mutations. In these cases, we get equivalence if the added
or deleted code can bec hoisted or sunk out of the block involved in

the addition or deletion.

An example will illustrate.

IF(A.EQ.0)GOTOL == IF(A.EQ.0)GOTO 2
A=A+l A=A+l

2 B=0 2 E=0
GO TO 3 GO TO 3

1 B=0 1 B=0

3 . 3 .

. .

In this example B is set to 0 regardless of whether it is
assigned its value at line 1 or at line 2. The assignment to B can
be hoisted as follows:

B=0
IF(A.EQ.0)GO TO 3

A=A+l
3 .

Since both programs are thus transformed, they are equivalent,

Dead Code: Dead Code detection is geared toward identifying
sections of code which cannot be executed or whose execution has mno

effect. Dead code algorithms exist for detecting several varieties

Mutant Eguivalence 7-12

of dead code situations. We have already used dead code analysis as
n subproblem in the propagation problems above. Dead code analysis
is also useful to directly test equivalence, particularly for those

mutations arising from an alteration of control flow.

A typical application is to analyze the program flowgraphs.
I1f, for &example, a mutation disconnects the graph and neither con—
nected compornent consists entirely of dead statements, then the
nutant cannot be equivalent. Such disconnection is possible by the

mutant which inserts RETURNs in Fortrarn subroutines.

Another common situation involves applying mutations to sites
in a preogram which are themselves dead code; this is the classical
compiler code optimization problem: we must detect dead code since

any mutations applied to it are eguivalent.

Dead code analysis can also be used to show nonequivalence by
using it to demonstrate that a mutation has "killed” a block of

code.,

Postprocessing the Mutants: Optimizing transformations can be
implemented as a postprocessor to a mutation system, User
experience is that it is relatively easy to kill as may as 90% of
the live mutants. To the remaining 10%, an equivalence heuristic

such as the rules sketched above can be applied.

The difficulty of judging equivalent mutants from those remain—
ing after the postprocessing stage both helps and hinders the test—
ing process. On one hand, forcing testers and programmers to ’'sign

off” on equivalent mutants enforces a unique sort of accountability

Mutant Equivalencc 7-13

in the testing phase of program development . On the other bhand,
paerticularly clever programming leads to many equivalent mutants
whose equivalence is rather a nuisance to judge; carelessness for
these programs may lead to error proneness. Our experiecnce,
however, is that production programs present no special difficulties

in this regard.

Bibliographic Notes

Detecting mutant equivalences is inherent in mutation testing,
and the problem was described in [DeMillo, 1978a] and [DeMillo,
1979a]. Acree’s thesis presents a discussion of the experiments
used to evaluvate human equivalence detection [Acree, 1980]1. Baldwin
and Sayward [Baldwin, 1979] noticed the relationship between mutant
equivalence and optimizetion, These algorithms also appear in
[Acree, 1979]. Tanaka [Tanaka, 1981] designed and implemented an
equivalence checking post processor which uses some of the data flow

analysis techniques described in this chapter.

Error Detection 8-1

Chapter 8

Error Detection

A program testing technique scrves two purposes. It raises the
user's confidence that a correct program is really correct. The
other mejor function of program testing is to detect errors in
programs that are mnot correct. In Chapter 6, we saw a number of
instances in which program mutation is capable of detecting the
presence of errors —— even when other technigues fail to do so.
Recall that a testing technique is reliable if it always detects
errors of a certainm type. Much current resecarch in program testing
centers on developing test technigues which are reliable for classes
of errors. Qur goal in this chapter will be to examine program
mutation in comperison with other well studied reliable test
methodologies. We will describe a number of error types and show by

example how the mutant operators desribed in Chapters 2 and 4

Simple Errors

If the program contains a simple error {(i.e., one represented
by an error operator), then one of the mutants generated by the
system will be correct. The error will be discovered when an
gttempt is made to eliminate the correct program since its behavior
will be correct but the progam being tested will give differing
results. If the program contains simple k—order errors the errors

will also be detected (sece Chapter 11 for an exeample).

Error Petection 8-2

Dead Statements
Many programming errors manifest themselves in "dead code"”, that is,
source statements that are unexecutable or, more seriously, give
incorrect results regardless of the data presented. Such errors may
persist for weeks or oven years if the errors lie in xarely executed

portions of the program.

Therefore, a reasonable first goal in testing a program is to
insist that each statement be executed at least once, Typical
methods for achieving this goal include, for example, the insertion
of instruction counters into straight line segments of the program,
so that a non—zero vector of counters indicates that the

instrumented statements have all been executed at least once.

During mutation analysis, the goal outlined above will be
viewed from a slightly different perspective. If a statement cannot
be executed, then clearly we can change the statement in any way we
want, and the effects of the changes will not be npoticeable as the
program runs -— in particular the altered program will not be
distinguishable in its output behavior from the original one. There
is, however, a mutant operator which draws the tester's attention to
this situation in a more economical way. Among the mutants are
those which replace in turn the first statement of every basic block
by 2 «call to a routine which aberts the run when it is executed.
Such mutations are extremely unstable since any data which causes
the execution of the replaced statement will also cause the mutant
to produce incorrect results and hence to be eliminated. The con-—
verse 1is also true. That is, if any of these mutants survives the

analysis then the altered statement has mnever been executed.

" Error Detection 8-3

Therefore, accounting for the survival of these mutants gives
important information about whichk sections of the program have been

executed.

This analysis shows why apparently useful testing heuristics
can lead one astray. For éxample, it has been suggested that not
executing a statement is equivalent to deleting it, but this discus-
sion shows how such a strategy can fail. A statement can be
executed and still serve no useful purpose. Suppose that we replace
every statement by a convenient NCO—OP such as the Fortran CONTINUE.
The survival or elimination of such mutants gives more information
than merely whether or not the statement has been executed. It
indicates whether or not the statement has any observable effect
upon the output. If a statement can be replaced by a NO-CP with no
observable effect, them it can indicate at best that machine time is
wasted in its execution (possibly a design error) and very often a

much more serious error.

Insuring that every statement is executable is no guarantee of
correctness. Predicate errors or coincidental correctuness may pass
undetected even if every statement is successfully executed. We

will return to these error types later in this Chapter.

Dead Branches

An improvement over simply analyzing the execution of
statements can be had by analyzing the execution of branches, attem—

pting to execute every branch at least once.

Error Detection 8~4
Consider the program segment

A; '
IF({expression>) THEN B;
C;
All statements A,B and C can be executed by a single test case, It
is mnot true however that in this <case all branches have been

executed. In this example the empty else clause branch cen be

bypassed even though A,B and C are executed.

However, the reguirement that every branch be traversed can be
restated: every predicate must evaluate to both TRUE and FALSE.
The latter formulation is wused im mutatiom analysis. The mutant
operators trueop and falseop replace each logical expressiom by
Boolean constants, Like the statement analysis mutations described
above, thesc mutations tend to be unstable and are casily eliminated
by almost any data. If these mutants survive, they point directly

to a weakness in the test data which might shield a possible error.

Mutating each relation or each logical expression independently
actually achieves a stronger test than that achieved by the usual

techniques of branch analysis. For consider the compound predicate
IF(A.LE.B.AND.C.LE.D)THEN ...

Simple branch coverage requires only two test cases to test the

predicate. But suppose that the test points for the covering test

are A { B AC{D and A <B AC> D.

These points have the effect of only testing the second clause,.
This kird of analysis fails to take into account the hidden paths

implicit in compound predicates. In testing all the hidden paths,

Error Detection 8-5

program mutation Trequires at 1least three points to test the
predicate, corresponding to the branches (A>B,C>D), (A<B,C>D), and

(A<B,C<D).

As a more concrete example, consider the program shown in
Figure 1 (cf. Program B4). It is intended to calculate the number
of days between +two given dates, The predicate which determines
whether a year is a leap year is incorrect. Notice that if the year
is divisible by 400 (i.e., if year REM 400 = 0) it is necessarily
divisible by 100 (ie, year REM 100 = 0). Therefore, the logical
expression formed by the conjunetion of these clauses is equivalent
to the second clause alone, Alternatively the expression year REM
100 = 0 can be replaced by the logical constant TRUE and the result-
ing mutant is equivalent to the original program, Since it 1is =not
obvious what the programmer had in mind, the error is discovered.
Mutation analysis also shows that the assigmment daysin(12):=31 is

redundant and can be removed from the program.

Error Detection 8—-6

PROCEDURE calendar(INTEGER VALUE dayl,monthl,day2,month2,year);
BEGIN

INTEGER days
IF month2=monthl THEN days=days2-daysl
COMMENT if the dates are in the same month, then
we can compute the number of days directly;
ELSE
BEGIN
INTEGER ARRAY daysin(1..12)
daysin(1):=31;daysin(3):=31;daysin(4):=30;
daysin(5):=31;daysin(6):=30;daysin(7):=31;
daysin(8):=31;daysin(9):=30;daysin{10):=31;
daysin(11):=30;daysin(12):=31;
IF ((year REM 400)=0) OR
((year REM 100)=0 and (year REM 400)=G)
THEN daysin(2):=28 ELSE daysin(2):=29;
COMMENT set daysin{2) sccording to whether or not
year is leap year;
days:=day2+(daysin(monthl)—dayl);
COMMENT this yields the number of days in complete
intervening months;
FOR i:=monthl +1 UNTIL month2-1 DO days:=daysin(i)+days;
COMMENT add in the days in complete months;
END
WRITE(days)
END;

Figure 1.

Data Flow Errors.

A program mnay access a variable in one of three ways. A
variable is said to be defined if the result of a statement is to
assign & value to the variable. A variable is said to be referenced
if its value is required by the execution of a statement. Finally,
a variable is said to be undefined if the semantics of the langunage
dces mnot explicitly give any other value to the variable. Examples
of undefined yariables are the wvalues of local storage after
procedure return or Fortran DO loop indices after normal loop

termination.

Error Detection 87

We define three types of data flow anomalies which are often
indicative of program errors, These anomalies are consecutive

accesses to a variable of the following forms:

1. undefined then referenced,
2, defined then undefined,

3., defined then redefined.

Anomaly 1 is almost always indicative of am error, evemn if it
occurs only on a single path between the point at which the variable
becomes undefined and its point of reference. Anomalies 2 and 3
tend to indicate errors when they are wunavoidable, that is, when

they occur along every control path,.

The second and third types of anomalies are attacked directly
by mutation operators. If a variable is defined and is mnot used
then in most cases the defining statement can be eliminated without
effect (by insertion of a CONTINUE statement for instance). This
may not be the case if in the course of defining the variable a
function with side effects is invoked. In this case, the defimition
can very likely be altered in many ways with no effect on the side
effect, resulting in the variable being given different values. An
attempt to remove these muntations will usually result in the anomaly

being discovered.

Jt is more difficult to see which operators address anomalies
of the first type; the underlying errors are attacked by the
discipline imposed by program mutation. A tester creates and
executes mutants in a specific test environment: a large

interpretive system. VWhenever the value of a variable becomes

Error Detection §-8

undefined, it is set by the interpreter to the unique constant
UNDEFINED. Before every variable reference, a check is performed by
the interpreter to see if the variable has undefined values. If the
variable is UNDEFINED the error is reported to the user, who can
then take action, Several examples of error detection by the

interpreter are presented in Chapter 6.

Domain Errors.
A domain error occurs when an input value causes an incorrect path
to be executed due to an error in a control statement. Domain
errors are to be contrasted with computaiion errors which occur when
an input value causes the correct path to bde followed but an
incorrect function of the input value is computed along that path
due to an error in a computation statement. These notions are mnot
precise and it is difficult with many errors to decide in which

category they belong {(c¢f. the error classifications in Chapter 2).

For a program contesining N input variables (e.g., parameters,
arrays, and I/0 wverisbles), any predicate in the program can be
treated algebraically and can thus be described by a surface in the
N dimensional input space. If, as often happens, the predicate is

linear, then the surface is a bypcrplane,

Consider a two dimensional example with input variables I and
J: I+2F { -3. The domain strategy tests this predicate using three
test points, two on the line I+2J=3, and ome point which lies off
the line, but within an envelope of width 2d centered on the line .

Call these points A,B and C (see Figure 2). If A,B, and C yield

Error Detection 8-9

correct output, then the defining curve of the predicate must cut
the sections of the triangle ABC. Choosing d small enough makes the
chance of the predicate actually being one of these alternatives
small, Therefore, we have gained some confidence that the predicate

is correct.

Values of J

+
B
_—— _—
o A /
2d / €
/ o

Values of !

Figure 2.
Domains for 24 < 3

Program mutation also deals with the issue of domain erxrors.
Indeed the domain strategy can be implemented using mutation once a
simple observation is made: it is not necessary that points A and B
both lie on the lire — it is only necessary that the line separate
them or that they do mnot both lie on the same side of the line.
Hereafter, we will work with the domain stategy using this simplify-

ing assumption,

Erxor Detection 8-10

There are three error operators which generete mutants causing
the tester to generate the required points. Intuitively, we can
think of the mutations as posing certain eltermatives to the
predicate in question, These alternatives require the tester to
supply "reasons” (in the form of test data) why the alternative

predicate cannot be used in place of the original,

Relational Operxator Replacement. Changing an inequality
operator to a strict inequality, weakening the operator, or changing
its sense generates a mutant which can only be eliminated by a test
point which exsctly satisfies the predicate., For example changing
I+23<3 to I+2J<3 requires the tester to generate a point on the line
I+2J=3 which satisfies the first predicate but which does not

satisfy the seccnd predicate.

Twiddle. Recall from Chapter 2 that‘ twiddle is a unary
operator denoted by ++ or —, depending on its sense. Usually ++a
is defined to be at+l if a is an integer and a+.01, if a is real. In
some cases ++a is defined to be sensitive to the magnitude of a.

The complementary operator ——a is defined similarly,

Graphically, the effect of twiddle is to move the proposed
constraint a small distance from the original linme. Iﬁ order to
eliminate these mutants, a data point must be found which satisfics
one <constraint but not the other and is hence very close to the

original linre.

Brror Detection 8-11

Other Replacements. These operators replace data references
with other syntactically meaningful dats references and similarly
for operators. These effects are related to the phenomenon of

"spoilers” which are described later in this chapter.

Replacements are the main source of complexity in the mutation
process, since the number of data substitution mutant alone grows
approximately quadratically in the size of the program being tested
(see Chapter 5), The practical effect of considering so many alter—
natives is to increase the total number of data points necessary for
their elimination, This leads by the domain strategy to an

increased confidence that the predicate has been correctly chosen.

For comparison, let wus work through the program in Figure 3.
No specificatiouns are given for this program, but the program can be
compared agzinst a presumably correct version; in any case the

progran is useful since it involves only two input variables,

READ I1,7J;
IF I<KJI+1
THEN EK=I+J-1
ELSE E=2%1+1;
IF K>I+1
TEEN L=I+1
ELSE L=J-1;
IF I=5
THEN M=2*L+K;
ELSE H=L+2%*EK-1
WRITE M;

Figure 3.

The program has only three predicates:
IJ+1, K>I+1, and I=5.

The effect of changing the first of these is typical, so we will

Error Detection 8-12

deal with it.

Figure 4 is a listing of all the altermatives tried for the
predicate I<(J+l, Some of these are redundant (e.g., +I{J+1 and I<-
~J+1), but this is merely an artifact of the generation device; the

redundancies can be easily removed. The alternative predicates
introduced in this way are illustrated in Figure 5. The original
predicate line is the keavy line. It has been suggested that the

program of Figure 3 contains the errors shown in Table 1.

| statement/expression should be }
| K>I+1 K> I+2 I
I=5 I=5-T
K=I+J-1 THEN IF(2%J<-5%1-40)

THEN K=3;

[
|
|
|
|
L=J-1 [L=I-2
i
I
: ELSE E=I+J-1;

Table 1, Domain Errors

We leave it to the reader to verify that attempting to
eliminate the alternative E>I+2 necessarily ends with the discovery
of the first errxor. Note that this is not trivial since errors 1
and 4 can interact in & subtle way. In the sequel we show how the

remaining errors are dealt with,

Error Detection 8-13

IF(I<T)
IF(ILJ+2)
IF(IJ+1)

. IF(ILJ+])
IF(1<J+1)
IF(243+1)
IF(54T+1)
IF(I£1+1)
IF(I<2+1)
10, IF(I5+1)
11, IF(I<J+5)
12. IF(-IKJ+1)
13, IF(++I<J+1)
14, IF(--I<J+1)
15. IF(I<-J+1)
16. IF(IKH+H+J+1)
17. IF(I<—J+1)
18. IF(I<-(J+1))
19. IF(I<KJ-1)
20. YF(IKMOD(J,1))
21, IF(ILY)

22. IF(IK1)

23. IF(I<J+1)
24, IF(I=J+1)
25. IF(.NOT,I=J+1)
26. IF(I»J+1)
27. IF(I>J+1)

.

.

O oo ~J D W
LI | .

Figure 4.

Erzror Detection 8-14

VALUES OF J

10 / f’/

A/

AN ‘AN
NN\ 1NN
ADANET NN\

-10 -8 -6 -4 -2 2 4 6 B 10

0
VALUES OF |

Figure 5.
Alternative Predicate Domains

The introduction of the wunary ++ and -—— operators can be
generalized irn several useful ways. In addition to the twiddle
operators, we consider the unary operator — and the operators ABS
(absolute value), —ARS (negative absolute value), and ZPUSH (zero
push). Consider the statement A=B+C. 1In order to eliminzte the
mutants A= ABS(B)+C, A=B+ABS(C), and A=ABS(B+(C), we must generate a
set of test points ip which B is negative (so that B+C differs from
ABS(B+C), C is negative, and B+C is negative). Notice that if it is
impossikle for B to be negative then this is an equivalent mutation.
In this case, the proliferation of these altermatives can either be

a mnuisance or ar irmpertant documentation aid, depending upon the

Error Detection 8-15

testers’ point of view, The topic of -equivalent mutants will be

taken up again later,

In similar fashion, mnegative absolute valve insertion forces

the test data to be positive. Ve use the term domain pushing for

this process. By analogy to the domain strategy, these mutations
push the tester into producing test cases where the domains satisfy

the given requirements.

Zero Push is an operator defined so that ZPUSH(x) is x if x is
nonzero, and otherwise is vundefined so that the mutant dies
immediately. Hence the elimination of this mutant requires a test

point in which the expression x has the value zero.

Applying this process at every point where an absolute vealue
sign can be inserted gives a scattering effect. The tester is for-—
ced to include test cases acting in various positions in several
problem domains. Very often, in the presence of an error, this
scattering effect causes a test case to be generated in which the

error is explicit.

Returning to the exemple in Figure 3, we can generate the
additional alternatives shown in Figure 6. Figure 7 =shows the
domains into which these mutants push. Even this simple example

generates a large number of requirements!

Error Detection 8~-16

IF(ABS(I)>J+1)
. IF(I>ABS(J)+1)
IF(I>ABS(J+1))
. E=(ABS(I)+))-1
E=(I+ABS(J))-1
. E=ABS(I+J)-1
E=ABS((I+J)-1)

, K=2*ABS(I)+1
E=ABS(2%*I)+1

. E=ABS(2%I+1)

. IF(ABS(K)<I+1)
. IF(E<ABS(I)+1)
. IF(E<ABS(I+1))
. L=ABS(I)+1

. L=ABS(I+1)

. IL=ABS(J)-1

. L=ABS(J-1)
IF(.NOT, AES(I)=5)
19, KN=2%ABS(L)+K
20. M=2*L+ABS(K)
21. M=ABS(2*L+K)
22. M=ABS(L)+2#*K-1
23. M=L+2%ABS(K)-1
24, M=ABS(L+2%K)-1
25. M=ABS(L+2#E-1)

b D 0~ Wy W
b LN O o . . »

ol b
o ~1 A
*

Figure 6.

VALUES OF J

10

%

) t 1 :{{%%% + — —}

-2 L

—4

-8 F

-8

-0 -8 -8 -4 -2 0 2 4 8 8 10

VALUES OF I
Figure 7.

Effects of Domain Pushing s

Error Detection 8-17

One effect of the error L=J-1 is that any test point in the
area bounded by I=J+1 and I=1 will return an incorrect result. Buot
this is precisely the area that mutants 8,9, and 10 push us into.

So, the error could not have gome undiscovered ir mutatiom amalysis.

This process of pushing the tester into producing data satisfy-
ing some¢ criterion is also often accomplished by other mutations,.
Consider the program in Figure 8, which is based on a text reformat-

ter program and which is also discussed in Appendix B (Program Bl1l),.

alarm:=FALSE
bufpos:=0;
£fill:=0;
REPEAT
incharacter(cw)};
IF c¢w=BL or cw=NL THEN
IF fill+bufpos { maxpos THEN
outcharacter(BL);

ELSE
BEGIN
outcharacter{NL};
fill:=0;

FOR k:=1 STEP 1 UNTIL bufpos DO outcharacter{bufferlk])
fill:=fill+bufpos;
bufpos:=0
END
EL.SE
IF bufpos = maxpos THEN alarm:=TRUE;
ELSE BEGIN
bufpos:=bufpostl;
buffer[bufpos]:i=cw
END
UNTIL alarm or cw=ET

Figure 8.

Consider the mutant whichk replaces the first statement fill:=0
with the statement fill:=1., The effect of this mutation is to force
a test case to be defined in which the first word is less than max-
pos characters long. This test case then detects onme of the five
errors originally reported in Appedix B. The surprising thing is

that the effect of this mutation seems to be totally unrelated to

Error Detection 8-18

the statement in which the mutation takes placel

Special Values

Another form of test which has been studied is special values
testing. Testing of special values is defined in terms of a number
of "rules'”, For example:

1. Every subexpression should be tested on at least

one test case which forces the expression to be zero.

2. Every variable and every subexpression should
take on a distinct set of values in the test case.

The relationship between the first rule and domain pushing (via
zero values mutations) has already been discussed. The second rule
is undeniably important. If two variables are always given the same
value then they do not act as free variables and a reference to the
first can be uniformly replaced with a reference to the second. But
this is also an error operetor and the existence of these mutations

enforces the goals of Rule 2.

A slightly more general method of enforcing Rule 2 might use
the following device. A special array exactly as large as the num-
ber of subexpressions to be computed in fhe program is kept. Each
entry in this array has two additional tag bits which arc intialized
to their low values indicating that the array is uninitialized. As
each subexpression is encountered in turn, the value at that point
is recorded in the array and the first tag bit is set. Sub-
sequently, when the subexpression is again encountered if the second
tag is still off the current value of the expression is compared

against the recorded value. If these values differ the second tag

Error Detection §-19

is set to high values; otherwise no change is made. By counting
those expressions in which the second tag bit is low and the first
is high one can infer which expressions have not had their values
altered over the test «case, Mutations could be constructed to

reveal this.

Coincidental Correctness

The result of evaluating a given test point is coincidentally
correct if the result matches the intended value in spite of a com—
putation error. For example, if all our test data results in the
variable I taking on the values 2 and 0, then the computation J=I%*2
may be coincidentally correct if the intended <calculation was

J=J%%2,

The problem of coincidental correctmess is central to program
testing. Every progrermmer who tests an incorrect program and fails
to find the errors has really encountered an instance of
coincidental correctness. In spite of this, there has beer no
direct assault on the problem and some authors have gone so far as
to say that the problems of <coincidental correctness are intrac-—

table.

In mutation analysis, coincidental correctness is attacked by
by the use of spoilers. Spoilers implicitly remove from considera—
" tion data points for which the results could obviously be
coincidentally correct — this ''spoils” those data points. For

exemple by explicitly creating the mutation

Error Detection 8-20

J=]3%2 ==) J=]*%2 R

we spoil those test cases for which I=0 or I=2 are coincidentally
correct and require that at lest omne test case have an altermative

value.

Continning with the example of Figure 3, Figure 9 shows the
spoilers and their effects associated with the statement M=L+2%*K-T,
Notice that a simngle spoiler may be associated with up to four
different lines depending on the outcome of the first two predicates
in the program. In geometric terms (see Figure 11), the effects of
the spoilers are that within each data domain for each line there
must be at least one test case which does not lie on the given line.
In broad terms, the effects of this are to require that a large num—
ber of data points for which the possibilities of coincidental

correctness are very slight.

Error Detection

-

Ve~ AW WK

10.
11,
12,
13,
14.
15.
16.
17.
18.
19,
20.
21,
22,
23.
24,
25.

M=(L+1*K)-1
M=(L+3*K)-1
M=(I+2*K)-1
M=(J+2%K)~-1
H=(K+2*K)-1
M=(L+2#%J)~1
M=(L+2*1)-1
M=(L+2%L)-1
M=(L+I*K)-1
M=(L+J*K)-1
M=(L+K*K)-1
M=(L+L*K)-1
M=(L+2*K)-1I
M=(L+2%K)-J
M=(L+2*K)-K
M=(L+2%K)-L
F=(1+2%K)~-1
M=(2+2%K)-1
M=(5+2%K)-1
M={1L+2%1)-1
M=(L+2%2)-1
M=(L+2%5)-1
M=(L+5%*K) -1
M=(-L+2*K)-1

26, M=(L+2%¥-K)-1

27. M=(L+2*—K)-1
28. M=(L+2%K)-1

29, M=((L+2%K)-1)
30. M=(L+2+K)-1

31. M=(L+2-K)-1

32, M=(L+MOD(2,K))-1

33. ¥M=(L+2/X)-1
34. M=(L+2%#*K)-1
35. M=(L+2)-1

36.

37

38.

M=(1+K)-1
. M=L-2%K-1
M=(MOD(L,2*K))-1

39. M=L/2%K-1
40, H=L#*2*K-1

41.

42

43.

44
45
46
47
48

f=L**(2¥K}~-1

. H=L-1
M=(2%K)-1

. M=L+24K+1

. M=MOD(L+2%*K,1)
. M=(L+29%K)/1

. M=(L+2#%K)*1

. M=(L+2%K)*%1

49, M=(L+2*K)

M=(L+2*K)-1 50. M=1
Figure 10
Values of J
8
6 b
L/
4
>§/
2 \&
0 A
-2
-4
—6
-i0 -8 -6 -2 o 2 4 6 8 10

Values of

Figure 1

/

1.

Effects of Spoilers

8-21

Error Detection 8-22

Often the fact that two expressions are coincidentally the same
over thke input data is a sign of & program error or of poor testing.
The sorting program of Figure 12 is described in Appendix B (Program
B2), and it performs correctly for a large number of input values.
If, however, the statements following the IF statement are mnever
executed for some loop iteration it is possible for R3 to be
incorrectly set and an incorrectly sorted array will result.

By constructing the mutant which replaces the statement

2(R1):=R0 ==> a(R1):=a(R3)

it is clear that there are two ways of defining RO, only omne of

which is wsed in the test data. This exposes the error.

FOR R1=0 BY 1 TO N BEGIN
RO:=a(R1);
FOR R2=R1+1 BY 1 TO N BEGIN
IF a(R2)>R0O THEN BEGIN
RO:=a(R2);
R3:=R2
END
END
E2:=R0;
a(R1):=R0;
a(R3):=
END;

Figure 12.

Missing Path Errors

A program contains a missing path error if a predicate is
required which does not appear in the subject program, causing somec
data to be computed by the same function when an altogether
different function of the input date is called for. Such missing

predicates can eally be the result of two different problems,

Error PDetection 8-23

however, so we might consider the following alternative definitionms.

A program contains a specificational missing path errox if two

cases which are trcated differently in the specifications are
incorrectly combined into a single function in the program, On the

cther hand, a program contains &8 computational missing path error if

within the domain of a single specification a path is missing which
is required only because of the nature of the algorithm or of the

data involved.

An exzample of a specificational error is the fourth error from
Table 1. Although this error might result from a specification
there is nothing in the code itself which could give any hint that
the data in the ramnge 2*%*J ¢ 5%I-40 is to bc handled any differently

than shown in the program.

As an example of the second class of path error comsider the
subroutine shown in Figure 13. The input consists of a sorted table
of numbers and an element which may or may not be in the table. The
only specification is that upon return X(LOW) < A ¢ X(HIGH)_and HIGH
< LOW+1. A problem arises if the program is presented with a table

of only one entry, in which case the program diverges.

In the specifications there is no clue that a one—entry table
is to be treated any differently from a k>1 entry table. The

algorithm makes it a special case.

Error Detection 8-24

SUBROUTINE BIN(X,N, A,LOW, HIGH)
INTEGER X(N),N,A,LOV¥,HIGHE
INTEGER MID
LOoW=1
HIGH=N

6 IF (EIGH-LOW-1)7,12,7

12 RETURN

7 MID=(LOW+HIGH) /2
IF(A-X(MID))9,10,10

S HIGH=MID
GC TO ©6

10 LOW=MID
GO TO 6
END

Figure 13.

Computational missing path problems are usually caused by
requirements to treat certain values (e.g., mnegative numbers)
differently from others. When this occurs, data pushing and spoil-
ing often lead to the detection of the errors. In the example under

consideration here an attempt to kill either of the mutants
IF(HIGH-LOW~1)12,12,7

or
MID=(LOW+EIGH) -2

will cause us to generate a test case with a single element.

Since mutation analysis — like all testing techniques —— deals
mainly with the program usder test, the problem of dealing with
specificational missing path errors appears to be considerably more
difficult. Under the Competent Programmer Assumption and the coupl-
ing effect, however, a tester who has access to an "oracle” for the
program specifications can assume that the mutants cover all program
behavior! So by consulting the specifications the tester can detect

missing paths ty noting incomplete behavior and thus uncover any

Error Detection 8-25

missing paths. But since the assumptions of a competent programmer
and coupling are statistical and since it may be infeasible to check
for incomplete behavior, the chances of detecting such missing paths

are not certain.

To see this failure, consider the missing path error discussed
above (the fourth error in Table 1). It is possible to pgenerate
test data which is adequate but which fails to detect the missing
path error because there is no oracle to consult for completeness of
behavior., This appears to be a fundamental limitation of the test-
ing procesé. Unlike, say, program verification, program testing
does not require uniform a priori specifications; rather we only ask
that the tester be able to judge correctmess on a case-by-case
basis, It is our view that the only way to attack these problems is
to start with a core of test cases generated from specifications,
independent of the subject program. This core of test cases can

then be augmented to achieve stronger goals,

Missing Statement Errors

By analogy with missing path errors, & missing statement error
is defined by & statement which should appear im the program but
which dces not. It is not clear that the techniques of statement
analysis can be used to uncover these errors. In fact, it is rather
surprising that program mutation — a technique which is directly
oriented toward examining the effect of a modification to =

statement —— can be used to detect missing statements at all!

Error Detection 8-26

To see how this can be accomplishked, consider the program shown
in Figure 14, This program accepts a vector V of 1length N and

returns in MPSUM the value
Vi) +V(i+1) +. .. +V(N)

where j=i-1 is the smallest index such that V(j) is strictly

positive. In degenerate cases, MPSUM=0 is returmed.

There is a missing RETURN statement which should follow the IF
statement. The effect of the error is to cause undefined behavior
when the vector V is uniformly nonpositive (undefined, since DO loop
variables are of indeterminate value after normal completion of the

loop).
A simple mutation of MPADD is the transformation
DG 1 I=1,N ==> DO 1 I=1,N+1,

This mutant fails only when the loop executes N+l times. In this
case all elements of V are nonpositive and .the original program
fails, so eliminating this mutant nuncovers the error, BEnt even
after adding the return statement, MPADD will still be incorrect due
to a missing path error. We leave it to the reader to discover the

errcr by considering the mutant

DO 1 I=1,N ==> PO 1 I=1,N-1,.

Error Detection 8—-27

SUBROUTINE MPADD(V,N,MPSUHM)
INTEGER V(N),N, MPSUM
HPSUM = O
PO 1 I=1,N
1 IF(V(I).GT.0)GO TO 2
2 H=I+1
DO 3 I=M,N
3 MPSUH=MPSUM+V(I)
RETURN
IND

Figure 14,

Bibliographic Notes

The wusefulness of program mnutation for detecting errors was
pointed out by DeMillo, Lipton and Sayward in [DeMillo, 1978al.
However, the first systematic investigation of classes of errors
that are revealed by mutant operators was given in [Acree, 1979].
These techniques are several others which are useful in uncovering

known error classes also appear in Budd's thesis [Budd, 1980].

Field Studies 9-1

Chapter 9

Field Studies

In spite of extensive theoretical and experimemntal analysis,
systematic program testing in production programming eavironments is
rare. Most published accounts of testing experience in large scale
development efforts concentrate om ad hoc technigues which have been
tailored to the parent project. Gn the other hand, published
descriptions of systematic testing research use example programs
whick are small, theoretically interesting and easily adaptable to
expository accounts. This leaves open the question of whether any
systematic testing strategy can be economically applied in produc—
tion programming situatioms. This chapter describes several field

experiments with production programs of varying size and complexity.

The common thread in all of these case studies is that the
programs being tested are not known beforechand to be “testable” by
any technique. The programs are neither appealing nor known to be
correct. In fact several of the programs were known to contain
resistant errors that had escaped all of the usual debugging tech-—
nigues. Other programs had been thoroughly tested by other
orgapizations and fielded with errors that surfaced only during sub-—

scquent operation.

The programs below were tested using Fortran and Cobol mutation
analyzers based on the design primnciples presented in Chapter 4.
The test environments varied. The Fortran analyzers were
implemented on a large Digital Equipment System/20. The Cobol
analyzer was implemented on PRIME Computer Corporation’s 400 and 500

series computers. The level of skill of the testers also varied.

Field Studies 9-2

In one instance, the testers were expert mutation analyzer users.
In another, the testers were unknown, and program mutation was used
to evaluate the results of an independent testing effort. Although
these studies used considerable machine =resources, the principle
bottleneck in the testing process was the human tester. In only one
instance (the testing of a 2,500 statement Cobol program) did the
test team have to wait appreciable lengths of time to receive the
test results, On the average, expert testers were able to fully
test (i.e., develop adequate test sets, correct errors discovered,
and retest the modified programs) production code at the rate of

1,500 delivered source limes per tester per week.

Mutation on Mutation

The Fortran programs which we will discuss below are key
routines of a Cobel mutation analyzer whose design parallels the
organization suggested in Chapter 4. These programs were tested in
nearly the same form as the programs which would eventually be
integrated into the operational system. The few modifications that
had to be made to allow testing on a Fortran analyzer wecre mainly to
due to operating system dependencies that were not supported in the

test enviromments.

NXTLIV

This program is a routine called NXTLIV. It is a key routine
in the Cobol mutation analyzer and at the time of testing was known

to contain an error that could not be located by the usual debugging

Field Studies 9-7

An error has been detected; the correct output for MUINO is 13
instead of 14. This error resulted from choosing a starting poinmt
in the middle of a word of zero bits. NXTLIV ordirarily searches
the bits of each word looking for the next "1, but for efficiency a
whole word is compared to zcro before the search is begun, If all
bits are set low, MUTNO is incremented by the word 1lemgth and the
next word 1is aceessed. A correct algorithm would increment MUING
only by the number of bits left to be examined- in the word. The
only way this can make a difference in the original program is for
NXTLIV to be called in such away as to stop at a "1" bit in the mid-
dle of the word, which is otherwise all 0's, and then by a mnutant
failure or equivalence (outside the routine) to have that bit turned
off before NXILIV is ealled again for the next mqtant to be
considered. Obviously this situation is so rare that it is bound to
defy haphazard debugging attempts but is nonetheless common enough

to cause irritation in a productiom—sized Cobol rum,

The needed fix is to replace
MUINO=MUTNO+K
by

MUTNO=MUINGC+(K~-(BIT-2)) .

After eliminating all SAN mutants and turning on the remaining
error operators, a total of eleven test cases killed all but S50 of

1,514 mutants, about 96.7 percent of the total. Eventually the

Field Studies g-8

tester’'s attention was directed to the mutant at line 45

BIT=2 ==) I=2,

The test case 15 in Table 2 is an attempt to eliminate this
mutant. The program again failed and another error was found. This
error is also related to the test for the entire word of zeroes. By
starting in the middle of 2 word of zeroes, the BIT pointer is not
correctly set to 2 to begin searching the next word. The correction

is to replace

BiT=2
22 CONTINDE
by
22 BIT=2

An interesting note is that this 'correction” is actually a
mutation that the tester wounld have had to eliminate in any event,
so in effect the error was uncovered by the coupling effect before

it was explicitly comsidered.

The complete ampalysis of the corrected program required the
elimination of 1,580 mutants. The corrected algorithm has since
been running without known failure in an operational mutation

analyzer.

Field Studies , 9-9

MOVENY and MOVENM

These routines were tested using a more sophisticated mutation
analyzer than the omc used to test NXTLIV. Only minor modifications
in the source code were required to confcrm to the requirements of

the test environment.

The MOVENM and MOVIENW routimnes were believed to be <correct at
the time of testing. The listings for MOVENVW and MOVENM are shown

below.

Field Studies

20

30
9999

20

SUBROUTINE MOVENW(SOURCE, SLEN, DEST, DLEN)
INTEGER MLEN, K, SUB2, SUB1, LOOPHI, I, IHI, IER
INTEGER STMI(3,10), CODE(30), SYMTAB(10,9)
CHAR MEMORY (425)

INTEGER DLEN, DEST, SLEN, SOURCE

INPUT OUTPUT IER, MEMORY

INPUT DLEN, DEST, SLEN, SOURCE

MLEN = DLEN

IF(SLEN .LT. MLEN) MLEN = SLEN

LOOPHI = (DEST + MLEN) - 1

5UB2 = SOURCE - 1

DO 20 SUB1=DEST, LOOPHI

SUB2 = SUB2 + 1

K = MEMORY(SUB2)

IF(K .EQ. '#') IER = 4

MEMORY (SUB1) = K

IF(IER .NE. 0) GOTO 9999

IF(DLEN .LE. MLEN) GCTO 9999

I = LGOPHI + 1

LOOPHI = (DEST + DLEN) - 1

DO 30 SUB1=I, LOOPHI

MEMORY(SUB1) = " '

CONTINUE

RETURN

END

SUBROUTINE MOVENM({SOURCE, SLEN, SDEC, DEST, DLEN, DDEC, TYPPE)
LOGICAL NEGNO

INTEGER X(5), PINEGD, PINEGS, K, SUB2, SUB1, LOOPHI, LEND
INTEGER LENS, I, IHI, DDECPT, SBECPT, IER. STMT(3,10)
INTEGER CODE(30), SYMTAB(10,9)

CHAR MEMORY(425)

INTEGER TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SCURCE
INPUT OUTPUT IER, MEMORY

INPUT TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE
PINEGS = (SOURCE + SLEM) -1

PTNEGD = (DEST + DLEN) - 1

CALL UNPACK (MEMORY (PTNEGS) , X, 5)

NEGNO = X(2) .EQ. '-'

X(2) ="

IF(NEGNO) CALL PACK(X, MEMORY (PTNEGS) ,5)
LENS = SLEN - SDEC

LEND = BLEN — DDEC

SDECPT = SOURCE + LENS

DDECPT = DEST + LEND

SUB1 = DDECPT - 1

IF(SDEC .EQ. 0 .OR. DDEC .EQ. 0) GOTO 22
IHI = (SDEC + SDECPT) -1

IF(DDEC .LE. SDEC) IHI = (DDEC + SDECPT) - 1
PO 20 SUB2=SDECPT, IHI

5UB1 = SUB1 + 1

K = MEMORY(SUB2)

IF(K .EQ. '#') IER = 4

MEMORY(SUB1) = K

9-10

12
14

28

35

38

43

I R S Vray VR G Gr g W Y
QU UNWHOMITAWL A WR

23
24
25
26

27
29
30
31
32
33
34
36
37
39
40
41
42
44
45

Field Studies 9-11

IF(IER .NE. 0) GOTO 50
22 IF(DDEC .LE. SDEC) GOTO 30
I =S0Bl +1
IHI = (DEST + DLEN) - 1
DC 25 SUB1l=I, IHI
25 MEMORY(SUB1) = '0°
30 LCOPHI = LEND
IF(LENS .LE, LEND) LOOPHI = LENS
SUB1 = DDECPT
SUB2 = SDECPT
IF(LEND .EQ. 0) GOTO 50
IF(LENS .EQG. 0) GOTO 41
DO 40 I=1, LOCOPHI
SUB1 = SUB1 - 1
5UB2 = SUB2 - 1
K = MEMORY(SUB2)
IF(E .EQ. '#’) IER = 4
40 MEMORY(SUB1) = K
IF(IER .NE. 0) GOTO 50
JF(LEND .LE. LENS) GOTO 50
41 IHI = SUB1 - 1
DO 45 I=DEST, IHI
45 MENORY(I) = '0'
50 x(2) = -
IF(NEGNO) CALL PACK(X, MEMORY (PTNEGS) ,5)
IF(.NOT. (NEGNO .AND. TYPPE ,EQ. 2)) RETURN
CALL UNPACK { MEMORY (PINEGD) , X, 5)
X(2) = '~
CALL PACK (X, MEMORY (PINEGD) , 5)
RETURN
END

Program mutation on each subrcutine indicated that no errors
existed and that the two subroutines were correct. A listing of
each subroutine with its equivalent mutants and the MITANT STATE

information is given in Appendix C.

Host of the equivalent mutants are the absolute value or ZPUSH
mutants of a variable; these variables are always positive and never
zero because they refer to the memory location and length for either
the sending field or destination field in the Cobol MOVE statement

and this cannot be negative or zero.

46
48

55

59
61

67

70
72

78
80

47
49
50
51
52
33
54
56
57
58
60
62
G3
64
65
66
68
69
71
73
74
75
76
717
79
81
82
83
84
85

Field Studies 9-12
It is interesting to note the statement:

IF (K .EQ. '#') IER=4

This conditional is checking for undefined data. If the data
is undefined, the data is moved entirely to the receiving field
before the interpreter is halted and an error returned to the cal-
ling subroutine. The conditional statement:

IF (IER .NE. 0) GO TO 9999 as in MOVENW

IF (IER .NE. 0) GO TO 50 as in MOVENHM
is located after the Fortran DO loop that is moving the data; if
this statement were moved inside the DO loop, then the error could
cause the error return before 211 the data is moved. The tester
decided that the time to evaluate the error condition every time
through the DO loop would be more time consuming than the time
needed to move the remaining data to the receiving field. It should
be noted that moving the undefined data to the receiving field has

no effect because intcrpretation of the program is halted.

MOVEED

The MOVEED, numeric edited move, subroutine was submitted for
mutation analysis because it had not been fully tested by con-

ventional means. The pregram as modified is shown below.

SUBROUTINE MOVEED(SOURCE, SLEN, SDEC, DEST, DLEN, PLEN, PDIG, PDEC,
* PIC, IER)

LOGICAL SUPRES, NEGNO

INTEGER X(5), SUB2, SUB1, IHI, PLDIG, IVAR, I, SCOUNT, DESTHI

INTEGER CHAR, PDIGLN, SDIG, SARRAY(50), PICST, DDEC

INTEGER STMT(3,10), CODE(30), SYMTAB(10,9)

CHAR MEMORY(310)

INTEGER IER

Field Studies

10

11

15

16

20

CHAR PIC(10)

INTEGER PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLIN, SOURCE

INPUT OUTPUT MEMORY, IER

9-13

INPUT PIC, FDEC, FDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE

SUPRES = .TRUE.

DO 5 I=1, PLEN
SARRAY(I) = '0'

FLDIG = PDIG - PDEC
SDIG = SLEN - SDEC
IF(SDEC .EQ. 0) GOTO 11
SUB1 = PLDIG

SUB2 (SOURCE + SDIG) - 1
DO 10 I=1, SDEC
SUB1 = SUB1 + 1
SUB2 = SUB2 + 1

IF (MEMORY(SUB2) .FQ. '#*) IER = 4

SARRAY(SUB1) = MEMORY(SUB2)

IF(IER .NE. 0) GOTO 101

IF (SDIG .GE. PLPIG) IHI = PLDIG

IF(SDIG .LT. PLDIG) IHI = SDIG

SUB1 = PLDIG + 1

SUB2 SOURCE + SDIG

b0 15 I=1, IHI

SUB1 = SUB1 - 1

SUB2 = SUB2 - 1

IF (MEMORY(SUB2) .EQ. '#') IER = 4

SARRAY(SUE1) = MEMORY(SUB2)

IF(IER .NE. 0) GOTO 101

SUBl = (SOURCE + SLEN) -1

CALL UNPACK(MEMORY(SUB1) ,X,2)

NEGNO = X(2) ,EQ. '-'

SUB1 = DEST

SCOUNT = 0O

DO 100 I=1, PLEN

SUB1 = DEST + I

IF((DEST + 1) - 1 .GT. (DLEN + DEST) - 1)) GOTO
CHAR = PIC(I)

IF(PIC(I) .EQ. '9’) SUPRES = .FALSE,
IF(SARRAY(SCOUNT + 1) .NE. ‘0') SUPRES = .FALSE.
IF(CHAR .NE. '-') GOTO 20

MEMORY(SUB1 - 1) = ' !

IF(I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 - 1)
IF(I .EQ. 1) GOTO 100

SCOUNT = SCOUNT + 1

IF(.NOT. SUPRES) GOTO 99

IF (NEGNO) MEMORY(SUB1 - 1) = '-!

IF (MEMORY(SUB1 - 2) .EQ. '-') MEMORY(SUB1
GOTO 100

IF(CHAR .NE. '+') GOTO 30

IF(I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 - 1) = '

IF(I .EQ. 1 ,AND, .NOT, NEGNO) MEMORY(SUB1 — 1) = '+’
IF(I .EQ. 1) GOTO 100

SCOUNT = SCOUNT + 1

IF(.NOT. SUPEES) GOTO 99

IF (NEGNC) MEMORY(SUB1 - 1) = '—!

IF (.NOT. NEGNO) MEMORY(SUB1 ~ 1) = '+’

ot

1}
;

|
[38]
~
1
-
-

92

99

102

107

114

117

126

129
131
133

136
138

141
143
145

148
150
152
154

157
159
161

87

88

89

90

91

93

94

95

96

97

98
1060
101
103
106
108
109
110
111
112
113
115
116
118
119
120
121
122
123
124
125
127
128
130
132
134
135
137
139
140
142
144
146
147
149
151
153
155
156
158
160
162

Field Studies

30

40

50

55

60

70

80

81

82

83

99
100
101

IF(MEMORY(SUB1 - 2) .EQ. '+') MEMORY(SUB1 - 2)
IF (MEMORY (SUB1 - 2) .EQ. '—-') MEMNORY(SUB1 - 2)
GOTO 100

IF(CHAR .NE. '$') GOTO 40

IF (I .EQ. 1) MEMORY(SUB1 - 1) = '§’
IF(I .EQ. 1) GOTO 100

SCOUNT = SCOUNT + 1

IF(.NOT. SUPRES) GOTO 99

MEMORY(SUB1 — 1) = ‘§’
IF(MEMORY(SUB1 - 2) .EQ. '$') MEMORY(SUB1 - 2)
GOTO 100

IF(CHAR .NE. ’*') GOTO 50

SCOUNT = SCOUNT + 1

IF{.NOT. SUPRES) GOTO 99

MEMORY (SUB1 —~ 1) = ’=°*

GOTC 100

IF(CHAR .NE. 'Z') GOTO 55

SCOUNT = SCGUNT + 1

IF(.NOT. SUPRES) GOTO 99
MEMORY(SUB1 —~ 1) = ' '

GOTO 100

IF(CHAR .NE. '9') GOTC 60

SCOUNT = SCOUNT + 1

MEMORY(SUB1 - 1) = SARRAY(SCOUNT)
GOTO 100

IF(CHAR .NE. 'B’') GOTO 70
MEMORY(SUBL - 1) = ' '

GOTO 100

IF(CHAR .NE. '/') GOTO 80
MEMORY(SUB1 - 1) = '/

GOTO 100

IF(CHAR .NE. 'V') GOTO 81

GOTO 100

IF(CHAR .NE. '.') GOTO 82
MEMORY(SUB1 - 1) = ’,'

GOTO 100

IF(CHAR .NE. ',') GOTO g3

IF(.NOT. SUPRES) MEMORY(SUBL — 1) = ’,’
IF(SUPRES) MEMORY(SUB1 - 1) = ' '
GOTG 100

IER = 3

GOTO 101

MEMORY (SUB1 ~ 1) = SARRAY(SCOUNT)
CONTINUE

CONTINUE

RETURN

END

9-14

163
165

168
170
172
175
178
181

184

188

191

195

200
204

208
211
215

217
219

164
166
167
169
171
173
174
176
177
179
180
152
183
185
186
187
189
150
192
193
194
196
197
198
199
201
202
203
205
206
207
209
210
212
213
214
216
218
220
221
222
223
224
225
226
2217

Field Studies 9-15

The data for this subroutine comsisted of the following input

and input/output data.

INPUT DATA

SOURCE - INTEGER data that corntains the starting location in
memory for the sending field.

SLEN — INTEGER data that specifies the 1length of the item in
memory.

SPEC - INTEGER specifing the number of digits in the fractiom part
of a number,

DEST - INTEGER data that contaims the starting location in memory
for the receiving field.

DLEN - INTEGER data that specifies the length of the receiving
data item in memory.

PLEN - INTEGER that specifies the length of the PICTURE
specification,

PDIG - INTEGER that gives the number of digits in the PICIURE
description.

PDEC - INTEGER specifying the number of digits in the fractionm
part of the PICTURE.

PIC - CHARACTER array which contains the Cobol PICTURE for the
edited move.

INPUT/OGTPUT DATA
MEMORY - CHARACTER data that contains the programs memory.

IFR — INTEGER used as error indicator.

The numeric edited move takes data from a source field and
places it in & receiving field according to what may be called a

template or instructioms specified in the Cobol PICTURE.

Two errors and redundant conditional statements were found in
MOVEED. The first error detected involved a Fortran DO loop where

the vupperbound on tke lcop was zero so the DO loop was being

Field Studies 9-16

executed once when it should not be executed at all, The specific
statement is:

bo 15 I=1,IHI
at 1line 111 in Figure 5 where IHI has been assigned the value of
SDIG (number of digits in the whole part of a number) or PLDIG (num—
ber of allowable digits in the whole part of the PICIURE descrip—

tion). The test data that uncovered this error is in Figure 1.

TEST CASE NUMBER 9

PARAMETERS ON INPUT

SOURCE = 294

SLEN = 7

SDEC = 7

DEST = 5

DLEN = 8

PLEN = 8

PDIG = 7

PDEC = 2

PIC = "ZZZZ9 994"

IER = 0

MENMORY = "H##H#HH I 00101~ uuuuy

€A 2277777727, 05 10~ 235787 ZZZ9
*.99 +++4,5 $3434v $ersse9 99

* 9,999,9 99/99/99 99B99B99 XXXXXXXX
*+XXXXXXXXXXXX YYYYYYYYY3040210200ABCDEELSE2 IF2ELSE1 203 01 DONE####HHHH B HH}
S AR O U0 AZZ 2272 7277, 000500001000-0123456T##
CHHEHHEE"

PARAMETERS ON OUTPUT

MEMORY = "##H} 123 4.5 6#HH#HHHIHIHITHT B 00101~ UUUTU

*A 7777777277, 05 10~ 235787 ZZZ9
*.09 4+, 9 $$3dsv §e%%%29 09

. 9,999.9 99/99/99 99B99B99 XXXXXXXX
*XXXXXXXXXXXX YYYYYYYYY3040210200ABCDEELSE2 IF2ELSE1 203 O1DONE#### R #HH#
T OO OO0 AZ 222777277, 00050000100G—-01234567##
ey

IER = 0

Figure 1. Test Data Detecting DO Loop Error

Field Studies 9-17

The program was corrected and the effected lines for the new
program are shown in Figure 2. The new iine is the 1lime with the

Fortran statement labtel 11.

11 IF(SDIG .EQ. 0 .OR, FLDIG .EQ. 0) GOTO 16
IHI = PLDIG
IF{SDIG .LT. PLDIG) IEI = SDIG
SUB1 = PLDIG + 1
SUB2 = SOURCE + SDIG
DG 15 I=1, IHI
SUB1 = SUB1 - 1
SUB2 = SUB2 - 1
1F (MEMORY (SUB2) .EQ. '#') IER = 4
15 SARRAY (SUB1) = MEMORY(SUB2)

Figure 2. Corrected Program

The second error that was uncovered by mutation analysis

involved the handling of the PICTURE item 'V' which says not to out—

put a decimal poirt to the receiving field.

104 105

107

114

106
108
109
110
111
112
113
115
116

Field Studies 9-18

TEST CASE NUMBER 1
PARAMETERS ON INPUT

SOURCE = 294

SLEN = 8

SDEC = 4

DEST = 5

DLEN = 7

PLEN = §

PDIG = 7

PDEC = 3

PIC = "9999V999

IER = ©

MEMORY = "H####HHHIETHIE TR S 00101~ TUUUU

*A 7227717777 05 10- 235787 2779
*.99 +4+, 9 $343dv frexrsg 09

* 9,999.9 99/99/99 99B99B99 XXXXXXXX
*IXXXAXXXXKXX YYYYYYYYY3040210200ABCDEELSE2 IF2ELSEL 203 O1DONE##H#HHHHHHEHHY
I R A R HHUUUUU AZZ 22772777 000500001 00#1234 567 8#1#
R

PARAMETERS ON OUTPUT

MEMORY = "#iHHFL23 456 THHHHIHHHEHEHHHEHE 00101~ vuuuo

.4 272777717777, 05 10— 235787 2ZZ9
*.09 ++++,9 $$53dv fewese9 99

* 9,999.9 99/99/99 99B99B99 XXXXXXXX
*XXXXXXXXXXXX YYYYYYYYY3040210200ABCDEELSE2 IF2ELSEL 203 O1DONE###HHHHHHHITH}
* L B A 1 #UUUUU AZZ 2227727 7 00050000100#1 234 567 8#1H:
*HHEH

IER = 0

Figure 3. Data Detecting PICTURE Clause Error

This error was detected from the data shown in Figure 3. In
statement 1label 80, if a V is the item inm the picture, then nothing
is dere and control goes back to the top of the loop where the next
item in the PICTURE description is retrieved. The error occurs
because the pointer (variable SUBl) for the next available location
in the receiving field is automatically incremented at the beginning
of the 1loop; to correct this error subtract 1 from SUBl1 when a V
instruction is detected. The original method for calculating the
next available location used the Do loop index and the absolute

location of the destination field which disregards the statement

Field Studies 9-19

SUB1=SUB-1 executed when a 'V’ is encountered, This made it man—
datory to rewrite the handling of the destination pointer. The new
code is given in Appendix D. It has been indicated that some con—
ditional statements were redundant in the original program. These
have been rewritten as in Appendiz D. Figure 5 contains the program
with the 'V’ errcr and with the redundant statements. It can be
seen from this listing that several redundant conditional statements
have no effect on the result of tkhe program, Thesc redundant

statements have been deleted.

Specifically, a redundant conditional statement exists for
statement 106 107 wkere IHI is assigned the value of PLDIG if SDIG
is greater than or equal to PLDIG; but, the next statement 108 109
will reassign the value of IHY to SDIG if SDIG is less than PLDIG;
it can be seen that the first conditional statement can be changed
to the assigoment statement IHI=PLDIG because it will be reassigred
if the following conditional statement is true.

Another redundant conditional statement is 136 137 where the
statement:

IF (I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 - 1) = '-?
does not need the compound conditional portion I _EQ. 1 ©because
statement 138 139 takes «care of that portion of the conditionmal.
This is rewritter as: IF (NEGNO) MEMORY(SUB1 - 1) = '—' which
allows the deletion of statement 143 144,

As in tke previous conditional statement, the statements 150
151 and 152 153 do not need the portion of the conditional I .EQ. 1
because the statement 154 155 takes care of the condition; also
statement 159 160 and statement 161 162 are deleted,

The conditional statement 170 171 is changed to the assignment

Field Studies 9-20

statement which allows for the deletion of statement 177.
The rewritten MOVEED was tested and the results indicated that
the routine was correct. Figure 4 contains the status information

for the testing of subroutine MOVEED.

Field Studies

MUTANT ELIMINATION PRCFILE FOR MOVEED

MUTANT TYPE

CONSTANT REPLACEMENT
SCALAR VARIABLE REPLACEME
SCALAR FOR CONSTANT REP,
CONSTANT FOR SCALAE REP.
SOURCE CONSTANT REPLACEME
ARRAY REF. FOR CONSTANT R
ARRAY REF. FOR SCALAR REP
COMPARABLE ARRAY NAME RE
CONSTANT FOR ARRAY REF RE
SCALAR FOR ARRAY REF REP.
ARRAY REF, FOR ARRAY REF,
UNARY OPERATOR INSERTION
ARITHFMETIC OFERATOR REPLA
RELATIONAL OPERATOR REPLA
LOGICAL CONNECTOR REPLACE
ABSCLUTE VALUE INSERTION
STATEMENT ANALYSIS
STATEMENT DELETION

RETURN STATEMENT REPLACEM
GOTO STATEMENT REPLACEMEN
DO STATEMENT END REPLACEM

MUTANT STATE FOR MOVEED

FOR EXPERIMENT "MOVEED

TOTAL

151
2430 2
1121 1
694
601
470
1041 1
148
105
684
251
325
218
210
5
399
80
56
128
648
76

DEAD

146
413
119
692
599
470
030
148
105
680
246
318
218
191
5
151
80
56
128
636
72

96.7%
99.3%
99.8%
99.7%
99.7%
100.0%
98.9%
100.0%
100.0%
99.4%
98.0%
97.8%
100.0%
91.0%
100.0%
37.8%
100.0%
100.0%
100.0%
98.1%
94 .7%

" THIS IS RUN 18

LIVE

COOQC OO0 OQCOO

©C000000000OCOO0OOOOO OO
FRFRFRFRZFIFISISIRERS

9-21

EQUIV

-

-

-

[=]
E-
AN OOCONOYCOTUHOOKHONMNNIW

-

W OO OO O OCONO RO ®H®WWN - W
A2 R R PR RRERERRRRRREREE

N
N HEHFOOONOUVLVONNOOOKROOOOOW

NUMBER OF TEST CASES = 65

NUMBER OF MUTANMNTS = 9841

NUMBER OF DEAD MUTANTS = $503 (96.6%)

NUMBER OF LIVE MUTANTS = 0 (0.0%)

HNUMBER OF EQUIV MUTANTS = 338 (3.4%)

NUMBER OF MUTANTS WHICH DIED BY NON STANDARD MEANS 4530
NORMALIZED MUTANT RATIQ ##%*%g

NUMEER OF MUTATABLE STATEMENTS = 133

GIVING A MUTANTS/STATEMENT RATIO OF 73.99

NUMBER OF DATA REFERENCES = 272
NUMBER OF UNIQUE DATA REFERENCES = 34

ALL MUTANT TYPES HAVE BEIN ENABLED

Figure 4

Field Studies 9-22
Testing Operational Software

The software in these studies was contributed by the U.S. Army
Computer Systems Command (Army Institute for Research in Mapagement
Information and Computer Science). Both programs are large Cobol
modules that had been designed, coded, tested and fielded by the
Army. The testers did not have access to the original programmers,
but test deta was supplied by the Army. The first program was a
2500 1lire program whick was supplied with test data but not
documentation or other information to guid the tester. Over 650,000
mutants were generated and run on 3,000 Army test cases. After one
week of elapsed testing time, the tester terminated the run when it
was determined that the Army supplied test data was of such Ilow

quality that less than 10% of the mutants had been eliminated.

The second program is an editor. It consists of 1200 soﬁrce
code lines written in a standard dialect of Cobol. When supplied
with a transaction file, the program sorts and edits the input data
to generate an error listing with critical and non—critical errors
indicated. After all critical errors are corrected and edited, a
master file is updated. The updated master file is sorted and a run

report is generated.

Minor modifications were required to make the program conform
to Level 1 Cobol. Since Level 1 Cobol does not allow multiple data
records in a file description, each data record in a such a filec was
assigned its own file, Since Level 1 Cobol files are specified to
be nonrewindable, the program was divided into four sections so that
the output of the first section was the input of the second section

and so on,

Field Studies 6-23

LOW and HIGH values and the current DATE were input by separate

files since the CPMS did not supply these values,

Since the purpose of this rum was to evaluate the quality of
test data supplied bty another test organization, the mutation tester
did not follow the 1level-by-level testing strategy suggested in
Chapter 2; rather, all mutant operators were enabled (see the
description of a Level 1 Cobol analyzer in Chapter 2 for a list of

Cobol mutant operators). After processing 29 Army test cases, the

analyzer returned the following status report.

MUTANT STATUS

TYPE TOTAL LIVE PCT EGUIV
DECIML 69 48 30.43 0
OCCURS 6 4 33.33 0
INSERT 430 100 76.74 0
FILLSZ 310 45 85.48 0
ITEMRV 293 17 73.72 0
FILES 464 0 100.00 0
DELETE 545 59 89.17 0
GO PER 45 7 84 .44 0
PER GO 20 3 85.00 0
IF REV 15 2 97.33 0
STOP 541 8 98.52 0
THRU 365 29 92.05 0
TRAP 545 6 98.%0 0
ARITH 135 17 87.41 0
ROUND 45 0 100,00 45
MOVE R 111 5 95.50 0
LOGIC 681 161 76.36 0
SUBSES 11352 847 91,66 0
SUBCFS 1004 167 83.37 0
SUBCFS 1380 115 91.67 0
SUBSFC 4857 457 90.59 0
C ADY 33 3 90.91 | 0
TOTALS

23306 2260 90.30 45

Field Studies 9-24

This test was augmented by 10 additional cases supplied by the
tester and equivalent mutants were removed from the system, result-

ing in the following mutant status report

——— 236 MARKED AS EQUIVALENT e
MUTANT STATUS

TYPE TOTAL LIVE BCT EQUILV
DECIML 69 4 94.20 44
OCCURS 8 2 66.67 2
INSERT 430 10 97.67 S0
FILLSZ 310 4 98.71 41
ITEMRV 293 26 91.13 51
FILES 464 0 100.00 0
DELETE 545 56 89.72 3
GO PER 45 6 86.67 1
PER GO 20 3 85.00 0
IF REV 15 2 97.33 ¢
STOP 541 7 98.71 1
THRU 365 29 92.05 0
TRAP 545 3 99.45 . 3
ARITH 135 17 87.41 0
ROUND 45 0 100.00 45
MOVE R 111 5 95.50 0
LOGIC 681 161 76 .36 0
SUBSFS 11352 9417 91.66 0
SUBCFC 1004 167 83.37 0
SUBCFS 1386 115 91.67 0
SUBSFC 4857 457 90.59 0
C ADIY 33 3 90.91 0
TOTALS

23306 2024 91.32 281

During the analysis of TRAP mutants, a test case was comnstruc—
ted tc kill the mutants associated with the report type and the
transaction code. The possible values of the type of &8 report were
K,I,W,L,D, and E. The possible transaction values were A,C, and D.
The test case constructed consisted of all possible combinations of

the report type and the tramsaction code. The values of other input

variables remained the same in each combination.

Field Studies 9-25

The interpreter generated a "reference to undefined data at or
near line [line number]” error when the program was run on the test

case constructed. The statement marked with boldface in the follow—

ing piece of code was in error.

0200—-PRINT-ERRORE.
IF WS-SW2 =1
PERFORM 023 0-CHECE-FGR-A THRU 0240-EXIT.

LR 2N B B I A I Y

LR B SR B 1

MOVE STATIONID-2 TO STATIONID-WS-EDIT.
MOVE INSTALLCODE-02 TO INST-WS—-EDIT.
MOVE TRANSCODE-02 TO TRANSCODE-VWS—-EDIT.

The cause of this error was that all elementary data items but
one in paragraph O0230-CHECK-FOR-A had been assigned values., The

following piece of code shows the paragraph under comsideration.

0230—-CHECK-FCR-A.

...........

MOVE WS—TRANSCODE-WS-K TO TRANSCODE-WS-EDIT.

There are two ways to correct the error. One solutiom is to
insert the missing statement MOVE WS- INSTALLCODE-WS-K TO INST-WS~-
EDIT after the line highlighted in boldface. The other solution is
to insert the statement MOVE SPACES TO EDITDETAIL-WS after the

statement 0200-FRINT-ERRORS. after the statement 0200-PRINT-ERRORS,

Appendix A

Program Al

1 IDENTIFICATION DIVISION.
2 PRCGRAM~ID. POCAACA.
k! AUTHCR. CBT R W MCREHEAD.
4 INSTALLATION. HQS USACSC.
5 DATE~WRITTEN. OCT 1973.
5 REMARKS. :
7 THIS PROGCRAM PRINTS OUT A LIST OF CHANGES IN THE ZTF.
8 ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE
3 CLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO
1c FURTHER PROCESSING OF THE ETF HERE. THE ONLY QUTPUT IS A
11 LISTING OF THE ACDS, CHANGES, AND DELETES. THIS PROGRAM IS
12 FOR HQ USE CNLY AND HAS NO APPLICATION IN THE FIELD.
13 At A doaddanvadddde
14 MCDIPIED FCR TESTING UNDER CpMS BY ALLEMN ACREE
15 JuLy, 1979.
16 ENVIRCNMENT DIVISION.
17 CONFIGURATICN SECTION.
§:] SOURCE~-CCMPUTER. PRIME.
13 JBJECT-CCMPUTER. PRIME.
20 INBUT-QUTPUT SECT.CN.
21 FILE-CCHTROL.
22 SELECT OLZ-E7F ASSIGN INPUTAE.
23 STILETT NEW-UTF ASSIGN INPUTS.
24 SELECT PRNTH A35ICN TC CUTFUTY.
25 DATA DIVISTON.
26 FILE SECTION
27 FO CLD-ETF
28 RECCARAD CONTAINS B0 CHARACTERS
23 LABEL RECORDS ARE STANDARD
39 DATA REZORD IS QLD-REC.
R 01 CLD=-REZ.
12 ! FILLER PIC X.
33 93 OLD-KEY PIC X(12).
34 03 FILLER PIC X(A7).
35 FO NEW-E£TF
26 RECCRD CINTAINS 80 CHARACTERS
37 LABEL RECORDS ARE STANDARD
38 DATA RECCRD 1S NEW-REC.
39 Nl NEW-REC.
40 53 FILLER PIC x.

b 03 NEW-KEY PIC x(12).
42 03 FILLER PIC X(K7).
43 FZ PRNTR
44 RECCRD CONTAINS 40 CHARACTERS
45 LABEL RECCRDS ARE OMITTED
46 DATA RECORD IS PRNT-LINME.
$7 D1 PRNT-LINE PIC X(40).
48 WORKING-STORAGE SECTION.
49 01 PRNT-WORK-AREA.
50 03 LINEL PIC X(30}.
sl 031 LINE2 PIC X(230).
52 03 LINEZ)} PIC %x{20).
53 01 PRNT-QUT-OLD.
54 03 wWS-LN-1.
5% 05 FILLER PIC X VALUE SPACE.
56 05 PILLER PIC XXXX VALUEZ 'O ‘.
$7 05 LN PIC Xx(30).
58 0S FILLER PIC XXX VALUE SPACES.
59 03 W3-LN-2,
60 DS PILLER PIC X VALUE SPACE,

2 05 PILLER PIC

XXXX VALUE *L '.

3
€Y "D

LR S 5 2N ¢ BN S B¢ o ¢4 RS A N
PRS2 R I N A

[PERETWINY <]
EV RN

R

ITAAFVESOETL W
S W g i b v

[

[
Do
S Qo ARV, IR N W R % B 2

DO LYYy)

=]

bt bA s G P e b 4

[
L4

Appendix A

05 LN2 PIC

0s FILLER PIC
03 WS-LKN-3.

05 FILLER PIC

05 FILLER PIC

05 LN3 PIC

05 FILLER PIC

01 PRNT-NEW-QUT.
£3 NEW-LN-1.

05 FILLER ?I1c

3% N-LX1 PIC

0% FILLER PIC
03 HNEW-LN=-2.

2% FILLER PIC

05 H-(N2 pIC

05 FILLER vIC

03 NTW-LN=-3.
05 FILLEF P
0% N-LN3 pic
0% FILLER Pl
FROCEDURE DIVISION.
0l05-0PENG.
OPEN INPUT OLL~ETEZ NEW-ETP.
OPEN CUTPUT PRNTR.
Cil0-0LD-READ. :
READ OLD-ETF AT ExD GO TO 0160-OLD-EOF.
J120-KEW-REAC.
READ NEW-ZTF AT END G0 T2 0170-NEW-EOF.
I120-CTMPARES.
IF QLD-KZY = NEW-KLY
NEXT SEWTENCE
ELSE GO TQ Ql140-CX-ADD-DEL.
IF CGLD=-REZl = NEW-REC
50 T2 0l10-OL2~READ.
MOVE I2LO-~REC T30 PRNT-WORR-~AREA.
PERFCRM 210-CLO-WRT THRU 0210-EXIT.
MOVE NEW-RIC TC PRNT-WORK~AREA.
PERFCRM Q200~-NW- WRT THRU Q0200~EXIT.
GO TG 0l1l1C-CLD-READ.
2140-CK-ADD-TEL.
IF CLD-KEY > NEW-RKEY
MOVE HEW-REC TO PRNT-WORK-AREA
PERFORM 0200-NW-WRT THRY Q200-EXIT
G2 TO 0l120-NEW-READ
ELSE GO TO 0150-CK~-ADD-DEL.
0150-CR-ADD-DEL.
KOVE QLD-REC TO PRNT-WCRK-AREA,
PERFORM 0210-0LD-WRT THRU 0210-EXIT.
HEAD CLD-ETF AT END
HCOVE NEW-REC TO PRNT-WORK-AREA
PERPORM 0200-NW-WRT THRU 0200~-EXIT
GO TO 0160-QLD-ECP.
GO TC 0130-COMPARES,
0160-OLD~EQP.
READ NEW-ETP AT END GO TO 0180~E0J.
MOVE NEW-REC TO PRNT-WORK-AREA.
PERFORM 0200~NW~-WRT THRU 0200-EXIT.
GO TO 0160-0LD-EZOP.
Cl70-NEW~ECP,
MOVE OLD-REC TC PRNT~WORK~AREA,
PZRPORM 0210-OLD-WRT THRU 0210-EXIT.
READ QLD-ETF AT END GO TO 0180-E0J.
GO TO 0170-NEW-EQF.
0180-£00.

X(30).
XXX VALUE SPACES.

X VALUE SPACE.
XXXX VALUE 'D ‘.
x(20) .

XXX VALUE SPACE.

XAXXX VALUE * N ‘.
X(30).
XXX VALUE SPACE.

XXXXX VALUE * E '.
X(30).
XXX VALUE SPACES.

XXXXX VALUE ' W '
X(20} .

C XXX VALUE SPACES.

-—

Appendixz A

126
127
128
129
130
131
132
133
134
135
136
137
138
139
l40
141
142
143
144
145
146

CLOSE OLD-ETF NEW-ETF PRNTR.

STOP RUN.

0200~NW-WRT.

MOVE LINEl TO N-LN1.
MOVE LINE2 TO N-LNZ.
MOVE LINE3 TO N-LN3.
WRITE PRNT-LINE FROM
WRITE PRNT-LINE FROM
WRITE PRNT=-LINE FROM

0200~-EXTT.

EXIT.

0210-0LD-WRT.

MOVE LINE]l TO LN].
MOVE LINE2 TQO LN2.
MOVE LINED] TO IN3.
WRITE PRNT-LINE FROM
WRITE PRNT=-LINE FROM
WRITE PRNT-LINE FROM

0210-EXIT.

EXIT.

NEW-LN=-1 AFTER ADVANCING
NEW-LN=-2 AFTER ADVANCING
NEW-LN-3 AFTER ADVANCING

WS-LN=-1 AFTER ADVANCING
WS-LN=-2 APTER ADVANCING
WS-LN-3 APTER ADVANCING

-
&

l.
1.

2.
1.
i.

-\

e b O D) DA B Ly D

18

a0 B b DD

LR NI BN N S]

i b tad A L s e 1 b

AU da) R e DD IR L3 Yo de

[V IRV vy
DD -4

40

Appendix A

IDENTIFICATION DIVISICN.
PROGRAM~-ID.

PROG-1.
AUTHOR.

JAMES L. BINGHAM.
CATE-WRITTEN.

APRIL 14, 1979.

ENVIRONMENT CIVISION.
CONFICURATICN SECZTICHN.
SCURCE-CCMPUTER. PRIME.
OBJECT~-COMPUTER. PRIME.
INPUT-OUTPFUT SECTION.
FILE~CONTROL.

Progrem A2

SELECT IN-TRANSACTION ASSIGN TO INPUTO.
SELZCT CUTPUT-PAYMENT ASSIGN TO OUTPUTO.

DATA DIVIGICN.
ILE SECTION.

2 IN~TRANSACTION

RECCRD CONTAIWS 18 CEARACTERS,
LAGEL RECORDS ARE OMITTED, .
DATA RECCRD IS TRANSACTION-RECORD.

[
P

TFANSACTION-RECCED.
05 ACCT-NUM

5 BILLED=-AMT

CS PERCENTAGE

2% ACCT-CLASS

F2 OUTPUT-PAYMENT

PIC 9(8).
PIC 9(5)V93.
PIC V99,

PIC X.

RECCRD CONTAINS 55 CHARACTERS,
LABEL RECCRDS ARE OMITTED,
DATA RECORD 15 QUTPUT-RECORD.

¢l CUTPUT-RECCRD

WORKING-STORAGE SECTION.

PIC X(S55).

21 W-TOTALS~CQUTPUT-RECORD.

C5> FILLER

05 NAME~QF-CLASS
05 TOTAL-CLASS-FAY
¢S5 FILLER

01 W-QUTPUT~-RECCRLD.
05 PILLER
05 W-ACCT-NUM
05 PILLER
05 W-BILLED~-AMT
05 FILLER
05 W-PERCENTAGE
0% PILLER
05 W-ACCT-CLASS
05 PILLER
05 W-PAYMENT

61 TEMPORARY-ITEMS,
05 TOTAL-A-PAY
05 TOTAL-X-PAY
0% TOTAL-A-PAY
05 TOTAL-T-PAY

PIC X(4) VALUE SPACES.

PIC X{34).

PIC $$55559.99.

PIC X(4) VALUE SPACES.

PIC XXX VALUE

PIC 91(8).

PIC XXX VALUE

PIC 3(5).99.

PIC XXX VALUE

PIC .99.

PIC XXX VALUE

PIC X.

PIC XXX VALUE
PIC $85589.99.

PIC $(6)V99.
PIC 9({6}V99.
PIC 9(6)VI9.
PIC %(6)VI9,.

SPACES.
SPACES.
SPACES.
SPACES.
SPACES.

Appendix A

05 TOTAL-I-PAY
05 PAY-AMT-A
05 PAY-AMT-X
0S5 PAY-AMT-M
0S PAY-AMT-T
05 PAY-AMT-Z

01 ERRCOR-MESSAGE.

0S5 INVALID-DATA-RECCRD

VALUE 'INVALID DATA

01 FLAG-VALUE.
05 MCRE-DATA-REMAINS

88 NO-MORE-DATA-REMAINS

PROCEDURE DIVISION.
PROCESS-TRANSACTION.

OPEN INPUT IN-TRANSACTICHN

CUTPUT JUTPUT-PAYMENT.
MQOVE ZERQOES 72 TOTAL-A-PAY,
TOTAL-T-PAY,

AEAD IN=TRANSACTICN
AT END M40VEZ 'N°®

PIC 9(
PIC 9¢(
PIC 9¢
PIC 9¢(
PIT 91(
PIC 9¢(

PIC X

ON THIS CARD®.

PIC X

TOTAL-X=-PAY,
TOTAL-Z-PAY.

(S0}

VALUE 'Y'.
VALUE °'N'.

TOTAL-M-PAY,

TO MORE-DATA-REMAINS.

PERFPCRM CHECK-DATA UNTIL MCRE-DATA-REMAINS = 'N°‘'.,
FERPCRM WRITE-CUTPUT-TOTALS.

CLOSE IN-TRANSACTION

OUTPUT-PAYMENT.

STOP RUH.

CHECK-DATA.

IF ACCT-NUM I

AND BILLED=-AMT I

AND PERCEINTAGE T

AND (ACCT-CL,.SS
ACCT-CLASS

AZCT-CLASS

ACCT-CLASS

ACCT-CLASS

)
5
5

NUMERIC
NUMERIC
NUMERIC

‘A"
txt
IHI

X
]

lzl}

OR
OR
OR
OR

PERFORM PROCESS-UNE~TRANSACTIOCON

ELSE

WRITE OUTPUT-RECORD

READ IN-TRANSACTICN
AT END MOVE 'N°®

PROCESS«~ONE-TRANSACTICN.

FROM ERROR-MESSAGE.

MCVE ACCT-NUM TO W=-ACCT-NUM,

MOVE BILLED-AMT TO W-BILLED-AMT,
MOVE PERCENTAGE TO W-PERCENTAGE.
MOVE ACCT-CLASS TO W-ACCT-CLASS.

IF ACCT-CLASS = ‘A

I? ACCT-CLASS =

MULTIPLY BILLED-AMT BY PERCENTAGE

OR ACCT~-CLASS = 'x°
CORPUTE PERCENTAGE =
IAI

TO MORE-DATA-REMAINS.

1.00 - PERCENTAGE

GIVIHNG PAY-AMT-A ROUNDED
ADD PAY-AMT-A TO TOTAL-A-PAY
BOVE PAY-AMT-A TO W-PAYMENT

ELSE

MULTIPLY BILLED~ANT BY PERCENTAGE
GIVIRG PAY-AMT-X ROUNDED

ADD PAY-AMT~X TO TOTAL-X-PAY
MOVE PAY-AMT-X TO W-PAYMENT.

IP ACCT-CLASS = "N

126
127

130

EE AN VP TUWIEN SAG, |

2

Wk e WD

B = T N Sl SR S AP P S VO
AT NI WD AU LA G N

Appendix A A-6

MULTIPLY BILLED-AMT BY PERCENTAGE
GIVING PAY-AMT-M ROUNDED

ADD PAY-AMT-d TO TOTAL-M-PAY

MOVE PAY-AMT-M TO W-PAYMENT.

IF ACCT-CLASS = *'T'
KOVE BILLED-AMT TO PAY-AMT-T
ADD PAY-AMT-T TO TOTAL~-T-PAY
HMOVE PAY=-ANT-T TO W-PAYMENT.

IF ACCT-CLASS = '2°'
MOVE BILLED~AMT TO PAY-AMT-2Z
ADD PAY-AMT-Z TO TOTAL-Z-PAY
MOVE PAY-AMT-Z TO W-PAYMENT.

WRITE QUTPUT-RECCRD FROM W-QUTPUT-RECORD.

" WRITE-CUTPUT-TOTALS.

MOVE TOTAL-A~PAY TO TOTAL-CLASS~PAY.
MOVE ' TOTAL AMOUNT FOR CLASS A: ' TO NAME-QP-CLASS.
ARITE QUTPUT-RECORD FRCM W~-TOTALS~QUTPUT~-RECORD.

MOVE TOTAL-X-PAY TO TOTAL-CLASS-PAY.
MOVE ' TOTAL AMOUNT FOR CLASS X: * TO NAME-CP~-CLASS.
WRITE OUTPUT-RECIRD FRCM W-TOTALS~-QUTPUT-RECQRD.

MIVE TCTAL-M-PAY 70 TOTAL-CLASS-PAY.
MOVEZ ' TCTAL :MQUNT FOR CLASS M: ' TO NAME-OF-CLASS.
AAITE OUTPUT-REZCORD FROM W-TOTALS~QUTPUT-RECORD.

MCVE TOTAL-T-PAY TO TOTAL-CLASS-PAY.
MOVE ' TOTAL AMQUNT FOR CLASS T: ' TO NAME-QP-CLASS.
WRITE CUTPUT-RECCRD FROM W-TOTALS-QUTPUT-RECCRD.

MOVE TOTAL-Z-PAY TO TOTAL-CLASS~PAY. .
MOVE ' TOTAL AMOUNT FOR CLASS I: ' TO NRAME-OP-CLASS.
WHITE CUTPUT-RECORD FROM W-TOTALS-QUTPUT-RECORD.

LR

Lppendix A

D D~ U B) R e

o

o
Ao~

b

o g
uny

—
~3

18

Program A3

IDENTIFICATION DIVISION.

PROGRAM~ID. SAMPLE-4.

REMARKS. ADAPTED FROM YOURDAN, ET AL. *LEARNING TO

IN STRUCTURED COBOL."

ENVIRONMENT DIVISICN.

CONFIGURATICN SECTION.

SQURCE-COMPUTER., PRIME,

OBJECT-COMPUTER. FRIME.

INPUT-QUTPUT SECTION.

FILE~CONTROL,
SELECT APPLICATION-CARCS~FILE ASSIGR TO INPUTO.
SELECT PRCFILE~LISTING ASSIGH TO OUTPUTO.

DATA DIVISION.
FILE SECTION.

D APPLICATION-CARDS-FILE

RECORD CONTAINS 80 CHARACTERS

LABEL RECORDS ARE CMITTED

DATA RECCRD IS NAME-ADDRESS-AND-PHONE-IN.
01 HKAME-ADDRESS-AND-~PHCHNE-IN,

05 NAME~IN PIC X{20}).
05 ADDRESS-IN ’ PIC X{40).
G5 PHONE-IN PIC X(11).
05 FILLER PIC X(3).
35 ACCT-NUM-TW1 PIC 9(6).

FD PROFILE-LISTING
RECCRD CONTAINS 132 CHARACTERS
LABEL RECORCS ARE OMITTED
DATA RECORD IS PRINT-LINE-CUT.
01 PRINT-LINE-OUT PIC X(132).

WORKING-STORAGE SECTION,
21 COMMON-WS,

05 CARDS-LEFT PIC X(3).
01 CREDIT~INFORMATION-IN.

05 CARD=-TYPE-IN PIC X.

05 ACCT-NUM=-IN2 PIC $(%£).

0S FILLER PIC X.

65 CREDIT-INFO-IN PIC X(22}.

05 FPILLER 21C X(50).

¢l APPLICATION~DATA-WSB1.
05 NAME-AND-ADDRESS-WS.

10 NAME-~-WS PIC X120).
10 ADDRESS-WS.
15 STREET-WS PIC X(20).
15 CITY~-WS PIC Xtl113).
i5 STATE-WS PIC XX.
15 Z1pP=-WS PIC X(5).
0% PHONE-WS.
10 AREA-CODE~WS PIC 9(3).
10 NUMBR-WS PIC X(8).
05 PILLER PIC X(3).
05 ACCT-NUM-WS PIC 9(6).
05 CREDIT-INPO-WS.
10 SEX~-W3 PIC X.
10 FILLER PIC X.
10 HMARITAL-STATUS-WS pIC X.
10 PILLER P1C X.

10 NUMBEZR-DEPENS-WS PIC X.

PROGRAM

111
112
113
114
115
11%
117
118
119
120
121
122
iz

124
125

Aprendix A

01l

o1

01

01

10 FILLER)
10 INCOME~HUNDREDS-WS
10 PILLER

10 YEARS-EMPLOYED-WS
10 FILLER

10 OWN-OR~RENT-WS

10 FILLER

1 MORTCAGE-QOR=RENTAL-WS
10 FILLER
10 CTHER=-PAYMENTS-WS
DISCR-INCOME-CALC-FIELDS~WSCH.
05 ANNUAL-~-INCOME-WS
25 ANNUAL~TAX-WS
0% TAX-RATC-WS
05 MONTHS-IN-YEAR
05 MONTHLY-NET-INCOME-WS
05 MONTHLY-PA'YMENTS-WS
05 DISCR-INICME-WS

LINE-1~WS3SB3.
05 FILLER
05 nNAamg-L)
9% FILLER
VALUE °

ARECA-CODE-LL

ILLER
HUM3R-L1
FILLZIR

DA D O D O
LAY U L W g A

VALUE 'INCOME
INCCME~HUNDREDS~L1
FILLER

VALUE '00 PER YEAR;
YEARS-EMPLOYED-L1.

10 YEARS-L]
10 DESCN-LI
LINE-2~-WEB3.
05 FILLER
35 STREET-L2
05 FILLER
0SS MARITAL-STATUS-L2
0% FILLER
05 OQUTGO-DESCH
05 MORTCAGE-~QOR-RENTAL-L2Z
05 PILLER
VALUE * PER MTH '
05 PILLER

o
[4]

(]

o
W

PHONE (°'.

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PI1C

PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
pIC
PIC

PIC
PIC
PIC
PIC
PIC
pIC
pIC
$'.
PIC
PIC

9vI9s VALUE 0.2S.
99 VALUE 12.

X(5) VALUE SPACES.
X(20) .
x(1l1l)

9{3).

XX VALUE ') '.
X(83.

X(3) VALUE SPACES.
X(8) .

X(9) VALUE SPACES.
x(14)

9().
X (28)

IN THIS EMPLOY °*.

2IC
pIC

PIC
PIC
PIC
PIC
PIC
pIicC
pIC
PIC

pIC

VALUE 'DISCRETICNARY INCOME S°*,

05 DISCR-INCOME~L2
¢5 FPILLER

VALUE ' PER MTH °'.
LINE~3-wSB3.,

05 PILLER
05 CITY~L3
05 PILLER

05 STATE-L]
05 PILLER

0S 2I1p-L3
0% PILLER
3% ACCT~NUM-L3
65 PILLER

25 NUMBER-DEPENS~L3]

PIC
PIC

PIC
pIC
PIC
PIC
PiC
PIC
PIC
PIC
picC
PIC

XX.
X(16) .

X(S5) VALUE SPACES.
X220 .

X(27) VALUE SPACES.
X{8).

X{7) VALUE SPACES.
X(16).

9(3).

xX(ll)

X(22)

9(33.
X(9)

X(S) VALUE SPACES.
(it .

X VALUE SPACE.

XX.

X VALUE SPACE.

X(S).

X(7) VALLUE * A/C: ‘.
9(%5).

X{12) VALUZ SPACES.
9.

-

| ———

[

Appendix A

126
127
128
129
130
121
132
133
134
135
136
137
138
139
140
141
142
143
144

180

182
183
184
les
136
187
188
189

0s FILLER PIC X(14)
VALUE ' CEPENDENTS ‘.

05 FILLER PIC X(16)
VALUE 'OTHER PAYMENTS $°*.

05 OTHER-PAYMENTS~L3 PIC 9(3).

PROCEDURE DIVISION.
RO-MAIN-BODY.
PERFORM Al~INITIALIZATION.
PERFORM A2-PRINT-PROFILES
UNTIL CARDS~LEFT = 'NO ',
PERFORM AJ-END~CF-JOB.

STOP RUN.
Al-INITIALIZATION.
OPEN INPUT APPLICATION~CARDS-FILE
OQUTPUT PRCFILE-LISTING.

**d USELESS INITIALIZATIONS BAVE BEEN COMMENTED QUT
ev+ KGVE ZERCES TJ ANNUAL-INCOME~WS,
e*® MQOVE ZERQES TQO ANNUAL~-TAX-WS.
*#*e MOVE ZERQES TO MONTHLY-NET-INCOME-~WS.
#e* MOVE ZEROES TO MONTHLY~PAYMENTS-WS.
*e¢ MOVE 2ZERQES TJ DISCR~INCCHE-WS.

MOVE ‘'YES' TC CARDS~-LEIFT.

READ APPLICATION-CARDS-FPILE -

AT END MOVE °*NC ' TO CARDS-LEFT.

* THE FIRST CARD OF A PAIR IS NOW IN THE BUFPER.

A2-PRINT-PROFILES.
PERFCRM Bl-GET-A-PAIR-QF=-CARDS~INTO-WS.
PERFORM B2-CALC-DISCRETNRY-INCCHME.
PLRFORM BI-ASSEMBLE-PRINT-LINES.
PERFCORM B4-WRITE-PROFILE.

A3-END~CF-J0B.
CLOSE APPLICATION-CARDS~FILE
PROFILE~-LISTING.

Bl-GET-A-PAIR-OF-CARDS-INTO-WS.
MOVE NAME-IN TO NAME-WS.
MCVE ACDRESS-IN TO ADDRESS~WS,
MOVE PHCNE-IN TO PHONE-WS,
MOVE ACCT~-NUM=IN]1 TO ACCT-NUM-WS,

READ APPLICATION-CARDS-FPILE INTO CREDIT-INFORMATION-IN

rae AT END MOVE 'NO * TO CARDS-LEFT.

AT END MOVE * *eo MISSING SECUOND CARD CF PAIR we#!?

TO PRINT-LINE-OUT

WRITE PRINT-LINE-OUT AZFTER ADVANCIUG 2 LINES

PERFORM A3J-END-0O7-JOB
5TOP RUN.
* THE SECOND CARD CP THE PAIR IS NOW IN THE BUFPER.
HOVE CREDIT-~INPC~IN TO CREDIT-INPG~WS
READ APPLICATION~CARDS~FILE
AT END MOVE '™MO ' TO CARDS=-LEFT.

¢ THE PIRST CARD OF THE NEXT PAIR IS ROW IN THE BUFPER.

B2-CALC-DISCRETNRY~INCOME.

CCMPUTE ANRUAL-INCOME-WI = INCOME~RUNDREDS-WS * 100.
COMPUTE ANNUAL-TAX~WS o ANNUAL-INCOME-WS * TAX-RATE-%S.

CCMPUTE MONTHLY-NET-INCONE-®WS ROUNDED

= (ANNUAL~INCOME-WE -~ ANNUAL-TAX-WS) / HONTHS-IN-YEAR.
COMPUTE MONTHLY~PAYMINTS~WS = MORTGCAGE-QR-RENTAL~-WS

+ OTHER-PAYMENTS-WS,
COMPUTE DISCR~IRCOME-WS = MONTHLY-NET-INCOHEZ-WS

Appendix A A-10

190 ~ MONTHLY-PAYMENTS-WS

131 ON SIZE ERROR MOVE 999 TO DISCR-INCOME-WS.

192 ¢ DISCRETIONARY INCOMES OVER $999 PER MONTH ARE SET AT $999.
183 :

194 B3-ASSEMBLE-PRINT-LINES.

195 EOVE NAME-WS TO NAME-LI1.
196 MOVE STREET-WS TO STREET-L2.
157 MOVE CITY-WS TC CITY-L3.
198 HMOVE STATE-WS 10 STATE-LI.
199 MOVE Z7P-WS TO IIP-L3.
200 MOVE AREA-CODE-WS TO AREA-CODE-L1.
201 MOVE NUMBR-W3 TO NUmBR-L1.
202 MCOVE ACCT-NUNM-®WS TO ACCT-NUM-L1.
2012 IF SEX-WS = 'M' MCVE 'MALE ' TO SEX-L1.
204 IF SEX-WS = 'P' MOVE 'FEMALE' TO SEX-LI.
2CS IF MARITAL-STATUS-HS = 'S’ MOVE 'SINGLE '
206 TO MARITAL-STATUS-L2.
207 IP MARITAL~STATUS-WS = 'M' MOVE 'MARRIED °*
208 TO MARITAL-STATUS-L2.
209 IF MARITAL-STATUS-WS = 'D* MOVE 'DIVORCED®
210 TO MARITAL-STATUS-L2.
211 IFT MARITAL-GTATUS~WS = 'W' MOVE 'WIDOWED °
21z TO MARITAL-STATUS-L2.
213 MCVE NUMBER~DEPENS-WS TO NUMBER-DEPEHS~L3.
214 MOVE INZCME-HUNDREDS-WS T0 INCOME-HUNDREDS-LI.

5 IF YZIARS-EMPLOYED-WS IS EQUAL TG 0

26 MOVE *'LESS THAN 1 YEAR' TQ YEARS-EMPLOYED-LI

? ZLSE

MOVE YEARS-EMPLCOYED-WS TO YEARS-L1
MOVE ' YEARS ! TD DESCN-LL.
IP CMN-OR-RENT-WS = 'Q' MOVE 'MCRTGACE: S’
TO OUTCO~-DESCN.
17 OMH-OR-RENT-WS = ‘R' MOVE 'RENTAL: s

TO CUTGOD-DESCN.
MOVE MCRTGACE-CR-RENTAL-WS TO MORTGAGE-OR-RENTAL-LZ.
MOVE QOTHER-PAYRENTS-~WS TO OTHER-PAYMENTS-L3.
MOVE DISCR-INCCHME-WS TO DISCR-INCOME-L2Z2.

B NV, Y S PR N & Y I

BRI R R A RD BRI RD R DD D R R RS RS BN)
(SRR SE R SRS VIR NN RN o el T

3 B4-WRITE~PROFPILE.
3 *** MOVE SPACES TO PRINT-LINE-QUT.
0 WRITE PRINT-LINE-CUT FROM LINE-1-WSB3
1 AFTER ADVANTING 4 LINES.
2 *2*¢ MWOVE SPACES TO PRIKT-LINE-CUT.
2213 WRITE PRINT-LINE-QUT FPROM LINE-2-WSB3]
234 AFTER ADVANCING 1 LINES.
235 **®% MOVE SPACES TC PRINT-LINE-QUT.
236 WRITE PRINT~LINE~-QUT FRCH LINE-3I-~-WSB3
237 AFTER ADVANCING ! LIHES.
238

[I—

[

Bt bt ot et ot o s b2 D D J U A M) e
DU A R D

=y
0 o

WIS N
DN e D

P4

Appendix A

Program A4

IDENTIFICATION DIVISION,

PROCRAM~-ID. SRMFREP.

AUTHCR. R A OVERBIEK.

REMARKS. THIS PROGRAM IS USED TO PRODUCE THE STATUS REPORTS
BY DEPARTMENT, FOR ALL OF THE STUDENTS RECORDED IN
THE SRNF.

ADAPTED TO THE CCOBCL MUTATION SYSTEM BY ALLEN ACREE.
ERRORS DISCOVERED:

(1) ERRORS IN THE INPUT FILE SETUP, CHECKED FOR
IN THE PROGRAM, CAUSE REFERENCES TO UNDEFINED
DATA, PARTICULARLY LINE-COUNT. CORRECTED WITH
A VALUE CLAUSE.
ENVIRCNMENT DIVISICN,
CONPIGURATION SECTICN.
SOURCE-COMPUTER. CRS.
CBJECT-COMPUTER. (MS.
SPECIAL~NAMES. CC! IS5 TOP~-OF-PAGE.
INPUT-JUTPUT SECTION.
FILE-CONTRCL.
SELECT MASTER ASSIGN TO INPUTO.
SELECT PRINT-PILE ASSIGN TO OUTPUTO.

DATA DIVISION.

FILE SZCTION,

FD MASTER
RECORD CCNTAINS 141 CHARACTERS,
LABEL RECORDS ARE STANDARD,
DATA RECORD IS ITEM.

Cl ITEM.
02 SOC-SEC-TN,

03 SOC-SEC-IN-1 PIC X(3).
03 SCC-SEC-IN-2 PIC X(2).
03 SOC-SEC-IN-3 PIC X(4).
02 HNAME-IN PIC X(S).
G2 ADDR-IN-1 PIC X(5).
G2 ADDR-IN-2 PIC X(5).
C2 MKAJCR-IN PIC X(4).
02 STATUS-IN PIC X(1).
02 NC-CQURSES pIC 99.
02 COURSE~-ENTRY OCCURS 11 TIMES.
03 DEPT-OF? PIC X{2).
03 COQURSE-NO PIC X(2).
03 CREDITS PIC 99.
03 SEMESTER PIC X(1).
03 YEAR : PIC X(2).
03 GRADE PIC X(1).
FD FPRINT-FPILE
RECCRD CONTAIKS 89 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINT-BUFP.
01 PRINT-BUPFP PIC X(89).
HWORRIKG-5TCRAGE SZCTION.
77 END~ALL PIC 99.
77 END~MARKER PIC 99.
77 P-~INDEIX PIC 9.
77 POIWTS PIC 999.
77 CR-HAaS PIC 999.

A-11

113
119
120
121
122
123
124
128

Appendix A

0l

0l

01

ol

THCR PIC
C~-INDEX PIC
PAGE-NO PIC
LINE-COUNT PIC
SAVE-KEY PIC
TOT-NO-RECORDS pP1C
SU8~TOT-NO PIC
HEADER.
g2 PILLER PIC
02 COLLEGE PIC
02 DATE-IN PIC
TRAILER.
02 PILLER PIC
02 NO~-RECCRDS PIC
PRINT-LINE.
02 FILLER PIC
02 SOC-SEC-OUT.
gl SOC-SEC-01 pIC
03 SOC-SEC-FI PIC
03 SOC-SEC-02 PIC
03 SOC-SEC-F2 PIC
03 SOC-SEC-013 PIC
02 PILLER PIC
02 NAME-ADDR PIC
02 FILLER PIC
2 MAJSOR-O PIC
02 FILLER PIC
02 STATUS-C pIC
02 FPILLER PIC
82 GPA pIC
02 FILLER PIC
92 COURSE=-Q OCCURS 3 TIMES.
03 C-pEPT PIC
03 FILLER PIC
02 C-NO PIC
62 FILLER PIC
03 CREDITS-Q PIC
03 PILLER PIC
03 SEMESTER-D PIC
03 DASH-O PIC
03 YEAR-O PIC
03 PILLER PIC
03 GRADE-Q PIC
03 PILLER PIC
02 PILLER PIC
PAGE~HEADER.
02 PILLER pIC
02 DATE-O PIC
02 FILLER pIC
02 COLL-O PIC
02 FPILLER pIC
02 PILLER pPIC
02 PAGE-O PIC
02 PILLER PIC
COL-HDR-1.
02 PILLER pIC
VALUZ * SOC SEC Ne A
02 PILLER PIC
02 PILLER pIC
02 FILLER pIC
02 PILLER PIC
02 PILLER PIC
02 PILLER PIC

A-12

99.

99.

999 VALUEZ IS 1.

99 VALUE ZERO.
%{e).

5999999 VALUE IS 0.
9999995.

X(14).
¥{30).
X(8).

X(49).
9999999.

X(1).

X(3).
Xl .
X(2) .
X(1).
X(4).
X(2}).
X(5).
Xt .
x(4) .
X(1) .
X(1).
xX(l).
9.99.
X2} .

X(2).
X(1).
x(2) .
X{1l}.
zZ9.
X(l).
X(l).
x(l).
X(2).
x(2).
xX(1) .
X(2) .
x(2).
X(4) SPACES.
Xx{8).
X(17)
X{20).
X(1m
X1(5)
z29.
X(5)

VALUE
VALULZ SPACES.

VALUE SPACES.
VALUE IS 'PAGE’.

VALUE SPACES.
X(20)

X{10) VALUE *MAJ ST GPA'.

X{9) VALUEZ SPACES.

X(5) VALUL °‘COURSE’,

X({12) VALUE SPACES.

X({6) VALUE 'COURSE’.

X(12) VALUE SPACES. -

~

Appendix A

126
127
128
129
130
131
132
133
134
135
136
137
138
139
1490
141
142
143
144
145
146

147

151

156
157
18
159
162
161
162
163
164
155
166
167
168
165
170
171
172
173
174
175
176
177
178
179
180
11
182
183
184
185
136
187
lge
189

02 FILLER PIC X{5) VALUE 'COURSE"'.
02 FPILLER PIC X(8) VALUE SPACES.
01 COL-HDR-2.
02 PILLER PIC X(33) VALUE SPACES.
02 FILLER PIC X(18)
VALUE * NMBR CR S-YR GR '.
02 FILLER PIC X(18)
VALUE ' NMBR CR S-YR GR '.
02 PILLER PIC X(20)
VALUE ' NMBR CR S-YR GR '. .
Gl SUB-TOT-LINE.
G2 FTLLER PIC X{4) VALUE SPACES.
@2 FILLER PIC X(8)
VALUE IS 'TOTAL = ',
062 SUB-TOT PIC 22221295.
02 FILLER PIC X{70) VALUE SPACES.

PROCEDURE DIVISICHN.

* MATN-PROCRAM SECTION.

START.
OPEN INPUT MASTER QUTPUT PRINT-FILE.
READ MASTIR IHNTO HEADER AT END GO TO EOP.
IF SOC-SEC-IN IS =» SPACES GO TO GOT-HEADER.

A-13

MQOVE ' NC REZACER FQUND ON THE MASTER PILE #*¢' TO PRINT-LINE.

PERFCRM PRINTZ-ROUTINE THRU PRINT2-EXIT.
GO TO CLISE-FILES.
GOT-HEADER.
MOVE COLLEGE TO CQLL-O.
MOVE DATE-IN TO DATE-O.
READ MASTER AT END GO TOQ EQF,

IF SOC-SEC-IN IS NOT = '59G99999%* GO TO SAVE-DEPT-NAME.
MOVE ' NG ITEM RECORDS IN MASTER FILE ***' TO PRINT-LINE.

PERFCRM PRINT2-ROUTINE THRU PRINT2-EXIT.
GO TO CLCHE-FILES.

SAVE-DEPT-NAME.
MOVE MAJSOR-TN TO SAVE-KEY.

* NAME OF DEPARTMENT IS SUBTOTAL KEY. BREAK OCCURS HHENEVER

* FIELD IS DIFFERENT ON TWO CONSECUTIVE RECORDS.
MOVE 0 TS 5UB-TOT-NO.
MOVE 1 TO PAGE-NO.

* PAGE-NO IS RESET TO 1 FOR EACH DEPARTMENT REPORT.
MOVE 16 TC LINE-COUNT,
MCVE SPACES T3 PRINT-LINE.

ITEM-L00P.
PERFORM ITEM-ROUTINE THRU ITEM-EXIT.
ATD 1 TO SUB-~-TOT~-NO.
READ MASTER INTO TRAILER AT END GO TO EQP.
IF MAJOR~IN IS5 = SAVE-KEY GO TO ITEM-LOOP.

DO-SUB-TCTALS.
KOVE SUB-TOT-NO TOQO SUB-TOT.

WPITE PRINT-BUFPF PROM SUB-TOT~LINE APTER ADVAKRCING 2 LINEZS.

ADD SUB-TOT-NO TO TOT-NO-RECORDS.

IF SOC-SEC-IN IS NOT = °999999999°' GO TO SAVE-DEPT-MARE.

MOVE TOT-NO-RECORDS TO SUB~TOT.
WRITE PRINT-BUPF FROM SUB-TOT-LINE
APTER ADVARCING TOP-OF-FAGE.
IF NO~-REZORDS IS = TOT-NOU-RECORDS GO TC CLOSE-PILES.

MOVE ' ¢** MASTER TRAILER VERIFPICATION HAS FAILED ose!

TO PRINT-LINE.
PERPORM PRINTZ-ROUTIME THRU PRINT2-EXIT.
CLOSE-PILES.
CLOSE MASTER PRINT-FILE.
STOP RUNM,

190

ya
L

[SESENESENESESESES N VN VRN YIS

SR ST BN NI S U S R]

RO IR A VWALV R @ BV« I RN I, W Y,)

244
247
248
249
250
231
282
253

Appendix A

EQF.
MOVE ' EOF ON MASTER FILE #%#¢' TO PRINT-LINE.

PERFORM PRINT2-ROUTINE THRU PRINT2-EXIT.
GO TO CLOSE-FILES.

* SUB-ROUTINE SECTICN.

PRINTI=-ROQUTINE.
IF LINE-COUNT IS ¢ 16 GC TC NORMAL-PRINT.
PERFORM HEADER-RCUTINE THRU HEADER-EXIT. _
WRITE PRINT-BUFF FRCOM PRINT-LINE AFTER ADVANCING 2 LINES,
ADD 2 TO LINE-COUNT.
GO TO COMMON-POINT.

NCRMAL-PRINT.
WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING 1 LINES.
ADD 1 TC LINE~COUNT.

COMMCN-POINT.
MOVE SPACTS TO PHINT-LINE.

PRINT1-EXIT. EXIT.

PRINT2-ROUTINE,
IF LINE-COUNT IS » 14
PERFCRM HEALRER-ROUTINE THRU HEADER-EXIT.
WRITE PRINT-BUFF FRCM PRINT-LINE AFTER ADVANCING 2 LINES,
ACZD 2 TO LINEZ-COUNT. .
MOVEZ SPACES TO PRINT-LINE.
PRINTZ2-EXIT. EXIT.

HEADER-AQUTINE.
MOVE PAGE-ND TO PAGE-O.
WRITE PRINT-BUFF FROM PACE-HEADER
AFTER ADVANCING TOP-CF-PACE.
A2D 1 TO PAGE-NO.
WRITE DPRINT-BUFF FROM CCL-HDR-1 AFTER ADVANCING 2 LINES.
WRITE PRINT-BUFF FRCM COL-HDR~2 AFTER ADVANCING 1 LINES.
MCVE 0 TO LINE-COUNT,
HEADER-EXIT. EXIT.

ITEM-ROUTINE.
MOVE SOC~SEC-IN~]1 TO SOC-SEC-01.
MOVE SOC~SEC-IN=2 TO SOC-SEC-02.
MQVE SOC-SEL-IN-2 TO SOC~-SEC-03.
MOVE '~' TO S50C-SEC-F1,
MOVE '=* TQ SOC-SEC-F2.
MOVE NAME-IN TO NAME-ACDRA.
MOVE MAJOR~IN TO MAJOR~O.
MOVE STATUS~IM TO STATUS-O
* CALCULATE THE GPA.
MOVE 0 T3 POINTS.
MOVE 0 .3 CR-HR3,.
PERFORM GPA-ACCUM THRU GPA-EXIT VARYING C-INDEX
FROM 1 BY) UNTIL C-INDEX IS > NO-COURSES.
IP CR-HRS IS5 » 0 GO TO NO-GPA.
DIVIDE POINTS BY CR-HRS GIVING GPA ROUNDED.
IN THE POLLOWING THESE INDICES ARE USED:
END-ALL: THE INDEX OF THE FIRST UNUSED COURSE
EHMTRY: THIS MARKS THE END OF THE COURSES
TO PRINT;
END-MARKER: WHEY FILL-LIMNE IS CALLED EHD-MARKER
PGINTS AT THE PIRST COURSE ENTRY PAST THE
LAST EWNTRY TO BZ pPUT INTO THE LINE;
C-INDEX: WHEN FPILL-LIKE IS CALLED C-INDEX POINTS
AT THE PIRST COURSE ENTRY WHICH GETS
PUT INTQO THE PRINT-LINE; THUS, IP C-INDEX

® ¢ % 0% 300 8O

A-14

[

| VR,

254
255
256
257
258
259
260
261
262
263
264
265

2717
278

290
291
292
293
294
295
295
297
298
259
300
301
302
303
304
305
306
307
30e
309
k$ Q)
311
312
313
314
315
316
317

Appendix A

» % 090

IS EQUAL TO END-MARKER, NO COURSE ENTRIES
GET PUT INTO THE PRINT LINE,;
P~-INDEX: INDEXES THEZ SPOT IN THE PRINT-LINE
WHEIRE THE ENTRY POINTED TO BY C~IHNDEX
IS TO BE MOVED; THUS, ITS RANGE IS 1 TO 3.

NO-GPA.
MOVE 1 TO C-INDEX.
ADD 1 NO-COURSES GIVING END-ALL,
MOVE 4 TO END-MARKER.
IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
PERFORM FILL-LINE THRU FILL-EXIT.
PERFORM PRINT2-ROUTINE THRU PRINTZ-EXIT.
“0VE ADDR-IN-1 TO NAME-ADDR.
MOVE 7 TO END-MARKER.
1P END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
PERFORM PILL-LINE THRU FILL-EXIT.
PERFORM PRINTI-ROUTINE THRU PRINTI1-EXIT.
MOVE ADDR-IN-2 TO NAME-ADDR.
MOVE 10 TO END-HARKER.
CJOURSE-~LOOP.
IP END-ALL IS ¢ END-~MARKER MOVE END-ALL TO END-MARKER.
PERFORM FILL-LINE THRU FILL-EXIT.
PERFCRM PRINTI1~RCUTINE THRU PRINTI-EXIT.
I¥ C-INDEX = END-ALL GO TO ITEM-EXIT.
ADD 3 C-IHNDEX GIVING END-MARKER.
GO TC CQURSE-LOOP.
ITEM-EXIT. EXIT.
FILL-LINE.
HOVE 1 TC P-INDEX.
CHECK-END.
I C~INDEX IS = END-MARKER GO TO FILL-EXIT.
MQVE CEPT~OFF (C~INDEX) TO C-DEPT (P-~INDEX).
MCVE CCURSE~NO (C-INDEX) TO C-NO (P=-INDEX}.
MOVE CREDITS (C-INDEX) TO CREDITS-0 (P=-INDEX).
MOVE SEMESTER (C-INDEX) TO SEMESTER-O (P-INDEX).
MOVE °*~' TO DASH-O (P~INDEX).
MOVE YEAR (C-INDZX) TO YEAR-O (P~INDEX).
MOVE GRADE (C~-INDEX) TO GRADE~O (P-INDEX).
AZD 1 TO C-INDEX.
AZD 1 TO P-INDEX.
GO TO CHRECK-END.
PILL-EXIT. EXIT.

GPA-~-ACCUA.
IP GRADE (C-INDZX} IS HOT = ‘A’ GO TO HOTA.
MULTIPLY CREDITS (C-INDEX} BY 4 GIVING INCR.
GO TO COMMCU-ADD.

NOTA.
IP GRADE (C-INDEX) IS RNOCT = 'B' GO TO NOTB.
MULTIPLY CREDITS (C-INDEX) BY 3 GIVING INCR.
GO TO COMMCHN-ADD.

KOTB.
1P GRADZ (C-INDEX) IS NOT « 'C' GO TO NOTC.
HULTIPLY CREDITS (C-INDEX) BY 2 GIVING INCR.
GO TO COmmON-ADD.

HOTC.
IF GRADE (C-INDEX) IS NOT = ‘D’ GO TO HOTD.
BMULTIPLY CREDITS (C~INDEX) BY 1 GIVING IRCR.
GO TO COmMMON-ADD.

NOTD.
IF GRADE (C-IKDEX) IS NOT = 'P' GO TO GPA-EXIT.
MOVE 0 TO INCR.

COMMON~-ADD.

A-15

Appendix A
318 ADD INCR TO POINTS.
19 ADD CREDITS (C-IHDEX) TO CR-HRS,
320 GPA-EXIT. EXIT.
a2l

A-16

W R IR &N

[R
N W O

— oy
w <)

[

SIS N
N O

[SRS
LV

26

Wkt N
oww -3

w

w W
W

Appendix A

L2 N B BN 20 2N 2N O Y N DN R NN N BN TN NN SR NE TN NN BN AN N 2 2N BN BN 2N BN)

A-17

Program AS

IDENTIFICATION DIVISION.

REPORT CONTAINS THE INPUT DATA ALONG WITH THE
CURRENT COMMISSION FPOR EACH SALESMAN. AT THE
END OF THIS SINGLE SPACED REPORT THE FOLLOWING
TOTALS ARE PRINTED: YEAR TO DATE SALES, CUR-
RENT SALES, CURRENT COMMISSION.

CURRENT COMMISSION IS CALCULATED AS FOLLOWS:
CURRENT~COMHISSION & CURRENT-SALES ¥
{ CCHRISSION-RATE + VOLUME-BCONUS + DEPARTMENT-BONUS)

WITH DEPARTMENT BQONUS DETERMINED AS FOLLOWS:

oE pT BONUS
01 0.1%
02 0.1%
o4 C.7%
cs 2.6%
06 0.4%
a? C.6%
09 0.4%
OTHER 0.0%
WITH VOLUME BCNUS DETERMINED AS FOLLOWS:
AVERAGE MONTHLY SALES BONUS
UNCER §5C°0 0.0%
$500 TO $9399.99 0.3%
$1000 TO $1999.99 0.4%
OVER $2000 0.6%

WITH AVERAGE MONTRS SALES DETERMINED AS FOLLOWS:
AVERAGE-MONTHLY~-SALES = -
{ YEAR-TO-DATE-SALES + CURRENT-SALES)} / MONTHS-EMPLOYED

PROGRAM-ID., COMMISSICH-REPORT.

AUTHCR.,
DANIEL CASTAGNO,ICS 3400,STUDENT KUMBER £54,PROGRAM 1.

REMARKS. SLIGHTLY MCDIFIED FOR CMS.]1 BY A.ACREE.
MUTATION TESTING UNCOVERED THE FOLLOWING ERRORS AND
INEFPICIENCIES:
(1) REPORT HEADER WITH PAGE ADVANCE WAS NOT PRINTED
APTER PULL-PAGE CONDITION RAISED BY INVALID DATA RECORD
EXTRA PERPCRM INSERTED.
(2) DATA ITEMS DEPINED AND NEVER USED =-- DELETED.
{3) MOVEZ STATEMENT REPEATED -~ SECOND VERGION DELETED.
(4) TWO USELESS INITIALIZATIONS DELETED.

ENVIROHMENT DIVISICM.

CONPIGURATION SECTIONM.
SOURCE~-COMPUTER.

CYBER=-74.
O0BJECT-COMPUTER.

CYBER-74.
SPECIAL-NAMES.

C0l IS TO-TOP-OF~-PAGE.

INPUT-OUTPUT SECTIUN.

-

112
1.3
114

116
117
lig
119
120
121
122
123
124
125

Appendix A

FILE-CONTROL.
SELECT CARD-FILE ASSIGN TO INPUTO.
SELECT PRINT-FILE ASSIGH TO OUTPUTO.

DATA DIVISION.

FILE SECTION.

FD

0l

FD

17

*01
e

01

CARD~FILE

RECCRD CCNTAINS 80 CHARACTERS,

LABEL REZORDS ARE OMITTED,
DATA RECCZRD IS CARD-RECORD.

CARD-RECORD.
02 I-CARD-DATA,
03 I-STORE-NUMBER
03 I-DEPARTHENT
03 I-SALESMAN-NUMBER
03 I-SALESMAN-NAME

03 I-YEAR-TO-DATE-SALES

33 I-CURRENT-SALES

03 I-COMAISSICN=-RATE

02 I-MONTHS-EMPLOYZID
02 FILLER

PRINT-FILE

RECORD CCNTAINS 132 CHARACTERS,

LABEL RECORDS ARE OMITTED,
DATA RECCRD IS LINE-RECORD.

LINE-RECORD

ING-STCRAGE SECTION.

W-DEPARTHMENT~BONUS
W-YOLUME-BONUS
W-DEPARTMENT
W-STORE-NUMBER
W=SALESMAN-NUMBER
W-YEAR-TO-DATE-SALES
W~CURRENT-SALES
W-COMMISSION-RATE
W-MONTHS~-EMPLOYED
W-CURRENT-COMM ISSION
W-TOTAL-YEAR-TO-DATE~SALES
VALUE 0.
W-TCTAL-CURRENT-SALES
VALUE 0.
W-TOTAL-CURRENT-COMMISSION
YALUE 0.
W-AVERAGE-MONTHLY-SALES
YALUE 9.

KEY-TO-RECORADS.
02 CSALESMAN-NUM

FLAGS.

02 VALID-DATA-FLAC
VALUE 'YES‘.

02 MORE-DATA-RERMAINS-FLAG
VALUE 'YES'.

PIC 59.

PIC XX.

PIC 999.

PIC X(20).
PIC 9(5)V99.
PIC 9({5)V99.
P1C V99.

PIC 99.

PIC X(35) .

PIC X(132).

PIC V999,
PIC V999.
PIC XX.

PIC 99.

PIC 999.

PIC 9(51V99.
PIC 3(5)Vv99.
PIC Vv99.

PIC 99.

PIC 9(4)V99.
PIC 9(9)V9I9

PIC 9(8)VI9
PIC 9{7)V99
PIC 9(7)V99

PIC 999.
PIC XXX
PIC XXX

A-18

Appendix A

126
127
128
129
130

152
159
160
161
162
i53
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181l
182
183
184
185
186
187
188
189

01

01

0l

01

ol

01

CONSTANTS.

c2

DEPT.
03 DEPT-1-OR-2
VALUE 0.001.
03 DEPT-6-0R-9
VALUE 0.004.
03 DEPT-5-0R-7
VALUE 0.006.
03 DEPT-4
VALUE C.007.
03 DEPT-OTHER
VALUE 0.000.

02 VOLUMN,

03 LEVEL-1
VALUE C.

C3 LEVEL-2
VALUE 0.003.

03 LEVEL-3
VALUE 0.004.

03 LEVEL-4
VALUE 0.006.

COUNTERS.
02 LINE-COUNT
VALUE O.
FINAL-TCTAL-LINE.
0z FTILLER
VALUE ' TOTAL' .
02 FILLER
YALUE SPACES.
02 O-TOTAL-YEAR-TO-DATE-SALES
02 FILLER
VALUE SPACES.
02 O-TOTAL-CURRENT-SALES
02 FILLER
VALUE SPACES.
02 O-TOTAL-CURREMT-COMMISSION

02

FILLER
VALUE SPACES.

REPORT-LINE~-1.

02
02
Q2
02
ez
Q2

FILLER

VALUE SPACES.
PILLER

VALUE 'COVMISSION® .,
PILLER

VALUE SPACES.
PILLER

VALUE 'PACE '.
O-PAGE-NUNMBER -
VALUE 0.

PILLER

VALUE SPACES.

REPORT-LINE-2.

02
02
02

FPILLER

VALUE SPACES,
FILLER

VALUE *REPORT'.
PILLER

VALUZ SPACES.

HEADING-LINE-1.

picC
PI1C
pIC
PIC

rIC

PIC
PIC
PIC

PIC

pIC

pIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

rIC
PIC
PIC
PIC
PIC

PIC

PIC
PIC
PIC

V999
V999
V999
V999
V999

V959
V999
V399

V959

89

X{10}
X(51)

2(9).99.
XXX

z(8).99.
X({15)

Z(7).99.
X{20}

X(61)
X(10)
X(50)
X(5)
999

XX

X{63)
X(8)
X(6)

A-19

Appendix A

190

[VAR TARRRLP A & s B N I L RN Y™

T TIBD PIN) R KD FD R) W2 b +® ol bt ps 2t ps 3

I TIRI RSP IR BRI PRI R) PRI M NN
w

LS N}
[PV 8]
- OW

232
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

[}
a
i

a1

02
02
02
02
02
02
02
02
02
02

02

02
02

FILLER

VALUE SPACES.
FILLER

VALUE 'STORE'.
FILLER

VALUE SPACES.
PILLER

VALUE *DEPARTHENT'.
FILLER

VALUE SPACES.
FILLER

VALUE 'SALESMAN',
FILLER

VALUE SPACES.
FILLER

VALUE 'SALESHAN'.
FILLER

VALUE SPACES.
FILLER

VALUE ‘'YEAR TO DATE'.

FILLER

VALUE SPACES,
FILLER

VALUE 'CURRENT'.
FILLER

VALUE SPACES.
FILLER

VALUE 'CCHMISSION'.
FILLE

VALUE SPACES.
PILLER

VALUE °"CURRENT®.
PILLER

VALUE SPACES.
FILLER

VALUE 'MONTHS'.
PILLER

VALUE SPACES.

HEADING-LINE-2.

02
02
a2
02
02
02
02
02
02
02
02

02

FILLER

VALUE SPACES.
FILLER

VALUE 'NUMBER'.
FILLER

VALUE SPACES.
PILLER

VALUE 'NUMBER®.,
FILLER

VALUE SPACES.
PILLER

VALUE °*NAHME'.
FILLER

VALUE SPACES.
PILLER

VALUE 'SALES®.
PILLER

VALUE SPACES.
PILLER

VALUE 'SALES®.
FILLER

VALUE SPACES.
FILLEP

VALUE *'RATL'.

PIC
PIC
PIC
PI1C
PIC
1234
PIC
P1C
PIC
PIC
PIC
PIC
PIC
pIC
pIc
picC
PIC
PI1C

PIC

PIC
PIC
PIC
PIC
1244
PIC
PI1C
pIC
pIC
PIC
PIC
PIC

X({4)
X(5)
x(4)
X(10)
X(4)
X{8)
X{9)
X(8)
X{10)
X{12)
X(5)
X(7)
X(4)
X(10)
X{5)
xX(7)
X{6)
X(6)
X(8)

X(4)
X{6)
X(18)
X{&)
X(12)
X{4)
X(16)
x(5)
x(9)
Xx(5)
X(8)
X(4)

A—=20

Appendix A

254
255
256
257
258
259
260
261

262
263
264
265
2648
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285
286
287
288

289
290
291

232

293
294

295
296
297
298
299
300
301
302
303
304
305
166
307
308
o9
310
unl
312
313
314
31s
316
17

02
02
02
02
62

FILLER

VALUE SPACES.
FILLER

VALUE 'COMMISSION'.
FILLER

VALUE SPACES.
FILLER

VALUE *EMPLOYED'.
FILLER

VALUE SPACES.

01 VALID-DATA-LIKE.

02

02
02

02
02

02
02

02
02

02
0z

02
02

c2
€2

02
02

02
02

FILLER

VALUE SPACES,
O-STORE~NUMBER
FPILLER

VALUE SPACES.
C-DCEPARTMENT
FILLER

VALUE SPACES.,
C-SALESMAN~NUMBER
FILLER

VALUE SPACES.
O~SALESMAN-NAME
FILLER

VALUE SPACES.
O-YEAR-TO-DATE-SALES
FILLER

VALUE SPACES.
O0-CURRENT-SALES
PILLER

VALUE SPACES.
O-COMMISSION-RATE
FILLER

VALUE SPACES,
O-CURRENT-COMMISSION
PILLER

VALUE SPACES.
C-MCNTHS-EMPLOYED
FILLER

VALUE SPACES.

01 IHVALID-DATA-LINE.

a2
02

02

C-BAD-DATA
PILLER
VALUE !
FILLER
VALUE SPACES.

PROCEDURE DIVISION.

PREPARE~PAYMENT~REPORT.
OPEN INPUT CARD~PILE

OUTPUT PRINT-PILE.

READ CARD-~PILE
AT END MOVE "NO' TO HOREZ~DATA-REMAINE-FLAG.

I7 MORE-CATA~REMAINS-PLAG =

INVALID DATA ON

PIC
pPIC
1349
PIC
PIC

PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

pIC
PIC

pIC
PIC

PIC

‘yes’

PERFORM REPORT-HEADER~QUTPUT

PERFORM HEADING-OUTPUT

X{7)
X(10)
X(3)
x(8)
X(7)

X(6)

Z9.
X(9)

XX.
X(10)

Z19.
X(6)

X(20% .
X (5}

Z(5) .99.
X{5}

Z(hR).95.
X("n

.99.
X{7)

2{S).99.
X(e)

z29.
X(10)

X(45) .
X(30)

THIS CARD'.

X{57)

A-21

Appendix A A-22

jie PERFORM COMMISSIOM-CALCULATION
29 UNTIL MORE-DATA-REMAINS-FLAG = °*NO ',
320

321 PERFORM CALCULATED-TOTALS-QUTPUT.

322 CLOSE CARD-FILE

32 PRINT-FILE.

324 STOP RUN.

32%

126

327 * CHECK VARIABLES TO SEE IFf THEY CONTAIN VALID INFORHMATICN
328

235 VALIDATION.

330 IF I=-3TORE-NUMBTZIR IS NUMERIC

331 AND [~-SALESMAN-NUMBER 1S NUMERIC
332 AND I-YEAR-TO-DATE-SALES I5 NUMERIC
213 AND I-~CURRENT-SALES IS HUMERIC

124 AND I-COMMISSION-RATE IS NUMERIC
335 AND I-MONTHS-EMPLCYED IS NUMERIC
336 MOVE 'YES' TO VALID~DATA-FLAG

337 ELSE

338 MOVE 'NO' T2 VALID-DATA-FLAG.

339

349

341 * MCOVE INPUT INPORMATICN TO WORKING STORAGE
342 % VARTABLES

343
244 DATA-HMOVE,
245 MOYE T-STCRE-NUMBER TO W-STORE-NUMBER.
345 MOVE I-DEPARTMENT TO W-DEPARTMENT.
347 MOVE I=SALESMAN-NUMBER TO W-SALESMAN-NUMBER.
348 MOVE I-YEAR-TO-TATE-SALES TO W-YEAR-TO-DATE-SALES.
149 ¥OVE I-CURRENT-SALES TO W-CURRENT-SALES.
350 MOVE I-CCMMISSICN-RATE TO W-COMMISSICN-RATE.,
sl MOVE I-MONTHS-EMPLOYED TO W-MONTHS-EMPLOYED.
252
353 CALCULATE~-DIPARTMENT-BCNUS.
354 IF W=-DEPARTHMENT = '0]1' OR
355 W-DEPARTHENT = 'Q2°*
356 KMOQVE DEPT-1~-0R~2 TO W-DEPARTMENT-BONUS
157 ELSE IF W-DEPARTMENT = '06' CR
358 W-DEPARTMENT = '09°
359 MOVE DEPT-£-0R-9 TO W-DEPARTMENT-BONUS
360 ELSE IF W-DEPAFTMENT = '05' OR
361 W-DEPAHTMENT = '07!
182 MOVE DEPT-5-CR-7 TO W-DEPARTMENT-BCNUS
363 ELSE IP W-DEPARTHENT = '04°
364 HOVE DEPT~4 TO W-DEPARTMENT~-BONUS
365 ELSE
66 MOVE DEPT-OTHER TO W-DEPARTMENT-BONUS.
367
363 CALCULATE-VOLUME-BONUS.
369 COMPUTE W-AVERAGE-4ONTHLY-SALES ROUNDED =
370 (W=-YEAR-TO=-DATE~-SALES 4+ W-CURRENT-SALES)
371 / W-MOHTHS-EXPLOYED.
172 IF W-AVERAGE-MONTHLY-SALES < $00
373 MOVE LEVEL-1 TO W-VOLUME-BONUS
174 ELSE IF W-AVERAGE-MONTRLY-SALES < 999.99%
175 MOVE LEVEL-2 TO W-VOLUME-BONUS
376 ELSE IFP W-AVERAGE-MOMTHLY~SALES < 1999.9%9
1377 MOVE LEVEL-3 TO W-VOLUME-BONUS
378 ELSE
g;g MOVE LZVEL-¢ TO W-VOLUME-BONUS.

0

a8l COMMISSION-CALCULATION.

e e ———

L

Appendix A

ie2
gl
8.1]
3as
g6

404
475
4C6
407
428
405
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
4490
441
442
443
444
445

A-23

PERFORM VALIDATION.

IF VALID-DATA-FLAG =« 'YES®
PERFORM DATA-MOVE
PERFCRM CALCULATE-DEPARTHENT-BONUS
PERFPORM CALCULATE-VOLUME-BONUS
COMPUTE W-CURRENT-COMMISSION ROUNDED = W-CURRENT-SALES *
{ W-COMMISSION-RATE + W-VOLUME-BCNUS +
W-DEPARTMENT-BONUS)
ADD W-YEAR-TO-DATE-SALES TO W-TOTAL-~YEAR-TO-DATE~-SALES
ADD W-CURRENT-SALES TO W-TOTAL-CURRENT-SALES
ADD W-CURRENT-CCMMISSION TO W-TCTAL-CURRENT-COMMISSION
PERFORM VALID~DATA-OUTPUT
ELSE
PERFOR® INVALID-DATA-QUTPUT.

READ CARD-FILE
AT END MOVE 'NO* TO MORE-DATA-REMAINS-FLAG.

VALID-DATA-QUTPUT.
MOVE W-STCRE-NUMBER TG O-STORE-NUMBER.
MOVE W-DEPARTMENT TO O-DEPARTMENT.
MOVE W-SALESMAN-NUMBER TO O~SALESMAN-NUMBER.
MOVE I-SALESMAN~NAME TO O-SALESMAN-NAME.
MOVE W-YEAR-TO-DATE~SALES TO O-YEAR-TO-DATE-SALES.
MOVE W~-ZURRENT-SALES TO O-CURRENT-SALES.
MOVE W-COMMISSION-RATE TO O-CCMMISSION-RATE.
MOVE W-CURRENT-CCMMISSION TO O~CURRENT-COMMISSION.
MOVE W-MONTHS-EMPLOYED TO O-MONTHS-EMPLOYED.
MCVE I-SALESMAN-NAME TO O-SALESMAN-NAME,
MCVE VALID-DATA-LINE TC LINE-RECORD.
WRITE LINE-RECORD AFTER ADVANCING 1 LINES.
ADD 1 TO LINE-CQUNT.
IF LINE-COUNT IS GREATER THAN 10
MOVE O TC LINE-CQUNT
PERFCRM REPORT-HEADER-OUTPUT
PERFCRM HEADING-QUTPUT.

INVALID-DATA-QUTPUT.
MOVE I-CARD-DATA TO O-BAD-DATA.
MCVE INVALID-DATA-LINE TO LINE-RECORD.
WRITE LINE-RECORD AFTER ADVANCING 1 LINES.
ACD 1 TO LINE-COUNT.
IF LINE-COUNT IS GREATER THAN 10
MOVE 0 TO LINE~-COUNT
PERPORM REPCRT-HEADER-OUTPUT
PERFCRM HEADING-CUTPUT.

HEADING-QUTPUT.
MOVE HEADING-LINE-1 TO LINE-RECORD.
WRITE LINE-RECCRD AFTER ADVANCING 1 LINES.
MOVE HEADIHG-LINE~-2 TO LINE~-RECORD.
WRITE LINE-RECORD AFTER ADVANCING 1 LIRNES.
MOVE SPACES TO LINE-RECORD.
WRITE LINE-RECORD AFTER ADVARCING 2 LINES.
ADD 4 TO LINE-COUNT.

CALCULATED~-TOTALS~QUTPUT.
MOVE W-TOTAL-YEAR-TO-DATE=SALES TO O~TOTAL-YEZAR-TO-DATE-SALES
MOVE W-TOTAL-CURRENT~-SALES TO O-TOTAL-CURREWT-SALES,
MOVE W~TOTAL-CURRENT-COMMISSION TO O-TOTAL~-CURRENT-COMHISSION
MOVE PINAL-TOTAL-LINE TO LINE-RECORD.
WRITE LINE-RECCORD AFTER ADVANCING 2 LIMES.

446
447
448
449
450
451
452
453
454
455

Appendix A

REPORT-BEADZIA-~-QUTPUT.
ADD 1 TO O-PAGE-NURBER.
¥OVE REPORT-LINEZ-1 TO LIMNE-RECORD.
WRITE LINE-RECORD APTER ADVANCING TO-TOP-0F-PAGE.
MCVE REPORT-LINE-2 TO LINE-RECORD.
WRITE LINE-RECORD AFTIR ADVANCING 1 LINKES.
KMCVE SPACES TO LINE-RECORD.
WRITE LINE-RECCRD AFTER ADVANCING 3 LINES.
MCVE & TO LINE-COUNT.

A-24

—

.

Appendiz A

WO ~IRU da i R

Program A6

IDENTIFICATION DIVISION,
PROGRAM-TD. MAINTHMFS,
REMARKS.

TO PROGRAM IN STRUCTURED COBOL".

{1) THE PROGRAM AS PUBLISHED DID NOT WORK.
PAIR CF APPLICATION CARDS WAS IGNORED.

A-25

THIS PROGRAM IS5 ADAPTED FROM YOURDAR'S * LEARNIHNG

THE LAST
IP THERE

WAS NO LAST PAIR (EMPTY FILE) THE PROGRAM BOMBED.
THIS ERROR WAS FIXED BY ADDING ANOTHER FILE-CONTROL
FLAG AND ADDING LOGIC INH "Bl-GET-A~PAIR..."

{2) THE NOTE ABOUT CHECKING PAIR VALIDITY

IN FPARAGRAPH "A2-UPDATE MASTER®

SHOULD BE REPEATED

IN THE ANALOGCUS PARAGRAPH “A4-ADD-REMAINING-CARDS®.

(3} IF THE FIRST CARD IS INVALID,

ITS LOG ENTRY

WOULD HAVE BEEN WRITTEN BEFOREZ TRE LOG PILE HEADER.
(4) THE PUBLISHED PROGRAM CONTAINED MUCH EXTRANEQUS
CODE. THE REASON FOR SOME OF THIS WAS THE FREE USE OF

THE "COPY" VERB.
MUTANTS,

THESE

(5) THE PROGRAM DID NOT

DO

PRODUCED MANY UNNECESSARY
AND HAVE BEEN COMMENTED OUT WITH “ewe®,
ANYTHING SENSIBLE WHEN

THE END-OF-FILE WAS ENCOUNTERED APTER THE PIRST OF A

PAIR CF CARDS.

ENVIRONMENT DIVISION.
CONFIGURATICN SECTICON,
SOURCE-COMPUTER, FRIME.
CBJECT-CCMPUTER., PRIME.
INPUT-QUTPUT SECTION.
FILE~-CONTROL.

SELECT APPLICATION-CARDS-FILE

SELECT UPDATI-LISTING

SELECT CREDIT-MASTER-OLD-PILE

SELECT CREDIT-MASTER-NEW-PILE

CATA DIVISICN.
FILE SECTION.

FD APPLICATION~CARDS-FTILE
RECCRD CONTAINS B0 CHARACTERS
LABEL RECCRCS ARE OMITTED

ASSIGCN TO INPUTI.
ASSIGN TO QUTPUTL.
ASSIGN TO INPUTZ.
ASSIGN TO OUTPUTZ.

DATA RECORD IS NAME-ACDRESS~-AND-PHONE-IN,

01 NAME-ADDRESS~-AND-PHONE-IN.
05 NAME-AND-ADDRESS~-IMN.
16 NAME-IN

wee 10 ADDRESS-~IMNM.
see i5 STREET-IN
ane 15 CITY-INM
ane 15 STATE-IN
il 15 ZIp-IN

10 ADDRESS-IN
05 PHONEZ-IN
05 PILLER
05 CHANGE-CCODE~IN
05 ACCT-NUM-IN]

FD UPDATE-LISTING
RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS ARE CMITTED
DATA RECORD IS PRINT-LINE-QUT,
01 PRINT-LINE-QUT

FD CREDIT-MASTER~OLD-FILE

PIC
PIC
PIC
PIC

PIC

PIC X(20).

PIC X(20).
PIC Xx(13).
PIC XX.
PIC X(5).
PIC X(40).
X(1l).

X.

xXX.

9(6).

X(1ia).

-

117
i1l8
118
120
i21
122
123
124
12%

Appendixz A

01

#ee TuE SUBFIELDS ARE HEVER REFERRRED 7O

RECORD CONTAINS 127 CHARACTERS
LABEL RECCRDS ARE STANDARD

DATA RECORD IS5 CREDIT-MASTER-RECCRD.

CREDIT-MASTER-OLD-RECORD,

0SS

ACCT-NUN-MAS-0OLD

PIC 9(6).
IN THE PROGRAM

ee» USE PILLER INSTEAD
*ee 95 NAME-AND-ADDRESS-MAS-0OLD.
e 1C NAME-MAS=QLD PIC X(20}.
wee 10 STREET-MAS-OLD PIC X(20}.
see 10 CITY-MAS=0OLD PIC X(1M).
vae 10 STATE-~-MAS-0OLD PIC XX.
v 10 2ZIP-MAS-OLD PIC 9(5).
soe¢ (S pPHONE-MAS-0OLD.
nee 10 AREA-CODE-MAS-OLD PIC 9(3) .
e 10 HKUMBER-MAS-OLD PIC 9(7}.
[XTEEXEZEXNREEZRZRRZAZERERREERRERRRARER XA R RRRESR2 LR A AR RN AN X J
05 FILLER PIC %X{70).
»ee THE SUBFIELDS ARE NEVER REFPERRED TO IN TRE PROGRAM.
#ee 35 CREDIT=-INFO-MAS-CLD.
LA 10 SEX=-MAS-OLD PIC X.
see 10 MARITAL-STATUS-MAS-OLD PIC X.
tee 10 NUMBEZR-DEPENS=-MAS-OLD PIC 99.
e 10 INCCME~HUNDREDS-MAS-OLD PIC 9(3).
e 10 YEARS-EMPLOYED-MAS~-OLD PIC 99.
e 19 QOWN-OR-RENT-MAS-OLD PIC X.
rew 10 MORGCAGE~OR-RENTAL-MAS-OLD PIC 9(3).
o 10 OTHER-PAYMEINTI-MAS-QLD PIC 9(3).
2% CREDIT-INFO-MAS-QLD PIC X{16).
29 ACZOUNT-INFO-MAS-OLD.
s 10 DISCR-INCCHI-MAS-QLD PIC S9().
tew 10 CREDIT-LIMIT-OLD PIC 9(4).
10 FILLER PIC S9(3).
10 FILLER PIC 9i4).
10 CURRENT-~BALANCE-OWING-OLD PIC S9(6)VS9.
05 SPARE~-CHARACTERS-QLD PIC X{20).
FD CREDIT-MASTER-NEW-FILE
RECCRD CONTAINS 127 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS5 CREDIT-mASTEZR-RECORD.
01l CREDIT-MASTER-NEW-RECORD.
05 ACCT-NUM-MAS~-NEW PIC 9(6).
#2905 NAME-AND=ADDRESS-MAS-NEW,
ree 10 NAME-PAS-NEW PIC X(20).
eew 10 STREEZT-MAS-NEW PIC X(20).
ree 10 ClTY-MAS-NEW PIC X(13).
ran 10 STATE-MAS-NEW ?IC xx.
eve 10 ZIP-MAS-KEW PIC 3(5).
05 NAME-AND-ADDRESS-HMAS-NEW PIC X(60).
95 PHONE-MAS~NIW,
10 ARZA-CODE-RAS-HIW PIC 9(3).
10 HUMBR-MAS-NEW PIC 9({7).
05 CREDIT-INPO-MAS-NEW,
10 SEX-MAS-NEY PIC X.
10 MARITAL-STATUS-MAS-MEW PIC X.
10 NUMBER-DEPENS-BAS~-NEW PIC 99.
10 IKCOME-HUNDREDSB-MAS-NEW PIC 91(3).
10 YEARS-ENPLCYED-MAS~-NEW PIC $9.
10 CWN=OR~-RENT-MAS-NZW PIT X.
10 HMORCAGEZ-CR-RENTAL-MAS~NEW PIC 9(3).
10 OTHER-PAYSENTS-MAS-NEW PIC 9(3}).
0% ACCOUNT-INFPN-RAS-MNEW,
10 DISCR=INCOME-MAS-NEW PIC S59(3).

A-26

Appendix A

126
127
128
129
130
i3]
132
133
134
135
138
137
138
139
1490
141
142
143
144
145
146
147
148
149
150
151

152

153

154

15§

156

157

159
160
141
162
163
164
165
166
167
168
169
170
7
172
173
174
17%
176
177
178
179
180
181
182
183
104
185
186
187
188
189

05

10 CREDIT~LIMIT-MAS-NEW
10
SPARE~CHARACTERS~REW

WORKING~STORAGE SECTION.

01

00’01

LR R)
LA A
*O®
LA R

01

LA X J
LA N]
L 2 R
LR X
LR-2

ne
*e
*e
[3 J

CREDIT-INFORMATION-IN.

05 CARD-TYPE-IN
05 ACCT-NUM-IN2
05 FILLER
05 CREDIT-INPO-IN
0S5 FILLER
COMMON-WS.
€S CARDS-LEPT
05 NEXT~-CARD-THERE
05 OLD-MASTER-RECORDS-LEFT
05 NEW-MASTER-RECORDS~LEFT
05 PIRST-CARD
095 SECOND-CARD
05 ACCT-NUX-MATCH
05 PAIR-VALIDITY
LOG-HEADER-WEA]L.
05 FTILLER
05 PILLER
VALUE
05 PILLER
HEACZR-WSAS.
05 FILLER
05 TITLE
VALUE
05 FILLER
APPLICATION-DATA-WSB2Z.
05 NAME-AND-ADDRESS-WS.
10 HNAME-WS
i0 ADDRESS-WS.
15 STREET~WS
15 CITY-WS
15 STATE-WS
15 Z2IP-WS
10 ADDRESS-WS
05 PHONE-WS .
10 AREA-CODE-WS
10 HUMBR=-WS
0S5 PILLER
0S5 CHANGE~CODE-WS
05 ACCT-NUM-WS
05 CREDIT-INFO-WS.

10 SEX-~-wS
88 MALE VALUE
88 FEMALE VALUE
10 PILLER
10 MARITAL-STATUS~WS
88 SINGLE VALUE
88 MARRIED VALUE
88 OIVORCED VALUE
28 WIDOWED VALUE
10 PILLER
10 NUMBER-DEZPENS-WS
10 PILLER
10 [NCOME~-HUNDREDS-WS
10 PILLER

CURRENT-BALANCE~OWING~-NEW

.H. .
.P..

's'.

PIC
PIC
PIC

pIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
pIC
pIC
PIC
PIC

PIC
pIC

A-27

9(4).
§9({6)V99.
X(20}).

X.
9(6).
X.
X(22).
X{50) .

X(3).
X(3).
Xt .
X(3).
x(4) .
X4y .
X(4) .
X(4).

X(47)
x(3g)

VALUE SPACES.

'*LOG OF ADDITICNS DELETIONS AND CHANGES'.

PIC X(47) VALUE SPACES.
PIC X(S1) VALUEZ SPACES
PIC X (30}

PIC

PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC

PIC

PIC
PIC

PI1C
PIC
PIC
PIC
PIC

'CONTENTS OF CREDIT MASTER FILE'.
PIC X(51)

VALUE SPACES

X{20).

X(20).
Xt13).
XX.
X(5).
X(40) .

9(3).

x(ey.

X VALUE SPACE.
XX.

9(h}.

X

x.

x‘
9(3).
X.

Appendix A

205

P b ke 32 €3 O QG

[

[N SN PR SENENENNNE S VN YN VNI R O VI GRS SRy

WEo RIRIEIMI R R R P RS b 2

DWW DDA D W R~ D 0@ D T de b = OO D ~d R

248
249
250
51
252
2513

[X]
*e

LA R

Q1

01

10 YEARS~-EMPLOYED-WS

10 FILLER
10 COWN-OR-RENT-WS
88 OWNED VALUE *0O°'.
88 RENTED VALUE 'R°'.
10 FILLER
10 MORGAGE~OR~RENTAL-WS
10 FILLER

10 QOTHER-PAYMENTS-WS

UPCATE-MESSACE~AREA-WS3 2.,
C5 VUPDATE~MESSACE~AREA

CREDIT-MASTER-PRINT-LINE.
G5 FILLER
CS CREDIT-MASTER-QUT

UPDATE-RECORD-PRINT-LINE.
05 FILLER

0S5 APPLICATION-CATA-QUT
> FILLER

5 MESSAGE-AEREA~-QUT

> ANHUAL-TAX-WS

& TAX-RATE-WS

C5 CNTHS~IN-YEAR

CS MONTHLY-NET-INCOME-W3
S MONTHLY~PAYMENTS-WS
05 CTISCR-INCOME-WS

T
S ANNUAL-INCOME-WS
<
(4

CREDIT-LIMIT-CALC-FIELDS-WSCY,
205 CREDIT-FACTOR
FACTORL
FACTCR2
FACTZRZ
FACTDORY
FACTORS
CREDIT-LIMIT-WS
0% UPPER-LIMIT-WS
NEVER USED
05 TOTAL-CREDIT-GIVEN-WS

S w]

Lor B o Y
[V VRV, X))

ASSEMBLE-TEL-NUM-WSD].
05 TEL-NUMBR-WITH-HYPHEN.
10 EXCHANGE-~IN
10 FILLER
10 POUR-DIGIT-NUMBR-IN
05 TEL-NUMBR-WITHOUT~HYPHEN.
10 EXCHAKGE
10 FOUR-DIGIT-NUMBR

CARD-ERRCR~-LINE1-WS,
0S5 PILLER
0S FPILLER
VALUE *'PIRST CARD °*'.
05 PIRST-CARD-ERRI
05 PILLER
05 HNAME-ERR]
95 ADDRESS-ERF}
C5 PHONE-ERR.
05 PILLER
05 ACCT-NUM-ERR!}

PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC

PIC
PIC

PIC
PIC
PIC
pIC

pIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC

PIC
PIC
pIC

PIC
PIC

pIC
PIC

PIC
PIC
PIC
PIC
P1C
PIC
PIC

A-28

X(4) VALUE SPACES.
x{ize).

X{4} VALUE SPACES.
X(162).
X(4) VALUE SPACES.
X(15).

91(s).

9(5).

9IvV39 VALUE 0.25.
99 VALUEZ 12.
3(4).

914).

$2(3) .

VALUE 1.
VALUE 2.
VALUE 3.
VYALUE 4.
VALUE 5.

O OO W DWW

—~
& b
—
.

VALUE 2500.

9(7}).

9(3).
x'
9(4).

9(3).
9(4) .

X(5) VALUEZ SPACES.
x(12)

xX(d).

XX VALUEZ SPACES,
X(20) .

X(40).

X1l .

X{3) VALUZ SPACES.
9(5).

Appendix A

254
255
256
257
258
259
260
261
262
263
264
265
266
267

256
297
293
299
300
3ol
302
303
304
305
306
307
308
309
310
311
3i2
313
314
315
316
117

A-29

01 CARD—~-ERROR-LINE2-WS.
0S5 FILLER PIC X(S) VALUE SPACES.
05 PILLER PIC X(12)
VALUE 'SECOND CARD °'. -
05 SECOND~-CARD-ERR2 PIC X(4).
05 FILLER PIC X{2} VALUE SPACES.
05 CREDIT-IMFO-ERR2 PIC X(80).
05 MESSAGE-ERR-LINE-2 PIC X{29} VALUE SPACES.
PROCEDURE DIVISION.
AQJ-HAIN-BODY.
PERFCRM Al-INITIALIZE.
PERFORM A2-UPDATE~-MASTER
UNTIL GCLD-MASTER-RECORDS-LEPT = *'NO
CR CARDS~LEFT : 'NO °'.
IF CARDS-LEFT = 'WHO !
* TRERE ARE MORE OLD MASTER REC
PERFORM A3-COPY-REMAIHING-QLD-MASTER :
UNTIL CLD-MASTER-RECORDS-LEFT = °‘NO !
ELSE
* THERE ARZ RO MORE CARDS, 50
PERFORM A4-ADD-REMAINING-CARDS

UNTIL CARDS~-LEFT = 'NO ', |

I ZZR2ZEXEESRRRERREEARRR SRR AR AR RR AR 2R 2 R R AR AR AR ESEARERENERES R

* CCDE TC LIST THE CONTENTS OF THE NEW MASTER HAS BEEN OMITTED.
* IT WOULD HAVE REQUIRED CLOSING THE NEW MASTER AND REOPENING

* IT FCR INPUT. THIS I3 BEYOND THE ABILITIES CF CTMS.]

. THE DELETION AMOUNTS TO ABOUT 20 LINES CF CCDE.

(A AR AR EEERERE R RS SRR RE R RN RS RSS2SR AR AR AR R ARl la R

PERFORM AT-END-COF-J0B.
STOP RUN.

Al-INITIALIZE.

QPEN INPUT APPLICATION-CARDS~-FILE
CREDIT-MASTER-OLD-PILE
CREDIT-MASTER-NEW-FILE
UPDATE-LISTING.
INITIALITATIONS HAVE
SPACES TC PIRST-CARD.
SPACES SECOND=-CARD.
SPACES ACCT~-NUM-MATCH.

SPACES PAIR-VALIDITY.

ZERCES TO ANNUAL-INCOME-WS.

ZERQCEZS ANNUAL-TAX-WS.

ZERQES MONTHLY-NET-INCCHE-WS.
ZERQES MONTHLY~-PAYMENTS-WS.
ZEROQES DISCR=-INCOME-W3.
ZERQES CREDIT-FACTOR.

ZERQES CREDIT-LIMIT-WS.

ZERQES TOTAL~CREDIT~-GIVEN-WS,
‘YES' TO CARDS-LEFT.

BHOVE 'YES' TO NEXT-CARD-THERE.

MOVE 'YES' TOC OLD-MASTER-RECORDS-LEFT.
THE POLLOWIRS
PARAGRAPH,
FIRST LOG RECORD,

QUTPUT

LA R
LR A
LR 2
LR 2 4
LA R
s
LA R J
LR X J
L AR
LR A
LA 2J
v
ead

USELESS
MOVE
MOVE
MOVE
KOVE
MOVE
MOVE
MOVE
MQVE
MOVE
MOVE
HOVE
MOVE
MOVE

L2 J
-
[2]

STATEMENT WAS MOVED HEREZ FROM THE
SO THAT THE HEADIR WOULD BE WRITTEN BEFORE THE
IF THE FIRST CARD PAIR IS INVALID.

BEEN COMMENTED OUT

END OF THE

WRITE PRINT-LINE-QUT FROH LOG-HEADER-WSAl
AFTER ADVANCING 3 LINECS.

READ APPLICATICH-CARDS-FILE
AT END MGVE *NO !

TO NEXT-CARD-THERE.

PERFORA Bl1-GIZIT-A-PAIR-QF-CARDS~INTO-WS THRU Bl-EXIT.

* PIRST PAIR OF CARDS IN WS: FIRST CARD OF

SECOND PAIR IN BUFFER

Appendix A A-30

318
319
322
321
Jz22
323
324
325
326
327
3z

129

364
365
366
367
368
169
370
371
372
373
374
378
176
377
378
379
380
jgl

READ CREDIT-MASTER~QLD~FILE
AT END MOVE 'NO ' TO OLD-MASTER-RECORDS~LEFT.
* FIRST CLD MASTER RECCRD IS IN BUFFER

A2-UPDATE-MASTER.
¢ BEFORE COMPARING THE UPDATE WITH THE MASTER, WE MUST CHECK
* THAT WE HRAVE A VALID PAIR OF CARDS -~ TP YOUR PROGRAM DOES
* NOT MAKE THIS TEST, IT WILL ONLY WORK WITH VALID PAIRS OF
¢ CARDS.
IF PAIR-VALIDITY = 'BAD ‘'
PERFORK Bl1-~-GET-A-PAIR-QF-CARDS~INTO-WS THRU Bl-EXIT
ELSE IF ACCT-NUM-WS IS5 GREATER THAN ACCT-NUM~MAS-OLD
. ACCT-NUM-WS IS CARD ACCOUNT NUMBER
MOVE CREDIT-MASTER-QLD-RECORD TO
CREDIT-XASTER-NEW-RECORD
WRITE CREDIT-MASTER~NEW-RECORD
READ CREDIT-MASTER-OLD~FILE
AT END MOVE °*NQ ' TO OLD~MASTER-RECORDS~LEPT
ELSE IF ACCT-NUM-WS = ACCT-NUM-MAS-QLD
PERFORM BZ-~CHANGE-OR-DELETE-MASTER
PERPORM B1~GET-A-PAIR~OF~CARDS~-INTO-WS THRU Bl-EXIT
READ CREDIT-MASTER-OLD-FILE
AT END MOVE 'NO ' T0O OLD-MASTER-~RECORDS-LEFT

ACCT-NUM-WS IS LESS THAN
. ACCT~NUK-MAS-QLD
PEZRFCRM B3-ADD-NEW-MASTER
PERICRM™ Bl-GET-A-PAIR-OF~-CARDS~INTO-WS THRU Bl-EXIT.

AJ-COPY-REMAINING-CLT-MASTER.
MCVE CREDIT-MASTEIR-OLD-RECORD TO
CREDIT-MASTER~-NEW-RECQRD
WRITE CREDIT-MASTER-NEW-RECORD.
READ CREDIT-MASTER-QLD-FILE
AT END MOVE 'NC ' TO OLD-MASTER-RECORDS-LEFT.

Ad-ACD-REMAINING-CARDS.
IF PAIR-VALIDITY = 'BAD ' NEXT SENTENCE
ELSE PERFCRM D3-ADD-NEW-MASTER,
PERFCRM Bl -GET-A-PAIR-OF-CARDS-INTQ-WS THRU Bl-EXIT.

AT-END-OF-~308B,

CLOSE APPLICATION-CARDS~FILE
CREDIT-MASTER-QOLD-FILE
CREDIT-MASTER-NEW-FILE
UPDATE-LISTING.

Bl-GET-A-PAIR-QP-CARDS~-INTO-WS.
IF NEXT-CARD-THERE m» 'NO °*
HOVE *NO ' TO CARDS-LEPT
GO TO Bl-EXIT.-
PERFCRM Cl-~EDIT-FIRST-CARD.
PERPORA C2-MOVE~FIRST-CARD-TO-WS.
READ APPLICATION-CARDS~FILE INTO CREDIT-INFORMATION-IN
AT END MQVE °*NO ' TO CARDS-LEFT,
HMOVE SPACES TO CREDIT-INFORMATION~IN
ACCT-NUM-MATCH
MOVE 'MONE' TO SECOND-CARD
PERFORM C4-FLUSH-CARDS-TO-ERROR-LINES
GO TO Bl-EXIT.
PEZRPORM CI-EDIT-SECOND-CARD.
I? (FIRST-CARD » 'GOOD')
AND (SECOND-CARD = 'GOOD')
AND (ACCT-NUHM-MATCH = 'GOOD*)

Appendix A A-31

3e2 MOVE °'GOOD' TO PAIR-VALIDITY

183 MOVE CREDIT-INFO-IM TO CREDIT-INPO-WS
gy ELSE

i8s MOVE 'BAD ' TO PAIR-VALIDITY

386 PERFORM CA4-PLUSH-CARDS-TO~-ERROR-LINES.

387 READ APPLICATICN-CARDS-FILE

las AT END MOVE 'NO ' TO NEXT-CARD-~-THERE.

a9

398 Bl1-EXIT. EXIT.

391

392 B¢-CHANGE-OR-DELETE~MASTER.

393 IF CHANGE-CODE-WS = 'CH’

194 PERFORM CS~MERGE-UPDATE-WITH-OLD-MAST

3985 MOVE 'RECORD CHANGED' TO UPDATE~MESSAGE-AREA
396 PERFCRM C6-LOG-ACTION

237 WRITE CREDIT~-MASTER-NEW-RECORD

398 ELSE IF CHANGE-CODE-WS = 'DE?

399 * CHECR IF DELETE IS VALID
400 IF CREDIT-INFO-WS IS EQUAL TO SPACES
401 MOVE 'RECCRD DELETED' TO UPDATE-MESSAGE-AREA
402 PERFORM C6-LOG-ACTION

403 ELSE

404 HMOVE 'REC NOT DELETED' TO UPDATE-MESSAGE~AREA
4C5 MOVE CREDIT-MASTER-OLD-RECORD TO

4Cs6 CREDIT-MASTER~NEW-RECORD

407 PERFORM C6-LOG~ACTICN

408 WRITE CREDIT-MASTER-NEW-RECORD

4C9 ELSE

410 MCVE 'BAD CHANGE CCDE' TC UPDATE~MESSAGE-AREA
411 MOVE CREDIT-MASTER-OLO-RECORD TO CREDIT-MASTER-NEW-RECORD
412 PERFORM C6~LOG-ACTION

413 WRITE CREDIT-MASTER-NEW-RECORD.

414

415 B3I-ADTD-NEW-MASTZR,

316 PERFORM C8-CALC~DISCRETNRY-INCOME,

417 PERFORM C9-CALC-CREDIT-LIMIT.

418 PERFORM Cl0-ASSEMBLE-NEW-MASTER~RECORD.

419 MOVE 'RECORD ADDED * TO UPDATE-MESSAGE-AREA.

420 PERFCRM C6-LOG-ACTION.

421 WRITE CREDIT-MASTER-NEW-RECORD.

42

423 Cl=EQIT=-PIRST-CARD.

424 MOVE 'GOOD' TO PIRST-CARD.

425 IF NAME-IN IS5 EQUAL TO SPACES

426 MOVE '#*%¢ NAME MISSING ***' TO NAME-IN

427 MOVE 'BAD * TO FIRST-CARD.

428 1P ADDRESS-IMN TS EQUAL TO SPACES

429 MOVE '#*+* ADDRESS MISSING ¢*¢' TO ADDRESS-IN
430 MOVE 'BAD ' TO PIRST~CARD.

431 IF PHONE-IN IS EQUAL TO SPACES

432 HMOVE 'NO PHONE **' TO PHONE-IN

413 MOVE 'BAD ' TO PIRST-CARD.

434

435 CI-MOVE-PIRST-CARD-TC~-WS.

436 MOVE NAME~IN TO MAME-WS.

437 MOVE ADDRESS~IN TC ADDRESE-WS.

418 HOVE PHONE-IN TO PHONE-WS.

439 KOVE CHANGE-CODE-IN TO CHANGE-CODE-WS.

440 AOVE ACCT-NUM-IN] TO ACCT-NUM-WS,.

441

442 C3-EDIT-SECOND-~CARD.

443 MOVE °*GOOD' TO SECOMD-CARD.,

444 MOVE *GOOD*' TO ACCT-NUR-MATCH.

445 IF CARD-TYPEZ-IMN IS KOT EQUAL TO ‘C°*

Appendix A A-32

446 HMOVE *'BAD ' TO SECOND-CARD.

447 IF ACCT-NUM-IN2 TS NOT EQUAL TO ACCT-NUM-WS
448 MOVE ‘'BAD ' TO ACCT-NUM-MATCH.

443

450 C4-FLUSH-CARDS-TO-ERROR-LINES.

451 MOVE FIRST-CARD TO PIRST-CARD-ERRI.

352 MOVE NAME-WS TO NAME-ERR].

453 MOVE ADDRESS-wWS TQO ADDRESS-ERR].

454 MOVE PHCONE-WS TO PHONE-ERR!.

455 MOVE ACCT-NUM-WS TO ACCT-NUM-ERR1,

56 MOVE SECOND=CARD TOQ SECOND-CARD-ERRZ2.

45T e MQVE CREDIT-INFO-WS TC CREDIT-INFO-ERRZ.

438 ** THE PREVIOUS LINE WAS IN ERROR (BY A SINGLE MUTATION) IN THE
453 ** PpPUBLISHED PROGRAM, THE CORRECT STATEMENT IS:

450 MOVE CREDIT=-INFO-IN TO CREDIT-INFO-ERR2.

461 IF ACCT-NUM-MATCH = ‘'BAD °*

462 MOVE *ACCOUNT NUMBERS DO NOT MATCH'

4612 TO MESSAGE-ERR-LINE~2

§64 ELSE

4F85 MOQVE SPACES TO MESSAGE-ERR-LINE-2.

¢35 e*+ MOVE SPACES TO PRINT-LINE~-QUT.

4n7 WRITE PRINT=-LINE-QUT FROM CARD-ERROR-LINE1-WS

452 AFTER ADVANCING 3 LINES,

463 e¢e MOVE SPACES TO PRINT-LINE-QUT.

570 WRITE PRINT-LINE-QCUT FRCM CARD-ERROR-LINE2-WS

471 AFTER ADVANCING 1 LINES.

372

473

474 CS5-MERGE-UPDATE-WITH-OLD-MAST.

475 MCVE ACCT-NUM-MAS-OLD TO ACCT-NUM-MAS-NEW.

476 MOVE NAME-AND-AUDRESS-WS TO NAME-AND-ADDRESS-MAS-NEW.

77 MOVE AREA-CCDE-wS TO AREA-CODE-MAS-NEW,

473 PERFORM D!-REMOVE-HYPHEN-PROM-TEL-NUM.

<7% * THE SECOND INPUT CARD HAS CREDIT DATA, IFP THIS HAS TO 3E

580 * UPCATED THEN THE DISCRETIONARY INCOME CALC HAS TO BE RUN

LX-IN IF JREDIT-INFO-~®S IS EQUAL TO SPACES .

422 MOVE CREDIT-INPO-MAS-OLD TO CREDIT-INPO-MAS-NEW

182 MOVE ACCOUNT-INFO-MAS-QOLD TO ACCOUNT-INFO-MAS-NEW

434 ELSE

485 PERFORM C8-CALC-DISCRETNRY-INCOME

4B 6 PERPCRM CO9-CALC~CREDIT-LIMIT

487 MCVE SEX-WS TO SEX-MAS-NEW

488 MOVE MARITAL-STATUS-WS TO MARITAL-STATUS-MAS-NEW
439 MOVE NUMBER-DEPENS-WS TO NUMBER-DEPENS-MAS~NEW

490 MOVE INCOME-HUNDRELCS-WS TO INCOME-HUNDREDS-MAS-NEW
491 MOVE TEARS-EMPLOYED-WS TO YEARS-EMPLOYED-MAS-NEW
432 MOVE (WH-CR-RENT-WS TO OWN-OR-RENT-MAS-NEW

493 MOVE MCAGAGE-QOR-RENTAL-WS TO MORGAGE-~QR-RENTAL-MAS-NEW
424 MOVE OTHER-PAYMENTS-WS TO OTHER=-PAYMENTS~MAS~-NEW
495 MOVE DISCR-INCOMI-KS TO CISCR-INCOME-MAS-NEW

496 HOVE CREDIT-LIMIT-WS TO CREDIT-LIMIT-MAS-NEW.

497 MOVE CURRENT-BALANCE-OWING-0OLD TO CURRENT-BALANCE~QO