
GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT INITIATION

Date: 	May 3, 1979

Project Title: Experimental and Theoretical Research on Program Mutation

Project No:
	G-36-636

Project Director: 	Dr. R. A. DeMillo

Sponsor: Office of Naval Research; Code 613B:WRB; Arlington, VA 22217;
7

Agreement Period: From 3/1/79 Until 2742.44,4„,e.

Type Agreement: Contract No. N00014-79-C-0231 through GTRI.

Amount: 	$99,280.00

. 4483--
1/31/0

•• •

Reports Required: Progress Reports; Final Report

Sponsor Contact Person (s):

Technical Matters

Marvin Denicoff
Director, Information Systems
Program - Code 437

Mathematical & Information Sciences Div.
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Contractual Matters
(thru OCA)

OfficeOf Naval Research
Resident Representative

Georgia Institute of Technology
Room 325, Hinman Research Building
Atlanta, Georgia 30332

Defense. Priority Ratnz: 	un3...r 	Reg. 1

Assigned to: 	I e at i n & Ce7c..-tter Science (School/Laboratory)

COPIES TO

Project Director

Division Chief EES)

Scho-:., ilLaboratory Director

Dean/Director—EES

Accounting Office

Procure rent O'fice

Security Coordinator (OCA)

Repo77s Cuoidinator tOCA)

Library, Technical Reports Section

EES Information Office

EES Reports & Procedures

Project File (OCA)

Project Code IGTRI)

Other

CA-3

GErGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date 	May 11, 1984

Project No. G-36-636 School/Da 	ICS

Includes Subproject No.(s) 	

Project Director(s) 	 Dr. R.A. DeMillo

Sponsor 	 Office of Naval Research

Title 	 "Experimental and Theoretical Research on Program Mutation"

GTRI / ratx

Effective Completion Date: 	 1/31/84
	

(Performance)
	

1/31/84 	(Reports)

Grant/Contract Closeout Actions Remaining:

None

Final Invoice or Final Fiscal Report

Closing Documents

Final Report of inventions

Govt. Property Inventory & Related Certificate

Classified Nlater.a! Certificate

T-7 Other

Continues Project No. 	 Continued by Project No.

COPIES TO:

x I

G-36-661

Project Director 	 Library

Research Administrative Network 	 GTRI

Research Property Management 	 Research Communications (2)

Accounting 	 Project File

Procurement/EES Supply Services 	 Other

Research Security__ Services

Reports Coordinator (OCA) -)

Legal Services

Form OCA 60 1028

Program Mutation:
 An Approach to Software Testing

Richard A. DeMillo
School of Information and Computer Science

Georgia Institute of Technology

Program Mutation: An Approach to Software Testing

Table of Contents

Chapter
	

Page

1. Testing for Correctness
	

1— 1

Computability and Programming Systems 	 1— 1
The Programming Model 	 1— 4
Deductive and Inductive Inferences 	 1— 6
Reliability of Test Data 	 1-12
Adequacy and its Measurement 	 1-20
Bibliographic Notes 	 1-35

2. Errors and Mutations 	 2— 1

The Competent Programmer Assumption 	 2— 1
Error Classification 	 2— 6
Mutant Operators 	 2-11
Procedure for Developing Adequate Test Data 	2-21
Error Coupling 	 2-22
Bibliographic Notes 	 2-32

3. Theoretical Studies 	 3— 1

Decision Tables 	 3— 2
Lisp Programs 	 3-11
Bibliographic Notes 	 3-29

4. A Mutation Analyzer 	 4— 1

System Overview 	 4— 2
A Mutation Analyzer for Cobol 	 4-11
Internal Form Specifications 	 4-22
Processing Algorithms 	 4-34
A Testing Session 	 4-42
Bibliographic Notes 	 4-52

5. The Complexity of Program Mutation 	 5— 1

Estimating iµ(P)1 	 5— 1
Mutant Instability 	 5— 7
Reducing Complexity by Sampling 	 5— 9
Efficiency and Redundancy in Operators 	 5-12
Bibliographic Notes 	 5-18

Program Mutation: An Approach to Software Testing

Table of Contents

Chapter 	 Page

6. Further Experimental Studies 	 6— 1

Beat the System Experiments 	 6— 2
Experiments on the Coupling Effect 	 6-10
Uncoupled Errors 	 6-16
Coupling and Complexity Measures 	 6-17
Bibliographic Notes 	 6-21

7. Mutant Equivalence 	 7— 1

Human Evaluation of Equivalence 	 7— 3
Automated Equivalence Checking 	 7— 6
Bibliographic Notes 	 7-13

8. Error Detection 	 8— 1

Simple Errors 	 8— 1
Dead Statements 	 8— 2
Dead Branches 	 8— 3
Data Flow Errors 	 8— 6
Domain Errors 	 8— 8
Special Values 	 8-18
Coincidental Correctness 	 8-19
Missing Path Errors 	 8-22
Missing Statement Errors 	 8-25
Bibliographic Notes 	 8-27

9. Field Studies 	 9— 1

Mutation on Mutation 	 9— 2
Testing Operational Software 	 9-22

Appendix A
	

A— 1
Appendix B
	

B— 1
Appendix C
	

C— 1
Appendix D
	

D— 1

Bibliography 	 Bibliography— 1

Testing for Correctness 	 1-1

Chapter 1

Testing for Correctness

Computability and Programming Systems

Turing Machines. 	We will assume familiarity with elementary

computability theory. A Turing machine decides or solves a com-

putational problem in the following way: when the machine is

presented an input x, the machine eventually halts and either

accepts or rejects the input. We say that a decision problem is

solvable (or, equivalently, a predicate is decidable) if there is a

Turing 	machine which accepts exactly those inputs which are

solutions to the decision problem and rejects all others. 	Such a

machine is said to be a decision procedure. A problem is said to be

unsolvable if no decision procedure exists.

During its operation, a Turing machine carries out a number of

basic operations (e.g., moving its read/write heads). The basic

operations are called steps. If a Turing machine on input x carries

out m basic operations and enters a halt state, the machine is said

to have halted after exactly m steps.

We assume some canonical indexing of Turing machines. That is,

an effective procedure whereby the ith Turing machine can be listed,

for all i 2 0. This indexing is fixed throughout.

Testing for Correctness 	 1-2

The Kleene T—predicate is the predicate T(i,j,k) which is true

exactly when the ith Turing machine (in the canonical listing of

Turing machines), when given input j, halts in exactly k steps. The

halting problem for Turing machines is the problem of deciding the

truth of the the predicate (3 x)(T(i.j,x)). The halting problem is

unsolvable. The fundamental technique for showing that a problem is

unsolvable will be to reduce the halting problem (or some other

problem known to be unsolvable) to the problem in question. In

general terms, such a proof involves showing how an aribtary

instance of the halting problem can be transformed or reduced to an

instance of the problem which is to be shown unsolvable in such a

way that the Turing machine halts (or fails to halt) exactly when

the transformed instance is a solution to the problem. The argument

then proceeds as follows. If the problem is solvable, then the hal-

ting problem can be solved by applying the transformation to its

instarces and using the (assumed) decision procedure. Since this

contradicts the unsolvability of the halting problem, the problem in

question must also be unsolvable.

A Turing machine may also function as a transducer. 	That is,

given an input x such that T(i,x,k), the ith Turing machine will

write onto a designated portion of one of its tapes a value y. The

function f determined by f(x) = y is said to be computed by the ith

Turing machine. A function which is computed by some Turing machine

is said to be computable.

An oracle Turing machine contains designated query states. 	In

a query state, the machine submits a fixed value x to an oracle. If

the oracle is for a function f, in one step the machine will respond

Testing for Correctness 	 1-3

to the query with f(x). Notice that the oracle f need not be com-

putable. The canonical indexing can be modified to include all

oracle machines.

Programming Systems. 	Any model of effective computation is

called a programming. system. In a programming system, it is pos-

sible to construct representations for algorithms; each such

representation is said to be a program. We identify a programming

system P with the set of programs it defines. It is not necessary

that a programming system be universal, only that all programs be

effective. We will usually identify a programming system with the

set of programs that can be written in the system. Thus examples of

programming systems are the set of Markov algorithms, the set of

straightline programs which compute polynomials of some fixed

degree, the set of linear recursive programs schemes, and the set of

syntactically correct APL programs.

We assume that each program in a programming system presented

in a uniform way, (and, like Turing machines, can be uniformly

indexed) and that each program is defined on an input space, D. The

programming system defines a method of interpreting programs. If a

program P e P is started on an input x e D, the semantics of the

programming system defines the manner in which values are assigned

to input variables, machine states are altered and output is

delivered. Since the input spaces of programming systems vary, we

will assume that each input space D can be coded in a natural way

into the nonnegative integers N.

Testing for Correctness 	 1-4

Let P be a programming system. 	To each P in P, there

corresponds a computable function P* . The correspondence is as

follows: for each x a D we determine the n(x) e N that encodes x,

and execute P on x to obtain an output y; then P*(n(x))=n(y). We

sometimes extend this notation to P: P* = (P*IPeP).

The equivalence problem for a programming system P is the fol-

lowing decision problem. Given programs P,Q e P determine whether

or not for all x e D, P*(x) = Q*(x).

The Programming Model

The testing theory described here differs from most theoretical

studies in that we make some assumptions about how programs (in a

programming system) are produced.

We assume that the intended behavior of a program is given by a

function f -- the specification. In practice, describing f is very

difficult, perhaps as difficult as programming itself. 	For our

purposes, 	however, we need only assume that some functional

specification exists and it is that function which is to be

implemented by the programmer.

The programming task itself resembles a root—finding procedure.

Testing for Correctness 	 1-5

produce

initial program

P

c)?\

modify P

done
L

Figure 1.

The Iterative Programming Process

The initial program produced in Figure 1 corresponds to the

initial guess of a root—finding procedure. During the initial

iterations, the fact that the program at hand does not satisfy the

specification will be obvious (e.g., the program is syntactically

incorrect or has a run—time error). During later iterations,

however, the pe=f test is carried out by direct comparison of the

current version of P with f.

In the case that f is uniformly presented -- for example, by a

predicate calculus formula -- the direct comparison may take the

form of a proof of correctness. In the situation encountered most

frequently in practice, however, f is not uniformly presented.

Testing for Correctness 	 1-6

Rather, the programmer has available a number of instances of f of

the form (x,f(x)). In this case, the determination of whether or

not P* = f is made by observing a finite number of executions of P

on instances of f. Since we want the theoretical development to be

independent of any specific implementation of testing procedures, we

will not distinguish these alternatives. Rather, we assume the

existence of an oracle for f, i.e., a device for supplying instances

of the form (x, f(x)) for finitely many x e D.

A finite subset of D for which values of f are available is

said to be a test set for P and f. Conceptually, f is an oracle for

a procedure which executes P on an input x, queries f and checks

P*(x) = f(x).

Deductive and Inductive Inferences

We let P be an arbitrary but fixed programming system. We are

interested in testing a program P with specification f during the

interative process of producing a correct program.

Definition: P is correct with respect to a specification f if

P*(D) = f(D). If P is correct with respect to f, the P is said to

compute f.

A natural requirement for a test set that is useful in

determining program correctness is that execution of the program on

the test set should demonstrate the correctness of the program. Not

every test set carries the same weight in demonstrating correctness.

The testing process itself can be described by a rule of inference:

Testing for Correctness 	 1-7

P*(a1)=f(a1) A P*(a2)=C(a2) A ... A P (a n)=f(ad A ...

P*(D) = f(D)

That is, from the observations P*(a) = f(ai), the tester wishes to

infer the generalization YxeD P*(x) = f(x). Clearly, if the values

ai run through all of D, the inference is deductively valid. But,

in general, D is either infinite or large enough to make such

procedure impractical.

Another way to view such an inference is in the context of an

experiment. 	To establish the truth of the conclusion, the tester

looks for confirming instances of the form P*(a)=f(a). 	If an

experiment ever results in a value b such that P*(b) # f(b), then P

is not correct, and the experiment has rejected the conclusion. On

the other hand, the existence of a confirming instance does not

guarantee correctness: there might be an undiscovered experiment

that will show that P is incorrect. So the question arises: when

does the tester stop experimenting and infer the correctness of P?

In order to insure objective standards for testing P, these con-

ditions should be stated in general terms as a stopping rule. We

distinguish two forms of inference allowed by such rules. Suppose

that a stopping rule R for a program P results in a set of values

R(P) and experimental trials P*(x)=f(x) for x s R(P).

Deductive Fora: From R(P) to infer that P is correct

Testing for Correctness 	 1-8

Inductive Fora: 	From R(P) to infer that P is correct with

probability S.

Beyond the observation that the stopping rule should be useful

in making either deductive or inductive inferences of this form, it

is not at all clear what other properties stopping rules should

have. 	Typical naive stopping rules (e.g., make voluminous tests,

make tricky tests) have limited effectiveness. 	Useful rules are

based on the following principle: the stopping rule should force

the tester to produce a strong set of confirming instances. The

notion of strong and weak confirming instances is particularly

important in the context of testing program correctness since by

simply compiling a finite table t(a i ,f(a i)] ().Ki.Kn), a program can be

easily modified to give correct output on a finite set of test

cases.

To see the underlying problem in assessing the strength of con-

firming instances, consider the following thought experiment. By

experimental observation, we are to determine whether or not

WA(x) 	B(x)) 	 (1)

is true. This entails finding confirming instances x such that A(x)

is true and checking to see that B(x) also holds. But (1) is

logically eauivalent to

Vx(-T(x) 4 -, A(x). 	 (2)

Therefore, another experiment to check the validity of (1) might

entail finding confirming instances y such that B(y) fails and chec-

king to see that A(y) also fails. The problem is that strong con-

Testing for Correctness 	 1-9

firming instances of (2) need not be strong confirming instances of

(1). Suppose, for example, that (1) is the statement

"All ravens are black"

Then (2) states,

"All non—black objects are non—ravens."

Thus, while an experiment to verify (1) involves finding ravens and

checking their colors, an experiment to verify (2) need not involve

ravens at all. Strong confirming instances of (2) can be red shoes

or gray walls, and such observations, while supporting a logically

equivalent proposition, should provide no rational support for

proposition (1).

To insure that the stopping rules which guide testing provide

strong confirming instances of correctness, a number of pos-

sibilities have been suggested.

Input Space Partitioning: A path through a program P is a

seenence of computations that correspond to a possible flow of

control through the program. If a program contains loops, then

differing numbers of iterations through loops give rise to different

paths. It is possible to associate with every path n a subset D
n o

f

D which causes that path to be executed. Thus, P* can be decomposed

into a set of functions P*
n' where n runs through all paths in P,

and the correctness of P can be determined by testing whether or not

P* n = fn' where f n represents the specification for the path n.

Testing for Correctness 	 1-10

Consider a programming system P in which each program P satis-

fies the following condition: for each pair of paths no, ni ,

 Ps ir0 (x) 0 P* n 1 (x), for all x a D. Suppose that we have obtained a

stopping rule for each of the (possibly infinitely many) Pn and that

we can infer the correctness of each of them from the tests. Then

we can use these tests to infer the correctness of programs in P if

and only if P*ODn) = fn (DIT), for all paths n implies that 13* = f.

This latter condition is equivalent to requiring that domain of f ir

 and D
n be disjoint for all paths n, i.e., the path domains D n

 partition the domain D and the selection of points on which an

incorrect program fails can be made randomly from the partitions.

Since the number of distinct paths in a program can be infinite

the conditions given above are not particularly useful. On the

other hand, it may be possible to choose a subset of all paths for

consideration which is sensitive enough to guarantee that the

inference can be made with a high degree of confidence. For exam-

ple, the set of paths to be tested may involve only single

iterations of loops and all non—looping paths.

Random Testing: Suppose that D is supplied with a probability

distribution and that p(x) is the probability that P*(x) # f(x),

when x is chosen according to this distribution. Since p can be

expected to converge to the failure rate when P is executed on x a D

chosen according to the given distribution, we wish to derive a

stopping rule which gives an indication of whether p = 0, after n

tests. One way to derive an appropriate value of n is to calculate

a quantity q based on the results of the tests so that q is greater

than p with probability 1—a. If n tests are carried out and k

Testing for Correctness 	 1-11

instances x such that P*(x) # f(x) are observed, then q is the lar-

gest value of r such that

2 (i)r i(i-r)n-i > a.

i=0

Therefore, in a testing experiment, if no errors are observed

q = 1—a1 i n .

The testing experiment, then, is to set the statistical limits on

the confidence desired from the test (i.e., 1—a) and derive the

appropriate value for n. Checking correctness on the random domain

elements completes the test and allows the inference of correctness

to be made.

If D is partitioned into m subsets D l , ...Dm , then it may be

possible to assess the probability d i that a random x e D is in D i

-For example, if the Di are path partitions and the paths correspond

to functions that the program is to carry out, each function being

selected with known distribution then d. is simply the probability

that the ith function is selected. Similarly, if p i is the failure

rate for the ith function determined by D i , we have:

m

P = 2dip i .

i=1

Now, consider an experiment in which D is partitioned and for each

Di P*i(x) = fi(x), where f i is the specification for the ith

partition, for a random choice of x. 	Then regardless of the

Testing for Correctness 	 1-12

distribution of the d I
Si i

1 — al/ n
.

In this way a simple stopping rule can be used to give an inductive

inference of correctness.

Reliability of Test Data

The point of these techniques is to insure that the test set

chosen allows the inference of correctness to be made with a high

degree of confidence. However the test set is chosen, it should

allow such an inference. Two versions of a stopping rule which are

useful for such an inference are obvious generalizations of the

rules given in the examples above.

Deductive Stopping Rule: Choose a set of test data so that

correct performance on the test data implies correctness.

Inductive Stopping Rule: 	Choose a set of test data so that

correct performance on the test data implies correctness with

probability 1 —p.

The first version provides a convenient characterization of

test data which is strong enough to allow a valid inference of

correctness.

Testing for Correctness 	 1-13

Definition: 	A test set T is reliable for a program P and

specification f if P*(T) = f(T) implies that P computes f.

Suppose that T is a reliable test set. If P*(T) = f(T), then

by definition P is correct. On the other hand, if P* = f, then

P*(T) = f(T) for any subset of D. Thus, if a test set T is reliable

for P and f, then P*(T) = f(T) if and only if P is correct. In

essence, reliability of test data restates program correctness. For

example, a proof that T is reliable for a correct program is by

definition a proof of correctness. Unlike pure correctness proofs,

finding a reliable test set for an incorrect program involves locat-

ing a program error, since P* and f must differ on at least one

point of a reliable test set.

Theorem 1: For any P,f there is a reliable test set.

Proof: If P computes f then any test set will do. If P does

not compute f, let x e D be any point for which P*(x) # f(x).

Clearly T= {x} is reliable.

Given a program P to be tested, two related problems arise. On

one hand we may be called upon to judge from available evidence

whether or not P is correct. On the other hand, we may be called

upon to produce evidence that is certain to convince such a judge.

If the acceptance criteria is the existence of a reliable test set,

the problems reduce to the following. Since P is correct exactly

when it performs correctly on a reliable test set, a proof that T is

reliable for P is a proof of correctness for P, provided only

P*(T)=f(T). By the same token, a mechanical way of producing

Testing for Correctness 	 1-14

reliable test sets, implicitly provides mechanical proofs of correc-

tness. Since every program has a reliable test set, procedures to

prove that a test set is reliable and to generate reliable test sets

are possible.

Definition : The decision problem for reliable test sets is to

determine for program P, test set T, and specification f whether or

not T is reliable for P and f.

Definition : 	Let G be a mapping from program—specification

pairs to finite subsets of D. G is said to be a reliable test

strategy if G(P,f) is reliable for P and f.

In referring to the decision problem for reliability and

reliable test strategies we will not mention the underlying program-

ming system or the specification when there is no danger of con-

fusion. Thus, we will often refer to a test strategy for P, when

the specification is clear from context.

A decision procedure for reliable test sets consists of a Tur-

ing machine with oracle f. P is encoded into the input alphabet of

the machine (using, for example, the indexing function of oracle

machines). When presented with P and an encoding of T, the

procedure either accepts or rejects T.

Theorem 2: Assume that the decision problem for reliable test

sets is solvable. Then there is a computable reliable test

strategy.

Testing for Correctness 	 1-15

Proof: Let Ti ED consist of the first i elements of D under

some effective ordering of D. By Theorem 1, there is a reliable

test set for any (P,f), and any test containing it is also reliable.

Thus, for some reliable. The test strategy simply

generates T0, T1 , ..• at each stage testing to see whether or not

the test set so far generated is reliable for (P,f). I]

Theorem 3: If a programming system has a computable reliable

test strategy, then the corresponding decision problem for reliable

test sets is solvable.

Proof: Assume a reliable test strategy G. We decide whether

or not T is reliable as follows. Given (P,f), we first produce a

reliable test set G(P,f). By definition, if P*(G(P,f))=f(G(P,f)),

then P is correct and so every test set is reliable. The decision

procedure thus should accept T as reliable. 	Suppose P*(G(P,f))

f(G(P,f)). Since P is not correct, T is reliable exactly when P*(T)

f(T). Since the process of checking P*(x)=f(x) for finitely many

values of x can be carried out by a Turing machine which simulates P

and queries an oracle for f, this procedure is a decision

procedure.Il

Notice that the decision procedure above, does not really use

any information about T when P is correct. This is simply a

consequence of the fact that reliable test sets do not demonstrate

correctness in any meaningful way. Indeed, if we have any indepen-

dent proof that P is correct, then we can choose T as we please --

as a source of evidence to a third party who must be convinced of

P's correctness this is not very satisfying. Furthermore, since the

Testing for Correctness 	 1-16

decision problem is equivalent by this argument to the decision

problem for a powerful system of logic (e.g., the logic used to

prove that P is correct), we would expect on intuitive grounds that

the decision problem for reliability is, in general, unsolvable.

Theorem 4: There are classes of programs which have neither

solvable decision problems nor computable test strategies.

Proof: 	Consider the following programming system P = (P.1

i4). Each program P i is defined by the following specification:

0, if i=0

0, if DO, and x # i

1, if i>0, and x = i

It is easy to see that, since Pi gives output 1 only when given its

own index as input, P * i = P*i exactly when i=j. It follows from

this observation that the equivalence problem for P is solvable.

We claim that there is no computable test strategy for P. Sup-

pose otherwise. A strategy G for (P0,f0) queries f0 a finite number

of times and halts with some reliable T. 	Let i be an integer

greater than any element of T and any element involved in a query

for fo. Then G(P0, f i) = T. 	Clearly T is not reliable for

(po j i)), contradicting our choice of G.

By Theorem 2, the existence of a decision procedure for

reliable test sets would also produce a computable test strategy, so

the decision problem for reliable test sets is also unsolvable for

P.[]

Testing for Correctness 	 1-18

compiler certification) the expense of constructing a specification—

sensitive device is justified by the number of programs which will

be validated. Thus the non—uniform problem may be of interest.

Definition 	Let the specification f be fixed and let P be a

programming system. The f—decision problem for reliability in P is

the problem of deciding, given p e P and test set T, whether or not

T is reliable for P,f.

Definition : Let the specification f be fixed and let P be a

programming system. 	An f—reliable test strategy is a mapping Gf

from P to finite subsets of D such that, for each P e P, G
f
(p) i s

 reliable for P and f.

The proof of the following theorem is nearly identical to the

uniform case, and we omit it here.

Theorem 6: Let P be a programming system and let f be a

specification. Then P has an f—decision procedure for reliability

if and only if P has a reliable test strategy Gf.

Furthermore, just as in the uniform case, we can effectively

obtain a test strategy from any f—decision procedure and conversely.

The equivalence problem for P also has the same relevance for

the non—uniform problems, provided that we limit specifications to

functions that are actually computed by some program in the program-

ming system.

Testing for Correctness 	 1-19

Theorem 7: 	If a programming system, P, has a decidable

equivalence problem then its f—decision problem for reliability is

solvable for each f e P*.

Proof: Let f be a specification in P*. Then some program Po a

 P computes f. Since we are dealing here with the non—uniform

decision problem, no procedure for determining Po needs to be sup-

plied. To decide whether T is reliable for P and f, we will use the

decision procedure for equivalence: decide whether or not P = P 0
,

If so, then P is correct and T is therefore reliable. If P 0 Po'

test P against specification f = P o *, If P*(T) = f(T), then since T

does not contain a point on which P fails, it is not reliable. On

the other hand, if P*(T) 0 f(T), then T is clearly reliable.[]

Not surprisingly (given Theorem 7), the ability to decide

equivalence also gives enough power to compute a non—uniform test

strategy. The proof of this fact follows closely constructions we

have seen already, so we will not reproduce it here.

Theorem 8: 	If a programming system, P, has a decidable

equivalence problem, then for each f e P*, there is a computable

f—test strategy.

It might be hoped that restricting the decision or strategy

problems to the non—uniform cases will make them easier.

Unfortunately, reliability is such a strong property that, even in

the non—uniform case, the decision (and hence the test strategy)

problem is formally as hard as testing equivalence in the program-

ming system.

Testing for Correctness 	 1-20

Theorem 9: Let f e P* and suppose that P computes f. If some

f—test strategy is computable, then the problem of deciding

equivalence to P is solvable for all programs in P.

Proof: Suppose that G
f is a reliable test strategy. Let T =

Gf
If Q*(T) = P*(T) = f(T), then, since T is reliable, Q* = f

P*. On the other hand, if Q*(T) # f(T), then P # Q. Therefore, to

decide equivalence to P generate T and run the test for Q on T with

specification r*-1. The result of the test is the result of the

decision procedure.[]

Adequacy and its Measurement

Our first goal is to find a stopping rule which is as useful as

reliability in inferring correctness, but which is also useful as

evidence that a program is correct. Recall that the chief defect of

reliability is that, if a program is correct, a reliable test set

does not have to make any case at all for correctness. Our strategy

will be to require that a test set provide an "explanation" of why

the program is believed to be correct. For adequate test sets, this

explanation simply states that the program is not incorrect and

demonstrates this conclusion with test cases causing incorrect

programs to fail but on which the original program does not fail.

Definition: Let f be a specification with domain of definition

D for a program P (which may not be correct). A set of test data T

is adequate for P with respect f if (a) P*(T) = f(T), and (b) for

all programs 0 such that 0*(D) A f(D), Q*(T) A f(T).

Testing for Correctness 	 1-21

In other words, T is adequate for P if P behaves correctly on T

and all incorrect programs behave incorrectly on at least one

element of T. Notice that the definition of adequacy incorporates

correct execution on the test set as part of the definition while

reliability does not. This makes comparisons between reliability

and adequacy somewhat awkward. If T is adequate, then it is a sim-

ple conseouence of the definitions that T is also reliable. On the

other hand, suppose that P is correct. Then T = If is reliable but

not adequate. On the other hand, if P is incorrect, then it has no

adequate test set, but it always has a reliable test set. Most of

the theoretical developments based on adequacy can be are left

intact if we use only part (b) of the definition. However, the goal

of testing based on adequacy and related notions is to infer correc-

tness. The usefulness of the process of deriving adequate test sets

in revealing errors in incorrect programs is incorporated into

experimenal implications of the theory.

Theorem 10: If T is adequate (for P), then T is reliable, but

not conversely.

Recall from the previous section that reliable test sets always

exist. 	Adequate test sets, on the other hand, must distinguish a

program from a possibly infinite set of incorrect programs. 	Since

this may require infinitely many test points, we cannot guarantee

adequate test sets always exist even for correct programs.

Theorem 11: There are programming systems P such that for any

program P c P, and any (finite) test set T, there is a function f

such that P*(T)=f(T) but P*(x) # f(x) for all x e D—T.

Testing for Correctness 	 1-22

Proof: Consider the set of straightline programs that compute

polynomials. Let P be such a program and let f=P* be a polynomial

of degree d. If T is any finite set, there is a program Q and

polynomial g=0* of degree d' > d such that f(T)=g(T) but f and g

disagree on all points not in T. [1

Notice that although T is reliable for P and f, it is reliable

for neither (P,g) nor (Q,f), even though all agree on T.

Corollary: Let P be a set of straightline programs to evaluate

polynomials. Then no program in P has an adequate test set for the

specifications in P*.

Proof: The proof of Theorem 11 gives an example of a program

which for every finite test set agrees with an incorrect program.

So far, we have been dealing exclusively with the deductive

form of the inference problem. There is a probabilistic algorithm

for the set of programs in Theorem 11. Denote byinkm,d) the class

of m variable nonzero polynomials of degree d. Notice that the

problem of determining whether or not P* = f can be turned into a

problem about zeroes of polynomials by checking P*-f = Q. Define

p(m,d,r) to be

min ProbI 1Kx1Kr, f(xl,...,xm) # 01

where the minimum is taken over all f 	 We derive a lower

bound on P = p(m,d,r) to get an upper bound 1-p on the error in

selecting a random point from the m-cube. 	The procedure is then

Testing for Correctness 	 1-23

iterated t times to obtain an error probability of (1-p)t. Since a

polynomial of degree d has at most d roots, ignoring multiplicity,

the largest probability of finding a root must be at least the

probability of finding a root by random sampling in the interval

1Kx1Kr, and hence p(l,d,r) 2 1-d/r. 	Now, consider some f aTT.

There are polynomials fgoi<d such that

d

f(x1,...xm ,y) = 2 gi (x, , 	xm)yi•
1=0

Suppose that gk e T. Then we have:

Prob{1<xi r, f(x l ,,,,, x,y) 	0} 2

Probig k (xl 	xm) 	0, y not a root)

p(m,d,r)(1-d/r).

Continuing inductively gives

p(m,d,r) 	(1-dir) m ,

and

lim (1-dir) m = exp(-dm/r)

Thus, for large m and r=dm, we have p(m,d,dm) > 	Therefore,

with t evaluations of f for independent choices from the m-cube with

sides r, a (finite) test set can be constructed which is adequate

with probability (1-e-1)t.

Testing for Correctness 	 1-24

In the previous section, we examined the problem of deciding

whether Or not a test set is reliable and generating reliable test

sets. We have the same interest in deciding test data adequacy and

generating adequate test sets, if they exist. The definitions adapt

readily to our purpose.

Definition: 	Let P be a programming system. The decision

problem for adequacy in P is the problem of determining for a

program P c P, a specification f and test set T, whether or not T is

adequate for P,f.

Theorem 12: 	There is a programming system P such that the

decision problem for adequacy in P is unsolvable.

Proof: We define a programming system P = (P.1 i 	0) as fol-

lows.

0 , if i=0

1, if i>0 and T(i,i,x)

0, if i>0 and 'T(i,i,x)

Notice that for all values of i, Pyx) is defined for all values of

x. 	P .
1 is the constant zero if and only if the ith Turing machine

fails to halt on all inputs, so the problem of deciding equivalence

to Po is unsolvable.

We claim that an adequate test set exists for P and P* just in

case P I Po. Suppose P*(x) = 1 and suppose that Q*(x) = 1. Then Q

and P both give the results of simulating some ith Turing machine

for exactly x steps and must be equivalent. Thus {30 is an adequate

Testing for Correctness 	 1-25

test set. If P* is the constant zero function then there is no

finite adequate test set since for every m there is a machine which

halts on its index in more than m steps. 	Therefore, an adequate

test set for Pi exists if and only if P* i is not identically zero,

that is, p i is not equivalent to Po. But equivalence to P o is

undecidable, so the problem of deciding whether Pi has an adequate

test set must be unsolvable. [1

Thus, two problems arise in connection with test data adequacy.

First, adequate test sets need not exist. Second, as with

reliability, adequacy is a deductive concept, and by virtue of this

fact has an unsolvable decision problem. We would like to weaken

the notion of adequacy slightly in order to remove both defects.

The discussion following Theorem 11 provides some clues as to how

this might be done. We would like a property of test sets that

allows an inductive inference of correctness, preferably one that

can be carried out with a fixed a priori probability of error. In

practice, the probability of error may be determined by obser-

vations; in such situations, the inference of correctness will be a

statistical inference whose strength depends on the strength of a

fixed set of empirical observations.

Definition: Let f be a specification with domain D, let P be a

program and let A be a set of programs (possibly depending on P). A

set of test data T is adequate relative to A (with respect to f) if

(a) P*(T) = f(T), and (b) for all programs Q e A, if Q*(D) 0 f(D),

then Q*(T) # f(T).

Testing for Correctness 	 1-26

Thus, a set of test data is adequate for a program F relative

to A if the data distinguishes P from all incorrect programs in A.

That adequacy relative to A is formally weaker than either

adequacy or reliability is established by the following Theorem.

Theorem 13: If T is adequate for P relative to A, then either

T is reliable or P t A.

Proof: Let T be adequate relative to A and suppose that T is

not reliable. Then P*(D) # f(D). But for all Q e A, if Q is not

correct, then Q*(T) # f(T). Since P*(T) = f(T), P cannot be in A.[]

For example, A might represent a certain set of errors which

are likely to be introduced into P. Then the existence of a test

set T adequate relative to A demonstrates one of two things. Either

P is correct (i.e., T is reliable) or P does not contain an A—type

error. This property of relative adequacy fits nicely into induc-

tive inferences. Suppose that P e A with probability 1-6. Then if

P has a test set T adequate relative to A, the probability that P

subsequently fails is at most 6 (if T is reliable then P fails with

probability 0, and if P is not correct, then it is not in A, an

event of probability 6).

Therefore, if a set A can be found (or generated) which is

extensive enough to insure that 6 is small, the inductive inference

can be made with a well—defined level of confidence.

Testing for Correctness 	 1-27

Unlike adequacy,relative adequacy requires only "alternatives"

in A be considered. If A has a particularly simple structure, then

the problem of distinguishing P from A might be considerably easier

than the problem of distinguishing P from all programs in the

programming system. At this point, it is not at all clear what sim-

ple structure can be imposed upon A. However, two possibilities are

likely candidates. The first is to require that A have a decidable

equivalence problem. The second is to require that A be finite.

Definition: 	The decision problem for relative adequacy is the

problem of determining for program P, subset A(P) of the programming

system, and test set T, whether or not T is adequate relative to

A(P).

Definition: 	Let G be a function that for program P, subset

A(P) of the programming system, and specification f, defines T =

G(P,A(P),f) D. If all such T are adequate relative to A(P), then

the function G is said to be an adequate test strategy (relative to

A(P)).

If A = P, then adequacy relative to A is simply adequacy.

Therefore, it is possible that relatively adequate test sets do not

exist, and a computable test strategy may be only a partial func-

tion.

Theorem 14: Assume that A a: P, that every program in P has an

adequate (relative to A) test set and that there is a decision

procedure for adequacy relative to A for P. Then there is a com-

Testing for Correctness 	 1-28

putable adequate test strategy for all programs in P.

Proof: 	As in the proof of Theorem 2, consider any decision

procedure for relative adequacy. Given P, A and a specification, a

test strategy simply enumerates subsets of D, deciding for each sub-

set whether or not it it adequate relative to A. If a relatively

adequate test set exists, the enumeration procedure will eventually

discover a test set containing it, and output that set as the result

of the strategy.[]

However, the converse does not hold

Theorem 15: 	The existence of a (total) computable adequate

test strategy does not imply that the decision problem for adequacy

is solvable.

Proof: Define a programming system P = (Pij(0.-“,j) as follows.

"i0 is the function that is i on input 0 and 0 otherwise. For all

j > 0 let P ij compute the function P*ij defined below:

i, if x = 0,

j, if x=1,

p*.. (x) = 0, if x=2, 	and T(i,i,j),

1, if x=2 and

0, if x>2.

For each Pij.., let A = A(P..) be the set of programs [Pik: k ij

0). 	Since {OW distinguishes any two programs in A, (0,1) is

adequate relative to A. Hence the strategy that produces OM is

Testing for Correctness 	 1-29

adequate and is clearly computable.

To show that adequacy relative to A is undecidable, notice that

if the ith Turing machine halts in k steps, then P*ik(2) =0, and the

test set {2} fails to distinguish P
10 and 	But But P*A(1) #

p* iic (1). 	If the ith Turing machine fails to halt on input i, then

for all m, Ps im(2) = 1 and {2} is adequate for P io . 	Suppose there

is a decision procedure. Then the procedure announces that {2} is

adequate relative to A for P io iff the ith Turing machine fails to

halt on input i. [1

Corollary: 	There are programming systems with a decidable

equivalence problem and for which every program has an adequate test

set for which adequacy is not decidable.

Proof: Since the equivalence problem for the programming

system P constructed above is decidable, the corollary follows

immediately.[]

Theorem 16: There are programming systems with a decidable

equivalence problem and for which adequate test sets exist for each

program that do not have a computable adequate test strategy.

Proof: Let P = {P ij I0 S i,j} be a programming system defined

as follows. For each i,j, define

1"..(x) = 1 3 1, if 0<xKj and T(i,i,x)

0, otherwise.

Testing for Correctness 	 1-30

By construction, P ij = pkm exactly when i=k and 	 where

min(j,m) < n < max(j,m). Clearly equivalence is decidable.

Choose A(Pij) = [Pim : m Z 0). For given i, if the ith Turing

machine fails to halt on input i, then all elements of A compute the

same function, and so any nonempty test set is adequate for Pij

relative to A. On the other hand, if T(i,i,m), then (0,m) is

adequate. 	Thus, each program, P, has an adequate test set relative

to A(P). 	Assume that a computable strategy, GA, exists, and

consider GA (F ij)• 	The ith Turing machine halts on input i iff it

halts at the mth step, for some m in GA(pii). Since test sets are

finite, this is impossible. Ll

Therefore, there are some very bad choices for A, indeed. Even

assuming that A has a decidable equivalence problem does not improve

the situation much. Vie will now examine the effects of requiring

only that A be finite.

Definition: Let P be a programming system. For each program

P, let p(P) be a finite subset of P. Assume further that p is com-

putable in the sense that there is an effective procedure that lists

p(P) for all P. p(P) is said to be a set of mutants of P.

Theorem 17: Every correct program has a test set adequate

relative to p(P).

Proof: 	There are only finitely many programs Q in p(P) and

each such Q is either correct or not. If f(x) = P*(x) A 0(x), add x

to the test set. Only finitely many points need be added to obtain

Testing for Correctness 	 1-31

an adequate (for g(P)) test set. []

Definition: 	The g equivalence problem is that of deciding

whether or not Q e g(P) and P = Q.

Theorem 18: The following statements are equivalent.

(a) the p(P)—adequate decision problem is solvable.

(b) there is a computable p(P) test strategy.

(c) the p equivalence problem is decidable.

Proof: If there is a 1i(P) decision procedure, then a com-

putable g(P) test strategy may be constructed as in the proof of

Theorem 2. Thus, (a) implies (b).

To show that (b) implies (c) assume a computabe strategy.

Given programs P,Q decide p—equivalence as follows. Compute g(P)

and check Q e p(P), and reject if not. Otherwise, generate a test

set which is adequate relative to p(P) and check equality of P* and

Q* on this set. By the definition of adequacy, equality on the test

set implies equality over D.

Suppose that we are given a decision procedure for g(P)

equivalence, and we are to decide whether a test set T is g(P)-

adequate for specification f. Assume that P*(T)=f(T). First,

construct the set g(P) and determine those Q s g(P) which are not

equivalent to P. This procedure is effective. For each such Q # P,

we search for some a e T such that P*(x) & Q*(a). Obviously, T is

adequate if and only if each such search is successful. Therefore,

(c) implies (a).[]

Testing for Correctness 	 1-32

Although there is an equivalence between the decision problems

for p(P) adequacy, equivalence and test strategies, the finiteness

of a(P) alone is not sufficient to guarantee that any of these

problems are solvable.

Theorem 19: There are programming systems P and functions a so

that none of (a) — (c) in the statement of Theorem 18 are true.

Proof: Let P be as constructed in the proof of Theorem 12, and

let p(P) = (130,P) for all P e P. Then [0) is adequate for P i iff

the ith Turing machine on input i does not halt. Since the decision

problem for adequacy is unsolvable, Theorem 18 can be used to com-

plete the proof. n

In order for µ(P)—adequacy to be useful in practice, we

evidently have to exercise some care in defining a, insuring that

either the appropriate decision problems are easily decidable, or

that heuristics are available.

A key aspect of µ(P)—adequacy is that it admits measurement of

how close a given test set is to being adequate. This is a relaxa-

tion of the decision problem for adequacy which is frequently

encountered in testing situations. Since µ(P)—adequacy may itself

be a (statistically) strong predictor of program correctness, it may

not be cost effective to develop a test set which is a—adequate.

Rather, the inference of correctness may be made on much more slen-

der foundations: the test set is "almost" adequate. Se will

consider the definition of such a measure here. In later chapters

we will consider the evidence for its effectiveness as a stopping

Testing for Correctness 	 1-33

rule.

Let AE(P) be the set of those programs in g(P) which are func-

tionally equivalent to P; that is, Q E gE (P) if P*(D) = Q*(D). For

a set of test data T, we define A(P,T) to be the set of programs Q s

g(P) which disagree with P on at least one point in T. We will con-

fuse the size of a set with its cardinality; in particular, g(P)

will be used to denote Ig(P)I. Then the mutation score of T is the

fraction of the nonequivalent elements of p(P) which differ from P

on one or more points in T:

Definition: The mutation score of T for P is defined to be

m(P,T) = A(P,T)/g(P)—gE (P).

Notice that once OP) is fixed, µ E (p) and A(P,T) are determined

by the semantics of the programming system. We want m to be a

measurement of test data quality. That is, the function m should be

useful in a stopping rule for inductive inferences of correctness:

it should be possible to choose a function g so that

(a) g(P) is relatively easy to compute, and

(b) m(P,T) approaches one as our confidence in the

correctness of P increases by virtue of P's

correct execution on T.

It is an easy observation that m(P,T) is a direct measurement

of how close the test set T is to being adequate for P relative to A

= g(P).

Testing for Correctness 	 1-34

Theorem 20: Assume that p(P) contains a correct program. Then

P*(T) = f(T) and m(P,T) = 1 implies that T is adequate for P

relative to p(P).

Proof: Assume that p(P) contains a correct program Q, and sup-

pose that P*(T) = f(T) and m(P,T) = 1. If P is correct, then for

any program R, R # P iff R # f. If R e p(P) and R f = P and if

m(P,T) = 1,then R*(T) # f(T). We claim that P cannot be incorrect,

for suppose otherwise. Since p(P) contains a correct program 0,

m(P,T) cannot be 1 unless Pa(T) # Q*(T) = f(T), a contradiction.[]

The assumption that p(P) contains a correct program is called

the Competent Programmer Assumption. The competent programmer

assumption is a limiting empirical hypothesis. In a previous sec-

tion (see Figure 1) we defined the programming model by analogy with

a root finding procedure in which the process of creating and debug-

ging a program can be stated

Pf = (valid representation of program correct for f).

The program playing the role of the iterative in this process can be

expected to change less and less as the programming process

continues. When the program is "close" to a correct program, the

process stops. Thus, a program to be evaluated by any of the tech-

niques described above is not a random response to a specification:

if it has been produced by a competent programmer, it has already

been subjected to the iterative programming process. Therefore if

p(P) represents those programs which are close (in the sense of

root—finding) to a correct program, with high probability, P will

either be correct or within a small neighborhood of a correct

Testing for Correctness 	 1-35

program. Our goal in subsequent chapters will be to define g(P) so

that this assumption is useful in practice.

Theorem 20 can be restated in another form which is often more

useful. The specific function g we will deal with later behaves in

a "reversible" manner; that is, P s g(Q) if and only if Q a g(P).

Theorem 21 follows by an argument similar to the one above.

Theorem 21: If P*(T) = f(T) and m(P,T) = 1, then either T is

correct or for all correct programs 0, P e g(Q).

Therefore, by analogy to Theorem 13, we have a measurement of

test quality which either accurately reflects the reliability of the

test data or requires the violation of a specific empirical

hypothesis.

Bibliographic Notes

There are several good references on elementary computability

theory. Perhaps the most accessible of these are the classic texts

by Davis [Davis, 1958] and Minsky [Minsky, 1967]. The notions deal-

ing with inductive and deductive inferences are implicit in most

systematic treatments of logical and mathematical matters, and

nearly any logic text provides the basic definitions. The

relationship of deductive techniques to program correctness is

discussed critically in [Benin°, 1979]. Budd's dissertation [Budd,

1980] gives a good overview of the importance of inductive reasoning

in program testing and uses the example of the black ravens.

Testing for Correctness 	 1-36

Many additional sources of information concerning alternative

test techniques can be found in the literature. Input space

partitioning methods are discussed by Bowden [Bowden, 1976] and

White, Chandrasekaran and Cohen [White, 1978]. The probabilistic

algorithm for testing zeroes of polynomials is due to DeMillo and

Lipton [DeMillo, 1978]. The algorithm is related to a problem in

algebraic program testing [Bowden, 1976].

Test data reliability was defined by Bowden [Bowden, 19761 and

similar concepts have been given formal treatment by a number of

authors. The paper [Goodenough, 1975] also treats the notion of

reliable test set generation. Test set adequacy was formulated by

DeMillo, Lipton and Sayward in [DeMillo, 1978a] and has been refined

in a series of papers [Acree, 1979], [Budd, 1980a], DeMillo, 1979a].

The relationship between adequacy and mutant programs was developed

concurrently and this development can be traced in [DeMillo, 1978a],

[Acree, 19791, [Budd, 1980], [DeMillo, 1979a], [Acree, 1980].

Related concepts have appeared in [Foster, 1978], [Hamlet, 1978],

[Bowden, 1982], and [Brooks, 1980]. The relationship between

program equivalence, test generation and recognition problems was

worked out in a paper by Budd and Angluin [Budd, 1980].

Errors and Mutations 	 2-1

Chapter 2

Errors and Mutations

The Competetent Programmer Assumption

Let us recall the following definitions from Chapter 1. If p

is a mapping which associates a set of programs with a given program

P, pE (p) qiii(P) is the set of programs in p(P) which are func-

tionally equivalent to P, and if for a given test set T, A(P,T)

consists of those programs in p(P) which disagree with P on at least

one point in T, then the measure

m(P,T) = A(P,T)/p(P)—pE (p)

can be defined. Theorem 1.21 guarantees that if P executes correc-

tly on the test set T and m(P,T)=1, then either P is correct or P

does not belong to p(0) for any correct program Q.

For a given program P, the set p(P) is called a set of mutants

of P. Thus, if every program P is a mutant of some correct program,

calculation of the measure m(P,T) can be used to infer correctness.

The assumption that any program being tested is a mutant of a

correct program is called the Competent Programmer Assumption. The

Competetent Programmer Assumption formalizes an observation of human

activity. In this case, the observation is that programmers do not

create programs at random. Rather, programs that are written by

experienced programmers, are written in response to formal or

informal understandings of what the program is intended to do.

Thus, in response to specifications for a payroll system, a com-

Errors and Mutations 	 2-2

petent programmer will produce a program that is very much like a

correct payroll system. The program produced may be incorrect,

inefficient or sloppy, but in the final analysis, it will be more

like a correct payroll system than a compiler. The competent

programmer assumption asserts that programmers create programs that

are close to being correct. During the iterative programming

process, competent programmers constantly whittle away the distance

between what their programs look like now and what they are intended

to look like.

Suppose that the task at hand is to design a Fortran program to

compute the (Euclidean) magnitude of an N—dimensional vector X in a

Cartesian coordinate system with fixed origin. Then the subroutine

P1 below certainly could have been produced by a competent program-

mer.

SUBROUTINE P1(X,MAG)
MAO = 1
DO 1 I = 1,N
NAG = MAG+X(I)**2

1 NAG = SORT(MAG)
RETURN
END.

We would question the competence of a programmer who produced

subroutine P2:

SUBROUTINE P2(X,MAG)
NAG = X(1)
DO 1 I = 1,N

1 MAG = MAX(X(I), MAW
RETURN
LID.

Errors and Mutations 	 2-3

There is no reasonable sense in which P2 is a "buggy" version of the

program asked for. P1 can easily be debugged, but P2 is not even a

program of the same kind -- it is so radically incorrect that its

incorrectness can be discovered without testing it!

The competent programmer assumption states that a program is

assumed to be either correct or a mutant of a correct program. For

example, in the problem of computing magnitudes of N—vectors,

subroutine P1 is a mutant of the correct P below.

SUBROUTINE P(X,MAG)
MAG = 0.0
DO 1 I = 1,N

1 MAG = MAG+X(I)**2
MAG = SORT(MAG)
RETURN
END

Subroutine P2, on the other hand, is not a mutant of P.

The notion of closeness is summarized by the function p.

Informally speaking, the set of mutants of a program P should

reflect the possible errors that might have been made in the crea-

tion of P by a competent programmer. If a general concept of error

can be derived in such a way that the Competent Programmer

Hypothesis can be shown to hold with probability 1-8 then the cal-

culation of m(P,T)=1 allows an inference of correctness with the

same level of confidence.

The classification of programming errors is not a well under-

stood process. However, it appears that there are at least four

mechanisms responsible software errors.

Errors and Mutations 	 2-4

1. failure to satisfy specifications due to an

implementation error,

2. failure to satisfy a requirement,

3. failure to write specifications that correctly represent

a design, and

4. failure to understand a requirement.

The problems surrounding requirements and specification testing and

evaluation are beyond the scope of this book and are probably not

within the domain of correctness testing. The mechanisms referred

to in (1) and (2), however, are always reflected in specific program

errors: either a program carries out an action that it should not,

fails to carry out a necessary action, or carries out an action

improperly. This suggests that errors resulting from (1) and (2)

are reflected in programs as missing control paths, inappropriate

path selection, and inappropriate or missing actions.

In order to satisfy the Competent Programmer Assumption, carry

out the following conceptual experiment. We observe a community of

programmers and classify the errors they make into categories

E1 ,E2

Ek•

We are free to observe the programmers for as long as we wish and

make whatever specialized assumptions we wish about the programming

task they will be called upon to perform. It is, in principle, pos-

Errors and Mutations 	 2-5

sible to gain whatever degree of confidence we desire that among the

k classifications we have encountered the errors most likely to be

made by this particular group of programmers. Given a program P to

test in this setting, we must derive a relatively adequate set of

test data, T, for P. If P is incorrect, we will never be able to

find an adequate set; indeed, the point of testing P is to find a

set of test data that calls attention to the fact that P is

incorrect. If P is correct, however, adequate T should at least

convince us that P does not contain the errors most likely to be

made.

Let

p(P) = {P1, p2 	 Pm)

differ from P only in each containing a single error chosen from one

of the error categories. Then an adequate set of test data T should

at least provide the following assurance. For each P. which is not

equivalent to P, p*(D) R3.1 *(1)). In other words for each of the most

likely errors, it should be possible to show that P does not contain

that specific error. This experiment is specialized to the original

group of programmers whose errors we observed and recorded. To

attempt such an experiment for all programmers is surely hopeless,

unless we can be assured that typical programmers tend to make the

same, classifiable errors.

Errors and Mutations 	 2-6

Error Classification

The strength of the technique described above rests on our

ability to assess the errors that programmers are most likely to

make. Rather than speculate on the sources of errors, it is

probably more fruitful to examine the errors that programmers

actually do make.

A number of studies of programmer errors have been conducted

over the years. These studies have been carried out using a variety

of programs, error classification schemes, and methods for detecting

errors. While several researchers have pointed out methodological

flaws in the reporting, classification, and documenting of program

errors, at least 46 independent, large—scale error data gathering

efforts have been carried out and reported. For the most part,

problems arising from error classification arise when data gatherers

try to interpret the errors arising from the mechanisms (3) and (4)

described above. However, the data on errors arising from

mechanisms (1) and (2) show remarkable consistency.

The following data is based on E.A. Young's analysis of 69

programs and a total of 1,258 errors in several languages.

Errors and Mutations

Error Type No. 	of Errors Rel. Freq.

2-7

Job Ident. 1 0.00
Exec. Request 1 0.00
External I/O 0 0.00
Other System 0 0.00
Subrout. 	Ident. 3 0.00
Allocation 189 0.15
Label 20 0.02
Computation 343 0.27
Non—comput. 2 0.00
Iteration 117 0.09
GO TO 13 0.01
Conditional 59 0.05
I/O Format 71 0.06
Other I/O 91 0.07
System Call 35 0.03
Subrout. 	Call 22 0.02
Par/Sub List 62 0.05
Subrout. Term. 7 0.01
Other/Multiple 72 0.06
Data 27 0.02
Vert. 	Delim. 54 0.04
None 69 0.05

1258 1.00

Table 1. E. A. Young's Error Data

What is is striking about this data is the relatively small

contribution of sophisticated error conditions. Errors such as

operating system interface errors, incorrect job identification, and

erroneous external I/O assignments accounted for only negligible

quantities of the observed errors. It might be the case, however,

that the significant contributors to the major error categories were

themselves complicated errors. Vie will describe in a little more

detail the nature of the errors which Youngs discovered.

Allocation: 	These included errors in declaring shapes and

sizes of data structures as well as errors in allocating and deal—

locating local storage for named data objects. 	These errors

Errors and Mutations 2 —0 °

accounted for 15% of the total. Almost all of them appeared in

Algol, Cobol, or PL/I programs.

Computation: 	These 	errors 	occurred within 	assignment

statements and comprised 275 of the observed errors. Almost half of

them were caused by the use of a wrong variable or other data

object. Wrong variable usage constituted the highest percentage. A

large number of errors in this class stemmed from failures to

initialize variables properly.

Iteration: Iteration sequence difficulties were semantic in

nature (111 of 117). A typical example of such an error is an error

in the number of loop iterationsresulting from a confution of DO and

FOR loop semantics. Other examples include errors in loop scope and

nonterminating loops. These errors accounted for 9% of the total.

I/O: 	13% of the errors were due to I/O deficiencies, although

most of these were syntactic in nature. Other common errors include

the reading or writing of incorrect variables.

Parameter/Subscript List: 	Although 5% of the total were

attributed to these errors, more than than sixty percent of the

errors in this category were due to mismatching formal and actual

parameters.

Conditional Branch/Execution: 	Most of these errors resulted

from testing incorrect variables or using the wrong test in a con-

ditional expression. These errors accounted for 5% of the total.

Errors and Mutations 	 2-9

A second study was conducted by T. A. Thayer and his col-

leagues at TRW's Space Systems and Defense Group. The TRW clas-

sification broadly groups errors into twenty categories. We will

concentrate on 4 categories which altogether account for 80' of the

errors recorded in a study of two large—scale software development

projects. The following distribution of reported errors is shown in

Table 2.

Percent of Total Errors

Major Error Categories 	I 	Project A Project B

Computational 9.0 1.7
Logic 26.0 34.5
Data Handling 34.6 36.1
Interface 17.0 22.5
Data Definition 0.8 3.0
All Others 12.6 2.2

Table 2. TRW Error Data

Computational Errors: These were errors introduced into arith-

metic computations (the classification is insensitive to the nature

of the computation; the computation could be the actual calculation

of a physically interpretable quantity or merely a bookkeeping cal-

culation of no significance outside the program). The calculations

themselves occurred in assignment statements. The errors which make

up this category include the incorrect use of an operand in an

equation, the incorrect use of parentheses, an error in sign con-

vention, an error in units or data conversion, the production of

over/under flow in a computation, the application of an incorrect or

inaccurate equation, and the loss of precision due to mixed mode

arithmetic, and missing computations.

Errors and Mutations 	 2-10

Logic Errors: The TRW classification scheme is vague about

exactly what constitutes a logic error. Indeed, the assignment of

specific errors to the logic category varied with the data gathering

procedures. However, the studies published using this classifica-

tion all seem to point toward errors which somehow affect logical

decisions in the source code, even though the error under considera-

tion may, in fact, be the result of failing to include a decision.

Thus errors in this category included missing logic or condition

tests. Logic errors also resulted from a lack of code to perform

logical functions. Other errors which were classified as logical

errors related to code written to carry out some particularly

troublesome function (e.g., checking the settings of switches), or

code which was erroneous due to misunderstandings of requirements or

specifications. These resulted in incorrect operands in logical

expressions, logic activities coded out of sequence, checking wrong

variables, errors in the scope of loops, errors in the number of

loop iterations, and duplicated logic.

Data Handling Errors: 	These errors included errors in input

and output operations and errors in internal data handling. Typical

data input errors included errors due to reading invalid input from

the correct data file and reading from incorrect files. Also of

significance were errors due to incorrect input formats and end of

file processing. Internal data handling errors included errors in

initializing data storage areas, using variable before they had been

properly set, incorrect type usage, and subscripting errors.

Finally, the data output errors mirrored the input errors. Errors

such as garbled output or output not matching requirements were also

Errors and Mutations 	 2-11

considered. In addition, data definition errors such as errors in

dimensions, referencing out of array bounds and pointer handling

were also be classified as data handling errors.

Interface Errors: These errors roughly correspond to those

that were introduced in the process of integrating program units or

modules. These included calls to incorrect subroutines, misplaced

subroutine calls, and errors in parameter passing during an invoca-

tion of a module.

The remaining errors considered in the TRW studies involved

errors which were introduced and detected at other phases of the

software lifecycle. They included operator/user errors, documenta-

tion errors, errors in interfacing to systems software, and

requirements errors. In contrast, the remaining errors tended to be

fairly complex and difficult to associate with specific program

characteristics.

Mutant Operators

Practice may dictate so many error types that the calculation

of mutation scores becomes intractable. By concentrating only on

"simple" mutants of P the technique becomes manageable. For exam-

ple, in the case of computing magnitudes of vectors, P1 is not a

simple mutant of P, but Mi and M2 are simple:

Errors and Mutations 	 2-12

SUBROUTINE Ml(X,MAG)
MAG = 1
DO 1 I=1,N

1 MAG = MAG+X(I)**2
MAG = SORT(MAG)
RETURN
END

SUBROUTINE M2(X,MAG)
MAG = 0.0
SO 1 I=1,N
MAG = MAG+X(I)**2

1 MAG = SORT(MAG)
RETURN
END.

The mutants we will consider arise from the single application of a

mutant operator, a simple syntactic or semantic program transforma-

tion such as changing a particular instance of a relational operator

to one of the remaining operators or changing the target of an

unconditional transfer to another labelled target. A problem that

arises immediately is that this is apparently a violation of the

Competent Programmer Assumption. While error classification data

indicates that programmer errors fall into a small number of

identifiable categories, there is little to suggest that programmers

make errors one at a time. Thus, while concentrating on simple

errors may allow a tester to derive adequate test sets relative to a

small class of errors, the data may not be adequate relative to a

set of errors that are most likely to occur in practice. In fact,

there is little lost in restricting mutants to those which can be

defined by simple errors. As we will discuss below there is an

observable coupling of simple and complex errors so that test data

that causes all nonequivalent simple mutants to die is so sensitive

Errors and Mutations 	 2-13

that likely complex mutants also die. The coupling of simple and

complex errors implies that if P is correct for an adequate test T

while Mi and M2 disagree with P, then P1 must also disagree with P

on T.

A set of mutants g(P) is defined by a set of mutant operators

that model a set of errors according to the Competent Programmer

assumption. That is, for each error category Ei there is a set of

programs g i (P) which corresponds to the errors defined by Ei• There

is no single correct set of mutant operators -- the Competent

Programmer hypothesis is specialized to a given community of

programmers. In practice, however, it is usually only necessary to

consider a fixed set of mutant operators which are derived from

error data such as the data presented above.

One way to view mutation operators is a mapping between

representations of source programs (see Chapter 4 for details on

implementation strategies). Let the tree T1 represent some program

P, parsed into a tree—structured form as shown in Figure 1(a). Then

a mutation operator when applied to T 1 produces a new tree T2 by

modifying a single leaf t of T1 as shown in Figure 1(b).

Errors and Mutations 	 2-14

Y

(a)
	

(b)

Tree T
	

Tree T
2

Figure 1.

Mutation by Modifying a Leaf

of a Parse Tree

The tree T2 remains a valid internal representation of some

mutant program of P. In practice, not all of the mutant operators

fit exactly into this model, but it is nevertheless a helpful

organizing principle.

The result of applying such an operator is a 1—order or simple

mutant of the original program. 2—order mutants are the result of

two applications of (not necessarily the same) mutant operators.

Continuing inductively, the notion of a k—order mutant can be

defined for any k 1. Since the result of applying a mutant

operator always results in a syntactically correct program, the num-

ber of k—order mutants is given byk, where

n = max{p(P) I size(P) = n)

and size(P) is any convenient size measure (see Chapter 5).

Errors and Mutations 	 2-15

Unless specified otherwise, the term mutant will apply to sim-

ple mutants, and the set of mutants of P, g(P), will be defined in

terms of (simple) mutant operators. When we want to distinguish

p(P) from k—order mutants for some k Z 2, we will use 4(P) for the

set of complex mutants.

We now define a set of mutant operators which will form a basis

for much of the rest of this book. These operators are mainly

language independent with appropriate adaptation can be used as a

core of mutant operators for machine implementation. Furthermore,

the operators introduced below are designed to model error

categories as described above. The effectiveness of the operators

in modelling and detecting errors will be taken up in more detail in

later chapters.

Mutant operators can be classified according to whether they

affect operands, operators, or statements as a whole.

Operand Mutants: 	Mutations which affect operands alter the

data objects of the program. For simplicity, we assume that there

are three kinds of data objects: constants, scalar variables, and

arrays. Thus there are nine mutant operators which replace a

variable x with each distinct occurrence of y, where x and y range

over all constants, scalar variable and array references in the

program being tested.

In addition to these operators, there is an operator which

alters the values of constants appearing in the program. The fol-

lowing table defines the alterations according to the type of the

object to which the operators is applied.

Boolean complement

lIntegers

Nonzero reals

Real zero

+10%

+ .01

replace first character
by adjacent character in
collating sequence

Strings

Table 3. Data Mutations

Errors and Mutations 	 2-16

A third type of operand mutation replaces array names in each

occurrence of an array expression with all other array names of the

same dimensionality. In specializing these operators to particular

languages, additional operators which account for language dependent

features may be needed to augment this list (cf. data mutations for

Cobol).

Operator Mutations: 	Arithmetic operator mutations are formed

by replacing each arithmetical operator with an operator chosen from

the set (+,—,/, *,**4,1], where r and 1 are operators described
below.

Relational operators are mutated by replacing each relational

operator with an operator chosen from the set (<,I, =,

trueop, falseop), where trueop and falseop are the operators

described below. Similarly boolean operator mutations are formed by

replacing each boolean operator with an operator chosen from the set

[V, 	leftop, righttop, trueop, falseop).

Errors and Mutations 	 2-17

Each unary operator may be removed by a unary operator removal

mutation. Insertions are formed by inserting the elements of the

set (—, "1, ++, ABS, —ABS,ZPUSII), whenever appropriate.

Several operator mutants are intended to model the errors clas-

sified above. These operators produce mutants which are not stric-

tly internal forms of any correct program, but are nonetheless

useful in detecting certain categories of errors.

The first two operators are binary operators r and I which can
stand instead of either arithmetic or logical operators. The effect

of these operators is to evaluate both operands and to return either

the right or left hand argument, ignoring the other one.

A second pair of binary operators, trueop and falsoop, can be

of boolean type only. These operators evaluate both operands and

return either the constant value TRUE or FALSE, depending on which

operator is applied.

There are several unary operators. Twiddle (denoted ++ or --)

is an operator which returns its argument + 1 if the argument is an

integer and + .01% or .01 (whichever is greater) if the argument is

real. The operator —ABS returns the negative of the absolute value.

The ZPUSII(X) operators returns X if X is nonzero. However, if X is

zero, ZPUSH by definition causes the mutant to be eliminated, thus

forcing the expression X to be zero.

Statement and Control Mutations: A sequence of unlabelled non—

decision statements in a program is called a basic block. It is a

property of a basic blocks that if any one of the statements in a

Errors and Mutations 	 2-18

block is ever executed, then all statements in the block must also

be executed.

One type of statement mutation determines whether or not the

initial statement of each basic block is ever executed. The

statement operators replaces the first statement of a basic block

with a special statement called TRAP. The semantics of the TRAP

statement is that if it is ever executed, it immediately causes the

mutant to be eliminated. On the other hand, if such a mutant ever

survives, then the corresponding basic block has never 	been

executed. 	In this fashion, mutants can model a basic statement

coverage measure of test data adequacy.

Statement coverage is strengthened by using a mutation operator

which replaces each statement with a statement that has no effect,

such as the Fortran CONTINUE statement. These mutants are designed

to determine whether, in addition to being executed, the mutated

statement has any effect on the program's execution.

A third statement operator changes the labels on control trans-

fer statements and arithmetic conditionals to other labels which

appear in the program.

The final statement operator to be discussed here modifies the

structure of loops. One form of this operator changes the final

label on Fortran DO loops to other labels which lie between the

beginning of the loop and the end of the program. A second form of

the operator changes the loop statement semantics. Recall, for

example that the difference between a Fortran DO and an Algol FOR

statement is that if the initial value of the FOR loop variable is

Errors and Mutations 	 2-19

smaller than the final value, the FOR loop is not executed, but a DO

loop body is always executed at least once. Confusing this two loop

constructs is a common programming error. A mutation operator that

models such an error simply changes a DO statement to a FOR

statement.

A set of mutant operators that is applicable to Fortran

programs includes the following:

Operand Mutations

1. Constant Replacement (by +1, —1)
2. Scalar for Constant Replacement
3. Source Constant Replacement
4. Array Reference for Constant Replacement
5. Scalar Variable Replacement
6. Constant for Scalar Replacement
7. Array Reference for Scalar Replacement
8. Comparable Array Name Replacement
9. Constant for Array Reference Replacement

10. Scalar for Array Reference Replacement
11. Array Reference for Array Reference Replacement

Operator Mutations

12. Arithmetic Operator Replacement
13. Relational Operator Replacement
14. Logical Connective Replacement
15. Unary Operator Replacement
16. Unary Operator Removal
17. Unary Operator Insertion

Statement Mutations

18. Statement Execution (replacement by TRAP)
19. Statement Deletion
20. RETURN Statement Replacement

Control Structure Mutations

21. Jump Statement Replacement
22. DO statement Replacement

Errors and Mutations 	 2-20

Adapting this set of operators to other languages involves

analyzing the errors which can occur due to language features not

present in Fortran. For example, to expand the Fortran operators to

the simple Cobol subset discussed in Chapter 4, the following

mutants should be considered.

Operand Mutations

1. Move implied decimal point in numeric items one place to
the left or to the right.

2. Add or subtract one from an OCCURS clause count.
3. Insert FILLER of length one between two adjacent

record items; also change FILLER lengths by one.
4. Reverse adjacent elementary items in records.
5. Alter file references.

Operator Mutations

6. Change ROUNDED TO truncation in arithmetic
assignments

7. Change the sense of a MOVE

Control Structure Mutations

S. Interchange PERFORM and GOTO

We use the notation a==>0 to indicate the application of a

mutant operator to construct a to produce mutation 0. In general a

can be a statement, group of statements, program or program frag-

ment. If a is not a complete program, a==>0 is to be interpreted so

that a is changed to J3 and the remaining context of a remains intact

if the result is a syntactically correct program.

Errors and Mutations 	 2-21

A Procedure for Developing Adequate Test Data

Given a program P to test and a set of test data T, apply the

mutant operator p to obtain the set p(P) of mutants. The first step

is to execute the program P using test data. If P does not perform

as specified on T, then certainly P is in error. If P performs as

specified on T, we must determine whether T is adequate relative to

p(P). Only two possibilities arise.

1. a mutant 0 e p(P) gives different results from P, or

2. a mutant t3 e p(P) gives the same results as P.

In case (1), Q is said to be dead, while in case (2), the mutant is

called live. Obviously, if T leaves only live mutants that are

equivalent to P, m(P,T)=1, and therefore T is adequate relative to

the set of mutants. If T leaves live, nonequivalent mutants, then

either T can be augmented by some test strategy to an adequate

(relative to p(P)) test set, or there is an error in P that has not

yet been revealed.

It is not apparent from this description that the procedure is

either feasible or effective in detecting errors. As we will show

in later chapters, there is a methodology for implementing this

procedure which makes it computationally attractive. By the same

token, we will demonstrate the error detection capabilities of this

procedure. In lieu of these developments, however, the reader

should notice that we have outlined a principle which can provide

inferences of correctness. The inductive strength of those

inferences is directly related to a single set of experimental

observations -- the observations which support the Competetent

Errors and Mutations 	 2-22

Programmer Assumption with a specified degree of confidence.

Error Coupling

A coupling effect asserts that test data that is sensitive

enough to cause all simple mutants to fail is also sensitive enough

to cause all complex mutants to fail. Note that error coupling is

not a provable phenomenon in a mathematical sense; indeed, there are

very simple counterexamples to it. It is, however, a useful

principle that can be observed to hold for broad classes of programs

and which can be measured in typical programming environments.

Since error classifications result in sets of mutants, it may

help to define error coupling in terms of mutant operators.

Definition: 	Let g(P) and $(P) define sets of mutants for each

P in a programming system. Then g is said to be coupled to + if

mg (P,T) =1 implies m4(P,T) = 1.

It may have occurred to the reader that program mutation is the

software version of fault detection: that is the origin of a

hypothesized coupling effect. The fault detection problem may be

specified as follows. Given a digital circuit C and Boolean func-

tion f (the specification of the circuit), determine whether or not

the circuit C realizes the function f. A natural way of solving a

fault detection problem is to submit inputs to C. If C works as

expected then the circuit is most likely to be fault—free. Suppose

C determines the cemplement of a 32 bit number. Exhaustive testing

of an arbitrary circuit might require as many as 2 32 inputs.

Errors and Mutations 	 2-23

However, the faults (or errors) that are assumed to occur are

usually constrained in some way. 	For example, it is commonly

assumed that all faults are of the form: 	a single wire is

permanently "stuck at" 0 or 1. These are called single faults. The

single fault assumption reduces the number of test case to under

100. Such assumptions are derived on the basis of experience, the

independence of the components of C and the statistical analysis of

similar circuits. Using a single fault assumption in a given fault

detection problem, a tester obtains a test set I such that C per-

forms correctly on I and no other single fault circuit performs

correctly on I. Then either C is correct or it is not in the set of

single fault circuits for a circuit correctly realizing f.

The problem that arises in fault detection is how close a

single fault test set comes to detecting multiple faults which might

actually occur (circuit testers call this phenomenon coverage of the

multiple faults). In many circumstances single fault tests sets

provably cover many or all multiple faults. For example, there are

classes of circuits (e.g., cascaded two—level networks and internal

fanout—free networks) such that if I is a set of test data which

solves the single fault detection problem on a given set of k wires,

then I also solves all multiple fault detection problems on those

wires. As a concrete example, consider the combinational logic cir-

cuit shown in Figure 2 below.

iTh (Th

.-4 csj cn vd- ix) to r■ co o^ci r-i ou en cr LO l0 I- CO MC)
I-1 	r--4 I—I r•-I 1-1 r-I 	r-I r-1 1-1 r-I (NI

E
r
r
or

s
a
n
d

M
u
ta

t
io
ns

■—i cs.j Cr) cr I-C) 	t.0 1-... CO Cr) C) ■—i CV CO c• LC) lO r--- CO a) cD
CV CV CV CV CV CV CV CV CV Cr) Cr) cn co r) cn en co r,-) c ci-

Errors and Mutations 	 2-25

Let K = [1,3,6,8,11,13,16,18,21,23,26,28,31,33,36,38) denote

the indicated 16 inputs of the circuit, and let I be the test set of

56 input vectors shown in Table 4. The entries under i denote the

number of the input vector. The vector and parity entries must be

read together to determine the value of the vector. For example an

entry with vector entry a1,a2,a3 and parity entry j3 e 0,1) denotes

an input vector in which inputs numbered a i , 1 S i S 3, are set to 0

and the remaining inputs are set to 13+1 mod 2.

Errors

i

and Mutations

IParityl 	Vector Parity

2-26

Vector

1 0 3,5,11,13,15 29 12,18,19,31,32,38,39
2 0 1,5,11,13,15 30 14,16,17,33,34,36,37
3 0 8,10,16,18,20 31 13,14,17,33,34,36,37
4 0 6,10,16,18,20 32 11,12,19,31,32,38,39
5 0 1,3,5,13,15 33 1,8,9,21,22,28,29
6 0 1,3,5,11,15 34 3,6,7,23,24,26,27
7 0 6,8,10,18,20 35 3,4,6,23,24,26,27
8 0 6,8,10,16,20 36 1,2,8,21,22,28,29
9 0 1,2,3,4,11,13,15 37 11,18,19,31,32,38,39

10 0 6,7,8,9,16,18,20 38 13,16,17,33,34,36,37
11 0 1,3,5,11,12,13,14 39 13,14,16,33,34,36,37
12 0 6,8,10,16,17,18,19 40 11,12,18,31,32,38,39
13 0 23,25,31,33,35 41 1,2,8,9,22,28,29
14 0 21,25,31,33,35 42 3,4,6,7,24,26,27
15 0 28,30,36,38,40 43 3,4,6,7,23,24,27
16 0 26,30,36,38,40 44 1,2,8,9,21,22,29
17 0 21,23,25,33,35 45 11,12,18,19,32,38,39
10 0 21,23,25,31,35 46 13,14,16,17,34,36,37
19 0 26,28,30,38,40 47 13,14,16,17,33,34,37
20 0 26,28,30,36,40 48 11,12,18,19,31,32,39
21 0 21,22,23,24,31,33,35 49 1,2,8,9,21,28,29
22 0 26,27,28,29,36,38,40 50 3,4,6,7,23,26,27
23 0 21,23,25,31,32,33,34 51 3,4,6,7,23,24,26
24 0 26,28,30,36,37,38,39 52 1,2,8,9,21,22,28
25 1 2,8,9,21,22,28,29 53 11,12,18,19,31,38,39
26 1 4,6,7,23,24,26,27 54 13,14,16,17,33,36,37
27 1 3,4,7,23,24,26,27 55 13,14,16,17,33,34,36
28 1 1,2,9,21,22,28,29 56 11,12,18,19,31,32,38

Table 4. Single Fault Test I

It can be shown that I also covers every multiple fault involv-

ing every k—tuple of the lines from K, for k=2,3. Furthermore, I

covers 905 of the multiple faults involving m of these lines for

m=4,5,6. For multiple faults simultaneously involving all 16 wires,

however, less than half of the 2 16 faults are covered. It is

essentially a problem in electrical engineering to determine whether

or not k simultaneous faults are likely for k .K 6. If so, then it

would seem appropriate to use the 56 test vectors in I.

Errors and Mutations 	 2-27

The coupling of errors in programs has much in common with the

notion of test set coverage. It appears that test data which is

adequate for simple errors is also adequate for many complex errors.

In fact, the assumptions made about the programming process in Chap-

ter 1 give us some hope that error coupling in programs is a

stronger effect than coverage of multiple faults in digital cir-

cuits. A fault in a circuit is an event of nature -- it is

essentially random. However, since programs are not created ran-

domly, it seems unlikely that errors are created randomly Neither

are errors created by an adversary. Rather, errors are introduced,

corrected and reintroduced by programmers diligently creating

programs which they intend to be error—free. The result of this

activity is that errors are not created specifically to avoid error

coupling. There is a great deal of information sharing within a

program, and textually distant source statements can exert subtle

influences on each other during program execution. The net effect

of this interdependence is that complex errors can make their

presence known through their effects on single statements and single

syntactic items within those statements. Hence, a test that deals

with an an error through a simple mutant in one portion of a program

can implicitly reveal errors in portions of the program that depend

Or affect the statement to which the mutant is explicitly applied.

Test set coverage also illustrates a theme that runs through our

treatment of the coupling effect: the interplay between subcases

for which simple errors cover complex errors and statistical

estimates for the general case.

Errors and Mutations 	 2-28

We will illustrate this principle with a simple example.

Consider the Fortran program B7 for computing statistics from a

table of observations.

SUBROUTINE TAB1(A,NV,NO,NINT,S,UBO,FREQ,PCT,STATS)
INTEGER INTX
REAL TEMP,SCNT,SINT
INTEGER INN,J,IJ
REAL VMAX,VMIN
INTEGER I, NOVAR
REAL WBO(3),STATS(5),PCT(NINT),FREQ(NINT)
REAL LB0(3),S(NO)
INTEGER NINT, NO, NV
PEAL A(600)
NOVAR = 5
DO 5 1=1,3

5 	WBO(I)=UBO(I)
VMIN = 0.1000000000E+11
VMAX =— 0.1000000000E+11
IJ=N0*(NOVAR-1)
DO 30 J=1,NO
IJ = IJ+1
IF(S(J)) 10,30,10

10 	IF(A(1J)—VMIN)15,20,20
15 	VMIN = A(IJ)
20 	IF(A(I3)—VMAX)30,30,25
25 WAX = A(II)
30 CONTINUE

STATS(4) = VMIN
STATS(5) = VMAX
IF(UB0(1)—UB0(3)40,35,40

35 	UB0(1) = VMIN
UB0(3) = WAX

40 	INN = UB0(3)
DO 45 I=1,INN
FREQ = 0.0000

45 	PCT(I) = 0.0000
DO 50 1=1,3

50 	STATS(I) = 0.0000
SINT = ABS((UB0(3) —UB0(1))/(UB0(2)-2.0000))
SCNT = 0.0000

= NO (NOVAR-1)
DO 75 J=1,NO
IJ = 13+1
IF(S(J))55,75,55

55 	SCNT = SCNT+1.0000
STATS(1) = STATS(1)+A(IJ)
STATS(3) = STATS(3)+A(I3)*A(IJ)
TEMP = UB0(1)—SINT
INTXT = INN-1
DO 60 I=1,INTXT
TEMP = TEMP+SINT
IF(A(U)—TEMP)70,60,60

Errors and Mutations 	 2-29

60 CONTINUE
IF(A(IJ)—TEMP)75,65,65

65 	FREQ(INN) = FREQ(INN)+1.0000
GO TO 75

70 	FREQ(I) = FRE0(I)+1.0000
75 CONTINUE

IF(SCNT)79,105,79
79 DO 80 I=1, INN
80 	PCT(I) = (FREQ(I)*100.0000)/SCNT

IF(SCNT-1.0000)85,85,90
85 	STATS(2) = STATS(1)

STATS(3) = 0.0000
GO TO 95

90 	STATS(2) = STATS(1)/SCNT
STATS(3) = SQRT(ABS((STATS(3)—(STATS(1)*STATS(1)/

* SCNT)/(SCNT-1.0000)))
95 	DO 100 1=1,3
100 UBO(I) = MOM
105 RETURN

END

This program is adapted from a collection of statistical and

scientific programs and contains an artificially inserted error. An

error occurs in the line that reads

40 INN = UB0(3).

The statement should be

40 INN = UB0(2).

Consider,

the mutant

IF (A(IJ) — TEMP)75,65,65 => IF (A(IJ) — 1.000)75,65,65

Control reaches this point only if A(IJ) is bigger than TEMP, so

control always passes to 65. 	By tracing the flow of control we

discover that TEMP is equal to the value of the input parameter

UB0(3) at this point. To eliminate this mutant, then, we must find

Errors and Mutations 	 2-30

a value where A(IJ) is less than one but larger than .00(3).

Therefore 00(3) must be less than one. There is nothing in the

specifications that rules out UB0(3)'s being less than one, but the

error causes UB0(3) to be assigned to the integer variable INN. All

the feasible paths that go through the mutated statement also go

through label 65, which references FP.EQ(INN). Since INN is less

than or equal to zero, an array index out of bounds error is detec-

ted.

As we have already mentioned, there is no useful sense in which

errors are provably coupled in real programs. Therefore, it makes

sense to inquire into the extent to which errors are coupled.

Definition: 	Let P be a program and consider g(P) and 4(P) as

defined above. We will say that g is coupled to 4 with coupling

coefficient (1—u) if co is the largest number such that for any test

set T with m[sub p(P,T) = 1 $(P) —A4(p,T) Kw14(1))1.

We plan on using this definition in experimental investigations

into the coupling effect. The goal of these investigations is to

determine whether or not a tester can assume with a reasonable

degree of confidence that test data which is adequate for simple

mutants is also adequate for mutants which explicitly satisfy the

competent programmer assumption. Examining all possible test cases

is not feasible, so this definition needs some modification to be

experimentally useful. We will ,therefore, usually work with

another coefficient, z.

Errors and Mutations 	 2-31

Definition: 	The 	coefficient z is the fraction of the

nonequivalent members of 4 that are not killed by some particular

test case.

z is then a random variable distributed over the space of pairs

(P,T), where P is a program, and T is adequate relative to g(P).

Clearly o is an upper bound on z. An experiment on the coupling

effect is a measurement of the strength of that effect by

measurement of z. The measurement of z is in turn, an estimate on

w. In practice, z itself can only be estimated by sampling. The

usual case is that we will determine a confidence interval for z.

The conclusion of an experiment organized in this way will then be

of the following form. For programs selected from a given popula-

tion and test data generated by process G (adequate for g) the

values of z were estimated by sampling from 4 and found to range

between x and y.

Thus, if the population from which we sample is similar to the

population of programs about which we want to make quantitative

estimates, and G is the method available for generating test data

whose strength we want to determine, and if 4 is an estimate of the

distribution of likely mutants, we can use the estimated values of z

to bound the probability that errors remain in a given program.

Errors and Mutations 	 2-32

Bibliographic Notes

The Competent Programmer Assumption was first articulated by

DeMillo, Lipton and Sayward [DeMillo, 1978a]. The concept was

refined and related to the correctness of mutation testing in a

series of papers which followed [Acree, 1979], [Acree, 1980], [Budd,

1980].

The treatment of error data and data gathering over the past

decade has been surveyed by Gannon [Gannon, 1983]. See also

Thibodeau [Thibodeau, 1982] for a critical evaluation of existing

data gathering efforts. The data cited in this chapter was taken

from [Youngs, 1974] and [Thayer, 1978].

The form of many of the mutant operators presented above was

implicit in [Budd, 1978b]. As experience with constructing

automated systems grew, many new operators which are sensitive to

specialized error conditions or language features were designed.

The background on these designs can be found in [Acree, 1979],

[Acree, 1980], [Budd, 1980], and [Hanks, 1980].

The notion of error coupling was proposed in [DeMillo, 1978a].

Budd's thesis [Budd, 1980] and several subsequent papers have (see,

e.g., [DeMillo, 1979]) have given heuristic arguments which support

error coupling in software. The operational definitions of coupling

coefficients are due to Acree [Acree, 1980]. Experimental

justifications for coupling are discussed in Chapter 6. The example

used for logic circuit test set coverage appeared in a paper by

Agarwal and Masson [Agarwal, 1979] in which an number of special

cases of single fault coverage of multiple faults are derived along

Errors and Mutations 	 2-33

with a general technique for calculating test coverage.

Theoretical Studies 	 3-1

Chapter 3

Theoretical Studies

There are two possible approaches to applying mutation: (1)

For fixed programming system P define the mutants of P in terms of

syntactic and semantic transformation rules that alter P's syntax

and interpretation in a way that formally reflects the errors a com-

petent programmer could have made in producing P, or (2) define p =

P. Notice that, by virture of Theorems 1.20 and 1.21, (2) has the

effect of reducing test data adequacy relative to a set of errors to

simple test data adequacy. For theoretical studies, (2) is often

the more tractable approach since many useful properties of programs

can be inherited from their programming systems.

We recall the following fact from Chapter 1:

Theorem 1.18: The following statements are equivalent. 	(a)

the p(P)—adequate decision problem is solvable. (b) there is a com-

putable p(P) test strategy. (c) the p—equivalence problem is

decidable.

Then the following corollary is immediate.

Corollary: If there is a computable test strategy to generate

p(P) adequate test data T, then the equivalence of P and any program

Q in p(P) must be decidable.

At first glance the result of this theorem appears to cast

serious doubt on our ability to derive any interesting positive

results, since the equivalence problem is undecidable for most

Theoretical Studies 	 3-2

interesting language classes. As will be seen in this chapter,

however, we can obtain useful theoretical results by choosing the

set p(P) to capture some special properties of the original program

P.

For the remainder of this chapter we will consider two specific

programming systems: decision tables and LISP programs.

Decision Tables.

A decision table is a structured way of describing decision

alternatives. Decision tables are mainly used for data processing

applications although from time to time they have been suggested as

tools for certain analytic studies and for organizing test data

selection predicates.

A decision table is composed of a set of conditions, a set of

actions, and a table divided into two parts. Entries in the upper

part are chosen from the set (YES, NO, DON'T CARE) (denoted Y, N,

and *); entries in the lower table are either DO or DON'T DO

(denoted X and 0). Each column in the matrix is called a rule. An

example is shown in Figure 1.

Theoretical Studies 	 3-3

RULES

1 2 3 4

condition 	1

condition 2

condition 3

condition 4

Y

N

*

N

Y

*

Y

Y

N

Y

Y

*

*

Y

N

*

action 	1 X X 0 X

action 2 X 0 0 0

action 3 0 0 X X

Figure 1.

A Typical Decision Table

To execute such a program on an input, the conditions are first

simultaneously evaluated, forming a vector of YES—NO entries. This

vector is then compared to every rule. If the vector matches any

rule, the indicated actions are performed. If, for each possible

data item, there is at least one rule that can be satisfied, we say

the decision table is complete. We say it is consistent if there is

at most one rule.

Definition: Let P be a decision table with rules RIB

 and for each x e D, the domain of P, let v(x) be a sequence with

values in the set (YES,NO) such that v(x) i is the value of condition

i when evaluated on input x. Rule Rj (1 1 j < n) is said to be

Theoretical Studies 	 3-4

satisfied by input x if whenever Rji e {YES,NO), Rji = v(x)i'

Definition: 	Let P be a decision table with domain D. P is a

complete decision table if for all x e D, there is at least one rule

of P that is satisfied by x.

Definition: Let P be a decision table with domain D. P is a

consistent decision table if for all x e D, there is at most one

rule of P that is satisfied by x.

We define the programming system P to be the set of consistent

decision tables. In this case, the behavior of programs on D can be

characterized functionally. Without loss of generality, we assume

that P consists of complete decision tables, since an incomplete

decision table can always be simulated by a complete decision table

by adding actions that return error flags and rules that are satis-

fied by previously unmatched inputs in such a manner that the domain

of the incomplete table is consistently extended to all of D.

Without loss of generality, we may also assume that no two

rules specify exactly the same set of actions. Suppose that P is a

decision table with two such rules R and R'. Then by the addition

of at most one new condition to P, R and R' can be combined into a

single rule. With this assumption, we can -- given an example of

input—output behavior -- always determine which rule was applied to

give the required output.

Theoretical Studies 	 3-5

Definition: For each P c P, we define a set of mutants of P as

follows: (P(P) c:P is the set of all consisent decision tables hav-

ing the same conditions and actions as F.

Notice that the mutants of P differ from P only in the tabular

portion of the program. The number of rules may be different, the

assignment of actions to satisfied rules need not be correlated, and

the occurrences of YES, NO and * entries may be unrelated. This

notion of mutant program models the concept of an aribtrary coding

error in a decision table: since the conditions and actions must be

preserved, it is assumed that the source of errors is not in under-

standing requirements or specifications, but rather in implementing

the sequences of actions to be invoked.

Definition: For each P e P, the set of simple mutants of P,

11 (P) E4(P) is defined as follows: P' a p(P) if P' is a mutant of P

such that if some entry R id in rule i of P is *, then the correspon-

ding entry R'., in rule i of P' is either YES or NO and all other

rules and actions are identical.

The simple mutants of P are those members of $ that are formed

by changing a single * entry into either a YES or NO entry. If P is

consistent then all simple mutants are consistent. Some of these

mutants may be equivalent to P. The mutant that changes position j

in rule i from a * to a Y is equivalent to P only if it is impos-

sible for any input to satisfy rule i and not satisfy this con-

dition.

Theoretical Studies 	 3-6

Suppose we test decision table programs by applying Theorem

1.21. That is, we determine the relative adequacy of a test set by

computing the mutation score of the test set for a given set of

mutants. By naively modelling all possible errors, we have a mutant

set 4(P) that can be as large as 3n + 2m, if P has n conditions and

m actions. Since each mutant in C(P) could require a distinct test

set to distinguish it from P, the number of tests required in a test

set adequate relative to 4(P) could be exponential in the size of P.

On the other hand, there are at most two simple mutants for every

table entry in P. This means there are no more than 2nm simple

mutants. Each mutant requires at most a single test case to

differentiate it from P. Therefore, even though there are

potentially 2n different inputs, a test set that is adequate

relative to p(P) need have only at most 2nm inputs.

Since 4 models arbitrary coding errors while g models a rather

more restricted class of errors, the relative advantage computing

the mutation score on the set of simple mutants cannot really be

exploited unless there is a coupling of simple and complex errors

for programs in P.

Our goal will be to derive a provable coupling effect for the

programming system P. In particular, we wish to show that if mq, and

P are the mutation scores computed over 4(P) and p(P), respec-

tively, then for all P e P,

ml(P,T) = 1 if and only if m r (P,T) = 1.

Theoretical Studies 	 3-7

Assume we have such a set T. 	We require that T satisfy a

minimal test requirement, the decision table analog of statement

coverage. We will assume that every rule in P is satisfied at least

once by some member of T, adding points if necessary to meet this

condition. If all rules contain *'s, then this condition is met

initially.

This condition on T can be insured in test sets adequate

relative to a rich enough mutant set. Indeed, if 4 had been defined

to allow modifications to the actions of decision tables, then it

would have been possible to define 4 so that m4(P,T) = 1 only if T

satisfies each rule of P at least once. This expansion of 4 does

not change the error coupling properties of p, but it would add

considerable complexity to the arguments to follow.

Definition: 	Let P and Q be decision tables, Q a 4(P), and let

T be a test set. If P*(T) = Q*(T), then Q is said to test equal to

P on T.

Since each rule in P has a unique set of actions, it follows by

a simple counting argument that, if Q tests equal to P, then for

each rule in P there is a corresponding rule in 0 with exactly the

same actions. Using this fact, we can show the following:

Theorem 1: 	Suppose m (p,T)=1, and Q tests equal to P (on T).

Let V(P) i be the set of inputs satisfying rule Ri if P and let V(Q)i

be the set of input satisfying the corresponding rule of Q. 	Then

V(P) i c V(Q) i•

Theoretical Studies 	 3-8

Proof: First note that it is not possible for a rule to have a

Y entry in P and for the corresponding rule in 0 to have an N, or

vice versa. Otherwise, no data that satisfied the rule in P could

satisfy the rule in O.

Consider each * entry in P. 	There are two cases. If the

change that replaces this * by a Y (the same argument holds for N)

results in an equivalent program, then the conjunction of the other

conditions implies a YES in this position. In this case, it doesn't

matter whether Q has a Y or a * (and these are the only two pos-

sibilities) -- this change cannot contribute to decreasing the size

of the set V(0) i. On the other hand, if this change does not result

in an equivalent mutant, then D contains points that satisfy the

rule and both satisfy and fail to satisfy this particular condition.

Both these must be accepted by the same rule in Q. Therefore Q must

also have a * in this position.

The only remaining possibility is that some rule Ri in P has a

Y (or N) and the corresponding position in Q has a *. This strictly

increases the size V(0) i , giving our result. C]

Theorem 2: Let P s P and let T be a test set. 	If mii (P , T)=1,

then m l (p,T) = 1.

Proof: Let V(P) i be the set of inputs satisfying rule R i in P.

Since P is consistent, the V(P)i are disjoint. Since P is complete,

they cover the entire space of inputs. Each rule in Q must be

satisfied by at least the set satisfying the corresponding rule in

P. Since 0 is consistent, it can satisfy no more. []

Theoretical Studies 	 3-9

Recall that Theorem 1.18 stated that we could form an adequate

test set relative to the set of mutants only if we could decide

equivalence of P and each of its mutants. Obviously there are some

cases where this is true (for example, when all conditions are

independent and therefore none of the mutants are equivalent). We

can easily find examples where this is not true. Consider, for

example, two conditions where the implication

condition) 4 condition2

is. 	construct a decision table as shown in Figure 2.

condition

condition 2

print "YES"

Y

X

Figure 2.

Example of Undecidable Equivalence

We can replace the * in the condition 2 row with a Y if and

only if condition 1 always implies condition 2. In this fashion

using almost any undecidable question we can construct a program

with the property that the equivalence question for it and one of

its mutants is undecidable.

Theoretical Studies 	 3-10

The most restrictive assumption made in proving Theorem 2 seems

to be that each rule must have a distinct set of actions. To show

that this restriction cannot be eliminated altogether, consider the

two decision tables shown in Figure 3. The two programs are not

equivalent (they process the input NNYN differently), yet they agree

on a set of test inputs CNNYY,NYYN,YYNN,YNNY,NNNN,NYNY,YYYY,YNYN},

which is adequate relative to 1i(P).

Program P 	 Program Q

N Y N Y

* * *

Y N N Y

* *

, X 0 0

0 0 X X

Figure 3.

A Case not Covered by Mutation

It is not known whether the restriction to rules having

distinct actions can be replaced with a weaker assumption, or

whether there is any test method that can be used to demonstrate

correctness in this case other than trying all 0(2n) possibilities.

Theoretical Studies 	 3-11

Lisp Programs

In this section we will consider the programming system P

consisting of programs written in the subset of LISP containing the

functions CAR, CDR, and CONS and the predicate ATOM.

We will refer to S—expressions as points. We assume that all

points have unique atoms. Clearly if two programs agree on all

points then they are equivalent over the entire domain, so there is

no generality lost in this assumption.

Definition: A LISP program is a selector program if it is com-

posed of just CAR and CDR. We inductively define a straight—line

program as a selector program or a program formed by the CONS of two

other straight—line programs.

Straight— line programs: We will show in this section that in

the subsystem consisting of straightlino programs, if p is the

constant mapping onto the entire subsystem, then m
P
 (p

'
 00) = 1,

provided only that X is a point such that P(X) is defined.

We first note that the power of a selector program is very

weals.

Theorem 3: If two selector programs test equal on any input

for which they are both defined, they must compute identical values

on all points.

Theoretical Studies 	 3-12

Proof: The only power of a selector program is to choose a

subtree out of its input and return it. We can view this process as

selecting a position in the complete CAR/CDR tree and returning the

subtree rooted at that position. Since there is a unique path from

the root to this position, there is a unique predicate that selects

it. Since atoms are unique, by merely observing the output we can

determine the subtree that was selected. []

Definition: A straight—line program P(X) is well formed if for

every occurrence of the construction CONS(A,B) it is the case that A

and B do not share an immediate parent in X.

The intuitive idea of this definition is that a program is well

formed if it does not do any more work than it needs to. Notice

that being well formed is a structural property of programs.

We now define a complexity measure for straight—line programs.

Definition: The CONS—depth of a program is defined induc-

tively.

1. The CONS—depth of a selector program is zero.

2. The CONS—depth of a straight—line program

P(X) = CONS(P1(X),P2(X))

is

1 + MAX(CONS—depth(P1(X)),CONS—depth(P2))).

Theoretical Studies 	 3-13

Theorem 4: If two well formed selector programs test equal on

any point for which they are both defined, then they must have the

same CONS—depth.

Proof: 	Assume we have two programs P and Q and a point X such

that P(X) = Q(X), yet the CONS—depth(P) < CONS—depth(Q). 	This

implies that there is at least one subtree in the structure of 0

that was produced by CONSing two straight—line programs while the

same subtree in P(X) was produced by a selector. But then the

objects Q CONSed must have an immediate ancestor in X, contradicting

the fact the Q is well formed.

Theorem 5: If two well formed straight—line programs test

equal on any point X for which they are both defined, then they must

test equal on all points.

Proof: 	The proof will be by induction on the CONS—depth. By

Theorem 4, any two programs that agree on X must have the same CONS—

depth. By Theorem 3 the theorem is true for programs of CONS—depth

zero. Hence, we will assume it is true for programs of CONS—depth n

and show the case for n+1.

If program P has CONS—depth n+1 then it must be of the form

CONS(P,Q) where P and Q have CONS—depth no greater than n. Assume

we have two programs P and 0 in this fashion. Then for all Y:

P(Y) = Q(Y) 	 if and only if

CONS(P1(Y),P2(Y)) = CONS(01(Y),Q2(Y)) if, and only if

P1(Y) = Q1(Y) and P2(Y) = 02(Y)

Theoretical Studies 	 3-14

Hence by the induction hypothesis P and Q must test equal for

We can easily generalize Theorem 5 to the case where we have

multiple inputs. Recall that each atom is unique; therefore given a

vector of arguments we can form them into a list and the result will

be a single point with unique atoms. Similarly, a program with mul-

tiple arguments can be replaced by a program with a single argument

by assuming the inputs are delivered in the form of a list, and

replacing each occurrence of an argument name with a selector func-

tion accessing the appropriate position in this list. Using this

construction and assuming that Theorem 5 does not hold in the case

of multiple arguments, it is possible to construct two programs with

single arguments for which Theorem 5 fails, giving a contradiction.

To summarize this section: for any well formed straight—line

program, any unique atomic point for which the function is defined

is adequate to differentiate the program from all other well formed

straight line programs.

Recursive programs: The type of programs we will study in this

section can be described as follows. The input to the program will

consist of selector variables, denoted x 1,—,x 111 , and constructor

variables, denoted yi Yp . A program will consist of a program

body and a recurser. A program body consists of n statements, each

statement composed of a predicate of the form ATOM(t(xl)) where t is

a selector function and x1 a selector variable, and a straight—line

output function over the selector and constructor variables. A

recurser is divided into two parts. The constructor part is com-

Theoretical Studies 	 3-15

posed of p assignment statements for each of the p constructor

variables where y i is assigned a sraight—line function over the

selector variables and Y- 1 -
selector part is composed of m

assignment statements for the m selector variables where xi is

assigned a selector function of itself.

The example in Figure 4 should give a more intuitive picture of

this class of programs. Given such a program, execution proceeds as

follows: Each predicate of the execution; otherwise if any

predicate is TRUE the result of execution is the associated output

function. Otherwise, if no predicate evaluates TRUE then the

assignment statements in the recurser and constructor are performed

and execution continues with these new values.

Theoretical Studies
	 3-16

Program P(x 	x m , Y 1 	y p) =

IF p i (x11) THEN f 1 (x 7 , 	 x m y 	y p)

ELSE IF ...

	

ELSE IF p ("x) THEN f n ("x 1 , . . . , x m ,y 1 	y p)

ELSE

y := g 7 (y , x 	x m)

.Y p := 	p (Yp, x7,..., x m)

X1 := n 1 (x 1)

x m 	n m (x m)

P(x 	x m , y 1 	y p)1

Figure 4.

A Recursive Program

We will make the following restrictions on the programs we will

consider:

1. All the recursion selector and recursion constructor functions must

be non—trivial.

2. Every selector variable must be tested by at least one predicate.

3. There is at least one output function that is not a constant.

4. (Freedom) For each 1 < k < n and X. 1 0 there exists at least

	

one input that causes the program to recurse 	times before exiting

with output function k.

Theoretical Studies 	 3-17

Let t be the set of all programs with the same number of

selector and constructor variables as P, the same number of

predicates, and output functions no deeper than some fixed limit

olimit. 	Our goal is to construct a set of test cases T that is

adequate relative to 4 • 	The set of simple mutants g will be

described in the course of the proof, as they enter into the

arguments. The proof will proceed in several smaller steps: We

first give some basic definitions and demonstrate some tools that we

will use in later sections. We then show how to use testing to

bound the depth of the selector functions. Vie then narrow the form

of the selector functions still further, and finally show that they

must exactly match P. In preparation for the main theorem, we first

deal with the points tested by the predicates.

As in the previous section. we will use capital letters from

the end of the alphabet to represent vectors of inputs. Renee we

will refer to P(X) rather than P(xi ,...,xm,yi,.„,yp). Similarly we

will abbreviate the simultaneous application of constructor func-

tions by C(X) and recursion selectors by R(X).

We will use letters from the start of the alphabet to represent

positions in a variable, where a position is defined by a finite

CAR—CDR path from the root. When no confusion can arise we will

frequently refer to "position a in X", whereby we mean position a in

some xi or yi in X. We will sometimes refer to position b relative

to position a, by which we mean to follow the path to a and starting

from that point follow the path to b.

Theoretical Studies 	 3-18

The depth of a position will be the number of CARs or CDRs

necessary to reach the position starting from the root. Similarly

the depth of a straight—line function will be the deepest position

it references, relative to its inputs. Let w be the maximum depth

of any of the selector, constructor, recurser, or output functions

in P. The size of an input X will be the maximum depth of any of

the atoms in X.

We can extend the definition of _K to the space of inputs by

saying X S Y if and only if all the selector variables in X are

smaller than their respective variables in Y, and similarly the

constructor variables. We will say Y is X "pruned" at position a if

Y is the largest input less than or equal to X in which a is atomic.

This process can be viewed as simply taking the subtree in X rooted

at a and replacing it by a unique atom.

If a position (relative to the original input) is tested by

some predicate we will say that the position in question has been

touched. Call the n positions touched by the predicates of P

without going into recursion the primary positions of P.

The assumption of freedom asserts only the existence of inputs

X that will cause the program to recurse a specific number of times

and exit by a specific output function. Our first theorem shows

that this can be made constructive.

Theorem 6: Given X 2. 0 and 1 S i S n we can construct an input

X so that P(X) is defined and when given X as an input P recurses X

times before exiting by output function 1.

Theoretical Studies 	 3-19

Proof: 	Consider m+p infinite trees corresponding to the m+p input

variables. Mark in BLUE every position that is touched by a

predicate function and found to be non-atomic in order for P to

recurse X times and reach the predicate i. Then mark in RED the

point touched by predicate i after recursing X times.

The assumption of freedom implies that no BLUE vertex can

appear in the infinite subtree rooted at the RED vertex, and that

the RED vertex cannot also be marked BLUE. Now mark in YELLOW all

points that are used by constructor functions in recursing X times,

and each position used by output function i after recursing X times.

The assumption of freedom again tells us that no YELLOW vertex can

appear in the infinite subtree rooted at the RED vertex. The RED

vertex may, however, also be colored YELLOW, as may the BLUE

vertices.

It is a simple matter then to construct an input X so that

1. all BLUE vertices are interior to X (non-atomic),

2. the RED vertex is atomic, and

3. all YELLOW vertices are contained in X (they may be atomic).

Notice that the procedure given in the proof of Theorem 6

allows one to find the smallest X such that the indicated conditions

hold. If a is the implies that no point can be twice touched; hence

the minimal a point is a well defined concept.

Given an input X such that P(X) is defined, let Fx (Z) be the

straight-line function such that Fx (x) = P(X). Note that by Theorem

5, Fx is defined by this single point.

Theoretical Studies 	 3-20

Theorem 7: For any X for which P(X) is defined, we can

construct an input Y with the properties that P(Y) is defined, Y 2 x

and Fx k Fy•

Proof: 	Let X and i be the constants such that on input X, P

recurses X times before exiting by output function i. 	Let the

predicate pi test variable x j .

There are two cases. First assume f is not a constant func-

tion. Now it is possible that the position that would be tested by

P.1 after recursing X+1 times is an interior position in X, but since

X is bounded there must be a smallest k > X such that the predicate

P i (R(xj)) is either true or undefined. Using Theorem 6 we can find

an input Z that causes P to recurse k times before exiting by output

function i. Let Y be the union of X and Z. Since Y 2 Z, P must

recurse at least as much on Y as it did on Z. Since the final point

tested is still atomic P(Y) will recurse k times before exiting by

output function i. Since

f i (RX (X) ,RX (Y)) k f i (Rk (X),Ck (Y))

we have that Fx k Fy -

The second case arises when f. 1 is a constant function. By

assumption 3 there is at least one output function that is not a

i constant function. 	Let fbe this function. Let the predicate p i

test variable.• We can apply the same argument as before, except x j

that it may happen by chance that P(Y) = P(X), i.e. P(Y) returns

the constant value. In this case increment k by 1 and perform the

same process and it cannot happen again that P(Y) = P(X). []

Theoretical Studies 	 3-21

Theorem 8: 	If P touches a location a, then we can construct

two inputs X and Y with the properties that P(X) and P(Y) are

defined. Then for any Q in 4, if P(X) = Q(X) and P(Y) = WY), then

Q must touch a.

Proof: Let Z be the minimal a point. Using Theorem 7 we can

construct an input X such that P(X) is defined, X Z Z, and Fx

Let Y be X pruned at a.

We first claim that P(Y) is defined and F y = F. To see this,

note that every point that was tested by P in computing P(Z) and

found to be non-atomic is also non-atomic in Y. Position a is

atomic in both, and if the output function was defined on Z then it

must be defined on Y, which is strictly larger.

Suppose that, given input Y, a program Q recurses X times

before exiting by output function i but does not touch position a.

Since X is strictly larger than Y, on X, Q must recurse at least as

much and at least reach predicate i. Let the position in Y that was

touched by predicate i and found to be atomic be b. Since position

b is not the same as position a, position b is also atomic in X.

Therefore, given input X, Q will recurse X and exit by output func-

tion i. But this implies by Theorem 5 that Fx = Fy, a contradic-

tion. Ll

Bounding the depth of the recursion and predicate functions:

Our first set of test inputs uses the procedure given in Theorem 8

to demonstrate that each of the n primary positions in P are indeed

touched.

Theoretical Studies 	 3-22

Next, for each selector variable, use the procedure given in

Theorem 8 to show that the first n+1 postions (by depth) must be

touched. Let d be the maximum size of these m(n+l) positions. (We

will assume d is at least 3 and is larger than both 2w and olimit.)

Theorem 9: 	If Q is a program in 4 that correctly processes

these 2m(n+1) points, then the recursion selectors of Q have depth d

or less.

Proof: Consider each selector variable separately. 	At least

one of the n+1 points touched in that variable must have been

touched after Q had recursed at least once. If the recursion selec-

tor had depth greater than d, the program could not possibly have

touched the point in question. []

Theorem 10: 	If Q e 	$ correctly processes these 2m(n+1)

points, then none of the selector programs associated with the

predicates can have a depth greater than d.

Proof: At least one of the inputs causes Q to recurse at least

once; hence all the predicates must have evaluated FALSE and

theretore were defined. If any of the predicates did have a depth

greater than d, they would have been undefined on this input. []

Since d > olimit we also know that d is a bound on the output

functions of Q.

Theoretical Studies 	 3-23

We are now in a position to make a comment concerning the size

of the points computed by the procedure given in Theorem 8. Let

be the maximum depth of the "relative root" (the current variable

position relative to the original variable tree) at the time posi-

tion a is touched. We know the minimal a tree is no larger than

l+w. This being the case, to find an atomic or undefined point (as

in the procedure associated with Theorem 7) we will at worst have to

recurse to a position l+w deep, but no more than l+w+d deep. Hence

neither of the two points constructed in Theorem 8 need be any lar-

ger than 1+2w+d. This fact will be of use in proving Theorem 13.

Narrowing the form of the recursion selectors: We will say a

selector function f factors a selector function g if g is equivalent

to f composed with itself some number of times. For example, CADR

factors CADADADR. We will say that f is a simple factor of g if f

factors g and no function factors / other than f itself. Let us

denote by si, i = 1,...,m, the simple factors of ,

	

r.1 	the recursion

selector functions. 	That is, for each variable i there is a

constant X. so that the recursion selector r i is s. composed with 1 	 1

itself xi times. 	Let q be the greatest common divisor of all the

Xs. Hence the recursion selectors of P can be written as Sq for

some recursion selector S.

We now construct a second set of data points in the following

fashion: Foreachsejector va riablex .,let a be the first position

touched with depth greater than 2d 2 in x. Using Theorem 8, 1*

generate two points that demonstrate that position a must be

touched. Let To be the set containing all the (2n + 2m(n+1 + 2m)

points computed so far.

Theoretical Studies 	 3-24

Theorem 11: If Q e 4 computes correctly on To then recursion

selector i of O. must be a power of s.
1-

Proof: Assume the recursion selector of xi in Q is not a power

of s. 	Recall that the depth of the selector cannot be any greater

than d. 	Once it has recursed past the depth d, it will be in a

totally different subtree from the path taken by the recursion

selector of P.

Since d > 3, it is required that Q touch a point that has depth

at least 3d. Q must therefore touch this point prior to recursing

to the depth d. By Theorem 9 this is impossible. []

We can, in fact, prove a slightly stronger result.

Theorem 12: If Q E 4 computes correctly on To then there

exists a constant r such that the recursion selectors of Q are exac-

tly Sr.

Proof: 	By Theorem 11, the recursion selectors of Q must be

powers of s i . For each selector, construct the ratio of the power

of s. in Q to that in P. Theorem 12 is equivalent to saying that

all these ratios are the same. Assume they are different and let xi

be the variable with the smallest ratio and x. the variable with the

largest.

Let X and Y be the two inputs that demonstrate that a position

a of depth greater than 2d2 in xi is touched. Both P and Q must

recurse at least 2d times on these inputs. In comparison to what P

is doing, xj gains at least one level every time Q recurses. By the

Theoretical Studies 	 3-25

time xi is within range to touch a, x. will have gone 2d levels too

far. Since 2d. > d + 2w, x. will have run off the end of its input;

hence Q cannot have received the correct answer on X and Y. E]

Theorem 8 gave us a method to demonstrate a position is

touched. We now give a way to demonstrate a position is not

touched.

Theorem 13: 	If Q e 	+ computes correctly on all the test

points so far constructed, then for any position a not touched by P

we can construct two inputs X and Y so that if P(X) = Q(X) and P(Y)

= Q(Y) then Q does not touch a.

Proof: Let position a be in variable x.l. Let m be the smal—

lest number such that after recursing m times the recursion selector

i is deeper than a. Let X be the maximum depth of any recursion

selectors at this point. Let X be the complete tree of depth 1+2d

pruned at a.

There are two cases: If P(X) is not defined, assume Q touches

a. The relative roots of Q cannot be deeper than 1+d at the time

when a is touched. Hence the minimal a point is no deeper than

1+2d. Since X is strictly larger than the minimal a point we know

that Q(X) must be defined, which contradicts the fact that Q(X) =

P(X).

The second case arises if P(X) is defined. Using Theorem 7 we

construct an input Z X such that Fx A Fz. Let Y be Z pruned at a.

Assume Q touches a. Since Y 2 X, QM must be defined, so assume

P(Y) is defined. By construction Fy = FZ # Fx . But since Q touched

Theoretical Studies 	 3-26

a, Fx = Fy$ which is a contradiction.

Recursion selectors must be the same as P: If Q e 	4, executes

correctly on T0' then by Theorem 12, the recursion selectors of Q

must be S for some constant r. From Theorem 9 we know the depth of

S is no larger than d; hence there are at most d/(depth of S)

choices. For each possible r (not equal to q), construct a mutant

program P', which is equal to P in all respects but the mutant

selectors, which are Sr.

In this section we will consider test cases as pairs of inputs,

generated using the procedure given in Theorem 12, which return

either the value YES, saying they were generated by the same

straight—line program, or the value NO, saying they weren't. Other

than this we will not be concerned with the output of the mutants.

If each mutant touches a point that P does not, then construct

two points (using Theorem 13) to demonstrate this. If any mutant

touches only points that P itself touches, then we will say P cannot

be shown correct by this testing method. Call this set of test

cases 1.1•

Theorem 14: If Q e 4 executes correctly on To and T1 , then

the recursion selectors of Q must be exactly Sq.

Proof: Assume not, and that the recursion selectors are Sr for some

constant r # q. No matter what the primary positions of Q are, we

know it must touch at some point the primary positions of P. It

therefore must always touch the primary positions of P relative to

the position it has recursed to. But, therefore, it must at least

Theoretical Studies 	 3-27

touch the points that the mutant associated with r does. [1

Testing the primary positions of P: Consider each primary

position separately. Assume that in some program Q in $ the posi-

tion is not primary, but that it is touched after having recursed

times. Let b be the position of a relative to SqX. This means in Q

that b is primary. Now b cannot even be touched (let alone be

primary) in P because of the assumption of freedom. Using the

procedure given in Theorem 13, construct two points that demonstrate

that b is not touched, which demonstrates that a must be primary.

Taken together, these test points insure that the primary positions

of P must be primary in all other programs.

Notice that we need to make no other assumptions about the

other primary positions in Q; we can treat each of them indepen-

dently. We, therefore, have at most n(d/(depth of Sq) mutant

programs, hence at most twice this number of test points. Call this

test set T2 •

Theorem 15: 	If Q c 4 executes correctly on To , Ti , and T2

then the primary positions of Q are exactly those of P.

Notice that by Theorem 5 this also gives us the following.

Theorem 16: The output functions of Q are exactly those of P.

Main Theorem: Once we have the other elements fixed, the

constructors are almost given to us. Remember one of the assump-

tions is that each of the constructor variables appears in its

Theoretical Studies 	 3-28

entirety in at least one of the output functions. All we need do is

to construct P data points so that data point i causes the program P

to recurse once and exit using an output function that contains the

constructor variable i. Call this set T3. Using Theorem 5 we then

have

Theorem 17: 	The recursion constructors of Q must be exactly

those of P.

The only remaining source of variation is the order in which

the primary positions are tested. The only solution we have been

able to find here (short of making more severe restrictions on $)

is to try all possibilities. There are ni of these, some of which

may be equivalent to the original program. Let T4 be a set of data

points that differentiates P from all non-equivalent members of this

set.

Putting all of this together gives us our main theorem:

Theorem 18: Given a program P in 4, if Q e $ executes correc-

tly on the test points constructed in Theorems 9, 14, 15, and 17,

then Q must be equivalent to P.

Corollary: 	Either P is correct or no program in 	realizes

the intended function.

Even though the depth of the output functions is bounded, we

did not bound the number of CONS functions they contain; hence there

are an infinite number of programs in the set $. This is true even

after we have bounded the depth of the recursion selectors and the

Theoretical Studies 	 3-29

predicate selectors in Theorem 10.

The most important aspect of this result is the method of the

proof. Once we have fixed the recursion selectors via test sot To'

the remainder of the arguments can be proved by constructing a small

set of mutants and showing that test data designed to distinguish

these from the original actually will distinguish P from a much lar-

ger class of programs. In all we constructed

d(1/(depth of S) + n/(depth of Sq.)) + p + n1

mutants, and we proved that test data that distinguished P from this

set of mutants actually distinguished P from the infinite set of

programs in 4).

Bibliographic Notes

The results in this chapter were developed in Budd's thesis

[Budd, 1980] and in papers by Budd and Lipton [Budd, 1978] and Budd,

DeMillo, Lipton and Sayward [Budd, 19801)].

A Mutation Analyzer 	 4-1

Chapter 4.

A Mutation Analyzer

In overall structure, a mutation analyzer serves as a test har-

ness and aids in performing mutation analysis. This chapter

provides a detailed description of the implementation of a mutation

analyzer.

Although 	existing 	mutation 	analyzers differ in certain

respects, there are essential similarities. Briefly, the systems

allow an interactive user to enter a program to be tested. The

program is parsed to a convenient internal form and appropriate data

files are created. The user then enters test data, executing the

program on the test data to check for errors. At the point of cal-

culation of the mutation score, the user "turns on" or enables a

subset of the mutant operators. The system creates a list of mutant

description records, descriptions of how the internal form is to be

modified to create the required mutant. The changes are induced

sequentially with additional heuristics to speed up processing and

the modified internal form is executed. The results are compared to

the original results to determine whether or not the mutant survives

the execution on that data. At the completion of the pass, summary

reports are presented to the user, and several options are provided

for examining the remaining live mutants. The user may also declare

mutants to be equivalent and therefore remove them from future

consideration. This function can be partially automated with

considerable improvement in performance. The issue of equivalent

mutants will be discussed more fully in Chapter E.

A Mutation Analyzer 	 4-2

System Overview

The user interface of a mutation analyzer is interactive.

Tasks are assigned to both the user and the analyzer which are best

suited to their capabilities. One way to see how this might be

accomplished is to imagine the system as an adversary who, when con-

fronted with a program asks the user a set of questions about the

program (e.g., "Why did you use this type of statement here when an

alternative statement works just as well?"). The task of the user

is then to provide justification in the form of test data which will

give an answer to such a question.

An overview of the structure of such a system is shown in

Figure 1.

FILE
HANDLER

USER
INTERFACE

MUTANT
INTERPRETER

MANAGER
REPORT

GENERATOR

A Mutation Analyzer
	 4-3

Figure 1.

System Organization

The heart of a mutation analyzer is roughly that portion of the

system which lies within the dotted box in Figure 1. This portion

is largely language independent since it is driven by an internal

form of the source program rather than the source program itself.

Given a sufficiently general internal form, it is possible to

implement a mutation analyzer for a new language by modification of

the input/output interface. In later sections, we will describe the

details of a mutation analyzer for a simple subset of Cobol.

A single run of a mutation analyzer divides naturally into

three phases: the run preparation phase, in which the information

which is required by the analyzer is prepared, the mutation phase,

A Mutation Analyzer 	 4-4

during which the mutations are generated and a mutation score is

calculated, and a post run phase in which results are analyzed and

reports are generated.

Run Preparation. The role of the run preparation phase is to

initialize various files and buffer areas. This phase is charac-

terized by its high degree of user involvement. The user is first

asked to supply the name of the file which contains the source

program to be tested. Depending on whether or not the system has

previously been run on this file the program file is either parsed

to an internal form or a previously generated internal form file is

retrieved. This internal form is subsequently interpreted to

simulate program execution. A fragment of a typical internal form

generated by the Fortran statement

IF (A .LT. X(2)) P = 1

is shown in Figure 2.

A Mutation Analyzer 	 4-5

C trf.03

rop.IL7

[assign.01

[scalar.Ai t array.X3 [const.27 [scalar. R1 C con st.1.7

Figure 2.

Internal Form

The user is then interactively prompted for the test data on

which the program is to be tested (and against which the mutation

score is to be calculated). After each test case has been specified

(either by direct user entry at the keyboard or by reference to a

test file), the original program is executed on the test case and

the results of execution are displayed (or written onto an output

file for later examination). The role of the oracle who determines

whether or not the calculated output of the program is satisfactory

may be played by either the user or the system. If the user plays

the role of the oracle, then he must literally examine the input—

output relation determined by the program's execution to determine

A Mutation Analyzer 	 4-6

whether the computed input—output relation is the one required by

the specification. If the system plays the role of the oracle, it

must be supplied with a predicate subroutine. A predicate

subroutine is an executable, uniform specification of input—output

behavior, The system invokes the predicate subroutine each time the

subject program is executed on a test case to determine if the

input—output relation computed during that execution is the one

required by the specification. In either case. if the test case is

processed satisfactorily, the user is allowed to either enter

additional test cases or to compute the mutation score and

associated statistics.

After the user has entered test data, he is prompted for a

specification of which mutant operators he wishes to apply. Instead

of constructing multiple copies of the program (one for each

mutant), a short descriptor of each mutation to be performed is

generated and stored in an auxiliary file. Each time the mutant is

to be run, the internal form is modified according to the informa-

tion stored in the descriptor and the modified program is

interpreted in the mutation phase. The user may also specify a per-

centage of the mutant operators to be applied.

Experience has shown that it is best to partition the task of

developing test data which is adequate relative to the entire set of

mutants in stages. Each stage further refines the test data to

distinguish the program under test from a more extensive class of

mutants. A convenient partitioning of the mutant operators is the

following:

A Mutation Analyzer 	 4-7

Level 1: Statement Analysis

Goal: Insure that every branch is taken and

that every statement is necessary

Mutants: all statement and control mutants

Level 2: Predicate Analysis

Goal: Exercise predicate boundaries

Mutants: Alter predicate and loop limit

subexpressions by small amounts

ABS insertions in predicates

Relational operator substitutions

Level 3: Domain Analsysis

Goal: Exercise data domains

Mutants: Alter constants and subexpressions

by small amounts

ABS insertions

Level 4: Coincidental Correctness Analysis

Goal: Determine coincidental correctness conditions

Mutants: Operand substitutions

Operator substitutions.

In addition, the user may specify that certain of the mutants

are to be randomly sampled in computing the mutation score. While

there is some loss of effectiveness in randomly sampling mutants (as

opposed to exhaustively executing all mutants), experimental

evidence (cf. Chapter 5) suggests that test data which delivers a

A Mutation Analyzer 	 4-8

high mutation score under the sampling strategy also results in a

high mutation score when computed according to the definitions in

Chapter 1. The advantage to the user in reducing processing time

can be considerable, especially for large monolithic programs.

Mutation Phase. Once the user has specified the program, test

data and level of test (mutation operators and percentage) to be

applied, the system enters the mutation phase. During this phase

there is virtually no user interaction. Mutation descriptor records

are processed sequentially or randomly sampled depending on whether

or not the user has specified a percentage other than 100%. The

mutant program is generated by modification to the internal form of

the source program. The mutant is then executed on the test data

and is either marked "dead" or "alive". A mutant is marked dead if

it has delivered results which differ from the program being tested

by, for example, producing different output, violating a

predicate subroutine, or inducing a runtime error -- on at least one

test case. Otherwise the mutant remains alive. The mutation score

is then the ratio of dead mutants to the total number of

nonequivalent mutants. A dynamic record is kept of the number and

percentage of living mutants of each type. These records are

organized to allow access in a number of dimensions (e.g., live

mutants by statement, by mutant type, randomly sampled). Since the

final mutation score is the ratio of dead mutants to the total num-

ber of nonequivalent mutants, equivalent mutants must be deleted

before the score is correctly interpretable. There are two times

when it is appropriate to delete equivalent mutants. Many

equivalent mutants can be detected automatically (cf. 	Chapter 8).

A Mutation Analyzer 	 4-9

If a mutant can be deleted automatically it is deleted during the

mutation phase. Equivalent mutants can also be deleted under user

control during the post run phase.

Post Run Phase. When the mutant programs have been run on the

current test cases, the system enters a post run phase. In this

phase, statistics are displayed indicating the results of the muta-

tion run to that point. The user can interactively select descrip-

tions of live and dead mutants and display them on the screen. Dur-

ing the post run phase certain reports may also be generated; these

reports provide a detailed permanent record of the mutation run.

The user nay also declare certain mutants to be equivalent.

Equivalent mutants do not enter into the mutation score calculation.

There are two reason a user may declare a mutant to be equivalent.

First, the user may have actually determined that the mutant belongs

topE • Such a mutant has not been automatically eliminated during

the mutation phase, but the system provides some automated help in

the post run phase for determining equivalence. Some

implementations provide data flow analyzers and various static

analysis tools that allow the user to determine equivalence (see

Chapter 8) Second, the user may choose to ignore a portion of the

program being tested. For example, a subroutine or module may

already have been tested adequately during a previous phase. The

decision to mark all mutants which change code in that subroutine

then essentially eliminates that portion of the program from further

consideration even though the routine is still present in executable

form and delivers results to modules which invoke it during the

mutation and pre run phases.

A Mutation Analyzer 	 4-10

The user can re—run the system and augment the test cases in an

attempt to improve the mutation score. The user may also specify

that additional mutation operators are to be applied to the program.

This cycle can continue until the user is satisfied that the current

test data is adequate relative to the given set of mutation

operators.

Several files hold information between system runs. These are

shown in Figure 3, which outlines the functions of each phase. The

internal form file stores the parsed version of the source program

being tested. The test data file stores for each test case the test

data input and the results of execution of the program being tested

on the test data. The mutation information file sorts the mutation

descriptor records and other statistics generated during the muta-

tion and post run phases.

A Mutation Analyzer 	 4-11

Figure 3.

Major Files

A Mutation Analyzer for Cobol

We will now describe in some detail the organization of a muta-

tion analyzer for a subset of Cobol which we refer to as "Level 1"

Cobol. A Level 1 Cobol program is written in the standard Cobol

format (columns 1-6 containing sequence numbers, column 7 containing

continuation marks, columns 8 through 72 containing Level 1 Cobol

statements).

A Mutation Analyzer 	 4-12

The following syntax chart defines Level 1 Cobol:

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name
[AUTHOR. comment-entry.]
[DATE-WRITTEN. comment-entry.]
[DATE-COMPILED. comment-entry.]
[SECURITY. comment-entry.]
[REMARKS. comment-entry.]

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
[SOURCE-COMPUTER..comment-entry.]
[OBJECT-COMPUTER. comment-entry.]
[SPECIAL-NAMES.][CO]. IS mnemonic-name.]

INPUT-OUTPUT SECTION.
FILE-CONTROL.

[SELECT file-name ASSIGN TO {INPUTi1OUTPUTi}...]

DATA DIVISION.
FILE SECTION.
[FD file-name RECORD CONTAINS integer CHARACTERS]

[LABEL RECORDS ARE [STANDARDIOMMED}]
DATA RECORD IS data-name
level-number [data-name 1 FILLER}
[REDEFINES data-name-2]
[{PICTURE1PIC) IS character-string]
[OCCURS integer TIMES]
• • •

6..
[WORKING STORAGE SECTION.

[77 level entries.?
[record entries.)...]

PROCEDURE DIVISION.
[paragraph-name.]

ADD {identifier-Illiteral-1}[identifier-2111-2]... [TOGIVING) identifier-m
[ROUNDED][ON SIZE ERROR imperative-statement].
CLOSE file-name-1 [file-name-2]... .
COMPUTE id [ROUNDED] = arithemtic-expression
[ON SIZE ERROR imperative-statement]
DIVIDE {identifier-111iteral-1} {INTO1BY}} {identifier-211iteral -2}
[GIVING identifier-3][ROUNDED][ON SIZE ERROR imperative-statement].
EXIT.
GO TO paragraph-name
CO TO paragraph-name-1 [[paragraph-name-2]... DEPENDING ON id].
IF condition { statement- 1INEXT STATEMENTS}

[ELSE statement-2 [1NEXT STATEMENT)]
MOVE identifier-1 TO identifier-2 [identifier-3] 	.
MULTIPLY {identifier-111iteral-1} BY {identifier-211-2)
[GIVING identifier-3][ROUNDED][ON SIZE ERROR imperative-statement].
OPEN [INPUT file-name-1 [file-name-2]}
[OUTPUT file-name-3 [file-name-4]]
PERFORM paragraph-name-1[THRU paragraph-name-2]
PERFORM paragraph-name-1 [THRU paragraph-name -2] {identifier-11 int-1} TIMES

A Mutation Analyzer 	 4-13

PERFORM paragraph-name-1 [THRU paragraph-name-2]
[VARYING identifier-1 FROM {identifier-211iteral-1]

BY {identifier-311iteral-21 UNTIL condition]
READ file-name RECORD [INTO identfier]

AT END imperative-statement
STOP RUN
SUBTRACT fidentifier-illiteral -1ilidentifier-211iteral-2]...
FROM 	[identifier-militeral-m]
[GIVING identifier-n][ROUND][ON SIZE ERROR imperative-statement].

WRITE record-name [FROM identifier-1]
[AFTER ADVANCING [identifier-2iintegerlmnemonic] LINES].

Implementation Overview. 	The user provides the name of the

file containing the source program. Of course this program should

be a legal Level 1 Cobol program. The program is parsed to its

internal form. The system then produces all mutation descriptors.

The legal mutations are the following:

Decimal Alteration: move implied decimal in numeric items one

place to the left or right, if possible.

Dimensions: reverse two-level table dimensions

OCCURS clause alteration: add or subtract a constant (usually

1) from an occurs clause.

Insert FILLER: 	insert a FILLER of length 1 between adjacent

items of a record.

FILLER size alteration: add or subtract a constant (usually 1)

from the length of a FILLER.

A Mutation Analyzer 	 4-14

Elementary item reversal: reverse adjacent elementary items in

a record.

File reference alteration: interchange names of files at the

point of reference.

Statement deletion: replace a statement by the null statement.

GO TO —> PERFORM: change GOTOs to PERFORMS

PERFORM —> GOTO: change PERFORMs to GOTOs

Conditional reversal: 	negate the condition in an IF—THEN

clause.

STOP statement substitution: replace a statement by a STOP

statement.

TUB clause extension: expand the scope of the THRU clause by

a fixed number of statements (usually 1)

TRAP statement replacement: 	replace each statement by a

statement. 	TRAP statements are not included in Level 1 Cobol. The

effect of a TRAP statement is to call a routine which ceases normal

program operation and returns control to the mutation analyzer with

the information that a statement has been TRAPped.

A Mutation Analyzer 	 4-15

Substitute arithmetic verb: interchange arithmetic verb with

all other arithmetic verbs.

Substitute 	operator 	in COMPUTE: 	interchange arithmetic

operator with all other arithmetic operators in an arithmetic

expression.

Parenthesis alteration: move one parenthesis one character to

the right or left.

ROUNDED alteration: interchange ROUNDED and truncation.

MOVE reversal: reverse the sense of a move in a simple MOVE

statement if the resulting statement is legal.

Logical 	operator 	replacement: 	interchange 	all Boolean

operators.

Scalar for scalar replacement: substitute one tablular item

reference for another when the result is a legal expression in Level

1 Cobol.

Constant for constant replacement: interchange constants that

appear in the program.

Scalar for constant replacement: replace constant references

with non—tabular item references.

A Mutation Analyzer 	 4-16

Constant for Scalar replacement: 	replace non- tabular item

references with constant.

Constant adjustment: adjust the value of a constant by a fixed

percentage (always at least 1 if the constant is an integer).

Mutants may be enabled selectively and a fixed precentage of

the mutants to be processed may be specified as described in the

previous section.

Mutants may die in a variety of ways. 	A mutant may deliver

incorrect results (i.e., it may fail to match the output of the

program being tested or may fail to satisfy 	the 	predicate

subroutine). Mutants may also die by producing runtime faults

(e.g., attempting to read unopened files or dividing by 0).

Infinite loops in mutants are detected by setting a timing constant

which sets an absolute upper bound on the number of iterations of a

single loop which are allowed. A typical setting of the timing

constant might be three times the number of statements executed by

the program being tested of the test case currently being processed.

Level 1 Cobol is limited to a fixed number of sequential input

and output files. Ten nonrewindable files seem to be sufficient for

such common data processing applications as posting sorted transac-

tions against a master file and updating the master. For this sim-

ple system there should be a limit set on the amount of storage

allocated for each file for each test case. Files are packed into

arrays by replacing each string of repetitions of a single character

(such as a string of blanks) by storing a token which represents the

character and a repeat count.

A Mutation Analyzer 	 4-17

As described in the previous section, the system should create

a number of auxiliary files. Some of these files are random access

files used to process the mutants and test cases. Others are needed

for the restart capability. A convenient naming scheme is to use

the name of the auxiliary file as an extension to the name of the

program file provided by the user. For example, if the user submits

TEST—PROD-1 to the system, the system might store the internal form

of the program in the file TEST—PROG-1.if.

A file that deserves special attention is the logfile. This

file contains:

1. a listing of the program with line numbers assigned.

2. a record of the percentage of mutants to be created.

3. a summary of test case and mutant transactions, in the

order in which they occurred (whenever a test case is

submitted a message is logged about that transaction,

including the location of the test case and whether the

test case was accepted or rejected by the user; mutants

are entered as they are enabled),

4. a summary of mutant status after each mutation phase,

5. a listing of live mutants after each mutation phase,

6. an optional listing of test cases after each pre run

phase.

A Mutation Analyzer 	 4-18

These files should not be automatically deleted after a run is com-

pleted, but rather should be available for a possible resumption of

testing.

Suggested File Formats. 	The files which are required for

processing have been described above. 	In this section, we will

examine the structure of those files in enough detail to permit easy

implementation of an analyzer for Level 1 Cobol.

SOURCE PROGRAM <filename>

The source program is assumed to be in a sequential system

file, in the standard Cobol format.

INPUT FILE (EXTERNAL)

Input file can either be supplied by the user as a standard

sequential file or can be entered directly from the terminal. It

is, of course, possible to create some input files outside the

system using whatever tools the user has access to, and to create

the others interactively.

TEST FILES (INTERNAL)

The internal test files contain all test cases that have been

created at that time. There are two files containing test

information, the test status file, and the test data file.

contents

1 if INPUTO is used in the program
0 otherwise.

similar for INPUTI to INPUT9
and OUTPUTO to OUTPUT9.

The total number of test cases that
have been defined.

The number of test cases that were
defined prior to this pass.

pointer to the next record position
after the last, for appending.

2-20

21

22

23

Table 1. Test Status Global Information

entry

1

entry

1

2

3-40

41

contents

The starting position of INPUTO in
<filename>.TD (see below)

The number of records in INPUTO.

Similar for the other files.

The number of statements executed by
the original program on this testcase

Table 2. Test Status File — Test Case Record 1

A Mutation Analyzer 	 4-19

TEST STATUS FILE Wilename>.ts): The first record of this

file contains global information.

This record will be followed by two records for each test case.

The first test case record has the format:

The second record contains a bit map for the statements executed by

this test case. This bit map is used to speed up processing during

the mutation phase. If a statement is not executed by a test case,

then no mutant cf that statement should be executed. By using the

A Mutation Analyzer 	 4-20

bit map to record statement executions, the applicability of a

mutant to a given test case can be easily determined.

TEST DATA FILE ((filename>.td): The test data file contains

the actual test cases, with the input file(s) first, followed by the

output file(s) of the original program. To save space these should

be stored in packed format with strings of repeated characters

replaced by single characters and repeat counts.

MUTANT RECORD FILE Wilename>.mr): The mutant records are

stored in binary format, at four integers per mutant record. All

records for a particular mutant type are stored contiguously, fol-

lowed by all records for the next mutant type.

MUTANT STATUS FILE ((filename>.ms): The first section of the

file contains a total mutant count and headers for each mutant type.

ientry 	 contents

1
	

mutant type 	 1
2
	

on or off ever (initially zero) 	 I
3
	

on or off this run 	 I
4
	

mutant status file record pointer for status block 1

Table 3. Mutant Rtatu- Fji Fenders

For each mutant type there is then a status block, of

one record. The status block contains the following

information:

entry) 	 contents

1 1 total mutants for this type
2 1 bit map length in words

	

3 	mrf pointer for the first mutant record of
this type

4 1 number of live mutants

	

5 	number of dead mutants

	

6 	number killed by trap(*)

	

7 	number killed by time—out
8 	number killed by data fault

	

9 	number killed by initialization fault

	

10 	number killed by I/O fault in OPEN/CLOSE

	

11 	number killed by attempt to read past EOF

	

12 	number killed by writing too much

	

13 	number killed by output too large for buffer

	

14 	number killed by array subscripts out—of—bounds

	

15 	number killed by incorrect output

	

16 	number killed by garbage in the code array

Table 4. Status Block

A Mutation Analyzer 	 4-21

The status block is followed by counts indicating live, dead,

and equivalent mutants, indexed by mutant number.

INTERNAL FORM (ffilename>.if): The internal form file contains

the following tables:

SYMBOL TABLE

STATEMENT TABLE

CODE ARRAY

INIT

DASH TABLE

INIT is the initial segment of memory containing literals, PICTUREs,

and memory initialization information. The remaining tables are

described below.

A Mutation Analyzer 	 4-22

OUTPUT FILE (ailename›.1o): 	This is a file 	containing

information on the run. Its contents are controlled by the user.

Typical contents would be a listing of the source program, the test

cases, the status after each pass through the system, and a listing

of some or all of the live mutants.

INITIAL.HASH: This table is the same as HASH—TABLE except that

it contains only the reserved words and their tokens.

Internal Form Specifications

SYMBOL TABLE: The symbol table is an 10xN array of integers.

A simple data item (group or elementary) is described by one row in

the array. A table item is described in two rows, the second is a

dope vector. The following conventions are useful. Entry 1 in each

row (record) points to the hash table entry for the name of the

item. If the item has no name (such as a filler or literal), entry

1 is zero. Entry 2 is always a code for the type of the record.

Its value determines the meaning of the other entries. The overall

organization of the symbol table entries is as shown in Figure 4.

4-23 A Mutation Analyzer

FILE
DEFINITION

PROGRAM
NAME

INPUTO

INPUTI - OUTPUT8

04...7-PU T9

HASH
ADDRESS TYPE LEVEL

PICTURE
ADDRESS ADDRESS LENGTH DEPTH

VALUE
ADDRESS

RE-
DEFINE

SOURCE
LINE

CODE
FIRST

SUSSCR.
SECOND
SU8SCR.

MAX
FIRST

SUBSCR.

MAX
SECOND
SUEISCR

OCCURS
VALUE

CODE
DECL.

POSITION
LITERAL
POOL LENGTH

NAME CODE
FIRST
STMT.

LAST
STMT.

DATA ITEM

TABLE ENTRY

LITERAL

PARAGRAPH

NAME

Figure 4.

Symbol Table Organization

Table 5 describes the contents of the first 21 rows of the sym-

bol table.

Row Purpose

Program Name

Entry

1

Contents

pointer to program name
2 INPUTO 1 hash table pointer to file name
2 INPUTO 2 pointer to symbol table entry for

data record
2 INPUTO 3 record length

21 CU TPUT9 1 hash table pointer to file name
21 OUTPUT9 2 	pointer to symbol table entry for

data record
21 OUTPUT9 3 	record length

Table 5. First Rows of Symbol Table

i ------------ 	--

entry

contents

Index of the identifier in the hash table,
so that print name can be recalled. For
FILLERS, this is zero.

A code for the type of the object.
1 for unsigned numeric identifier
2 for signed numeric identifier
3 for non—numeric identifier
4 for edited numeric item
5 for group item

The level number

Pointer to the PICTURE string in program
memory for edited numeric items.
OR the decimal position (from right) for
unedited numeric items.
OR not used.

A pointer to the start of the item in program
memory. For an item in a table, this is the
constant term in the address calculation.

The length of the item, in characters.
All items are stored with usage of DISPLAY.

The depth of the item in the table structure.
(0 for scalars, 1 for one—level tables or for
rows in two—level tables, 2 for two—level
tables entries.)

Pointer to VALUE string in program memory.

The Symbol table row for the item that is Av
REDEFINEd

The source program line number on which the
item description began

1

2

3

4

5

6

7

8

9

10

Table 6. Symbol Table Data Items

A Mutation Analyzer 	 4-24

DATA ITEMS . The following table describes the organization of

the entries for the elementary data items.

entry! 	 contents

2 	code = 6

4 	the multiplier for the first subscript.

5 	the multiplier for the second subscript.

6 	the maximum value for subscript-1.

7 	the maximum value for subscript-2.

8 	the number of OCCURances of the item.

Table 7. Symbol Table — Table Items

entry] 	 contents

4

5

6

2 	code = 7 for numeric literals
code = S for non—numeric literals
code = 10 for the twiddle of a numeric literal

decimal position, for numeric literal

pointer to value in literal pool

length

Tables 8. Symbol Table — Literals

A Mutation Analyzer 	 4-25

SECOND ROW FOR TABLE ITEMS A second row is required for the

dope vector when the data item is a table entry.

LITERALS DEFINED IN THE PROCEDURE DIVISION; For entering

references to literals which are defined in the procedure division,

the following table format is used. SPACES and ZERO (and twiddles

of ZERO) have entries of this format which are present by default,

even if not used in the program.

A Mutation Analyzer 	 4-26

PARAGRAPH NAMES Paragraph names are entered in the following

format:

entryl 	 contents

1 	pointer to name

2 	code = 9

3 	statement table index of first statement

4 	statement table index of last statement

Table 9. Symbol Table — Paragraph Names

Entries in the symbol table are stored in the same order as the

items are encountered . In particular, entries for data items

defined in the DATA DIVISION are stored almost as they appear in the

source code, with nesting being implicit in the level numbers and

the sequence. One exception to this rule is the inclusion of dummy

FILLER entries of length zero between elementary items. This is to

accommodate the mutant operator that inserts fillers to avoid having

to change procedure division references.

Memory is organized as shown in Figure 5.

CALCULATOR

CONSTANTS

A Mutation Analyzer 	 4-27

Figure 5.

Memory Organization

The first 30 characters of memory are used as a temporary

arithmetic register. Following that comes the constant data area.

This area includes:

PICture strings — for edited numeric items. 	There are 3+N

descriptors, where N is the length of the picture string. The first

is the length of the string; descriptor 2 is the number of digit

positions; and descriptor 3 is the number of digits to the right of

the decimal point. Then follows the picture string. An editing

MOVE uses this string to interpretively execute the MOVE instruc-

tion.

A Mutation Analyzer 	 4-28

VALUE literals. for numeric items — descriptor 1 is the number

of digits, descriptor 2 is the number of digits in fraction, and

descriptors 3 to n+2 are the digits themselves. An operational sign

is coded in the last descriptor with the last digit. for nonnumeric

items — descriptor 1 is the length N in characters, and descriptors

2 to N+1 are the characters.

Procedure Division literals. 	These are digits or characters

only. Since these items have individual symbol table rows, the

extra information (e.g., length, decimal position) is stored there.

SPACES and ZERO are stored in positions after the arithmetic

register in a format that can be referenced either as VALUE or

Procedure Division literals, depending on the start pointer.

A variable area follows the constant area. All data is stored

on a USAGE IS DISPLAY basis, one character at a time. Since some

mutations change the data structure, reallocation between executions

is sometimes necessary.

STATEMENT TABLE: The statement table is composed of triples of

integers. The first is the starting position of an instruction in

the code table. When a procedure division statement is mutated, the

original code is not modified. Instead, a mutated copy of the

instruction is created and appended to the end of the code table.

This entry is then modified to point to this mutant copy of the

instruction. The second entry in the triple is the line number of

the statement on the source listing. The third entry contains a

code. A value of 0 means this statement is a continuation in a

A Mutation Analyzer 	 4-29

sentence (no period after previous statement.) A value of 1 means a

new sentence. A value greater than 1 means the beginning of an ELSE

clause.

INTERNAL FORM OF PROCEDURE DIVISION: The following table

describes the format of the internal form for each Cobol instruc-

tion. The bracketed entries "identifier","ident", and "id", as well

as "op" are pointers to symbol table entries describing identifiers

or literals. The symbol table contains information about type,

length. and location. Notice that an operand can also be a table

reference. In this case, instead of a single integer we would have

[cre][index-1] or [op][index-1] [index-2]. The interpreter will know

from the symbol table entries for op whether 0,1, or 2 indices (sub-

scripts) are needed for a valid reference. Index-1 (and index-2)

are also symbol table references to simple (unsubscripted) variables

or to numeric literals. The notations "procedure" and "Proc"

represent pointers to symbol table entries describing paragraph

names. The symbol table will contain pointers to the first and last

statements in the paragraph, in the statement table.

Each instruction is preceded by a word containing the length of

that instruction.

source internal form syntax

MOVE 	 <MOV><n><source><dest-l>...<dest-n>
ADD 	 <AD><rnd><size><n><op-1>...<op -n>
ADD-GIVING 	<ADO><rnd><size><n><op-l>...<op-n><dest>
SUBTRACT 	 <SU><rnd><size7<n><op-1>...<op-n>
SUE-GIV 	 <SUG><rnd><size><n><op-l>...<op-n><dest>
MULTIPLY 	 <MU><rnd><size><op-1><op-2>
MULT-GIV 	 <MUG><rnd><size><op-1><op-2><dest>
DIVIDE 	 <DI><rnd><size><op-1><op-2>
DIV-GIV 	 <DIG><rnd><size><op-1><op-2><dest>
COMPUTE 	 <C0><rnd><size><ident><arith. exp.>

IGO To
	

<G0><procedure>
GO TO...DEPEND 	<GOD><n><proc-l>...<proc-n><ident>
PERFORM 	 <PE><procedure><procednre-2>
PERFORM-UNTIL 	<PEU><proe-1><proc-2><condition>
PREFORM-VARYING 	<PEV><proc-1><proc-2><ident><from><by>

<REP1><pl-stmt-ptr><p2-code-ptr><condition>
PERFORM-TIMES 	<PET><procedure><procednre-2><ident>

<REP2><count><start><stop>
no op 	 <RET><O>
return 	 <RET> <addr>
IF
	

<IF>Celse-stmt-ptr><condition>
!NEGATED IF
	

<NIF><else-stmt-ptr><condition>
10PEN
	

<OP><1..20>
;CLOSE
	

<CL><1.-20>
!READ
	

<RE><1..10><from-ident>
WRITE
	

<WR><1..10><from-ident><advance>
STOP RUN
	I <STOP>

TRAP
	

I <TRAP>

A Mutation Analyzer 	 4-30

Table 10_ Tnternal Form Syntax

The items <rnd> and <size> are codes. <rnd> is set to 0 for

truncated values and 1 for rounded values. <size> is set to 0 if no

SIZE ERROR clause has been specified and 1 otherwise. In the inter-

nal form the SIZE ERROR clause immediately follows the current

statement. Arithmetic expressions are interpreted (see algorithms

below) by a "calculator" that uses the initial memory locations for

subexpression and intermediate storage.

In PERFORM-VARYING and PERFORM7-TIMES statements <REP1>

represents the iteration control instruction. On returning from the

PERFORM, control is returned to this instruction. <pl-stmt-ptr> is

A Mutation Analyzer 	 4-31

a statement table pointer corresponding to the symbol table <pointer

proc-l>. < p2-code-ptr> is a code pointer for the insertion of the

return. <REP2> is similar to REP1, but <count> holds the value that

was in <ident> when the statement was first executed. Start and

stop are statement table pointers for the perform range.

Each paragraph ends with a no op statememt. When a PERFORM

statement is executed, it first changes the no op at the end of its

range to a return by inserting the return address (in the statement

table) and then transferring to the beginning of the range. When a

RETURN is executed, it transfers to the address in the instruction

and also changes itself to a no op by changing its address field to

0. No op's are also inserted when NEXT SENTENCE is used or implied

in an IF statement.

in the WRITE statement <advance> is a symbol table pointer.

MUTANTS: The mutant descriptions are stored in four integers.

The first is the mutant type, and the others (not all types use all

four integers) are used for auxiliary information. The following

mutants are defined.

A Mutation Analyzer 	 4-32

mutant semantics

DECIMAL

DIMENS1

DIMENS2

INSERTF

ALTERF

REVERSE

FILEREF

DELETE

GO.-PERF

PERF—GO

THENELS

STOPINS

THRUEXT

TRAP

ARIVERB

ARIOPER

PARENTH

ROUND

MOVEREV

LOGIC

S—FOR—S

C—FOR—C

C—FOR—S

S—FOR—C

CONSADJ

Move implied decimal in numeric items one place

Reverse row and column OCCURS counts

Increment or decrement (by 1) an OCCURS count.

Insert a filler with PICTURE X.

Alter a filler with PICTURE X(n) to X(n-1) or X(n+1)

Reverse adjacent elementary items in a record.

Change a file reference from one file to another

Delete a statement (change it to a NO—OP).

Change a CO TO to a PERFORM

Change a PERFORM to a GO TO.

Reverse the THEN and ELSE clauses in an IF

Insert a STOP RUN in the program.

Extend the TRHU range of a PERFORM.

Change a statement to a TRAP

Change one arithmetic verb to another.

Change an arithmetic operator in a COMPUTE statement.

Alter the parenthesization of an arithmetic expression

Change rounding to truncation, or vice versa.

Reverse the direction of the MOVE

Change a logical comparison to some other comparison.

Substitute one scalar data references

Substitute a constants (numeric or nonnumeric literal)

Substitute a constant for a scalar.

Substitute a scalar for a constant.

Increment or decrement a numeric literal by 1 or by 1%

Table 11. Mutant Semantics

A Mutation Analyzer 	 4-33

We now describe the effects of each of these mutations on the

internal form entries. The mutations are grouped by the Cobol

syntactic structures affected during the mutation: data, input,

output, control, and procedural. Each mutant is described by four

integers which specify the type of mutation, relevant table entries,

and parameters defining the mutant. In the notation below, blank

entries in the descriptors are indicated by <x>. <field> denotes

the location in the code table relative to the start of the

statement. All other locations and limits are defined through their

symbol table entries. Thus, the mutants can be stored in a file of

4xN integers.

DATA MUTATIONS

(1) <DECIMAL><syn.tab.loc><+1 1 —1><x>
(2) <DIMENS1><sym.tab.loc><x><sym.tab.loc.-2>
(3) <DIMENS2><sym.tab.loc><+1 1 —1><x>
(4) <INSERTF><symbol table location><x><x>
(5) <ALTERF><sym.tab.loc><+11-1><x>
(6) <REVERSE><sym.tab.loc.><next.elementary.loc><x>

INPUT/OUTPUT MUTATIONS

(7) <FILEREF><statement><x><new file—code>

CONTROL STRUCTURE MUTATIONS

(8) <DELETE><statement><x><x>
(9) <GO—PERF><statement><x><x>
(10) <PERF—GO><statement><x><x>
(11) <THENELS><statement><x><x>
(12) <STOPINS><statement><x><x>
(13) <THRUEXTXstatement><new paragraph limit><x>
(14) <TRAP><statement><x><x>

PROCEDURAL MUTATIONS

(15) <ARIVERB><statement><new operation><x>
(16) <ARIOPER><statement><field><new operation>
(17) <PARENTH><statement><from—field><to—field>
(18) <ROUND><statement><x><x>

A Mutation Analyzer 	 4-34

(19) <MOVEREV><statement><x><x>
(20) <LOGIC><statement><field><new value>
(21) <S—FOR—S><statement><field><new symtab loc.>
(22) <C—FOR—C><statement><field><new loc>
(23) <C—FOR-S><statement><field><new loc>
(24) <S—FOR—C><statement><field><new loc>
(25) <CONSADD<statement><field><new loc>

Processing Algorithms

In this section, we will describe the principal processing that

takes place during the mutation phase of the analyzer. The overall

organization of these algorithms is as shown in Figure 6.

PARSE ID

PARSE DATA
PARSE PROC.
PARSE ERROR 	ABORT

PARSE

EXIST
CREATE
DELETE
OPENF
CLOSEF
WRTRAN
GETCMD ABORT
EXIST
OPENF
CLOSEF
TESTCAS READLN

PACK
UNPACK

1NTERP

DRIVER
	

ENTRY

PREPH

MAKMU
CETMU
MUTATE
INTERP

— CORREC
PUTMU
RESTOR
OPENF
CLOSEF

POSTPH DSPTT
GETCMD
DSPMU
DSPPRG

Figure 6.

Call Structure for Processing Algorithms

MUTPH

A Mutation Analyzer 	 4-35

Each major algorithm is described below. Minor algorithms are

described briefly in the major algorithms that use them.

In addition to the processing algorithms described below, an

implementor will need some utilities for common file processing

operations. The utilities which are most likely to be helpful are

those which take and replace a given mutant (indexed by its number)

in a mutant buffer, create and delete files, check to see if a

specified file (on a specified unit) is open or already exists.

Sequential and random access reads and writes are also required.

ABORT — stop the run

ABORT prints a message indicated in its call. It then closes all

open files without further processing. No files are deleted. ABORT

then terminates the run and returns control to the operating system.

Be aware that ABORT does not actually cause the output file to be

printed. The user must do that outside the system.

ALCATE -- allocate storage

ALCATE scans the symbol table, filling in the fields for the lengths

of group items, and for the positions and multipliers for all items.

CLOSEF — close a file

CLOSEF closes currently open files. It will also detect if the file

was not opened and return an error message to the calling algorithm.

A Mutation Analyzer 	 4-36

CORREC - check mutant correctness

CORREC compares an output of the program being executed with the

output of the original program. Depending on the mode of correct-

ness checking chosen by the user (or by the default methods), this

may be done after each record is "written", after the program has

completed execution (unless the program has failed by some other

method), or not at all. Also selectable by the user should be the

precision of the checking: total agreement, or agreement up to

spacing.

DECOMP - decompile statement

DECOMP decompiles a statement in internal form to its Cobol

equivalent.

DRIVER the main program

This program controls the looping through the mutation process at

the highest level. It controls the prerun, mutation, and postrun

phases of the run. This is the routine that may be altered later if

the "phase" concept is dropped.

DSPSTT - display status

Display the status of the mutants that have been turned on. This

includes a listing by mutant type of the numbers of mutants live and

eliminated, and a listing by elimination method of the number

eliminated by each method.

A Mutation Analyzer 	 4-37

ENTRY — entry routine for set—up.

This algorithm is entered only once, at the beginning of a testing

session. ENTRY first asks the user for the name of the raw program

file. It then checks to see if the temporary files needed already

exist (their names will be derived from the raw program file name).

If they do, then the user will be asked if he wants to purge them

for a fresh run. If a fresh run is desired, or if the temporary

files did not exist, ENTRY causes the program to be parsed, and

causes the needed temporary files to be created and initialized.

INITM — initialize core memory

This algorithm initializes program memory for the start of an

interpretive interaction. This routine is called before each execu-

tion of each mutant program, as well as before the execution of the

original program.

INHASH -- insert info into hash table

INHASH can only be used after QUASH has already been called to

determine the proper point of insertion for the name. QUASH also

does the actual insertion of the name. INHASH makes the insertion

permanent. If a name is not permanently inserted the name will be

overwritten the next time QUASH accesses that location.

INTERF — interpretively execute the program.

INTERP interprets the internal form of the program. The program can

fail in INTERP by attempting to read past the end of file, by writ-

ing too many records on an output file, by taking too much time, by

arithmetic fault, or by mode mismatch. The limits for time and out-

A Mutation Analyzer 	 4-38

put records are in ERSTAT. 	For the original program these are

arbitrary values. but for mutant programs, they should be set for

comparisons with the original program. INTERP leaves a code for the

mode of failure, or nonfailure, in ERSTAT. Also placed in ERSTAT

are counts of the actual time used and records written. INTERP

calls CORREC after each "write" or after the end of execution, or

not at all, depending on the correctness checking mode selected by

the user.

MAKEMU — make mutants

MAKEMU creates the descriptor record file, and initializes the

mutant status record. The first time it is called, it writes header

information and the first batch of mutants. On subsequent calls it

appends mutant records.

MUTATE — mutate the program

MUTATE mutates the program. For a data division mutation, this

means altering one or several entries in the symbol table, and also

possibly the already initialized memory. For the procedure division

the affected statement is copied, in its mutated version, at the end

of the code table. The statement table is then modified so that the

pertinent entry points to the modified version, rather than the

original. The original statement is not affected, so that restora-

tion is easy.

MUIPH — control the mutation phase.

MUTPR first creates the mutants that have been requested by the

user, and then performs the mutations and runs the mutants, updating

A Mutation Analyzer 	 4-39

the mutant status as it does so. Each test case and each mutant

record carries a flag that indicates whether or not it was created

on this pass. While looping through the mutants, each new mutant is

run against all test cases. Each old mutant that has not already

been killed is run only against the new test data.

OPENF — open a file

OPENF opens a file. This algorithm will have concentrated system

dependencies. 	Typical parameters passed to OPENF include the type

of file (e.g., sequential output file or random input file), the

starting 	position in the file (e.g., beginning, end, random

address), and a flag to indicate success of the 	operation.

Extensive use should be made of the native operating system file

handling routines in implementing OPENF.

PARSE — driver routine for parsing subroutines.

This routine controls the four divisional routines that actually

perform the parsing. It also prints error messages. The pilot

system, at least, will abort the parsing when the first error is

detected. The user will be informed of the offending line and the

type of error.

POSTPH -- the post run phase

POSTFH is guided by user dialogue. 	Its purpose is to display

information for the user. The mutant status should be automatically

displayed upon entry, all other information is by request. The user

may ask to see the program, the test cases (by number), or the

mutants (all, selected, or one random mutant of each type).

A Mutation Analyzer 	 4-40

Finally, the user may return to the pre-run phase by command or end

the session.

PREPH - the controlling routine for the prerun phase

The prerun phase is guided by user dialogue. PREPH will ask about

test cases for this pass. These may be in a file or they may be

entered from the terminal. Several test cases may be entered at

once. 	After each test case the user is presented with the results

of the run and is asked if the test case should be retained. 	After

the test cases are entered PREPH asks the user which mutants are to

be turned on. The user may turn them all on, or he may name a sub-

set, or he may select mutants to be activated.

PRSDAT - parse the data division

PRSDAT parses the data division, building the symbol table for later

use by PRSPRO, INTERP, and MAKEMU. PRSDAT enters one line in the

symbol table for each identifier declared in the DATA DIVISION.

PRSDAT also builds an array for the initialization of memory before

each run.

PRSENV - parse the environment division.

This routine parses the environment division. 	The only lines of

importance are the SELECT statements, which contain the file

declarations, The file names are placed in the symbol table in

entries 2-5.

A Mutation Analyzer 	 4-41

PRSID — parse the identification division.

This 	routine 	essentially recognizes a correct identification

division. The only effect on the internal form is to insert the

program name (from the PROGRAM— ID statement) into the first location

of the symbol table.

PRSPRO — parse the procedure division

RSPRO parses the procedure division, creating the code array and the

statement array. PRSPRO also adds literals and paragraph names to

the symbol table.

PUTNAM — put name in NAMES array

PUTNAM inserts character string in NAMES for future reference, such

as by decompiler.

MASH -- query hash -- is item already in hash table?

MUSE takes a name of 30 characters and checks to see if it is

already in the hash table. If so, it sets and index to the position

in the table where the name was found. If no match is found, an

index is set to that insertion position.

RESTOR - restore a mutant to the original version

Restore the internal form of the program to its original state. For

a Data Division mutant this means removing a filler, re—reversing

two elementary items, or restoring table attributes. In all of

these cases the symbol table must be modified, and space must be

reallocated. For a Procedure division mutant, restoration is

easier. All that must be done is to change entry 1 in the statement

A Mutation Analyzer 	 4-42

table entry to its previous value.

SCAN — the scanner routine

SCAN passes to the parsing routines tokens from the source file .

For an idenfifier token, scan calls the hash query routine to see if

the symbol is already in the table and if so, where.

TSTCAS -- process a test case

TSTCAS inputs one test case from the user, either directly or from a

file, runs the test case, and displays the result to the user. If

the test case is accepted, it is merged into the test file, marked

as "new".

A Testing Session

The following is the output of a level 1 Cobol system whose

design parallels the design given above. The program under test was

modified somewhat, mainly in the reduction of the record sizes to

make a better CRT display. The program takes as input two files,

representing an old backup tape and a new one. The output is a sum-

mary of the changes. The input files are assumed to be sorted on a

key field. The program has 1195 mutants, of which 21 are easily

seen to be equivalent to the original program. Initially ten test

cases were generated to eliminate all of the nonequivalent mutants.

Subsequently a subset of five test cases was found to be adequate.

The entire run took about 10 minutes of clock time, and 2 minutes

and 13 seconds of CPU time on the PRIME 400.

A Mutation Analyzer 	 4-43

WELCOME TO THE COBOL PILOT MUTATION SYSTEM
PLEASE ENTER THE NAME OF THE Cobol PROGRAM FILE:>log-changes
DO YOU WANT TO PURGE WORKING FILES FOR A FRESH RUN ?>yes
PARSING PROGRAM
SAVING INTERNAL FORM
WHAT PERCENTAGE OF THE SUBSTITUTION MUTANTS DO YOU WANT TO CREATE?>100
CREATING MUTANT DESCRIPTOR RECORDS
PRE-RUN PRASE
DO YOU WANT TO SUBMIT A TEST CASE ? >program

PROGRAM LAST COMPILED ON 1 11 80.

1 	IDENTIFICATION DIVISION.
2 	PROGRAM-ID. POQAACA.
3 	AUTHOR. CPT R W MOREHEAD.
4 	INSTALLATION. HOS USACSC.
5 	DATE-WRITTEN. OCT 1973.
6 	REMARKS.
7 	THIS PROGRAM PRINTS OUT A LIST OF CHANGES IN TEE ETF.
8 	ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE
9 	OLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO
10 	FURTHER PROCESSING OF THE ETF HERE. THE ONLY OUTPUT IS A
11 	LISTING OF THE ADDS, CHANGES, AND DELETES. THIS PROGRAM IS
12 	FOR HQ USE ONLY AND HAS NO APPLICATION IN THE FIELD.
13 	*****************
14 	MODIFIED FOR TESTING UNDER CPMS BY ALLEN ACREE
15 	JULY, 1979.
16 	ENVIRONMENT DIVISION.
17 	CONFIGURATION SECTION.
18 	SOURCE-COMPUTER. PRIME.
19 	OBJECT-COMPUTER. PRIME.
20 	INPUT-OUTPUT SECTION.
21 	FILE-CONTROL.
22 	SELECT OLD-ETF ASSIGN INPUT1.
23 	SELECT NEW-ETF ASSIGN INPUT2.
24 	SELECT PRNTR ASSIGN TO OUTPUT1.
25 	DATA DIVISION.
26 	FILE SECTION.
27 	ED OLD-ETF
28 	RECORD CONTAINS 80 CHARACTERS
29 	LABEL RECORDS ARE STANDARD
30 	DATA RECORD IS OLD-REC.
31 	01 OLD-REC.
32 	03 FILLER 	 PIC X.
33 	03 OLD-KEY 	 PIC X(12).
34 	03 FILLER 	 PIC X(67).
35' FD NEW-ETF
36 	RECORD CONTAINS 80 CHARACTERS
37 	LABEL RECORDS ARE STANDARD
38 	DATA RECORD IS NEW-REC.
39 	01 NEW-REC.
40 	03 FILLER 	 PIC X.
41 	03 NEW-KEY 	 PIC X(12).
42 	03 FILLER 	 PIC X(67).
43 	FD PRNTR
44 	RECORD CONTAINS 40 CHARACTERS

A Mutation Analyzer 	 4-44

45 	LABEL RECORDS ARE OMITTED
46 	DATA RECORD IS PRNT-LINE.
47 	01 PRNT-LINE 	 PIC X(40).
48 	WORKING-STORAGE SECTION.
49 	01 PRNT-WORK-AREA.
50 	03 LINE1 	 PIC X(30).
51 	03 LINE2 	 PIC X(30).
52 	03 LINE3 	 PIC X(20).
53 	01 PRNT-OUT-OLD.
54 	03 WS-LN-1.
55 	 05 FILLER 	 PIC X VALUE SPACE.
56 	 05 FILLER 	 PIC XXXX VALUE '0
57 	 05 LN1 	 PIC X(30).
58 	 05 FILLER 	 PIC XXX VALUE SPACES.
59 	03 WS-LN-2.
60 	 05 FILLER 	 PIC X VALUE SPACE.
61 	 05 FILLER 	 PIC XXXX VALUE 'L
62 	 05 LN2 	 PIC X(30).
63 	 05 FILLER 	 PIC XXX VALUE SPACES.
64 	03 VIS-LN-3.
65 	 05 FILLER 	 PIC X VALUE SPACE.
66 	 05 FILLER 	 PIC XXXX VALUE 'D
67 	 05 LN3 	 PIC X(20).
68 	 05 FILLER 	 PIC XXX VALUE SPACE.
69 	01 PRNT-NEW-OUT.
70 	03 NEW-LN-1.
71 	 05 FILLER 	 PIC XXXXX VALUE ' N
72 	 05 N-LN1 	 PIC X(30).
73 	 05 FILLER 	 PIC XXX VALUE SPACE.
74 	03 NEW-LN-2.
75 	 05 FILLER 	 PIC XXXXX VALUE ' E
76 	 05 N-LN2 	 PIC X(30).
77 	 05 FILLER 	 PIC XXX VALUE SPACES.
78 	03 NEW-LN-3.
79 	 05 FILLER 	 PIC XXXXX VALUE ' W
80 	 05 N-LN3 	 PIC X(20).
81 	 05 FILLER 	 PIC XXX VALUE SPACES.
82 	PROCEDURE DIVISION.
83 	0100-OPENS.
84 	OPEN INPUT OLD-ETF NEW-LTF.
85 	OPEN OUTPUT PRNTR.
86 	0110-OLD-READ.
87 	READ OLD-ETF AT END GO TO 0160-OLD-EOF.
88 	0120-NEW-REAP.
89 	READ NEW-ETF AT END GO TO 0170-NEW-EOF.
90 	0130-COMPARES.
91 	IF OLD-KEY = NEW-KEY
92 	 NEXT SENTENCE
93 	ELSE GO TO 0140-CK-ADD-DEL.
94 	IF OLD-REC = NEW-REC
95 	 GO TO 0110-OLD-READ.
96 	MOVE OLD-REC TO PRNT-WORK-AREA.
97 	PERFORM 0210-OLD-WRT IBRU 0210-EXTT.
98 	MOVE NEW-REC TO PRNT-WORK-AREA.
99 	PERFORM 0200-NW-WRT THRU 0200-EXIT.
100 	GO TO 0110-OLD-REAP.

A Mutation Analyzer 	 4-45

101 0140-CK-ADD-DEL.
102 	IF OLD-KEY > NEW-KEY
103 	 MOVE NEW-REC TO PENT-WORK-AREA,
104 	 PERFORM 0200-NW-WRT THRU 0200-EXIT
105 	 GO TO 0120-NEW-READ
106 	ELSE GO TO 0150-CK-ADD-DEL.
107 0150-CK-ADD-DEL.
108 	MOVE OLD-EEC TO PRNT-WORK-AREA.
109 	PERFORM 0210-OLD-WRT THRU 0210-EXIT.
110 	READ OLD-ETF AT END
111 	 MOVE NEW-REC TO PENT-WORK-AREA
112 	 PERFORM 0200-NW-WRT THRU 0200-EXIT
113 	 GO TO 0160-OLD-EOF.
114 	GO TO 0130-COMPARES.
115 	0160-OLD--ROF.
116 	READ NEW-ETF AT END GO TO 0180-EOJ.
117 	MOVE NEW-REC TO PRNT-WORK-AREA.
113 	PERFORM 0200-NW-WET THRU 0200-EXIT.
119 	GO TO 0160-OLD-EOF.
120 0170-NEW-E0F.
121 	MOVE OLD-RED; TO PENT-WORK-AREA.
122 	PERFORM 0210-OLD-WRT THRU 0210-EXIT.
123 	READ OLD-ETF AT END GO TO 0180-EOJ.
124 	GO TO 0170-NEW-EOF.
125 	0180-E0J.
126 	CLOSE OLD-ETF NEW-LTF PRNTR.
127 	STOP am.
128 0200-NW-WRT.
129 	MOVE LINE1 TO N-LN1.
130 	MOVE LINE2 TO N-LN2.
131 	MOVE LINE3 TO N-LN3.
132 	WRITE PENT-LINE FROM NEW-LN-1 AFTER ADVANCING 2.
133 	WRITE PENT-LINE FROM NEW-LN-2 AFTER ADVANCING 1.
134 	WRITE PENT-LINE FROM NEW-LN-3 AFTER ADVANCING 1.
135 	0200-EXIT.
136 	EXIT.
127 0210-OLD-WET.
138 	MOVE LINE1 TO LN1.
139 	MOVE LINE2 TO LN2.
140 	MOVE LINE3 TO LN3.
141 	WRITE PENT-LINE FROM WS-LN-1 AFTER ADVANCING 2.
142 	WRITE PENT-LINE FROM WS-LN-2 AFTER ADVANCING 1.
143 	WRITE PRNT-LINE FROM WS-LN-3 AFTER ADVANCING 1.
144 	0210-EXIT.
145 	EXIT.

>yes
WHERE IS OLD-ETF?
>1c9
WHERE IS NEW-ETF?
>1c6
OLD-ETF PROVIDED TO THE PROGRAM

I123456789012IIIIIIIIII0=JJJJKKKKKKKKRKLULLULLLNNNNNNNNNNBEBBBUBBEGGGGG
J234567890123YYYYYYYYYYGGGGGGGGGGEFFEFFEFFFODDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

NEW-ETF PROVIDED TO THE PROGRAM

A Mutation Analyzer 	 4-46

1133456789012000
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE
345678901234UVUUU1JUUUMMIHNIIHMIGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

PRNTR AS WRITTEN BY THE PROGRAM

O 112345678901211111111110JJJJJ3
L JJJKKKYKKKKKKLLLLLELLLLNNNNNNN
D NNNBBBBBBBBBBGGGGGGG

N 113345678901200000000000000000
E 000000000000000000000000000000
W 00000000000000000000

O J234567890123YYYYYYYYYYGGGGGGG
L GGGEFFEFFEFFFODDDDDDDDDSSSSSSS
D SSSXXXXXXXXXXEEEFEEE

N J234567890123YYYYYYYYYYGGGGGGG
E GCGFFIFFFEFFEDDDDDDDDDDSSSSSSS
W SSSXXXXXXXXXXEEEEEEE

N 345678901234UT11J UUUU1JU111111171ffi11
E IHIEGGGGGGGGGGDDDDDDDDDDSSSSSSS
W SSSEEEEEEEEEEAAAAAAA

THE PROGRAM TOOK 84 STEPS
IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >no
MUTATION PHASE
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? 	>select

ENTER THE NUMBERS OF THE MUTANT TYPES YOU WANT TO TURN ON AT THIS TIME.

4 	**** 	INSERT FILLER TYPE 	****
5 	**** 	FILLER SIZE ALTERATION TYPE 	****
6 	**** 	ELEMENTARY ITEM REVERSAL TYPE 	****

7 	**** 	FILE REFERENCE ALTERATION TYPE 	****

8 **** STATEMENT DELETION TYPE 	****
10 **** PERFORM --> GO TO TYPE 	****
11 **** THEN — ELSE REVERSAL TYPE 	****
12 **** STOP STATEMENT SUBSTITUTION TYPE 	****
13 **** ThRU CLAUSE EXTENSION TYPE 	****
14 **** TRAP STATEMENT REPLACEMENT TYPE 	****

19 **** MOVE REVERSAL TYPE 	****
20 **** LOGICAL OPERATOR REPLACEMENT TYPE 	****
21 **** SCALAR FOR SCALAR REPLACEMENT 	****
22 **** CONSTANT FOR CONSTANT REPLACEMENT 	****
23 **** CONSTANT FOR SCALAR REPLACEMENT 	****
25 **** CONSTANT ADJUSTMENT 	****

TYPES ? >4 to 14 stop
TESTCASE 	1 --

250
284 CONSTITRED
	

224 KILLED 	60 REMAIN

A Mutation Analyzer
	 4-47

MUTANT STATUS

TYPE TOTAL LIVE PCT palm(
INSERT 41 7 82.93 0
FILLSZ 38 14 63.16 0
ITEMRV 21 0 100.00 0
FILES 5 1 80.00 0
DELETE 54 13 75.93 0
PER GO 7 2 71.43 0
IF REV 3 1 66.67 0
STOP 53 10 81.13 0
THRU 8 2 75.00 0
TRAP 54 10 81.48 0

TOTALS
284 60 78.87 0

DO YOU WANT TO SEE THE LIVE MUTANTS?>no
DO YOU WANT TO SEE THE EQUIVALENT MUTANTS?>no
WOULD YOU LIKE TO SEE THE TEST CASES?>no
LOOP OR HALT ? >loop
PRE-RUN PHASE
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
WHERE IS OLD-ETF?
>1c15
WHERE IS NEW-ETF?
>1c5
OLD-ETF PROVIDED TO THE PROGRAM

0000000000012 III III II I IJ JJJJ J J.TJ JKKKKKRICKKKI,LLLLLLLLLNNNNNNNNNINEBBBBBBBBBGGGGG
I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
J23 4567890123 YY YYYYYYYYG GGGGGGGGGEFFFEFFEFFDDDDDD DDDDS SSSSSSSSSXXXX2OUVOCEEEEE

NEW-ETF PROVIDED TO THE PROGRAM

I123456789012IIIIIIIIII=JJJJJSKKKKK=KKULLULLUNNNNNNNNNNBBBBBBBBBBOGGGG
32345678 901 23YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

PRNTR AS WRITTEN BY THE PROGRAM

O 0000000000012IIIIIIIIIIJJJJJJJ
L JJJKKETIUKKKLLLLLLLLLENNNNNNN
D NNNBBBBBBBBBBGGGGGGG

THE PROGRAM TOOK 44 STEPS
IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >yes
WHERE IS OLD-ETF?
>1c14
WHERE IS NEW-ETF?
>1c5
OLD--ETF PROVIDED TO THE PROGRAM

I 1 23 456789012 I I IIIII II IKJJ JJJJJJJEaKIM=KELLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
3234567890123YYYYYY YYYYGGGGGGGGGGFTFFFFFFFEDDDDDDDDDDS S SS SS SS SSXXX.XXXXXXXEEEEE

NEW -ETF PROVIDED TO WE PROGRAM

A Mutation Analyzer 	 4-48

11 23456789012 IIIII II 1MM 	KKKICKYSKICKLLLLELLELLNNNNNNNNNNBBBBBBBBBBOGGG
J23 4567890123 YYYYYYYYYYG GGGG GGOGGFFEFFFEEFEDDDDDDDDDDS SS S S S SSSSXXXXXXXXXXEEEEE

PRNTR AS WRITTEN BY THE PROGRAM

O 11234567890121111111111KMJil
L JJJKI(KKIcKVIUKKELI.LLELLELNNNNYNIN
D NNNEBBLEBBBBBGGGGOGG

N 112345678901211111111111MM
E MMCKKKKKKILLLLELLLLENNNNNNN
W liNNBBBBBBBBBBGGGOCCG

THE PROGRAM TOOK 48 STEPS
IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >yes

WHERE IS OLD—ETF?
>1c11

WHERE IS NEW—ETF?
>lcl
OLD—ETF PROVIDED TO THE PROGRAM

00

NEW—ETF PROVIDED TO THE PROGRAM

1123 456789012111111 II IIMMJJJJKIXIIKKKKKELLLELLLELNNNNNNN1VNNIIBBBBBBBBB OGGGG
J234 5678 9O123YYYYYYYYYYGGGCGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

34567 890123 4131JUUUUUUMMIIIIIILTEUBIffiGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

PIINTR AS WRITTEN BY THE PROGRAM

O 000000000000000000000000000000
L 00000000000000
D

N 11234567890121111111111M1J11
E JJJKKKKKIaCKKKLLELELLELLNNNINNINN
W NNNBBBBBBBBBBOOGGGOG

N 1234 567890123YYYYYYYYYYGGGOGGG
E GGGFFEFFFIFFEDDDDDDDDDDSSSSSSS
W SSSXXXXXXXXXXEEEEEEE

N 34567890123 4 UIIUUUUUIJUUIIIHIIIIHIII
E IIIIIIGGGGGGGGGGDDDDDDDDDDSSSSSSS
W SS SEEEEEEEEEEAAAAAAA

THE PROGRAM TOOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE ? >yes
DO YOU WANT TO SUBMIT A TEST CASE ? >yes

WHERE IS OLD—ETF?
>lcl
WHERE IS NEW—ETF?

640 KILLED

82 KILLED

1 KILLED

61 KILLED

69 KILLED

174 REMAIN

152 REMAIN

151 REMAIN

90 REMAIN

21 REMAIN

A Mutation Analyzer 	 4-49

OLD-ETF PROVIDED TO TIME PROGRAM

I123456789012IIIIIIIIIIHMJJJJJEKKILKKKKKKILLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG
12345678 901 23YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE

34567 890123 4UUUUUUUUUUIIHIIHIIR1HIJIIJGGGGGGGGQGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA

NEW-Elk PROVIDED TO THE PROGRAM

00

PRNTR AS WRITTEN BY THE PROGRAM

N 000000000000000000000000000000
E 00000000000000
W

O I123456789012IIIIIIIIIIJMUJJ
L JJJKYLKICUKKKKILLLLLLLLLNNNNNNN
D NNNBBBBBBBBBBGGGGGGG

• J234567890123YYYYYYYYYYGGGGGGG
L GGGEFFFFEFFFEDDDDDDDDDDSSSSSSS
D SSSXXXXXXXXXXEEEEEEE

O 345678901234UUUMATUUUHHHHHHH
L HIHIGGGGGGGGGGDDDDDDDDDDSSSSSSS
D SS SEEEEEEEEEEAAAAAAA

THE PROGRAM TOOK 64 STEPS
IS THIS TEST CASE ACCEPTABLE
DO YOU WANT TO SUBMIT A TEST
MUTATION PHASE
WHAT NEW MUTANT TYPES ARE TO
- TESTCASE 	1 --

250
500
750
814 CONSIDERED

- TESTCASE 	2 ---
234 CONSIDERED

- TESTCASE 	3 --
152 CONSIDERED

- TESTCASE 	4 —
151 CONSIDERED

- TESTCASE 	5 --
90 CONSIDERED

MUTANT STATUS

? >yes
CASE ? >no

BE CONSIDERED ? >all

TYPE TOTAL LIVE PCT EQUIV
INSERT 41 3 92.68 0
FILLSZ 38 12 68.42 0
ITEMRV 21 0 100.00 0
FILES 5 0 100.00 0
DELETE 54 1 98.15 0
PER GO 7 0 100.00 0
IF REV 3 C 100.00 0

A Mutation Analyzer

STOP 53 0 100.00 0
TILRU 8 0 100.00 0
TRAP 54 0 100.00 0
MOVE R 13 0 100.00 0
LOGIC 15 1 93 .33 0
SUB SFS 704 4 99.43 0
SUBCFC 12 0 100.00 0

58 0 100.00 0 SUBCFS
C ADJ 12 0 100.00 0

TOTALS
1098 21 98.09 0

DO YOU WANT TO SEE THE LIVE MUTANTS?>yes
THE LIVE MUTANTS

FOR EACH MUTANT : HIT RETURN TO CONTINUE. TYPE 'STOP' TO STOP.
TYPE 'EQUIV' TO JUDGE THE MUTANT EQUIVALENT.

**** INSERT FILLER TYPE ****

THERE ARE 	3 MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THEMnyes
A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER
THE ITEM WHICH STARTS ON LINE 52
ITS LEVEL NUMBER IS 3

A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER
THE ITEM WHICH STARTS ON LINE 53
ITS LEVEL NUMBER IS 3

A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER
THE ITEM WHICH STARTS ON LINE 69
ITS LEVEL NUMBER IS 3

**** 	FILLER SIZE ALTERATION TYPE 	**a*

THERE ARE 	12 	MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THEM>yes
THE FILLER ON LINE 58 HAS HAD ITS SIZE DECREMENTED BY ONE.

TUE FILLER ON LINE 58 HAS HAD ITS SIZE INCREMENTED BY ONE.

THE FILLER ON LINE 63 HAS HAD ITS SIZE DECREMENTED BY ONE.

THE FILLER ON LINE 63 HAS HAD ITS SIZE INCREMENTED BY ONE.

THE FILLER ON LINE 68 HAS HAD ITS SIZE DECREMENTED BY ONE.

A Mutation Analyzer 	 4-51

HAAS HAD ITS SIZE INCREMENTED BY ONE. THE FILLER ON LINE 68

THE FILLER ON LINE 73 HAS HA]) ITS SIZE DECREMENTED BY ONE.

THE FILLER ON LINE 73 HAS HAD ITS SIZE INCREMENTED BY ONE.

THE FILLER ON LINE 77 HAS HAD ITS SIZE DECREMENTED BY ONE.

THE FILLER ON LINE 77 HAS HAD ITS SIZE INCREMENTED BY ONE.

THE FILLER ON LINE 31 HAS HAD ITS SIZE DECREMENTED BY ONE.

THE FILLER ON LINE 81 HAS HAD ITS SIZE INCREMENTED BY ONE.

**** STATEMENT DELETION TYPE ****

THERE ARE 	1 MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THEM?>yes
ON LINE 106 THE STATEMENT:

GO TO 0150—CS—ADD—DEL
HAS BEEN DELETED.

**** LOGICAL OPERATOR REPLACEMENT TYPE ****

THERE ARE 	1 MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THEM?>yes
ON LINE 102 THE STATEMENT:

IF OLD—KEY > NEW—KEY
HAS BEEN CHANGED TO:

IF OLD—KEY NOT < NEW—KEY

**** SCALAR FOR SCALAR REPLACEMENT ****

THERE ARE 	4 MUTANTS OF THIS TYPE LEFT.
DO YOU WANT TO SEE THEM?>yes
ON LINE 129 THE STATEMENT:

MOVE LINE1 TO N—LN1
HAS BEEN CHANGED TO:

MOVE NEW—PEC TO N—LN1

ON LINE 129 THE STATEMENT:
MOVE LINFi TO N—LN1

A Mutation Analyzer 	 4-52

HAS BEEN CHANGED TO:
MOVE PENT—WORK—AREA TO N—LN1

ON LINE 138 THE STATEMENT:
MOVE LINE1 TO LN1

HAS BEEN CHANGED TO:
MOVE OLD—REC TO LN1

ON LINE 138 THE STATEMENT:
MOVE LINE1 TO LN1

HAS BEEN CHANGED TO:
MOVE PENT—WORK—AREA TO LN1

DO YOU WANT TO SEE TUE EQUIVALENT MUTANTS?>no
WOULD YOU LIKE TO SEE THE TEST CASES?>no
LOOP OR HALT ? >halt

**** STOP

Bibliographic Notes

The paper [Acree, 1979] gives an overview of existing mutation

analyzers. The basic structure described in this chapter was

described in a paper by Budd, DeMillo, Lipton and Sayward [Budd,

1978a] The system described in [Budd, 1978a] accepts a subset of

Fortran. Subsequent analyzers have been designed and implemented

for ANSI Fortran 74 [Budd, 1980] and Level 1 Cobol [Acree, 1980],

[Hanks, 1980]. 	Budd [Budd, 1982] has announced the implementation

of a portable Fortran analyzer. 	Techniques for speeding up the

mutation phase are described in each of these references. In

addition, post processors to detect certain forms of mutant

equivalence were discussed by Baldwin and Sayward [Baldwin, 1979].

Tanaka's thesis describes the implementation of an equivalence chec-

ker based on data flow analysis techniques.

The Complexity of Mutation 	 5-1

Chapter 5

The Complexity of Program Mutation

In this chapter, we will deal with the cost of mutation

analysis and with methods for reducing the cost. The efficiency of

calculating the m(P,T) value for a program T is limited by the num-

ber of mutants in p(P) and, to a lesser extent, by the running time

of P. We will discuss the worst case size of p(P) for the mutation

operators described in Chapter 2 and give observed values for the

size of M(P). We will also present some Justification for reducing

the total cost of analysis by random sampling of mutants and discuss

the effects of sampling techniques on the quality of test data.

Estimating 111(P)1

The effects of the running time of P on the overall complexity

of calculating m(P,T) are difficult to determine in quantitative

terms. Because of the variety of ways in which a mutant may die,

mutants tend to be very unstable. That is, a mutant may not die by

actually producing an output which differs from P. It is more

likely that a mutant will die by executing a trap statement, an

illegal operation (a zero divide, for instance), or by one of a num-

ber of other "non—standard" means. Furthermore, not every live

mutant is executed on every test case. As described in Chapter 4,it

is convenient to keep a count of executed statements available dur-

ing mutation phases. If a mutant occurs in an unexecuted portion of

a program, then that mutant is not executed on the test case, since

it cannot possibly be killed by the test case. Thus, even though

The Complexity of Mutation 	 5-2

'programs with long running times are more costly to test by mutation

analysis (or by any other dynamic testing technique, for that mat-

ter), the best estimate of the cost of calculating m(P.T) is u(P).

It is this quantity on which we will concentrate.

Mutant operators are chosen to balance two conditions. 	The

first condition is that p(P) be kept reasonably small -- say, a

small polynomial function of some simple size parameter such as num-

ber of statements or number of data names. The second condition is

that p(P) come as close as possible to satisfying the Competent

Programmer Assumption.

Recall that we have defined simple mutants as follows. 	Let P

be a program in in a programming system defined by a grammar G, and

let parse(P) be the syntax tree for P obtained by parsing P accord-

ing to G. Then a 1—order simple mutant operator is a function map-

ping T1 to a tree T2 so that T1 and T2 differ by at most one

terminal node (i.e., leaf). T 2
defines a simple 1—order mutant of

P. Proceeding inductively, a k—order mutant is simply a k—fold

iteration of 1—order mutants. In particular, notice that simple

mutants do not alter the "semantic structure" of a program -- that

is they do not modify the internal nodes of the parse tree. Error

operators are with few exceptions simple 1—order mutants.

7e will give a heuristic analysis of the expected number of

mutants of a program as a function of several size parameters.

First, it is possible to derive an order—of—growth expression

for the number of Fortran mutants. Data reference replacements are

accomplished by interchanging reference names occurring within the

The Complexity of Mutation 	 5-3

program. In a program with N statements and K distinct data

references this number is F(N,K)= (5) =0(K 2). The reader can con-

vince himself that for each of the constant and operator replacement

schemes there is a constant c so that the number of generated

mutants is bounded by cK. Therefore, F(N,K) dominates the total

number of of mutants, and the number of generated mutants is in the

worst case quadratic in the number of distinct data references.

Observations of typical programs lead to another estimation of

the expected number of mutants generated. In programs that are not

inordinately dense each statement contains relatively few data

references, so F(N,K) is more closely approximated by F(N,K)= 0(NK).

In typical programs, the data references tend to be so sparsely

distributed that the rate of growth is usually closer to quadratic

in N: F(N,K) = 0(N2).

In generating mutants of Cobol programs, it is possible to more

nearly approach linear growth, since the number of data reference

interchanges is limited by syntactical redundancies. In fact, an

analysis similar to the one carried out above gives the worst case

estimate for the expected number of mutants for a Cobol Trogram as

the number of data division lines multiplied by the number of

procedure division lines. For typical Cobol programs this estimate

is C(N,K) << N2 .

Observed values of p(P) fall 	considerably 	under 	these

estimates. Tables 1 and 2 show mutant growth rates for some typical

Fortran and Cobol programs. Notice that in both cases (except for

the variation in small Fortran programs) the estimates given above

are generous upper bounds on the observed number of mutants. In

The Complexity of Mutation 	 5-4

experimental settings the average growth rate for "production" Cobol

programs to be more nearly linear in the product of procedure

division lines and K than quadratic in N.

I 	1
N 	I 	N2 	I Average Number of Mutants

12 	144
13 	169
14 	196
16 	256
17 	289
24 	576
26 	676
28 	784
30 	900
33 	1089
34 	1156
36 	1296
42 	1764
45 	2025
65 	4225
66 	4356
71 	5041
98 	96 04
123 	15129

Table

2508
307
427
360
390

2666
649

3213
1209
12116
3361
1085
1057
1658
1514
2425
2817
842 4
883 8

1. Fortran Mutants

No.Procedure * 	1 	Total Mutants
N 	I 	N2 	No Data Div Lines 	I 	Generated

57 3249 576 370
64 4096 789 679
73 5329 756 78
74 5476 800 235
75 5625 837 225
78 6084 918 376
99 9801 1674 377

102 10404 1806 715
111 12321 2115 740
143 20449 3330 628
170 28 900 5184 1195
453 205209 46803 14639
670 448900 92964 50983

Table 4.2. Cobol Mutants

Number
of

Lines

N

McCabe!
Metric!

V

!Number ! Number
Data 	!Distinct
Refs 	I 	Refs

X

!Number
I 	of

Effort 	!Mutants

E 	1 	M

12 1 103 21 32033 2580
13 5 27 8 4071 317
17 4 32 8 6928 386
17 7 45 9 15246 634
24 7 72 40 17565 2716
26 	9 40 11 16270 646
33 12 55 13 41819 859
33 1 407 53 249701 23382
56 9 129 23 138939 3657
66 10 115 15 17 04 92 2425
67 15 158 28 189585 5230
71 11 135 16 166715 2888
98 22 227 32 365825 8457

112 26 237 68 320331 163 80
277 122 545 63 3024488 34657
514 	1 	113 1138 93 19267409 120000

Table 3. Complexity Metric Relationships

The Complexity of Mutation 	 5-5

Choosing to measure the complexity of mutation analysis on the

basis of a single size measure can, however, be deceptive. For

example, consider a single assignment statement. If the right hand

side of the assignment is extremely complex, then the number of data

references and operators will determine completely the number of

mutants generated. The 33 line program in Table 1 is an example of

a program with such a dense structure.

Another size measure is the complexity of the control struc-

ture. The so—called McCabe metric measures branching complexity.

The Halstead effort measurement is another measure of complexity.

The following table summarizes the observed relationship between

these six size measures for 16 Fortran programs.

Measurable
Factor

Correlationi 	Data
Coefficient 	Mutants

Operator 	I Statement
Mutants 	I 	Mutants

N .950 .946 .953 .940

V .798 .795 .880 .764
.978 .980 .993 .921

K .826 .836 .874 .722
XK .999 .999 .961 .970
E .975 .970 .880 .999
M .999 .953 .940

Table 4. Correlation of Complexity and Mutants

The Complexity of Mutation 	 5-6

The strength of the correlation of the number of mutants with

each of the other measurements is given in the following table.

The correlation coefficient is for a linear fit between the number

of mutants and the factors discussed above (first column). The

second, third, and fourth columns represent the correlation between

the number of mutants and the mutants arising from the three

categories of mutation operators. It is possible to develop useful

linear models to predict the number of mutants in terms of the most

significant factors. For example, the linear model for the data

above is

M = 79+.766U+4X+.0008E.

However, this model is correlated only marginally better than the

simple statistic IK. 	It is unlikely that the coefficients can be

generalized to form a reliable predictive model for other data sets.

The Complexity of Mutation 	 5-7

Mutant Instability.

Even though the number of mutants generated by these methods is

observed to grow rather slowly as a function of program size, of the

As noted above, however, a mutant seldom runs to completion; rather,

mutant programs tend to be rather unstable, dying by executing

"illegal" statements which are trapped and which cause premature

termination of the programs. The statistics in Table 5 show typical

stability data for Fortran programs tested under a mutation

analyzer.

observation

Average number of test
cases mutants remain live
. sp
Average total mutant executions
per session (units = F(N,K))
.sp
Average fraction of nonequivalent
mutants killed by first test case
sp

Average execution time of live
mutant (percent of original test)

1.75

2.00

68%

75%

Table 5. Lifespan of Unstable Fortran Mutants

The instability of mutants has some theoretical basis. From

standard software reliability studies of software we have the work-

ing principle that the probability of failure in a given time inter-

val is proportional to the number of errors in the program.

Whenever this principle holds, the expected time to failure of the

program is inversely proportional to the number of errors present.

If t is the time to failure (measured, say, in number of statements

executed), and if cn is the probability of failure during the execu-

tion of any given statement, then the expected time to failure is

The Complexity of Mutation 	 5-8

given by

CO

E(t) = 	(1-en) (i-1) (en)i •

i=1

This reduces to E(t) = cn-1 .

Although the speed with which mutants can be eliminated is a

function of the capabilities of the human tester, it is our

experience that somewhat more than 30% of the remaining live mutants

are killed by each test case, yielding rapid convergence.

The following table represents the average number of statements

executed before failure for program with k—order mutants (02). The

programs represented are from the set of six Cobol programs

described in Appendix A.

Program 2nd ORder 3rd Order 14th Order 5th Order

Al 30 24 21 19
A2 47 27 19 15
A3 50 38 31 27
A4 124 85 67 59
AS 52 35 27 22
A6 132 98 74 60

Table 5. Time to Failure Data

As the graph in Figure 1 shows, the analytical model holds

quite well. Not only is there an apparent linear relationship

between 1/Avg(T) and n for each of the programs, but also for all

but one of the programs, the line segments can be extrapolated back-

wards to show the intercepts near zero. That one program is the

smallest of the six and, presumably, the worst simulation of a large

1/Avg(T)
.08

.07

.06

.05

.04

.03

.02

.01

0.00

The Complexity of Mutation 	 5-9

module. 	This data cannot be interpreted as strongly as we would

like, however, since the probabilistic assumptions are based on

typical operational data; the test cases that generated this data

were intentionally chosen to be nontypical: the test cases were

required to exercise the exception—handling code that would rarely

be executed in practice.

Program
AS

Program
A5

Program
A4

Program
A3

Program
A2

Program
Al

0
Number of Errors

Figure 1. Failure Rate Data

Reducing Complexity by Sampling

The bounds of practicality for monolithic

1 2

programs 	are

somewhere in the 5,000 to 10,000 line range for Fortran and somewhat

higher for Cobol programs. Even this must be treated as an

optimistic upper limit -- certainly mutation is not easy to apply at

the 5,000 statement level. A valuable technique for handling large

The Complexity of Mutation 	 5-10

programs is to use Monte Carlo methods to sample from large

populations of mutants. A simple argument to support such an

analysis goes as follows. Let f(x) appear in a specific context of

a program undergoing mutation analysis; if a set of test data is too

weak for the program but the program is nevertheless correct, then

there is an adequate set of test data , T, on which [f(x)]*(T)

#[f(x')]*(T), where x' is some specified data reference replacement

mutation of x and [f(x)]* denotes the functional interpretation of

f(x). But x and x' in these expressions are bound variables; it

only matters that they refer to distinct positions of a state vector

which has been specially constructed to exhibit the inequality. In

other words, it is important that we are able to "explain" with test

data why x is an argument of f, but perhaps less important that we

be able to explain why the argument is not x' or any other specific

alternative. But this can be accomplished by sampling from enough

alternative choices x' to insure that identities that we are observ-

ing are not mathematical. If the functions involved arc at all

well—behaved algebraically then algebraic identities can be discer-

ned in this way

Using the Cobol program Al—A6 in Appendix A, we want to study

the effects of testing using only randomly selected substitution

mutants. The table which follows summarizes the results of this

study. The columns labelled "survive" indicate the counts of the

number of mutants (using 100% of the substitution mutants) that sur-

vive the specified testing criteria and are not equivalent to the

original program.

The Complexity of Mutation 	 5-11

Program # Mutants # Mutants Survive Survive
at 10% at 100% TRAP 10%

Al 389 1098 6 0
A2 603 2814 906 0
AS 1125 6340 129 2
A4 1609 7334 97 16
AS 1527 7957 407 14
A6 4011 28275 789 66

Table 7. Random Sampling Experiment

We have included the strength of data that merely covers all

statements for comparison purposes. While simple statement coverage

does not by itself lead to strong test data, generating mutants to

kill only 10% of the substitution mutants is almost as good as

generating test data to kill 100% of the mutants. This trend is

almost as strong at the 5T and 1% levels for large programs.

The apparent decrease in the strength of the test as program

size increases is probably due to the naive sampling strategy used

to sample the mutants. A sampling strategy which inserts default

values or avoids selection of mutants which are correlated to

previously selected mutants should avoid this 	effect. 	This

experiment has been repeated several times using differing sets of

programs.

In a similar experiment, three Fortran programs (B1—B3 in

Appendix B) were subjected to mutation using test data that killed

all nonequivalent mutants. In a double blind experiment, the same

programs were analyzed by three different subjects. Subject 1

analyzed all three programs sampling 10% of the mutants, subject 2

sampled using 25% of the mutants, while subject 3 analyzed all three

programs at the 50q level. The number of nonequivalent mutants left

The Complexity of Mutation
	 5-12

undetected by the three subjects is shown in the following table as

a fraction of the total number of mutants.

Program 1 1 2 3

B1 .0063 1 .0037 .0012
B2 .0080 1 .0027 .0028
B3 .0082 I .0028 .0027

Table 8. 3 Subject Experiment

Notice that even using 10% of the total number of mutants, the

strength of the test data is within 1% of the adequate set. This

experiment was repeated using the programs cited in another study

(see Chapter 6). In each case it was determined that the test data

remained within 1% of the adequate test data.

These experiments suggest strongly that a cost effective

approach to generating adequate test data is to generate only a

small percentage of the total number of mutants and develop test

data which is adequate relative to this set of mutants.

Efficiency and Redundancy in Operators

The results quoted above dealing with random sampling of the

mutants might measure still another effect: 	redundancy among the

operators. 	That is, it may be possible to derive strong test data

from a random subset of the mutants simply because so many mutations

deal with the same error or type of error. 	Thererfore, it is

natural to look for efficiency in the mutation process by eliminat-

The Complexity of Mutation 	 5-13

ing those mutants from consideration which do not add significantly

to the strength of the test data generated.

For an operator to be useful it must force the tester in some

way to produce stronger test data than could have been produced

without it. If all of the mutation produced by a given operator are

eliminated by virtually any test data that executes the affected

line, then it is natural to assume that the operator does not

significantly improve on the statement coverage operators.

Let us fix a mutation operator and define the following

parameters. Nt is the total number of mutants generated by that

operator, Nu is the number of mutants that are eliminated on the

first execution by a given data set, and Ne is defined to be the

number of equivalent mutants.

A measure of efficiency for such an operator is given by

(Nt—(Nu+Ne))/N t -

Notice that N
t and Ne depend only on the program being considered

and the mutation operator. Nu depends on the choice of test data

being supplied. The redundancy of a mutation operator is then given

by:

(Nu+Ne)/Nt .

A procedure for collecting operator efficiency data is the fol-

lowing. First, select several programs representative of the space

of programs in the intended application. Second, generate test data

that is just strong enough to execute all statements. Third,

generate test data to obtain a mutation score of 1. The point of

The Complexity of Mutation 	 5-14

the second step is to intentionally produce weak tests, which force

statement coverage but do as little other testing as possible.

After such measurements have been made on several programs and

for multiple independent test data generations for each program, a

set of efficiency measurements for each operator will be obtained.

If an operator consistently has a high redundancy, then the deletion

of the operator from the system appears justified. An operator pos-

sessing high efficiency on all programs and all test sets evidently

forces the tester toward stronger test data and should be retained.

The approach outline above has two limitations. First, it does

not consider interactions between operators. That is, operators may

have the same high efficiencies, but each actually has the same

effect. In this case, one or the other may be necessary, but

certainly not both. The efficiency measurements will not give an

indication of this condition since they provide only the interaction

of the TRAP operator with all of the others. Therefore, the

experiment can be widened to indicate operator redundancy with any

subset of the operators by replacing step 2 of the data gathering

procedures with the following: generate test data just strong

enough to eliminate all of the nonequivalent mutants generated by

the given subset of error operators. Of course, the definition of

N
u

needs to be accordingly modified.

Ideally, we would like to measure the efficiency of operators

relative to all possible subsets in order to find the minimal set of

operators which delivers adequate tests. Since this is not

feasible, a less demanding strategy is required. For example, it is

possible to choose the most efficient operator relative to TRAP,

The Complexity of Mutation 	 5-15

then choose the most efficient relative to TRAP and the first

operator, and so on. The process terminates when there is no

remaining operator whose efficiency relative to the set chosen is

above a given threshold.

Obviously, this approach applies only to a given class of

program from which the sampling takes place. Changing the language

or even the programming discipline might effect operator efficiency.

However, if the sample population is representative it is always

possible to "tune" the set of operators for that population by using

only operators which derive useful testing information.

The results of a single data generation experiment for the

Cobol program Al—A6 are given in the following table. An asterisk

indicates that no mutants of that type were generated for the

program.

The Complexity of Mutation 	 5-16

Operator
Program

1 2 3 4 5 6

Decimal * 0.96 0.30 0.21 0.33 0.18
Occurs * 0.00 *
Insert 0.00 0.00 0.01 0.00 0.00 0.00
Fill.Siz 0.00 0.00 0.00 0.00 0.00 0.00
Item Rev 0.05 0.04 0.07 0.00 0.00 0.01
Delete 0.00 0.34 0.00 0.01 0.04 0.03
Go-Perf. * * * 0.00 0.00
Perf.-Go 0.00 0.00 0.00 0.00 0.08 0.00
IF Rev. 0.00 0.67 0.00 0.06 0.00 0.00
Stop 0.00 0.00 0.00 0.00 0.00 0.00
Thru
Arith

0.00
* 0.75 *

0.06
0.04

*
0.05

0.00

Compute * 0.50 0.25 * 0.00 0.00
Parenth. * 0.00 * 0.00 0.00
Round 0.44 0.20 0.00 0.11 0.17
Move Rev 0.00 0.00 0.00 0.00 0.04 0.01
Logic 0.07 0.51 0.00 0.13 0.24 0.05
SFS 0.01 0.34 0.03 0.01 0.04 0.02
CFC 0.00 0.25 0.00 0.01 0.10 0.04
CFS 0.00 0.36 0.03 0.01 0.05 0.04
SFC * 0.18 0.00 0.03 0.09 0.04
C Adjust 0.00 0.50 0.14 0.06 0.22 0.03
Files 0.00 * * 0.00

Table 8. Operator Efficiency Data

There is obviously a wide variation in efficiencies between the

programs. This a partly due to the indirect test data selection

procedures and partly due to the inherent differences in the

programs.

The first five operators are of special interest . These are

Cobol data mutations that force the system into interpretive execu-

tion using a run-time symbol table. If these mutants can somehow be

eliminated; then a more efficient compiled execution of mutant is

feasible. The first operator moves the implied decimal point in a

numeric item. It is useful primarily in that it forces the tester

to provide nonzero values for that variable. The same effect can be

The Complexity of Mutation 	 5-17

achieved by an operator which resembles ZPUSH. The second operator

alters the OCCURS count in a table description. Since the sample

programs make little use of tables, nothing can be inferred from the

data for this operator. Inserting an extra filler in a record is of

little use, as is altering the size of a filler. Reversing two

adjacent elementary items within a record is sometimes a useful

operation, but the same effect can most likely be achieved by sub-

stituting one field for another in the procedure division.

In the procedure division, changing a GOTO to a PERFORM usually

provides no testing power. Perhaps most of the testing effort in

trying various path alternatives is already achieved by simple

statement coverage. Inserting a STOP statement is not helpful

because in most program files, files will be left open which is an

error. STOP insertion thus play essentially the same role as TRAP.

THRU clause alteration, reparenthesization of arithmetic expressions

and the reversal of the direction of a binary MOVE and changing an

I/O reference from one file to another are also rarely useful in

this study. It may be that these mutations are too drastic. Errors

this large may be detected by almost any test case that exercises

all program statements. The errors sought after simple statement

coverage are rather more subtle ones. The major errors have already

been ruled out.

A non—redundant set of Cobol operators then might be the fol-

lowing: statement deletion, IF reversal, and the substitution

operators for arithmetic operators, scalar for constants, constants

for scalars, constants for constants, scalars for constants, and

constant adjustment.

The Complexity of Mutation 	 5-18

Bibilographic Notes

An overview of practical experiences with mutation analyzers

which support the analytic and experimental bounds discussed in this

chapter can be found in the papers [Acree, 1979],[Acree, 1980], and

[Budd, 1980]. The data relating to the number of mutants generated

as a function of program size was developed by Acree, Budd, DeMillo,

Lipton and Sayward and is reported in [Acree, 1979]. The data

relating complexity with the number of mutants appears in Budd's

thesis [Budd, 1980].

Experimental results on mutant stability and the effectiveness

of sampling have been treated by Budd and Acrce in [Acree, 1980] and

[Budd, 1980) and are also reported in [Acree, 1979).

The notion of operator efficiency was developed in Acree's

thesis [Acree, 1980).

Further Experimental Studies 	 6-1

Chapter 6

Further Experimental Studies

In experimental studies of program testing, the problems of

interest are:

1. What is the cost of performing the test?

2. What is gained from performing the test?

In general, quantitative answers to these questions are the most

desirable, but that seems to be beyond the state—of—the—art. A less

precise but still valuable solution is to discover how testing costs

relate to the performance of the test. In practice, this cost—

benefit ratio is the one that will be of most use in determining

which testing technique to apply.

The cost of program mutation is ultimately constrained by the

number of mutants which must be executed. As described in previous

chapters, the set of mutants p of a program is defined by a set of

mutant operators that result in a set p whose size is bounded

roughly by the product of the number of data references and the num-

ber of distinct data references. As discussed in Chapter 5, it is

generally not necessary to execute all mutants in p, since random

sampling yields test data whose mutation score is only slightly

inferior to an adequate test set.

However,one should question the effectiveness of applying

program mutation with only simple mutants since other more com-

plicated (but reasonable) alternatives are apparently overlooked.

This is an apparent violation of the Competent Programmer Assump-

tion. The coupling effect indirectly addresses the more complicated

Further Experimental Studies 	 6-2

mutants of P: test data that causes all simple mutants of P to fail

is so sensitive that it implicitly causes all complex combinations

of them to fail. In Chapter 3, we examined two situations in which

error coupling guarantees that test data adequate for a simple set

of mutants is also adequate for mutants which satisfy the Competent

Programmer Assumption. In this chapter we will examine some

experimental evidence for the address the observable properties of

error coupling.

Beat the System Experiments

Evidence against error coupling is any event in which incorrect

program are successfully tested against an adequate test set. Since

such examples can always be "cooked—up" for any test technique, a

problem of more practical importance may be what kind of errors are

always detected and what kind of errors arc overlooked.

At present these questions can only be studied empirically

because of the lack of any widely accepted formal models of program-

ming errors.

One sort of experiment is a many—subject experiment. The

experiment has N subjects with varying levels of programming and

testing skill and M programs that have zero or more errors known

only by the experimenter, and each subject reports on the errors

detected in trying to pass the mutant test.

Further Experimental Studies 	 6-3

Another useful experimental technique is a single—subject

experiment. We call such an experiment a beat the system

experiment. The single subject is someone having a very high level

of programming expertise and much familiarity with the concepts of

program mutation. The M programs have one or more errors, and the

subject has complete knowledge of what the errors are. The subject

tries to beat the mutation system -- to pass the mutation test with

an incorrect program by developing test data on which the program is

correct but on which all mutants of the program fail. If there are

error types for which the highly skilled subject cannot beat the

system, then these error type will probably be detected by any user

of the system. On the other hand, if there are error types for

which the subject can consistently beat the system, then the given

set of mutant operators has a certain weakness in detecting these

errors.

A beat the system experiment is an attempt at a worst—case

analysis. We attempt to find out how the system will perform under

the worst system circumstances. Beat the system experiments are

extensions of experimental reliability studies. A testing technique

is said to be reliable for for an error type if the use of the test-

ing technique is guaranteed to reveal the presence of the errors of

that type. Reliable studies are aimed at comparing two or more com-

peting methodologies and deriving statistical information of the

form "On the following examples of programs, method A discovered X%

of the errors and method B discovered A." In the beat the system

experiments we are more concerned with the type of errors missed.

Further Experimental Studies 	 6-4

For 	example, 	several of the programs studied in early

experiments revealed that a significant number of errors in Fortran

are caused by programmers' treating the DO statement as if it were

an Algol FOR statement. These errors are detected by introducing a

mutant that changes a DO statement into a FOR statement, bringing

this fact to the programmer's attention and forcing him to derive

data that indicates he had knowledge of this potential pitfall.

We will describe two sets of experiments. The first set is a

beat the system experiment using the Fortran programs B1—B11. These

programs are described in Appendix D. Appendix B also contains

descriptions of the errors in these programs. The second set of

experiments adapts earlier reliability studies in a comparative

analysis of program mutation and a number of other testing tech-

niques.

It is difficult to construct a classification scheme for error

types that is neither so specific that each error forms its own type

nor so general that important patterns cannot be detected (cf.

Chapter 2). If the classification is based on logical mistakes,

then it is often hard to relate errors to mistakes in the code. On

the other hand, it seems difficult to base a scheme just on mistakes

in the code, since often a single logical mistake will be

responsible for changes in several locations in the program. Fol-

lowing the classification scheme in Chapter 2, we group errors into

the following categories:

Missing path errors: 	These are errors where a whole sequence of

computations that should be performed in special circumstances is

omitted.

Error Type Number I Caught
	1 	

Missing path error 6 1 5
Incorrect predicate error 3 1 2
Incorrect computation statement 12 1 11
Missing computation statement 3 1 2
Missing clause in predicate I

Table 1: Number of errors detected by error type

Further Experimental Studies 	 6-5

Incorrect predicate errors: 	These are errors that arise when all

important paths are contained in the program, but a predicate that

determined which path to follow is incorrect.

Incorrect computation statement: These are errors that arise from a

computation statement that is incorrect in some respect.

Missing computation statement: These are errors that arise from the

omission of one or more computational steps.

Missing clause in predicate: This is a special case of an incorrect

predicate error, but, since it is hard to detect, we give it special

treatment.

The 25 errors in the program B1—B11 range from simple to subtle

errors. Because of the worst—case nature of the experiment, the

fact that 5 errors are not discovered does not mean that these

errors would always remain undiscovered if mutation analysis was

used in a normal debugging situation. Table 1 gives the number of

errors detected by error type. Of these 25 errors, only 8 would be

caught using branch analysis.

In three of these categories, the errors are caused by the lack

of certain constructs in the program. Since the testing method is

asked to guess at something that is not in the program, we should

Further Experimental Studies 	 6-6

really be surprised that it does as well as indicated. Nonetheless,

missing path errors and missing clauses in predicates are probably

the most difficult errors for any testing method to discover.

The failure of the mutation in detecting these 5 errors is

probably not an indication of a weakness in the method, rather, it

reflects on our choice of mutant operators. It is quite possible

that with another set of mutant operators many of these errors would

be caught.

The second experiment is derived from an earlier reliability

study by Bowden and uses two sources of data. The first is the book

Elements of Programming, Style by B. Kernighan and P. Plauger. In

a chapter entitled "Common Blunders" Kerighan and Plauger offer

twelve 	program fragments, each containing errors inserted to

illustrate common programming mistakes. 	In a beat the system

experiment, these twelve program fragments were subjected to sym-

bolic evaluation, path analysis (each loop executed at least twice),

a combination of symbolic evaluation and path analysis, and program

mutation. Once path domains are identified, the experimenter uses a

random choice of test data for the domains. Therefore, it is pos-

sible that more sensitive input partition tests will yield slightly

different results.

The following table summarizes the results of this experiment

Test Method Error Caught

Symbolic Evaluation 13
Path Testing 9
Combine Methods 16
Program Mutation 20

I Total Error I
I 	 I
1 	22 	!

I 	22 	I
1 	22 	I
I 	22 	I
 	1

Table 2. First Reliability Study 	 I

Further Experimental Studies 	 6-7

The 20 errors detected by program mutation are detected in six ways.

The interpreter of an automated mutation analyzer was responsible

for detecting 8 errors, 5 were detected by spoiling coincidental

correctness expressions (cf. Chapter 10), 2 were caught by finding

a correct mutant of the incorrect program, 2 are caught by ABS

insertion, two are detected by predicate testing (see Chapter 4) and

1 error was detected by an explicit branch analysis mutant. The two

errors not detected consisted of a two statement interchange in a

routine for computing the sine function and an error involving an

equality test between reals. The following table describes the

errors and the mutants which detect them.

Further Experimental Studies 	 6-8

Error

variable SUM uninitialized

DABS operator needed

—1**(I/2) used instead
of (-1)**(I/2)

interchange of statements

variable E uninitialized

type mismatch

variable C not reset

error when CI = 0

expression should be NUM(1)

override of DATA statement
initialization

failure on 46 transactions

2 should be >

undefined variable

error if fi+C < .01

loop exits incorrectly

uninitialized variable

one entry tables cause error

failure to match A(1)

J=MARICS(I)-1/10 should be
J=(MARKS(I)-1)/10

missing parthentheses around
expression AN-1.0

10*.1 = 1

equality test on reals

Method of Detection

interpreter

explicit mutant

1/2 ==> I/1 or 1/2
with no effect

not detected

interpreter

interpreter

to eliminate branch analysis
mutants, SC+CI trust be
less thrIL or ?cual to TC

caught by ZPUSH mutant

interpreter

interpreter

> ==>

==> >

1==>2 on lower DO loop limit

twiddle 13-1-C by .01

increase iterations by 1

interpreter

(LOW+HIGH)/2 ==> LOWHIGH-2

(LOWHIGH)/2 ==> LOWHIGH-2

I/10 ==> 0/10

ZPUSH (SUMSQ—(SUMSQ**2/AN))

caught by all data

not detected

Table 3. Mutants Detecting Errors

Further Experimental Studies 	 6-9

Error 19 is one of the errors not detected by either path

analysis or symbolic evaluation, although a symbolic evaluator with

a special two dimensional output could have caught the error. In

Fortran, the expression 1/10 evaluates to O. Therefore, the mutant

which replaces 1/10 with 0/10 catches the error. Neither path

analysis nor symbolic evaluation detect error 2, which is an

explicit mutant of a correct program.

A second experiment uses the programs B1 — B4 in a comparison

of the error detection capabilities of path analysis, branch

analysis, functional testing, special values testing, anomaly

testing, and black—box analysis. The path analysis discipline for

this experiment requires each loop to be executed at least once.

Special values testing is a collection of heuristics (e.g., force

every expression to 0).

Table 4 presents the results of this experiment.

Test Method Error Caught I Total Errors

Path Analysis 4 1 5
Branch Analysis 0 1 5
Functional Testing 3 I 5
Static Analysis 0 I 5
Black Box Testing 3 1 5
Program Mutation 4 1 5

Table 4. Second Reliability Study

The error which was not detected by program mutation

is a missing path error (see Appendix B). Apparently these errors

are the most difficult for dynamic testing techniques. On the

other hand test techniques which work from functional descriptions

or specifications of program behavior seem to do quite well at

Further Experimental Studies 	 6-10

detecting these errors.

Experiments on the Coupling effect

We begin with an example of the experimental evidence for the existence

of error coupling.

The subject program is Hare's

FIND program (see Appendix B, Program B10). 	FIND was used in

the following experiment.

1. A test data set of 49 cases was derived and

shown to be adequate.

2. The test data set from 1 was heuristically

reduced to a set of 7 test cases which also

turned out to be adequate.

3. Random simple k—order mutants were selected

(k > 1).

4. The higher order mutants of step 3 were

executed on the reduced test data set.

It would be evidence against the coupling effect if it was pos-

sible to randomly generate very many higher order non—equivalent

mutants on which the reduced test data set behaved in a manner

indistinguishable from FIND. Notice that Step 2 biases the

experiment against the coupling effect since it removes the man—

machine orientation of mutation analysis. We concentrated first on

the case k=2, with the following results:

Property

2-order mutants
indistinguishable from FIND
equivalent to FIND

Table 6. 2-order Mutants

1 	Number of Mutants 1
I 	 1
I 	21,100 1
I 	 19 1
I 	 19 1

1

However, a limited analysis of higher order mutants produced the

following results:

Property 	 !Mutants!
	 1 1

Number of k-order mutants (k>2) 	1 1,500 	1
Number indistinguishable from FIND 1 0.1

	 1 1
Table 7. Higher Order Mutants 	I

The following argument shows a defect in this experiment. 	Just as

the competent programmer assumption states that programs are not

written at random, the coupling effect is implied by the fact that

program statements are not composed at random; indeed, there is

considerable flow and sharing of information between statements of a

program, so that a change to one portion of a program is likely to

have observable, albeit subtle, effects on its global context. Now

for the problem with this experiment: the k-order mutants are

chosen randomly and by independent drawings of 1-order mutants.

Therefore, the resulting higher-order mutant is very unstable and

subject to quick failure. The experiment should also be conducted

when the higher-order mutants contain subtley related errors. To

this 	end, 	the 	experiment was repeated using the following

replacement for step 3:

Further Experimental Studies 	 6-12

3': Randomly generate correlated k—order

mutants of the program.

In Step 3', "correlated" means that each of the k applications of

1—order mutant operators will be related in some way to all of the

preceding applications, all affecting the same line, for example.

As before, if a program is successfully subjected to mutation

analysis on a test data set, then the coupling effect asserts that

the correlated k—order mutants are also likely to fail on the test

data.

To broaden the experiment we use, in addition to FIND, the

programs (B12) STKSIM which maintains a stack and performs the

operations clear, push, pop, and top, and TRIANG (139) which clas-

sifies integers as either not representing the lengths of sides of

any triangle or as representing the sides of scalar, isosceles or

equilateral triangles.

Table 8 contains a summary of the results of the experiment.

The data suggests strongly that there is a meaningful sense in which

errors are coupled by an appropriate choice of error operators.

	I 	
k = 2 	I 	k = 3 	 k = 4

 	1 	
NUMBER 	NUMBER I NUMBER 	NUMBER NUMBER 	NUMBER
GENERATED ALIVE !GENERATED ALIVE GENERATED ALIVE

I 	 1
3000 	2 	1 3000 	0 	3000 	0
3000 	3 	1 3000 	0 	3000 	0
3000 	1 	1 3000 	1 	3000 	0
	 1

Table 	8. Correlated k—order Mutants

PROGRAM
NAME

FIND
STKSIM
TRIANG

The results are for the most part self explanatory. Except for the

correlated three—order irutant of TRIANG, all of the correlated

Further Experimental Studies 	 6-13

k—order mutants described in the table are equivalent to their sub-

ject programs. The remaining live TRIANG mutant would have been

eliminated with a more sophisticated error operator for detecting

loop boundaries.

Essentially the same study was repeated using Al—A6. The basic

format of the experiment remained the same: develop adequate test

data, randomly generate a large number of complex mutants, execute

the selected mutants on the test data, keeping track of those not

eliminated, and remove equivalent mutants from the list of uncoupled

complex mutants.

In all cases the strategy in randomly selecting complex mutants

was to use uniform sampling with replacement from the given space of

complex mutants. The parameters of each experiment are the program

being tested, the tester, the types of complex mutants considered

and the sample size. It is possible that the effects of the human

tester are relevant. The repetition of this experiment by other

investigators should determine the variation in the strength of

error coupling due to test data generation.

As before, we concentrate on second order mutants, both

correlated and uncorrelated. The statistic that is developed is a

confidence interval on the fraction of second order mutants that are

uncoupled. Since error coupling is not expected to be total in

practice, this gives us an estimate of the probability that a second

order mutant escapes detection by mutation analysis. If we find any

uncoupled mutants, we obtain a two—sided confidence interval and if

we find none we still obtain a one—sided -- upper bound -- con-

fidence interval.

Program
Pairs Survive

1st Order
Test Data

I 95% Confidence
I 	Interval on
I 	(z 10,000)*

I
I Not Equiv.
I

Al 26 0 0.0 -- 	7.4
A2 12 0 0.0 -- 	7.4
A3 22 5 3.2 -- 23.3
A4 10 2 0.5 -- 14.4
AS 45 0 0.0 -- 	7.4
A6 13 0 0.0 -- 	7.4

Table 	9. 50,000 Uncorrelated Mutants

Further Experimental Studies 	 6-14

For the experiments with uncorrelated pairs of mutants, a sam-

ple size of 50,000 meaningful second order mutants was used for each

of the six programs. Table 9 summarizes the results.

Test data generated to kill first order mutants proved to be

sufficient to kill at least 99.976% of all second order mutants in

all cases considered, and 99.992% in most cases. Significantly,

program size does not seem to be an important factor in the strength

of error coupling. If these results hold over a broad range of

programs, the addition of second order mutants can be expected to

give almost no additional power not already present in simple

mutants, and certainly not enough to justify their cost.

The experiments on second order mutants used 10,000 mutants for

each program. The format of the experiments is otherwise identical

to the ones above. The results of these experiments are summarized

in Table 10.

Further Experimental Studies 	 6-15

Pairs Survive 95% Confidence
Program 1st Order Not Equiv. Interval on

Test Data (z 10,000)*

Al 0 0 0.0 -- 36.9
A2 3 1 0.3 -- 55.7
AS 60 19 114.4 --296.6
A4 3 3 6.1 -- 87.6
A5 1 0 0.0 -- 36.9
A6 1 0 0.0 -- 36.9

Table 10. 10,000 Correlated Mutants

The 	same 	six 	programs 	were 	subjected 	to a final series of

experiments to look for uncoupled mutants of orders 2 through 5.

20,000 complex substitution mutants were generated for each program

and each order. Intuition suggests that it is not necessaary to

carry out such experiments for extremely large values of k: the

more errors introduced into a program, the more the Competent

Programmer Assumption is violated. On the other hand, the behavior

of extremely high order mutants is not well understood, and it seems

prudent to examine some data on multiple mutations, if only to

insure that there arc no unexpected processes at work.

For this experiment, 20,000 complex substituion mutants of

order k (2 < k S 5) were generated for each of the six Cobol

programs. All mutants examined were uncorrelated. The mutants were

randomly selected and then examined to insure that all mutations

applied to distinct data references. The folowing table shows the

number of mutants that passed the first order test data for each

program, and the number that were not equivalent -- these are

uncoupled mutants.

Further Experimental Studies

Al A2 A3
Program

A4 AS A6

6-16

Number
that 1 2 5 0 9 5

2nd Order Pass Test
Mutants

Uncoupled
Errors 0 0 1 0 0 0
(Nonegiv.)

Number
that 	I 	0 0 0

3rd Order Pass Test
Mutants

Uncoupled
Errors 	I 	0 0
(Nonegiv.)

Number
that 	1 	0 0 0 0 0 0

4th Order Pass Test
Mutants

Uncoupled
Errors 	I 	0 0 0 0 0 0
(Nonegiv.) 1

Number
that 0 0 0 0 0 	1 	0

5th Order Pass Test
Mutants

Uncoupled I 	I
Errors 0 0 0 0 	1 	0 	1 	0
(Nonegiv.)

Table 11. Higher Order Mutants

Uncoupled Errors:

The 	uncoupled 	errors 	discovered 	in 	the 	last 	three 	series 	of

experiments described above involved alterations 	to 	predicates 	in

conditional expressions. They can be classified as follows.

Type I Errors: Changing both operands in a comparison

IF(a operation b) ==> IF(a' operation b')

Further Experimental Studies 	 6-17

Type II Errors: Changing an operand and operation in a comparison

IF(a operation b) ==> IF(a' new—operation b)

Type III Errors: Changes to non— interacting comparisons

IF(Pi(a) AP2(h) A ...) ==> IF(NOT P1(a) A p2 (b) V ...)

If an uncoupled error is thought of as a potential error in the

program, then these three types of uncoupled errors represent a form

of coincidental correctness (see Chapter 10): taking the right path

for the wrong reason. A plausible reason that these are the only

known types of uncoupled errors is that mutation analysis does not

explicitly test higher level path coverage. Indeed the problem of

testing higher level path coverage is so complex (due simply to the

number of paths) that it is probably out of reach of any systematic

testing technique.

Coupling and Complexity Measures

There are frequent references in the literature to a possible

relationship between program reliability and structural charac-

teristics of the program. If such a relationship exists, then it is

possible that there is a similar relationship between those struc-

tural characteristics and error coupling. One such characteristic

is structural complexity, measured, for instance, by the number of

program branches).

Further Experimental Studies 	 6-18

Consider the following simple test strategy, often called DD

path coverage. The goal is to develop test data that forces the

program down every path from decision point to decision point. This

strategy may require test data which drives the program down a

particularly complex path to discover an error. For example,

consider the following program, which sorts the triple (A,B,C).

Ll: if A < B then goto L2;
T:=A; A:=B;B:=C;

L2: if B < C then gotto L3;
T:=A; A:=C;C:=T;

L3: if B < C then goto L4;
T:=B; B:=C;C:=T;

L4: stop

The program is incorrect. The condition at L2 should be ACC. The

input (1,2,3) and (3,2,1) both give correct results and force the

execution of all decision to decision branches. (1,2,3) takes the

TRUE branches at L1—L3 while (3,2,1) takes the FALSE branches. The

error is not uncovered in this way: what is needed is a test case

that forces execution of a complex path corresponding to differing

outcomes at Ll and L2 . Thus simply covering all branches leaves

some errors undetected. It is possible that mutation contains the

same weakness, since mutations tend to be localized in the program

(note, however, that mutation analysis contains DD path coverage as

a special case, so it can be no weaker; cf. Chapter 2). The number

of test cases required for exhaustive testing of all possible con-

ditions in this program is 2 3 = 8.

To test the relationship between the number of branches and

error coupling, we hypothesize that the more branches a program has,

the harder it is to develop adequate test data. In more concrete

terms: the proportion of uncoupled errors rises with the structural

I 	Number
Program 	I 	of

I Branches

Number
of

Records

Number
I 	of
I Mutants

Number
that
Pass

Number 	I
Uncoup—I

led 	I

C-1 I 0 1 I 474 329 0 I
C-2 I 1 3 I 480 153 1 I
C-3 3 	 7 I 492 84 1 I
C-4 I 5 	12 I 504 50 3 I
C-5 7 	15 I 516 18 9 I

Table 12. Complexity Metric Data

Eleven of the surviving uncoupled mutants are of type I. 	The

other three are of type II. 	The relatively large number of

equivalent mutants in these programs is due to the padding that was

Further Experimental Studies 	 6-19

complexity of the program. An experiment to test this hypothesis

would match program for length and number of mutants and would allow

the branching count to vary, measuring the coupling coefficient,

defined in Chapter 2.

If the confidence intervals on 	the 	estimates 	of 	the

coefficients overlap, then no relationship may be inferred. If

there is no overlap, then there is a statistical relationship. If,

in addition, there is a causal mechanism responsible for the

statistical relationship, an argument could be made for simplicity

in program structure for program to be tested by program mutation.

For this experiment, a sequence of small programs was written,

all using the same data items and data references, but with an

increasing number of branches. The experiments examined 50,000

pairs of mutants for each program. The following table shows the

number of branches, test cases , mutants, pairs passing the test

data and uncoupled mutants for each program

Further Experimental Studies
	

6-20

used to insert extra branches without greatly affecting the number

of mutants generated. The 95% confident interval on z(100,000)

plotted against the number of branches is shown in Figure 1.

z* (100, 00)

40

30

20

10

0

0 	1
	

2 	3 	4
	

5
	

6
	

7

Number of Branches

Figure 1.

95% Confidence Intervals

It is apparent that in this set of programs, the effect of

adding complexity is very slight. It can be accounted for by the

type of uncoupled mutants seen in the experiments described above.

If this relationship holds in practice, then the branching com-

plexity of programs has little impact on the difficulty of mutation

analysis.

Further Experimental Studies 	 6-21

Bibliographic Notes

The beat the system experiments were designed by Budd and

Sayward. The data reported here is taken from Budd's thesis [Budd,

1980] and a paper by Budd, DeMillo, Lipton and Sayward [Budd,

1980b]. The experiments on the coupling effect were designed by

Acree [Acree, 1980] and DeMillo, Lipton and Sayward [DeMillo,

1978a]. The data also appeared in [Acree, 1979]. Experiments on

program complexity were carried out by Acree [Acree, 1980].

Mutant Equivalence 	 7-1

Charter /

Mutant Equivalence

Experience indicates that in production programs, the number of

equivalent mutants can vary between 2% and 5% of the total mutant

count. In more finely tuned programs, however, it is common for

source statements to appear in a particular form solely for

efficiency reasons. In these program such statements can be altered

without affecting the output behavior. A typical example of this

behavior is beginning a loop at 2 instead of 1 or 0, so that a muta-

tion which changes "2" to "1", for example, causes an extra itera-

tion but does not alter the outcome of the looping operation. In

tuned programs, the equivalent mutants can comprise as much as 10%

of the total.

Equivalent mutants are not distributed with respect to their

operators in the same proportion as other mutants. In fact, a samll

number of mutant types account for the preponderance of equivalent

mutants. The following table provides some data on the distribution

of equivalent mutants for typical Fortran programs.

Mutant Type % Equiv. % of all

Absolute Value Insertion 75 4.0
GOTO Replacement 12 0.7
Relational Operator Replacement 5.5 0.5
All Other Mutant Types 5.5 0.5

Table 1. Distribution of Equivalent Mutants by Type

It has become increasingly clear that determining mutant

equivalence ranges from very difficult to very easy. It is helpful

to classify the t:pes of equivalence which must be judged. At the

Mutant Equivalence 	 7-2

first level are mutants which are detectable as equivalent by noting

that (1) if a parameter has a variable upper bound, the value of the

upper bound must be positive, and (2) the values on loop variable

limits determine the range of values of the loop variable for the

extent of the loop. At the second level are mutants which can be

judged equivalent by examining.

It is easy to show that equivalent mutant detection is an

undecidable problem Assume a fixed programming language which is

expressive enough to allow the programming of all recursive func-

tions, and let PI and P2 be arbitrary procedures written in the

language. Since "goto" mutations are meaningful and likely

mutations, consider the following program to which goto replacement

has been applied.

goto L; 	 go to M;

L:P1;halt; 	==> 	L:Pl;halt;

M:P2;halt; 	 M:P2;halt;

Clearly, these two programs are equivalent (that is, they either

halt together and deliver the same output or they diverge together)

if and only if P1 and P2 are equivalent, and that is undecidable for

the language described above.

In spite of this, most equivalent mutants which arise in prac-

tice are stylized and rather easy to judge equivalent. This is per-

haps due to the Competent Programmer Assumption: the subject

program and an allegedly equivalent mutant are not chosen randomly

-- in fact, they are chosen by a very careful sieving of all pos-

sible programs and the structure of this relationship should be

Mutant Equivalence 	 7-3

something that one can exploit in determining mutant equivalence.

Hunan Evaluation of Equivalence

It would be desirable to measure in an experimental setting the

accuracy of human testers in judging mutant equivalence. This sec-

tion describes an experiment conducted using the programs A-3,A-4,A-

5, and A-6 . For each program, a sequence of test cases was used to

eliminate mutants, but testing was stopped when the number of

mutants remaining was approximately twice the number of remaining

mutants. This process eliminated most of the obviously inequivalent

mutants. From the remaining mutants, for each program, a subset of

fifty mutants was randomly selected. Two subjects were used in this

experiment.

Both subjects had been involved in the development of mutation

nalysis systems, and both were competent programmers. Neither sub-

ject had been enposed to the programs used in the experiment. Each

subject was given the list of mutants and the source listing for

each of the programs and was instructed to mark each mutant

equivalent or not equivalent. There were no other intructions or

restrictions placed on the subjects.

There are two kinds of errors that can be made in judging

equivalence. The first type of error is the marking of a non-

equivalent mutant as equivalent. The second type of error mistakes

equivalent mutants as non—equivalent. Errors of the second type are

not very serious, since in the process of mutation analysis, the

Program No.
Equiv

No.
Not

Subject 1

Correct

Subject

Type

2

Type Correct Type Type
1 2 1 2

3 20 30 44 0 6 42 2 6
4 21 29 36 2 12 33 6 11
5 20 30 46 0 4 40 5 5
6 13 37 33 16 16 45 1 4

Table 2. Human Evaluation of Equivlance

Mutant Equivalence 	 7-4

mutant remains in the system and can be reconsidered at any later

time. However, when a type 1 error occurs, a mutant which can be

valuable in detecting errors is prematurely removed from the system.

Premature removal of mutants increases the likelihood that an

erroneous program will be accepted as correct by the tester.

The results of human evaluation of the four programs is shown

in the following table.

The tables show the number of equivalent and non-equivalent

mutants in the mutant sample present late in the testing process,

and the number of correct identifications of errors. More

significantly the table documents the number of errors of each type

in judging mutant equivalence.

Subject 1 was more variable in accuracy that Subject 2, but

overall their results were similar. Subject 1 identified 79.5% of

the mutant correctly. Subject 2 was correct on 80% of the mutants.

In measuring type 1 errors the best computation is probably the

total type 1 errors as a percentage of the total number of non-

equivalent mutants, since these represent the potential type 1

Mutant Equivalence 	 7-5

errors. Subject 1 made type 1 errors on 14.3% of the non—equivalent

mutants, while Subject 2 made type 1 errors on 11.1%. On the other

hand, Subject 1 made type 2 errors on 31.5% of the equivalent

mutants, and Subject 2 made type 2 errors on 35.1%.

The number of type 1 errors may be high enough to significantly

reduce confidence in the abilities of human evaluators if it is an

accurate reflection of the frequency of such errors in practice. It

should be remembered, however, that the subjects were required to

mark each mutant as equivalent or ndt with only the evidence at hand

(the source listing), while a tester in practice may postpone the

decision pending further testing and thought. In addition, the sub-

jects worked in isolation and thus were denied both helpful consul-

tation and the motivation of accountability for potential errors.

These are important factors in actual testing situations. High

error rates for type 2 errors indicate that the subjects were being

conservative in their judgements, marking mutants as non—equivalent

when in doubt.

This observation leads us to consider automated techniques for

judging mutant equivalence. An automated technique will have the

desirable properties of the human evaluators. Namely, an automated

technique will make type 2 errors. On the other hand, an automated

equivalence tester never makes type 1 errors.

Mutant Equivalence 	 7-6

Automated Equivalence Checking

Before we proceed it may be instructive to examine a few

instances of equivalent mutants which show this structure. In the

analysis of the FMS.1 scanner (see Section 2), a relatively large

number of mutants resulting from the transformation

X ==> RETURN

appear as live mutants on even very good test data. On closer

examination, however, most of these reveal that

X = GO TO 90,

where statement labelled 90 is itself a RETURN. 	The programmer's

style is to always jump to a common RETURN statement, allowing an

easy "proof" of equivalence.

For another example, let us return to the NXTLIV routine

described in Chapter 9. A principal source of equivalent mutants in

that example was the troublesome test for a word of zeroes. Its

only purpose is to save the effort of looking through the words bit

by bit. If the condition in the test is replaced by any identically

true expression,

IF(L.NE.0)GOTO 23 ==> IF(12.NE.0)G0 TO 23

the program runs a bit longer but is otherwise identical. Similarly

the mutation

IF(MUTNO.GT.MCT)GOTO 40 ==> IF(MUTNO.GE.MCT)GOTO 40

Mutant Equivalence 	 7-7

changes the performance of the program only, but this time it

improves it!

These last two examples are not accidental. 	Mutations of a

program are similar to simple transformations that are made in code

optimization; it is not surprising that some of them should turn out

to be optimizing or do-optimizing transformations. 	Conversely,

correctness preserving optimizing transformations should be

applicable to detecting equivalent mutants. If this is a useful

heuristic then the task of identifying equivalent mutants can be

reduced to detecting those which are equivalent for an interesting

reason.

Almost all of the techniques used in optimizing compiled code

can be applied in some way to decide whether a mutant is equivalent

to the subject program. Some optimizing transformations are widely

applicable while others are limited in scope. We will give a sampl-

ing of the useful transformations.

Constant Propagation: Constant propagation involves replacing

constants to eliminate run-time evaluation. A typical optimizing

transformation would replace statement 3 as shown below

1 	A=1 	 1 	A=1

2 	B=2 	==> 	2 	B=2

3 	C=A+B 	 3 	C=3

There are several elegant schemes for global transformations of this

form.

Mutant Equivalence 	 7-8

Constant propagation is most useful for detecting cases in

which a mutant is not equivalent to the subject program; any change

which can affect the known value of a variable can be detected in

this fashion. The mechanism for testing equivalence of mutants

using constant propagation is to compare at all points after the

mutation site the constants which are globally propagated through

the program. If they differ it is likely that the programs are not

equivalent. The test is certain if there is a RETURN, HALT or some

other exit statement in which the set of associated constants

contains an output variable and if there is a path from the entry

point of the program to the exit point. This is resolvable by dead

code detection.

Invariant 	Propagation: 	Invariant propagation generalizes

constant propagation by associating with each statement a set of

invariant relations between data elements (e.g., X<0 or B=1).

Although invariant propagation has met with limited applicability in

compiler design, it is a powerful technique for detecting equivalent

mutants, particularly those involving relational mutant operators.

These operators frequently affect an expression only if it has a

certain relationship to 0. For example lxi changes the value of x

only if x<0. In the program—mutant pair

IF(A.LT.0)GOTO1 	IF(A.LT.0)GOTO1

B=A 	 ==> 	B=ABS(A)

the conditional allows us to determine the invariant (A>0) and this

allows us to determine that the program and its mutant are

equivalent since the absolute value of a positive number is that

Mutant Equivalence 	 7-10

Consider the mutation

A=B+C (partition = A;B+C) ==> A=B—C (partition = A;B—C)

Comparing the partitions shows that A has a different value in the

two programs.

The same ideas are used to show equivalence. If a mutation has

changed part of expression E to an expression E' but E and E' are in

the same equivalence class, then the mutant is equivalent.

Loop Invariants: Another common transformation removes code

from inside loops if the execution of that code does not depend on

the iteration of the loop. Since many mutations change the boun-

daries of loops techniques for recognizing this invariance is useful

for detecting equivalent mutants. In those cases where the mutation

either increases or decreases the code within a loop, loop invariant

recognition can be used to decide whether or not the effect of the

loop is changed. In the following mutation, excess code is brought

within the scope of the DO statement.

DO 1 1=1,10 	==> 	DO 2 1=1,10
A(I)=0 	 A(I)=0

1 	CONTINUE 	 1 	CONTINUE
2 	B=0 	 2 	B=0

Since the assignment B=0 is loop invariant, it does not matter how

many times it is executed.

Hoisting and Sinking: Hoisting and sinking is a form of code

removal from loops in which code which will be repeatedly executed

is moved to a point where it will be executed only once; this is

accomplished by a calculus which gives strict conditions on when a

Mutant Equivalence 	 7-11

block of code can be moved up (hoisted) or down (sunk).

The applications for equivalence testing are similar to the

applications for loop invariants. The major difference is that

hoisting and sinking applies to cases in which code is included or

excluded along an execution path by branching changes. These are

the sorts of changes obtained by GOTO replacement and statement

deletion mutations. In these cases, we get equivalence if the added

or deleted code can be hoisted or sunk out of the block involved in

the addition or deletion.

An example will illustrate.

IF(A.EQ.OGOTO1 ==> 	IF(A.EQ.0)GOTO 2
A=A+1 	 A=A+1

2 	B=0 	 2 	B=0
GO TO 3 	 CO TO 3

1 	B=0 	 1 	B=0
3 	 3

In this example B is set to 0 regardless of whether it is

assigned its value at line 1 or at line 2. The assignment to B can

be hoisted as follows:

B=0
IF(A.EQ.0)GO TO 3
A=A+1

3

Since both programs are thus transformed, they are equivalent.

Dead Code: Dead Code detection is geared toward identifying

sections of code which cannot be executed or whose execution has no

effect. Dead code algorithms exist for detecting several varieties

Mutant Equivalence 	 7-12

of dead code situations. We have already used dead code analysis as

a subproblem in the propagation problems above. Dead code analysis

is also useful to directly test equivalence, particularly for those

mutations arising from an alteration of control flow.

A typical application is to analyze the program flowgraphs.

If, for example, a mutation disconnects the graph and neither con-

nected component consists entirely of dead statements, then the

mutant cannot be equivalent. Such disconnection is possible by the

mutant which inserts RETURNs in Fortran subroutines.

Another common situation involves applying mutations to sites

in a program which are themselves dead code; this is the classical

compiler code optimization problem: we must detect dead code since

any mutations applied to it are equivalent.

Dead code analysis can also be used to show nonequivalence by

using it to demonstrate that a mutation has "killed" a block of

code.

Postprocessing the Mutants: Optimizing transformations can be

implemented as a postprocessor to a mutation system. User

experience is that it is relatively easy to kill as may as 905 of

the live mutants. To the remaining 10%, an equivalence heuristic

such as the rules sketched above can be applied.

The difficulty of judging equivalent mutants from those remain-

ing after the postprocessing stage both helps and hinders the test-

ing process. On one hand, forcing testers and programmers to "sign

off" on equivalent mutants enforces a unique sort of accountability

Mutant Equivalence 	 7-13

in the testing phase of program development . On the other hand,

particularly clever programming leads to many equivalent mutants

whose equivalence is rather a nuisance to judge; carelessness for

these programs may lead to error proneness. Our experience,

however, is that production programs present no special difficulties

in this regard.

Bibliographic Notes

Detecting mutant equivalences is inherent in mutation testing,

and the problem was described in [DeMillo, 1978a] and [DeMillo,

1979a]. Acree's thesis presents a discussion of the experiments

used to evaluate human equivalence detection [Acree, 1980]. Baldwin

and Sayward [Baldwin, 1979] noticed the relationship between mutant

equivalence and optimization. 	These algorithms also appear in

[Acree, 1979]. 	Tanaka [Tanaka, 1981] designed and implemented an

equivalence checking post processor which uses some of the data flow

analysis techniques described in this chapter.

Error Detection 	 8-1

Chapter 8

Error Detection

A program testing technique serves two purposes. It raises the

user's confidence that a correct program is really correct. The

other major function of program testing is to detect errors in

programs that are not correct. In Chapter 6, we saw a number of

instances in which program mutation is capable of detecting the

presence of errors -- even when other techniques fail to do so.

Recall that a testing technique is reliable if it always detects

errors of a certain type. Much current research in program testing

centers on developing test techniques which are reliable for classes

of errors. Our goal in this chapter will be to examine program

mutation in comparison with other well studied reliable test

methodologies. We will describe a number of error types and show by

example how the mutant operators desribed in Chapters 2 and 4

Simple Errors

If the program contains a simple error (i.e., one represented

by an error operator), then one of the mutants generated by the

system will be correct. The error will be discovered when an

attempt is made to eliminate the correct program since its behavior

will be correct but the progam being tested will give differing

results. If the program contains simple k—order errors the errors

will also be detected (see Chapter 11 for an example).

Error Detection 	 8-2

Dead Statements

Many programming errors manifest themselves in "dead code", that is,

source statements that are unexecutable or, more seriously, give

incorrect results regardless of the data presented. Such errors may

persist for weeks or oven years if the errors lie in rarely executed

portions of the program.

Therefore, a reasonable first goal in testing a program is to

insist that each statement be executed at least once. Typical

methods for achieving this goal include, for example, the insertion

of instruction counters into straight line segments of the program,

SO that a non—zero vector of counters indicates that the

instrumented statements have all been executed at least once.

During mutation analysis, the goal outlined above will be

viewed from a slightly different perspective. If a statement cannot

be executed, then clearly we can change the statement in any way we

want, and the effects of the changes will not be noticeable as the

program runs in particular the altered program will not be

distinguishable in its output behavior from the original one. There

is, however, a mutant operator which draws the tester's attention to

this situation in a more economical way. Among the mutants are

those which replace in turn the first statement of every basic block

by a call to a routine which aborts the run when it is executed.

Such mutations are extremely unstable since any data which causes

the execution of the replaced statement will also cause the mutant

to produce incorrect results and hence to be eliminated. The con-

verse is also true. That is, if any of these mutants survives the

analysis then the altered statement has never been executed.

'Error Detection 	 8-3

Therefore, accounting for the survival of these mutants gives

important information about which sections of the program have been

executed.

This analysis shows why apparently useful testing heuristics

can lead one astray. For example, it has been. suggested that not

executing a statement is equivalent to deleting it, but this discus-

sion shows how such a strategy can fail. A statement can be

executed and still serve no useful purpose. Suppose that we replace

every statement by a convenient NO—OP such as the Fortran CONTINUE.

The survival or elimination of such mutants gives more information

than merely whether or not the statement has been executed. It

indicates whether or not the statement has any observable effect

upon the output. If a statement can be replaced by a NO—OP with no

observable effect, then it can indicate at best that machine time is

wasted in its execution (possibly a design error) and very often a

much more serious error.

Insuring that every statement is executable is no guarantee of

correctness. 	Predicate errors or coincidental correctness may pass

undetected even if every statement is successfully executed. 	We

will return to these error types later in this Chapter.

Dead Branches

An 	improvement 	over 	simply analyzing the execution of

statements can be had by analyzing the execution of branches, attem-

pting to execute every branch at least once.

Error Detection 	 8-4

Consider the program segment

A;
IF(<expression>) THEN B;
C;

All statements A,B and C can be executed by a single test case. 	It

is not true however that in this case all branches have been

executed. In this example the empty else clause branch can be

bypassed even though A,B and C are executed.

However, the requirement that every branch be traversed can be

restated: every predicate must evaluate to both TRUE and FALSE.

The latter formulation is used in mutation analysis. The mutant

operators trueop and falseop replace each logical expression by

Boolean constants. Like the statement analysis mutations described

above, these mutations tend to be unstable and are easily eliminated

by almost any data. If these mutants survive, they point directly

to a weakness in the test data which might shield a possible error.

Mutating each relation or each logical expression independently

actually achieves a stronger test than that achieved by the usual

techniques of branch analysis. For consider the compound predicate

IF(A.LE.B.AND.C.LE.D)THEN

Simple branch coverage requires only two test cases to test the

predicate. But suppose that the test points for the covering test

are A<BAC<D and A <B C > D.

These points have the effect of only testing the second clause.

This kind of analysis fails to take into account the hidden paths

implicit in compound predicates. In testing all the hidden paths,

Error Detection 	 8-5

program mutation requires at least three points to test the

predicate, corresponding to the branches (A>B,C>D), (A<B,C>D), and

(A<B,C<D).

As a more concrete example, consider the program shown in

Figure 1 (cf. Program B4). It is intended to calculate the number

of days between two given dates. The predicate which determines

whether a year is a leap year is incorrect. Notice that if the year

is divisible by 400 (i.e., if year REM 400 = 0) it is necessarily

divisible by 100 (ie, year REM 100 = 0). Therefore, the logical

expression formed by the conjunction of these clauses is equivalent

to the second clause alone. Alternatively the expression year REM

100 = 0 can be replaced by the logical constant TRUE and the result-

ing mutant is equivalent to the original program. Since it is not

obvious what the programmer had in mind, the error is discovered.

Mutation analysis also shows that the assignment daysin(12):=31 is

redundant and can be removed from the program.

Error Detection 	 8-6

PROCEDURE calendar(INTEGER VALUE dayl,monthl,day2,month2,year);
BEGIN
INTEGER days
IF month2=monthl THEN days=days2—daysl
COMMENT if the dates are in the same month, then

we can compute the number of days directly;
ELSE
BEGIN
INTEGER ARRAY daysin(1..12)
daysin(1):=31;daysin(3):=31;daysin(4):=30;
daysin(5):=31;daysin(6):=30;daysin(7):=31;
daysin(8):=31;daysin(9):=30;daysin(10):=31;
daysin(11):=30;daysin(12):=31;
IF ((year REM 400)=0) OR

((year REM 100)=0 and (year REM 400)=0)
THEN daysin(2):=28 ELSE daysin(2):=29;

COMMENT set daysin(2) according to whether or not
year is leap year;

days:=day2+(daysin(month1)—day1);
COMMENT this yields the number of days in complete

intervening months;
FOR i:=monthl +1 UNTIL month2-1 DO days:=daysin(i)+days;
COMMENT add in the days in complete months;

END
WRITE(days)

END;

Figure 1.

Data Flow Errors.

A program may access a variable in one of three ways. A

variable is said to be defined if the result of a statement is to

assign a value to the variable. A variable is said to be referenced

if its value is required by the execution of a statement. Finally,

a variable is said to be undefined if the semantics of the language

does not explicitly give any other value to the variable. Examples

of undefined variables are the values of local storage after

procedure return or Fortran DO loop indices after normal loop

termination.

Error Detection

We define three types of data flow anomalies which are often

indicative of program errors. These anomalies are consecutive

accesses to a variable of the following forms:

1. undefined then referenced,

2. defined then undefined,

3. defined then redefined.

Anomaly 1 is almost always indicative of an error, even if it

occurs only on a single path between the point at which the variable

becomes undefined and its point of reference. Anomalies 2 and 3

tend to indicate errors when they are unavoidable, that is, when

they occur along every control path.

The second and third types of anomalies are attacked directly

by mutation operators. If a variable is defined and is not used

then in most cases the defining statement can be eliminated without

effect (by insertion of a CONTINUE statement for instance). This

may not be the case if in the course of defining the variable a

function with side effects is invoked. In this case, the definition

can very likely be altered in many ways with no effect on the side

effect, resulting in the variable being given different values. An

attempt to remove these mutations will usually result in the anomaly

being discovered.

It is more difficult to see which operators address anomalies

of the first type; the underlying errors are attacked by the

discipline imposed by program mutation. A tester creates and

executes 	mutants 	in 	a specific test environment: 	a large

interpretive system. Whenever the value of a variable becomes

Error Detection
	 8-8

undefined, it is set by the interpreter to the unique constant

UNDEFINED. Before every variable reference, a check is performed by

the interpreter to see if the variable has undefined values. If the

variable is UNDEFINED the error is reported to the user, who can

then take action. Several examples of error detection by the

interpreter are presented in Chapter 6.

Domain Errors.

A domain error occurs when an input value causes an incorrect path

to be executed due to an error in a control statement. Domain

errors are to be contrasted with computation errors which occur when

an input value causes the correct path to be followed but an

incorrect function of the input value is computed along that path

due to an error in a computation statement. These notions are not

precise and it is difficult with many errors to decide in which

category they belong (cf. the error classifications in Chapter 2).

For a program containing N input variables (e.g., parameters,

arrays, and I/O variables), any predicate in the program can be

treated algebraically and can thus be described by a surface in the

N dimensional input space. If, as often happens, the predicate is

linear, then the surface is a hyperplane.

Consider a two dimensional example with input variables I and

J. : 1+23 < -3. The domain strategy tests this predicate using three

test points, two on the line 1+23=3, and one point which lies off

the line, but within an envelope of width 2d centered on the line

Call these points A,B and C (see Figure 2). If A,B, and C yield

Error Detection 	 8-9

correct output, then the defining curve of the predicate must cut

the sections of the triangle ABC. Choosing d small enough makes the

chance of the predicate actually being one of these alternatives

small. Therefore, we have gained some confidence that the predicate

is correct.

Values of J

Values of I

Figure 2.

Domains for I+2J < 3

Program mutation also deals with the issue of domain errors.

Indeed the domain strategy can be implemented using mutation once a

simple observation is made: it is not necessary that points A and B

both lie on the line -- it is only necessary that the line separate

them or that they do not both lie on the same side of the line.

Hereafter, we will work with the domain stategy using this simplify-

ing assumption.

Error Detection 	 8-10

There are three error operators which generate mutants causing

the tester to generate the required points. Intuitively, we can

think of the mutations as posing certain alternatives to the

predicate in question. These alternatives require the tester to

supply "reasons" (in the form of test data) why the alternative

predicate cannot be used in place of the original.

Relational Operator Replacement. 	Changing an inequality

operator to a strict inequality, weakening the operator, or changing

its sense generates a mutant which can only be eliminated by a test

point which exactly satisfies the predicate. For example changing

I+2J<3 to 1+230 requires the tester to generate a point on the line

1+23=3 which satisfies the first predicate but which does not

satisfy the second predicate.

Twiddle. 	Recall from Chapter 2 that twiddle is a unary

operator denoted by ++ or --, depending on its sense. 	Usually ++a

is defined to be a+1 if a is an integer and a+.01, if a is real. In

some cases ++a is defined to be sensitive to the magnitude of a.

The complementary operator --a is defined similarly.

Graphically, the effect of twiddle is to move the proposed

constraint a small distance from the original line. In order to

eliminate these mutants, a data point must be found which satisfies

one constraint but not the other and is hence very close to the

original lire.

error Detection 	 8-11

Other Replacements. These operators replace data references

with other syntactically meaningful data references and similarly

for operators. These effects are related to the phenomenon of

"spoilers" which are described later in this chapter.

Replacements are the main source of complexity in the mutation

process, since the number of data substitution mutant alone grows

approximately quadratically in the size of the program being tested

(see Chapter 5). The practical effect of considering so many alter-

natives is to increase the total number of data points necessary for

their elimination. This leads by the domain strategy to an

increased confidence that the predicate has been correctly. chosen.

For comparison, let us work through the program in Figure 3.

No specifications are given for this program, but the program can be

compared against a presumably correct version; in any case the

program is useful since it involves only two input variables.

READ I,J;
IF I<JA-1

THEN K=1+J-1
ELSE K=2*I+1;

IF 101+1
THEN L=I+1
ELSE L=J—l;

IF 1=5
THEN M=2*L+K;
ELSE M=L+2*K-1

WRITE N;

Figure 3.

The program has only three predicates:

I(J+1, 101+1, and 1=5.

The effect of changing the first of these is typical, so we will

Error Detection
	 8-12

deal with it.

Figure 4 is a listing of all the alternatives tried for the

predicate I<J+1. Some of these are redundant (e.g., ++I<J+1 and I<-

-J+1), but this is merely an artifact of the generation device; the

redundancies can be easily removed. The alternative predicates

introduced in this way are illustrated in Figure 5. The original

predicate line is the heavy line. It has been suggested that the

program of Figure 3 contains the errors shown in Table 1.

statement/expression

should be

K>I+1
1=5
L=J-1
K=I+J-1

K>I+2
I=5—J
L=I-2
THEN IF(2*J<-5*I-40)

THEN K=3;
ELSE K=I+J-1;

Table 	1. Domain Errors

We leave it to the reader to verify that attempting to

eliminate the alternative K>I+2 necessarily ends with the discovery

of the first error. Note that this is not trivial since errors 1

and 4 can interact in a subtle way. In the sequel we show how the

remaining errors are dealt with.

Error Detection 	 8-13

1. IF(I<J)
2. IF(I<J+2)
3. IF(I<J+1)
4. IF(I<J+J)
5. IF(1<J+1)
6. IF(2<J+1)
7. IF(5<J+1)
8. IF(I<1+1)
9. IF(I<2+1)
10. IF(I<5+1)
11. IF(I<J+5)
12. IF(—I<J+1)
13. IF(++I<J+1)
14. IF(--I<J+1)
15. IF(I<—J+1)
16. IF(I<++J+1)
17. IF(I<--J+1)
18. IF(I<—(J+1))
19. IF(I<J-1)
20. IF(I<MOD(J.1))
21. IF(I<J)
22. IF(I<1)
23. IF(I<J+1)
24. IF(I=J+1)
25. IF(.NOT.I=J+1)
26. IF(I>J+1)
27. IF(I>J+1)

Figure 4.

—6 	—4 	—2 	0 	2
	

4 	6 	8 	10
VALUES OF I

Error Detection

VALUES OF J

8-14

10

a

6

2

0

—2

—4

—6

—8
—10 —8

deA 	

"tilt k 	

Figure 5.

Alternative Predicate Domains

The introduction of the unary ++ and -- operators can be

generalized in several useful ways. In addition to the twiddle

operators, we consider the unary operator — and the operators ABS

(absolute value), —ABS (negative absolute value), and ZPUSH (zero

push). Consider the statement A=B+C. In order to eliminate the

mutants A= ABS(B)+C, A=B+ABS(C), and A=ABS(B+C), we must generate a

set of test points in which B is negative (so that B+C differs from

ABS(B+C), C is negative, and B+C is negative). Notice that if it is

impossible for B to be negative then this is an equivalent mutation.

In this case, the proliferation of these alternatives can either be

a nuisance or an impertant documentation aid, depending upon the

Error Detection 	 8-15

testers' point of view. The topic of equivalent mutants will be

taken up again later.

In similar fashion, negative absolute value insertion forces

the test data to be positive. We use the term domain pushing for

this process. By analogy to the domain strategy, these mutations

push the tester into producing test cases where the domains satisfy

the given requirements.

Zero Push is an operator defined so that ZPUSH(x) is x if x is

nonzero, and otherwise is undefined so that the mutant dies

immediately. Hence the elimination of this mutant requires a test

point in which the expression x has the value zero.

Applying this process at every point where an absolute value

sign can be inserted gives a scattering effect. The tester is for-

ced to include test cases acting in various positions in several

problem domains. Very often, in the presence of an error, this

scattering effect causes a test case to be generated in which the

error is explicit.

Returning to the example in Figure 3, we can generate the

additional alternatives shown in Figure 6. Figure 7 shows the

domains into which these mutants push. Even this simple example

generates a large number of requirements!

Error Detection

1. IF(ABS(I)>J+1)
2. IF(I>ABS(3)+1)
3. IF(DABS(J+1))
4. K=(ABS(I)+J)-1
5. K=(I+ABS(J)) -1
6. K=ABS(I+J) -1
7. K=ABS((I+3) -1)
8, K=2*ABS(I)+1
9. K=ABS(2*I)+1
10. K=ABS(2*I+1)
11. IF(ABS(K)<I+1)
12. IF(K<ABS(I)+1)
13. IF(K<ABS(I+1))
14. L=ABS(I)+1
15. L=ABS(I+1)
16. L=ABS(J)-1
17. L=ABS(J-1)
18. IF(.NOT.ABS(I)=5)
19. M=2*ABS(L)+K
20. M=2*L+ABS(K)
21. M=ABS(2*L+K)
22. M=ABS(L)+2*K-1
23. M=L+2*ABS(K)-1
24. M=ABS(L+2*K)-1
25. M=ABS(L+2*K-1)

Figure 6.

VALUES OF .1
10

—10 —8 	-6
	—4 	—2 	0 	2

	
4 	6 	8 	10

VALUES OF I

Figure 7.

Effects of Domain Pushing

Error Detection 	 8-17

One effect of the error L=J-1 is that any test point in the

area bounded by I=J+1 and I=1 will return an incorrect result. But

this is precisely the area that mutants 8,9, and 10 push us into.

So, the error could not have gone undiscovered in mutation analysis.

This process of pushing the tester into producing data satisfy-

ing some criterion is also often accomplished by other mutations.

Consider the program in Figure 8, which is based on a text reformat—

ter program and which is also discussed in Appendix B (Program B11).

alarm:=FALSE
bufpos:=0;
fill:=0;
REPEAT
incharacter(cw);
IF cw=BL or cw=NL THEN

IF fill+bufpos < maxpos THEN
outcharacter(BL);

ELSE
BEGIN
outcharacter(NL);
fill:=0;
FOR k:=1 STEP 1 UNTIL bufpos DO outcharacter(buffer[k])
fill:=fill+bufpos;
bufpos:=0
END

ELSE
IF bufpos = maxpos THEN alarm:=TRUE;
ELSE BEGIN
bufpos:=bufpos+1;
buffer[bufpos]:=cw

END
UNTIL alarm or cw=ET

Figure 8.

Consider the mutant which replaces the first statement fill:=0

with the statement fill:=1. The effect of this mutation is to force

a test case to be defined in which the first word is less than max-

pos characters long. This test case then detects one of the five

errors originally reported in Appedix B. The surprising thing is

that the effect of this mutation seems to be totally unrelated to

Error Detection 	 8-18

the statement in which the mutation takes place!

Special Values

Another form of test which has been studied is special values

testing. Testing of special values is defined in terms of a number

of "rules". For example:

1. Every subexpression should be tested on at least
one test case which forces the expression to be zero.

2. Every variable and every subexpression should
take on a distinct set of values in the test case.

The relationship between the first rule and domain pushing (via

zero values mutations) has already been discussed. The second rule

is undeniably important. If two variables are always given the same

value then they do not act as free variables and a reference to the

first can be uniformly replaced with a reference to the second. But

this is also an error operator and the existence of these mutations

enforces the goals of Rule 2.

A slightly more general method of enforcing Rule 2 might use

the following device. A special array exactly as large as the num-

ber of subexpressions to be computed in the program is kept. Each

entry in this array has two additional tag bits which are intialized

to their low values indicating that the array is uninitialized. As

each subexpression is encountered in turn, the value at that point

is recorded in the array and the first tag bit is set. Sub-

sequently, when the subexpression is again encountered if the second

tag is still off the current value of the expression is compared

against the recorded value. If these values differ the second tag

Error Detection 	 8-19

is set to high values; otherwise no change is made. 	By counting

those expressions in which the second tag bit is low and the first

is high one can infer which expressions have not had their values

altered over the test case. Mutations could be constructed to

reveal this.

Coincidental Correctness

The result of evaluating a given test point is coincidentally

correct if the result matches the intended value in spite of a com-

putation error. For example, if all our test data results in the

variable I taking on the values 2 and 0, then the computation J=I*2

may be coincidentally correct if the intended calculation was

J=I**2.

The problem of coincidental correctness is central to program

testing. Every programmer who tests an incorrect program and fails

to find the errors has really encountered an instance of

coincidental correctness. In spite of this, there has been no

direct assault on the problem and some authors have gone so far as

to say that the problems of coincidental correctness are intrac-

table.

In mutation analysis, coincidental correctness is attacked by

by the use of spoilers. Spoilers implicitly remove from considera-

tion data 	points for which the results could obviously be

coincidentally correct -- this "spoils" those data points. 	For

example by explicitly creating the mutation

Error Detection
	

8-20

J=I*2 ==> J=I**2,

we spoil those test cases for which 1=0 or 1=2 are coincidentally

correct and require that at lest one test case have an alternative

value.

Continuing with the example of Figure 3, Figure 9 shows the

spoilers and their effects associated with the statement M=L+2*K-1.

Notice that a single spoiler may be associated with up to four

different lines depending on the outcome of the first two predicates

in the program. In geometric terms (see Figure 11), the effects of

the spoilers are that within each data domain for each line there

must be at least one test case which does not lie on the given line.

In broad terms, the effects of this are to require that a large num-

ber of data points for which the possibilities of coincidental

correctness are very slight.

Error Detection

1. M=M+1*10-1 26. M=M+2*-10-1
2. M=(L+3*K)-1 27. M=(L+2*-K)-1
3. W(I+2.10-1 28. M=(L+2*K)-1
4. M=(J+2*K)-1 29. M=((L+2*K)-1)
5. M=M+2*10 -1 30. M=(L+2+K)-1
6. M=(L+2*J)-1 31. M=(L+2-K)-1
7. M=(L+2*I)-1 32. M=(L+MOD(2,K))-1
8. M=(L+2*L) -1 33. M=(L+2/K)-1
9. M=(L+I*11)-1 34. M=(L+2**K)-1

10. M=(L+J*K)-1 35. M=(L+2)-1
11. M=(L+K*K)-1 36. M=(L+K)-1
12. M=(L+L*K)-1 37. M=L-2*K-1
13. M=M+2*10-I 38. M=(MOD(L,2*K))-1
14. M=(L+2*K)-J 39. M=L/2*K-1
15. M=(L+2*K)-K 40. M=L*2*K-1
16. M=(L+2*K)-L 41. M=L**(2*K)-1
17. M=(1+2*0-1 42. M=L-1
18. M=(2+2*K)-I 43. M=(2*K)-1
19. M=(5+2*K)-1 44. M=L+2+K+1
20. M=(L+2*1)-1 45. M=MOD(L+2*K,1)
21. M=(L+2*2)-1 46. M=(L+2*K)/1
22. M=(L+2*5)-1 47. M=(L+2*K)*1
23. M=M+5*10-1 48. M=(L+2*K)**1
24. M=(-L+2*K)-1 49. M=(L+2*K)
25. M=M+-2*10-1 50. M=1

Figure 10

Values of J

-10 -8 -6 -4 -2 0 2 4
	

6 8
	

10

Values of I

Figure 11.

Effects of Spoilers

Error Detection 	 8-22

Often the fact that two expressions are coincidentally the same

over the input data is a sign of a program error or of poor testing.

The sorting program of Figure 12 is described in Appendix B (Program

B2), and it performs correctly for a large number of input values.

If, however, the statements following the IF statement are never

executed for some loop iteration it is possible for R3 to be

incorrectly set and an incorrectly sorted array will result.

By constructing the mutant which replaces the statement

a(R1):=R0 ==> a(R1):=a(R3)

it is clear that there are two ways of defining RO, only one of

which is used in the test data. This exposes the error.

FOR R1=0 BY 1 TO N BEGIN
RO:=a(R1);
FOR R2=R1+1 BY 1 TO N BEGIN
IF a(R2)>R0 THEN BEGIN
RO:=a(R2);
R3:=R2

END
END
R2:=RO;
a(R1):=RO;
a(R3):=R2

END;

Figure 12.

Missing Path Errors

A program contains a missing path error if a predicate is

required which does not appear in the subject program, causing some

data to be computed by the same function when an altogether

different function of the input data is called for. Such missing

predicates can 	ea11y be the result of two different problems,

Error Detection 	 8-23

however, so we might consider the following alternative definitions.

A program contains a specificational missing path error if two

cases which are treated differently in the specifications are

incorrectly combined into a single function in the program. On the

other hand, a program contains a computational missing path error if

within the domain of a single specification a path is missing which

is required only because of the nature of the algorithm or of the

data involved.

An example of a specificational error is the fourth error from

Table 1. Although this error might result from a specification

there is nothing in the code itself which could give any hint that

the data in the range 2*I < 5*I-40 is to be handled any differently

than shown in the program.

As an example of the second class of path error consider the

subroutine shown in Figure 13. The input consists of a sorted table

of numbers and an element which may or may not be in the table. The

only specification is that upon return X(LOW) < A < %(HIGH) and HIGH

< LOW+1. A problem arises if the program is presented with a table

of only one entry, in which case the program diverges.

In the specifications there is no clue that a one—entry table

is to be treated any differently from a 101 entry table. The

algorithm makes it a special case.

Error Detection 	 8-24

SUBROUTINE BIN(X,N,A,LOW,HIGH)
INTEGER X(N) ,N,A,LOW,HIGH
INTEGER MID
LOW=1
IIIGII=N

6 	IF(HIGH-LOW-1)7,12,7
12 	RETURN
7 	MID=(1,0W+HIGH)/2

IF(A-X(MID))9,10,10
9 	HIGH=MID

GO TO 6
10 LOW=MID

GO TO 6
END

Figure 13.

Computational missing path problems are usually caused by

requirements to treat certain values (e.g., negative numbers)

differently from others. When this occurs, data pushing and spoil-

ing often lead to the detection of the errors. In the example under

consideration here an attempt to kill either of the mutants

IF(HIGH-LOW-1)12,12,7

or

MID=(LOW+EIG11)-2

will cause us to generate a test case with a single element.

Since mutation analysis -- like all testing techniques -- deals

mainly with the program under test, the problem of dealing with

specificational missing path errors appears to be considerably more

difficult. Under the Competent Programmer Assumption and the coupl-

ing effect, however, a tester who has access to an "oracle" for the

program specifications can assume that the mutants cover all program

behavior! So by consulting the specifications the tester can detect

missing paths by noting incomplete behavior and thus uncover any

Error Detection 	 8-25

missing paths. But since the assumptions of a competent programmer

and coupling are statistical and since it may be infeasible to check

for incomplete behavior, the chances of detecting such missing paths

are not certain.

To see this failure, consider the missing path error discussed

above (the fourth error in Table 1). It is possible to generate

test data which is adequate but which fails to detect the missing

path error because there is no oracle to consult for completeness of

behavior. This appears to be a fundamental limitation of the test-

ing process. Unlike, say, program verification, program testing

does not require uniform a priori specifications; rather we only ask

that the tester be able to judge correctness on a case—by—case

basis. It is our view that the only way to attack these problems is

to start with a core of test cases generated from specifications,

independent of the subject program. This core of test cases can

then be augmented to achieve stronger goals.

Missing Statement Errors

By analogy with missing path errors, a missing statement error

is defined by a statement which should appear in the program but

which does not. It is not clear that the techniques of statement

analysis can be used to uncover these errors. In fact, it is rather

surprising that program mutation -- a technique which is directly

oriented toward examining the effect of a modification to a

statement -- can be used to detect missing statements at all!

Error Detection 	 8-26

To see how this can be accomplished, consider the program shown

in Figure 14. This program accepts a vector V of length N and

returns in MPSUM the value

V(i)+V(i+1)+...+V(N)

where j=i-1 is the smallest index such that V(j) is strictly

positive. In degenerate cases, MPSUM=0 is returned.

There is a missing RETURN statement which should follow the IF

statement. The effect of the error is to cause undefined behavior

when the vector V is uniformly nonpositive (undefined, since DO loop

variables are of indeterminate value after normal completion of the

loop).

A simple mutation of MPADD is the transformation

DO 1 I=1,N ==> DO 1 I=1,N+1.

This mutant fails only when the loop executes N+1 times. In this

case all elements of V are nonpositive and the original program

fails, so eliminating this mutant uncovers the error. But even

after adding the return statement, MPADD will still be incorrect due

to a missing path error. We leave it to the reader to discover the

error by considering the mutant

DO 1 I=1,N ==> DO 1 I=1,N-1.

Error Detection 	 8-27

SUBROUTINE MPADD(V,N,MPSUM)
INTEGER V(N),N,MPSUM
MPSUM = 0
DO 1 I=1,N

1 	IF(V(I).GT.0)G0 TO 2
2 	M=I+1

DO 3 I=M,N
3 	MPSUM=MPSUM+V(I)

RETURN
END

Figure 14.

Bibliographic Notes

The usefulness of program mutation for detecting errors was

pointed out by DeMillo, Lipton and Sayward in [DeMillo, 1978a].

However, the first systematic investigation of classes of errors

that are revealed by mutant operators was given in [Acree, 19791.

These techniques are several others which are useful in uncovering

known error classes also appear in Budd's thesis [Budd, 1980].

Field Studies 	 9-1

Chapter 9

Field Studies

In spite of extensive theoretical and experimental analysis,

systematic program testing in production programming environments is

rare. Most published accounts of testing experience in large scale

development efforts concentrate on ad hoc techniques which have been

tailored to the parent project. On the other hand, published

descriptions of systematic testing research use example programs

which are small, theoretically interesting and easily adaptable to

expository accounts. This leaves open the question of whether any

systematic testing strategy can be economically applied in produc-

tion programming situations. This chapter describes several field

experiments with production programs of varying size and complexity.

The common thread in all of these case studies is that the

programs being tested are not known beforehand to be "testable" by

any technique. The programs are neither appealing nor known to be

correct. In fact several of the programs were known to contain

resistant errors that had escaped all of the usual debugging tech-

niques. Other programs had been thoroughly tested by other

organizations and fielded with errors that surfaced only during sub-

sequent operation.

The programs below were tested using Fortran and Cobol mutation

analyzers based on the design principles presented in Chapter 4.

The test environments varied. The Fortran analyzers were

implemented on a large Digital Equipment System/20. The Cobol

analyzer was implemented on PRIME Computer Corporation's 400 and 500

series computers. The level of skill of the testers also varied.

Field Studies 	 9-2

In one instance, the testers were expert mutation analyzer users.

In another, the testers were unknown, and program mutation was used

to evaluate the results of an independent testing effort. Although

these studies used considerable machine resources, the principle

bottleneck in the testing process was the human tester. In only one

instance (the testing of a 2,500 statement Cobol program) did the

test team have to wait appreciable lengths of time to receive the

test resultS. On the average, expert testers were able to fully

test (i.e., develop adequate test sets, correct errors discovered,

and retest the modified programs) production code at the rate of

1,500 delivered source lines per tester per week.

Mutation on Mutation

The Fortran programs which we will discuss below are key

routines of a Cobol mutation analyzer whose design parallels the

organization suggested in Chapter 4. These programs were tested in

nearly the same form as the programs which would eventually be

integrated into the operational system. The few modifications that

had to be made to allow testing on a Fortran analyzer were mainly to

due to operating system dependencies that were not supported in the

test environments.

NXTLIV

This program is a routine called NXTLIV. It is a key routine

in the Cobol mutation analyzer and at the time of testing was known

to contain an error that could not be located by the usual debugging

Field Studies
	 9-3

techniques.

NXTLIV accepts as input the identifying number of a mutant of a

given type and returns the number of the next live mutant, as

indicated by bit maps of the live mutants. The bit maps are, in

general, too large to fit in an internal array so they must be paged

from a random access disk file as needed. Similar maps of the dead

mutants and equivalent mutants are also stored. The program is

shown below.

SUBROUTINE NXTLIV(MTYPE,MUTNO)
C FIND THE NEXT LIVE MUTANT AFTER THE MUTNOth OF TYPE MTYPE
C RETURN THIS VALUE IN MUTNO.
C A VALUE OF ZERO RETURNED MEANS NO MUTANTS OF THAT TYPE

REMAIN ALIVE.
NOLIST

iINSERT ICS057>CPMS.COMPAR>SYSTEM.PAR
iINSERT ICS057>CPMS.COMPAR>MACHINE.SIZES.PAR
iINSERT ICS057>CPMS.COMPAR>FILENM.COM
iINSERT ICS057>CPMS.COMPAR>TSTDAT.COM
iINSERT ICS057>CPMS.COMPAR>MSBUF.COM

LIST
INTEGER MTYPE, MUTNO
INTEGER I,J,K,L,WORD,BIT
LOGICAL ERR

C 	CALL TIMER1(33)
C ASSUME THAT THE RECORD CONTAINING THE LIVE BIT MAPS FOR
C MUTNO IS ALREADY PRESENT, UNLESS MUTN0=0.

K=BPW-1
C CHECK TO SEE IF WE ARE AT THE END OF A PHYSICAL RECORD

IF(MUTNO.E0.0)TO TO 1
IF(MOD(MUTNO,K*MSFRS).E0.0)G0 TO 24
GO TO 10

1 	CALL REARAN(MSFILE,LIVBUF,MSFRS,LIVPTR,ERR)
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36)

CALL REARAN(MSFILE,EQUBUF,MSFRS,EQUPTR,ERR)
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36)
CALL REARAN(MSFILE,DEDBUF,MSFRS,DEDPTR,ERR)
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36)
CHANGD=.FALSE.
WORD=1
BIT=2
CO TO 20

10 	WORD=MOD((MUTNO)/(K),MSFRS)+1.
BIT=MOD(MUTNO,K)+2

20 	DO 22 I=WORD,MSFRS
L=LIVBUF(J)
IF(L.NE.0)GO TO 23

Field Studies 	 9-7

An error has been detected; the correct output for MUTNO is 13

instead of 14. This error resulted from choosing a starting point

in the middle of a word of zero bits. NXTLIV ordinarily searches

the bits of each word looking for the next "1", but for efficiency a

whole word is compared to zero before the search is begun. If all

bits are set low, MUTNO is incremented by the word length and the

next word is accessed. A correct algorithm would increment MUTNO

only by the number of bits left to be examined in the word. The

only way this can make a difference in the original program is for

NXTLIV to be called in such away as to stop at a "1" bit in the mid-

dle of the word, which is otherwise all 0's, and then by a mutant

failure or equivalence (outside the routine) to have that bit turned

off before NXTLIV is called again for the next mutant to be

considered. Obviously this situation is so rare that it is bound to

defy haphazard debugging attempts but is nonetheless common enough

to cause irritation in a production—sized Cobol run.

The needed fix is to replace

MU1NMUINO+K

by

MUTNO=MUIN04-(K—(BIT-2)) .

After eliminating all SAN mutants and turning on the remaining

error operators, a total of eleven test cases killed all but 50 of

1,514 mutants, about 96.7 percent of the total. Eventually the

Field Studies
	 9-8

tester's attention was directed to the mutant at line 45

BIT=2 => 1=2.

The test case 15 in Table 2 is an attempt to eliminate this

mutant. The program again failed and another error was found. This

error is also related to the test for the entire word of zeroes. By

starting in the middle of a word of zeroes, the BIT pointer is not

correctly set to 2 to begin searching the next word. The correction

is to replace

BIT=2
22 	CONTINUE

by

22 	BIT=2

An interesting note is that this "correction" is actually a

mutation that the tester would have had to eliminate in any event,

so in effect the error was uncovered by the coupling effect before

it was explicitly considered.

The complete analysis of the corrected program required the

elimination of 1,580 mutants. The corrected algorithm has since

been running without known failure in an operational mutation

analyzer.

Field Studies
	

9-9

MOVENW and MOVENM

These routines were tested using a more sophisticated mutation

analyzer than the one used to test NXTLIV. Only minor modifications

in the source code were required to conform to the requirements of

the test environment.

The MOVENM and MOVENW routines were believed to be correct at

the time of testing. The listings for MOVENW and MOVENM are shown

below.

Field Studies 	 9-10

SUBROUTINE MOVENW(SOURCE,SLEN,DEST,DLEN)
INTEGER MLEN, K, SUB2, SUB1, LOOPHI, I, MCI, IER
INTEGER STMT(3,10), 	CODE(30), SYMTAB(10,9)
CHAR MEMORY(425)
INTEGER DLEN, DEST, SLEN, SOURCE
INPUT OUTPUT IER, MEMORY
INPUT DLEN, DEST. SLEN, SOURCE
MLEN = DLEN
IF (SLEN . LT. MLEN) MLEN = SLEN
LOOPHI = (DEST + MLEN) — 1

2
1
3
4

SUB2 = SOURCE — 1 5
DO 20 SUB1=DEST, LOOPHI 6
SUB2 = SUB2 + 1 7
K = MEMORY(SUB2) 8
IF(K .EQ. 	IER = 4 9 10

20 11 MEMORY(SUB1) = K
IF(IER .NE. 0) GOTO 9999 12 13
IF(DLEN .LE. MLEN) GOTO 9999 14 15
I = LGOPHI + 1 16
LOOPHI = (DEST + DLEN) — 1 17
DO 30 SUB1=I, LOOPHI 18

30 MEMORY(SUB1) = ' 19
9999 CONTINUE 20

RETURN 21
END

SUBROUTINE MOVLNM(SOURCE,SLEN,SDEC,DEST,DLEN,DDEC,TYPPE)
LOGICAL NEGNO
INTEGER X(5), PTNEGD, PTNEGS, K, SUB2, SUM., LOOPHI, LEND
INTEGER LENS, I, IHI, DDECPT, SDECPT, IER. STMT(3,10)
INTEGER CODE(30), sYmrw10,9)
CHAR MEMORY(425)
INTEGER TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE
INPUT OUTPUT IER, MEMORY
INPUT TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE
PTNEGS = (SOURCE + SLEN) — 1 23
PTNEGD = (DEST + DLEN) — 1 24
CALL UNPACK(MEMORY(PTNEGS),X,5) 25
NEGNO = X(2) 	.EQ. 26

X(2) 	= 	' 27
IF(NEGNO) CALL PACK(X,MEMORY(PTNEGS),5) 28 29
LENS = SLEN — SDEC 30
LEND = DLEN 	DDEC 31
SDECPT = SOURCE + LENS 32
DDECPT = DEST + LEND 33
SUEZ = DDECPT — 1 34
IF(SDEC .E0. 0 	.OR. DDEC .EQ. 0) GOTO 22 35 36
1111 = (SDEC + SDECPT) — 1 37
IF(DDEC .LE. SDEC) IHI = (DDEC + SDECPT) — 1 38 39
DO 20 SUB2=SDECPT, IHI 40
SUB1 = SUSI + 1 41
K = MEMORY(SUB2) 42
IF(K .E0. 	1#9 IER = 4 43 44

20 rEYORY(SUB1) = K 45

Field Studies 	 9-11

IF(IER .NE. 0) GOTO 50 46 47
22 IF(DDEC .LE. SDEC) GOTO 30 48 49

I = SUB1 + 1 50
1HI = (DEST + DLEN) — 1 51
DO 25 SUB1=I, IHI 52

25 MEMORY(SUB1) = '0' 53
30 LOOPHI = LEND 54

IF(LENS .LE. LEND) LOOPHI = LENS 55 56
SUB1 = DDECPT 57
SUb2 = SDECPT 58
IF(LEND .EQ. 0) GOTO 50 59 60
IF(LENS .E0. 0) GOTO 41 61 62
DO 40 I=1, LOOPHI 63
SUB1 = SUB1 — 1 64
SUM = SUB2 — 1 65
K = MEMORY(SUB2) 66
IF(K .EQ. 	'h') 	IER = 4 67 68

40 MEMORY(SUB1) = K 69
IF(IER .NE. 0) GOTO 50 70 71
IF(LEND .LE. LENS) GOTO 50 72 73

41 IHI = SUB1 — 1 74
DO 45 I=DEST, 	flu 75

45 MEMORY (I) = 	'0' 76
50 X(2) 	= 77

IF (NEGNO) CALL PACK(X,MEMORY(PTNEGS),5) 78 79
IF(.NOT. 	(NEGNO .AND. TYPPE .EQ. 2)) RETURN 80 81
CALL UNPACK(MEMORY(PTNEGD),X,5) 82
X(2) 	= 83
CALL PACK(X,MEMORY(PTNEOD),5) 84
RETURN 85
END

Program mutation on each subroutine indicated that no errors

existed and that the two subroutines were correct. A listing of

each subroutine with its equivalent mutants and the MUTANT STATE

information is given in Appendix C.

Most of the equivalent mutants are the absolute value or ZPUSH

mutants of a variable; these variables are always positive and never

zero because they refer to the memory location and length for either

the sending field or destination field in the Cobol MOVE statement

and this cannot be negative or zero.

Field Studies 	 9-12

It is interesting to note the statement:

IF (K .EQ. '#') IER=4

This conditional is checking for undefined data. If the data

is undefined, the data is moved entirely to the receiving field

before the interpreter is halted and an error returned to the cal-

ling subroutine. The conditional statement:

IF (IER .NE. 0) GO TO 9999 as in MOVENW

IF (IER .NE. 0) GO TO 50 as in MOVENM

is located after the Fortran DO loop that is moving the data; if

this statement were moved inside the DO loop, then the error could

cause the error return before all the data is moved. The tester

decided that the time to evaluate the error condition every time

through the DO loop would be more time consuming than the time

needed to move the remaining data to the receiving field. It should

be noted that moving the undefined data to the receiving field has

no effect because interpretation of the program is halted.

MOVEED

The MOVEED, numeric edited move, subroutine was submitted for

mutation analysis because it had not been fully tested by con-

ventional means. The program as modified is shown below.

SUBROUTINE MOVEED(SOURCE,SLEN,SDEC,DEST,DLEN,PLEN,PDIG,PDEC,
* PIC,IER)

LOGICAL SUPRES, NEGNO
INTEGER X(5), SUB2, SUB1, IHI, PLDIG, IVAR, I, SCOUNT, DESTHI
INTEGER CHAR, PDIGLN, SDIG, SARRAY(50), PICST, DDEC
INTEGER STMT(3,10), CODE(30), SYMTAB(10,9)
CHAR MEMORY(310)
INTEGER IER

Field Studies 	 9-13

CHAR PIC(10)
INTEGER PDEC, PDIG, PLEN, DLEN, DEST, SPEC, SLEN, SOURCE
INPUT OUTPUT MEMORY, IER
INPUT PIC, PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE
SUPRES = .TRUE. 87
DO 5 I=1, PLEN 88

5 SARRAY(I) = '0' 89
PLDIG = PDIG — PDEC 90
SDIG = SLEN — SDEC 91
IF(SDEC .EQ. 0) GOTO 11 92 93
SUB1 = PLDIG 94
SUB2 = (SOURCE + SDIG) — 1 95
DO 10 1=1, SDEC 96
SUB1 = SUB1 + 1 97
SUB2 = SUB2 + 1 98
IF(MEMORY(SUB2) 	.EQ. 	'#') 	IER = 4 99 100

10 SARRAY(SUB1) = MEMORY(SUB2) 101
IF(IER .NE. 0) GOTO 101 102 103

11 IF (SDIG .GE. PLDIG) IHI = PLDIG 106
IF(SDIG .LT. PLDIG) IHI = SDIG 107 108
SUB1 = PLDIG + 1 109
SUB2 = SOURCE + SDIG 110
DO 15 I=1, IHI 111
SUB1 = SUB1 — 1 112
SUB2 = SUB2 — 1 113
IF(MEMORY(SUB2) 	.EQ. 	IER = 4 114 115

15 SARRAY(SUB1) = MEMORY(SUB2) 116
IF(IER .NE. 0) COTO 101 117 118

16 SUB1 = (SOURCE + SLEN) — 1 119
CALL UNPACK(MEMORY(SUB1) ,X,2) 120
NEGNO = X(2) 	.EQ. 121
SUB1 = DEST 122
SCOUNT = 0 123
DO 100 I=1, PLEN 124
SUB1 = BEST + I 125
IF((DEST + I) — 1 	.GT. 	(DLEN + DEST) — 1)) GOTO 126 127
CHAR = PIC(I) 128
IF(PIC(I) 	.EQ. 	'9') 	SUPRES = .FALSE. 129 130
IF(SARRAY(SCOUNT + 1) 	.NE. 	'0') SUPRES = .FALSE. 131 132
IF(CHAR .NE. 	'—') GOTO 20 133 134
MEMORY(SUB1 — 1) = 135
IF(I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 — 1) = 136 137
IF(I .EQ. 1) GOTO 100 138 139
SCOUNT = SCOUNT + 1 140
IF(.NOT. SUPRES) GOTO 99 141 142
IF (NEGNO) MEMORY(SUB1 — 1) = 143 144
IF(MEMORY(SUB1 — 2) 	.EQ. 	'—') MEMORY(SUB1 — 2) = 145 146
GOTO 100 147

20 IF(CHAR .NE. 	'+') GOTO 30 148 149
IF(I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 — 1) = 150 151
IF(I .EQ. 1 .AND. .NOT. NEGNO) MEMORY(SUB1 — 1) = '+' 152 153
IF(I .E0. 1) GOTO 100 154 155
SCOUNT = SCOUNT + 1 156
IF(.NOT. SUPRES) GOTO 99 157 158
IF (NEGNO) MEMORY(SUB1 — 1) = 159 160
IF (.NOT. NEGNO) MEMORY(SUB1 — 1) = '+' 161 162

Field Studies 9-14

IF(MEMORY(SUB1 - 2) 	.EQ. 	'+') MEMORY(SUB1 - 2) = ' 163 164
IF(MEMORY(SUB1 - 2) 	.EQ. 	'-') MEMORY(SUB1 - 2) = ' 165 166
GOTO 100 167

30 IF(CHAR .NE. 'i') GOTO 40 168 169
IF (I .EQ. 1) MEMORY(SUB1 - 1) = 't' 170 171
IF(I .EQ. 1) GOTO 100 172 173
SCOUNT = SCOUNT + 1 174
IF(.NOT. SUPRES) GOTO 99 175 176
MEM0RY(SUB1 - 1) = 177
IF(MEMORY(SUB1 - 2) 	.EQ. 	'I') MEMORY(SUB1 - 2) = ' 178 179
GOTO 100 180

40 IF(CHAR .NE. 	'*') GOTO 50 181 182
SCOUNT = SCOUNT + 1 183
IF(.NOT. SUPRES) GOTO 99 184 185
MEMORY(SUB1 - 1) = 186
GOTO 100 187

50 IF(CHAR .NE. 	'Z') 	GOTO 55 188 189
SCOUNT = SCOUNT + 1 190
IF(.NOT. SUPRES) GOTO 99 191 192
MEMORY(SUB1 - 1) = ' 	' 193
GOTO 1n0 194

55 IF(CHAR .NE. 	'9') GOTO 60 195 196
SCOUNT = SCOUNT 	1 197
MEMORY(SUB1 - 1) = SARRAY(SCOUNT) 198
GOTO 100 199

60 IF(CHAR .NE. 	'B') GOTO 70 200 201
MEMORY(SUB1 - 1) = 	' 	' 202
GOTO 100 203

70 IF(CHAR .NE. 	'/') 	GOTO 80 204 205
MEMORY(SUB1 	1) = 	'/' 206
GOTO 100 207

80 IF(CHAR .NE. 	'V') GOTO 81 208 209
GOTO 100 210

81 IF(CHAR .NE. 	'.') GOTO 82 211 212
MEMORY(SUB1 - 1) = 213
GOTO 100 214

82 IF(CHAR .NE. 	GOTO 83 215 216
IF(.NOT. SUPRES) MEMORY(SUB1 - 1) = 217 218
IF(SUPRES) MEMORY(SUB1 - 1) = ' 219 220
GOTO 100 221

83 IER = 3 222
GOTO 101 223

99 MEMORY(SUB1 - 1) = SARRAY(SCOUNT) 224
100 CONTINUE 225
101 CONTINUE 226

RETURN 227
END

Field Studies
	 9-15

The data for this subroutine consisted of the following input

and input/output data.

INPUT DATA

SOURCE - INTEGER data that contains the starting location in
memory for the sending field.

SLEN - INTEGER data that specifies the length of the item in
memory.

SDEC - INTEGER specifing the number of digits in the fraction part
of a number.

DEST - INTEGER data that contains the starting location in memory
for the receiving field.

DLEN - INTEGER data that specifies the length of the receiving
data item in memory.

PLEN - INTEGER that specifies the length of the PICTURE
specification.

PDIG - INTEGER that gives the number of digits in the PICTURE
description.

PDEC - INTEGER specifying the number of digits in the fraction
part of the PICTURE.

PIC - CHARACTER array which contains the Cobol PICTURE for the
edited move.

INPUT/Oulrui DATA

MEMORY - CHARACTER data that contains the programs memory.

IER - INTEGER used as error indicator.

The numeric edited move takes data from a source field and

places it in a receiving field according to what may be called a

template or instructions specified in the Cobol PICTURE.

Two errors and redundant conditional statements were found in

MOVEED. The first error detected involved a Fortran DO loop where

the upperbound on the loop was zero so the DO loop was being

Field Studies 	 9-16

executed once when it should not be executed at all. 	The specific

statement is:

DO 15 I=1,IHI

at line 111 in Figure 5 where MI has been assigned the value of

SDIG (number of digits in the whole part of a number) or PLDIG (num-

ber of allowable digits in the whole part of the PICTURE descrip-

tion). The test data that uncovered this error is in Figure 1.

TEST CASE NUMBER 	9
PARAMETERS ON INPUT
SOURCE = 294
SLEN = 7
SPEC = 7
DEST = 5
DLEN = 8
PLEN = 8
PDIG = 7
PDEC = 2
PIC = "ZZZZ9.99/#"
IER = 0

MEMORY = "############################## 	 00101— 	UUUUU
*A 	ZZZZ7272ZZ 	 05 	 10— 	 235787 	 ZZZ9
*.99 	 ++++.9 	 $iiiiV 	 $*****9.99

	

9,999.9 	 99/99/99 	 99B99B99 	XXXXXXXX
*XXXXXXXXXXXX 	YYYYYYYYY3040210200ABCDEELSE2IF2ELSE120301DONE#############
*###########################UUUUUAZZZZZ=ZZ 	 000500001000-01234567##
*#######"
PARAMETERS ON OUTPUT
MEMORY = 	1234.56################## 	 00101— 	UUUUU
*A 	ZZZZZZZZZZ 	 05 	 10— 	 235787 	 ZZZ9
*.99 	 ++++.9 	 WitIr 	 t*****9.99

	

9,999.9 	 99/99/99 	 99B99B99 	XXXXXXXX
*XXXXXXXXXXXX 	YYYYYYYYY3040210200ABCDEELSE2IF2ELSE120301DONE#############
*###########################UUUMAZZZZZZZZZZ 	 000500001000-01234567##
*#######"
IER = 0

Figure 1. Test Data Detecting DO Loop Error

Field Studies 	 9-17

The program was corrected and the effected lines for the new

program are shown in Figure 2. 	The new line is the 	line 	with

Fortran statement label 11.

the

11 IF(SDIG .EQ. 0 	.OR. 	PLDIG .EQ. 0) GOTO 16 104 105
1RI = PLDIG 106
IF(SDIG .LT. PLDIG) IIII = SDIG 107 108
SUB1 = PLDIG + 1 109
SUB2 = SOURCE + SDIG 110
DO 15 I=1, IHI 111
SUB1 = SUB1 - 1 112
SUB2 = SUB2 - 1 113
1F(MEMORY(SUB2) 	.EQ. 	'#') IER = 4 114 115

15 SARRAY(SUB1) = MEMORY(SUB2) 116

Figure 2. Corrected Program

The second error that was uncovered by mutation analysis

involved the handling of the PICTURE item 'V' which says not to out-

put a decimal point to the receiving field.

Field Studies 	 9-18

TEST CASE NUMBER 	1
PARAMETERS ON INPUT
SOURCE = 294
SLEN = 8
SDEC = 4
DEST = 5
DLEN = 7
PLEN = 8
PDIG = 7
PDEC = 3
PIC = "9999V999 "
IER = 0
MEMORY = "############################## 	 00101- 	UUUUU
*A 	ZZZZZZZZZZ 	 05 	 10- 	 235787 	 ZZZ9
*.99 	 ++++.9 	 iiitiV 	 t*****9.99

	

9,999.9 	 99/99/99 	 99B99B99 	XXXXXXXX
*XXXXXXXXXXXX 	YYMYYYY3040210200ABCDEELSE2IF2ELSE120 -301DONE#############
*###########################UUUUUAZZZZZZZZZZ 	 00050000100#12345678###
*######"
PARAMETERS ON OUTPUT
MEMORY = "####1234567################### 	 00101- 	UUUUU
*A 	ZZZZZZZZZZ 	 05 	 10- 	 235787 	 ZZZ9
*.99 	 ++4-1-.9 	 HMV 	 t*****9.99

	

9,999.9 	 99/99/99 	 99B99B99 	XXXXXXXX
*XXXXXXXXXXXX 	YYYYYYYYY3040210200ABCDEELSE2IF2ELSE120301DONE#############
*###########################UUUUUAZZZZZZZZZZ 	 00050000100#12345678###
*######"
IER = 0

Figure 3. Data Detecting PICTURE Clause Error

This error was detected from the data shown in Figure 3. 	In

statement label 80, if a V is the item in the picture, then nothing

is done and control goes back to the top of the loop where the next

item in the PICTURE description is retrieved. The error occurs

because the pointer (variable SUB1) for the next available location

in the receiving field is automatically incremented at the beginning

of the loop; to correct this error subtract 1 from SUB1 when a V

instruction is detected. The original method for calculating the

next available location used the Do loop index and the absolute

location of the destination field which disregards the statement

Field Studies 	 9-19

SUD1=SUB-1 executed when a 'V' is encountered. This made it man-

datory to rewrite the handling of the destination pointer. The new

code is given in Appendix D. It has been indicated that some con-

ditional statements were redundant in the original program. These

have been rewritten as in Appendix D. Figure 5 contains the program

with the 'V' error and with the redundant statements. It can be

seen from this listing that several redundant conditional statements

have no effect on the result of the program. These redundant

statements have been deleted.

Specifically, a redundant conditional statement exists for

statement 106 107 where IHI is assigned the value of PLDIG if SDIG

is greater than or equal to PLDIG; but, the next statement 108 109

will reassign the value of IHI to SDIG if SDIG is less than PLDIG;

it can be seen that the first conditional statement can be changed

to the assignment statement ERI=PLDIG because it will be reassigned

if the following conditional statement is true.

Another redundant conditional statement is 136 137 where the

statement:

IF (I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 — 1) =

does not need the compound conditional portion I .EQ. 	1 because

statement 138 139 takes care of that portion of the conditional.

This is rewritten as: IF (NEGNO) MEMORY(SUB1 — 1) = 1_1 which

allows the deletion of statement 143 144.

As in the previous conditional statement, the statements 150

151 and 152 153 do not need the portion of the conditional I .EQ. 1

because the statement 154 155 takes care of the condition; also

statement 159 160 and statement 161 162 are deleted.

The conditional statement 170 171 is changed to the assignment

Field Studies 	 9-20

statement which allows for the deletion of statement 177.

The rewritten MOVEED was tested and the results indicated that

the routine was correct. Figure 4 contains the status information

for the testing of subroutine MOVEED.

Field Studies

MUTANT ELIMINATION PROFILE FOR MOVEED

MUTANT TYPE 	 TOTAL 	DEAD LIVE

9-21

EQUIV

CONSTANT REPLACEMENT 151 146 	96.7% 0 0.0% 5 3.3%
SCALAR VARIABLE REPLACEME 2 43 0 2 413 	99.3% 0 0.0% 17 0.7%
SCALAR FOR CONSTANT REP. 1121 1119 	99.8% 0 0.0% 2 0.2%
CONSTANT FOR SCALAR REP. 694 692 	99.7% 0 0.0% 2 0.3%
SOURCE CONSTANT REPLACEME 601 599 	99.7% 0 0.0% 2 0.3%
ARRAY REF. FOR CONSTANT R 470 470 100.0% 0 0.0% 0 0.0%
ARRAY REF. FOR SCALAR REP 1041 1030 	98.9% 0 0.0% 11 1.1%
COMPARABLE 	ARRAY NAME RE 148 148 100.01 0 0.0% 0 0.0%
CONSTANT FOR ARRAY REF RE 105 105 100.0% 0 0.0% 0 0.0%
SCALAR FOR ARRAY REF REP. 684 680 	99.4% 0 0.096 4 0.6%
ARRAY REF. FOR ARRAY REF. 251 246 	98.0% 0 0.0% 5 2.0%
UNARY OPERATOR INSERTION 325 318 	97.8% 0 0.0% 7 2.2%
ARITHMETIC OPERATOR REPLA 218 218 100.0% 0 0.0% 0 0.0%
RELATIONAL OPERATOR REPLA 210 191 	91.0% 0 0.0% 19 9.0%
LOGICAL CONNECTOR REPLACE 5 5 100.0% 0 0.0% 0 0.0%
ABSOLUTE VALUE INSERTION 399 151 	37.8% 0 0.0% 248 62.2%
STATEMENT ANALYSIS 80 80 100.0% 0 0.0% 0 0.0%
STATEMENT DELETION 56 56 100.0% 0 0.0% 0 0.0%
RETURN STATEMENT REPLACEM 128 128 100.0% 0 0.0% 0 0.0%
GOTO STATEMENT REPLACEMEN 648 636 	98.1% 0 0.01 12 1.9%
DO STATEMENT END REPLACEM 76 72 	94.7% 0 0.0% 4 5.3%

MUTANT STATE FOR MOVEED

FOR EXPERIMENT "MOVEED 	" THIS IS RUN 18

NUMBER OF TEST CASES = 65

NUMBER OF MUTANTS = 9841
NUMBER OF DEAD MUTANTS = 9503 (96.6%)
NUMBER OF LIVE MUTANTS = 0 (0.0%)
NUMBER OF EQUIV MUTANTS = 338 (3.4%)

NUMBER OF MUTANTS WHICH DIED BY NON STANDARD MEANS 4530
NORMALIZED MUTANT RATIO *****%
NUMBER OF MUTATABLE STATEMENTS = 	133
GIVING A MUTANTS/ STATEMENT RATIO OF 	73.99

NUMBER OF DATA REFERENCES = 	272
NUMBER OF UNIQUE DATA REFERENCES = 	34

ALL MUTANT TYPES HAVE BEEN ENABLED

Figure 4

Field Studies
	 9-22

Testing Operational Software

The software in these studies was contributed by the U.S. Army

Computer Systems Command (Army Institute for Research in Management

Information and Computer Science). Both programs are large Cobol

modules that had been designed, coded, tested and fielded by the

Army. The testers did not have access to the original programmers,

but test data was supplied by the Army. The first program was a

2500 line program which was supplied with test data but not

documentation or other information to guid the tester. Over 650,000

mutants were generated and run on 3,000 Army test cases. After one

week of elapsed testing time, the tester terminated the run when it

was determined that the Army supplied test data was of such low

quality that less than 10% of the mutants had been eliminated.

The second program is an editor. It consists of 1200 source

code lines written in a standard dialect of Cobol. When supplied

with a transaction file, the program sorts and edits the input data

to generate an error listing with critical and non—critical errors

indicated. After all critical errors are corrected and edited, a

master file is updated. The updated master file is sorted and a run

report is generated.

Minor modifications were required to make the program conform

to Level 1 Cobol. Since Level 1 Cobol does not allow multiple data

records in a file description, each data record in a such a file was

assigned its own file. Since Level 1 Cobol files are specified to

be nonrewindable, the program was divided into four sections so that

the output of the first section was the input of the second section

and so on.

Field Studies 	 9-23

LOW and HIGH values and the current DATE were input by separate

files since the CPMS did not supply these values.

Since the purpose of this run was to evaluate the quality of

test data supplied by another test organization, the mutation tester

did not follow the level—by—level testing strategy suggested in

Chapter 2; rather, all mutant operators were enabled (see the

description of a Level 1 Cobol analyzer in Chapter 2 for a list of

Cobol mutant operators). After processing 29 Army test cases, the

analyzer returned the following status report.

MUTANT STATUS

TYPE TOTAL LIVE PCT EQUIV
DECIML 69 48 30.43 0
OCCURS 6 4 33.33 0
INSERT 430 100 76.74 0
FILLSZ 310 45 85.48 0
ITEMRV 293 77 73.72 0
FILES 464 0 100.00 0
DELETE 545 59 89.17 0
GO PER 45 7 84.44 0
PER GO 20 3 85.00 0
IF REV 75 2 97.33 0
STOP 541 8 98.52 0
THRU 365 29 92.05 0
TRAP 545 6 98.90 0
ARITH 135 17 87.41 0
ROUND 45 0 100.00 45
MOVE R 111 5 95.50 0
LOGIC 681 161 76.36 0
SUBSFS 11352 947 91.66 0
SUBCFS 1004 167 83.37 0
SUBCFS 13 80 115 91.67 0
SUBSFC 4857 457 90.59 0
C ADS 33 3 90.91 0

TOTALS

23306 2260 90.30 45

Field Studies 	 9-24

This test was augmented by 10 additional cases supplied by the

tester and equivalent mutants were removed from the system, result-

ing in the following mutant status report

MUTANT

TYPE PCT EQUIV

MARKED

	

236 	AS EQUIVALENT
STATUS

	

TOTAL 	LIVE
DECIML 69 	4 94.20 44
OCCURS 8 	2 66.67 2
INSERT 430 	10 97.67 90
FILLSZ 310 	4 98.71 41
ITEMRV 293 	26 91.13 51
FILES 464 	0 100.00 0
DELETE 545 	56 89.72 3
GO PER 45 	6 86.67 1
PER GO 20 	3 85.00 0
IF REV 75 	2 97.33 0
STOP 541 	7 98.71 1
THRU 365 	29 92.05 0
TRAP 545 	3 99.45 3
ARITH 135 	17 87.41 0
ROUND 45 	0 100.00 45
MOVE R 111 	5 95.50 0
LOGIC 681 	161 76.36 0
:AWES 11352 	947 91.66 0
SUBCFC 1004 	167 83.37 0
SUBCFS 1380 	115 91.67 0
SUBCFC 4857 	457 90.59 0
C ADS 33 	3 90.91 0

TOTALS
23306 	2024 91.32 281

During the analysis of TRAP mutants, 	a test case was construc-

ted to kill the mutants associated with the report type and the

transaction code. The possible values of the type of a report were

K,I,W,L,D, and E. The possible transaction values were A,C, and D.

The test case constructed consisted of all possible combinations of

the report type and the transaction code. The values of other input

variables remained the same in each combination.

Field Studies 	 9-25

The interpreter generated a "reference to undefined data at or

near line [line number]" error when the program was run on the test

case constructed. The statement marked with boldface in the follow-

ing piece of code was in error.

0200-PRINT-ERRORS.
IF WS-SW2 = 1
PERFORM 0230-CHECK-FOR-A THRU 0240-EXIT.

MOVE STATIONID -2 TO STATIONID -WS -EDIT.
MOVE INSTALLCODE-02 TO INST-WS-EDIT.
MOVE TRANSCODE-02 TO TRANSCODE-WS-EDIT.

The cause of this error was that all elementary data items but

one in paragraph 0230-CHECK-FOR-A had been assigned values. The

following piece of code shows the paragraph under consideration.

0230-CHECK-FOR-A.

MOVE WS-STATIONID-WS-K TO STATIONID-WS-EDIT.
MOVE WS-TRANSCODE-WS-K TO TRANSCODE-WS-EDIT.

There are two ways to correct the error. One solution is to

insert the missing statement MOVE WS-INSTALLCODE-WS-K TO INST-WS-

EDIT after the line highlighted in boldface. The other solution is

to insert the statement MOVE SPACES TO EDITDETAIL-WS after the

statement 0200-FRINT-ERRORS. after the statement 0200-PRINT-ERRORS.

Appendix A 	 A-1

Program Al

I 	IDENTIFICATION DIVISION.
2 	PROGRAM-ID. POCAACA.
3 	AUTHOR. CPT R W MOREHEAD.
4 	INSTALLATION. HQS USACSC.
5 	DATE-WRITTEN. OCT 1973.
6 	REMARKS.
7 	 THIS PROGRAM PRINTS OUT A LIST OF CHANCES IN THE ETF.
8 	 ALL ETF CHANCES WERE PROCESSED PRIOR TO THIS PROGRAM. THE
9 	 CLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO
10 	 FURTHER PROCESSING OF THE ETF HERE. THE ONLY OUTPUT IS A
11 	 LISTING OF THE ADDS, CHANCES, AND DELETES. THIS PROGRAM IS
12 	FOR HO USE ONLY AND HAS NO APPLICATION IN THE FIELD.
13
:4 	 MODIFIED FCR TESTING UNDER CPMS BY ALLEN ACREE
15 	 JULY, 1979.
16 	ENVIRONMENT DIVISION.
17 	CONFIGURATION SECTION.
18 	SOURCE-COMPJTER. PRIME.
19 	OBJECT-COMPUTER. PRIME.
20 	INPJT-OUTPUT SECT.CN.
21 	FILE-CONTROL.
22 	SELECT OLD-ETF ASSIGN INPUT4.
23 	 SELECT .E'.:-::TF ASSIGN INPUTS.
24 	 SELECT PRNTP ASSIGN TO CUTPUT9.
25 	DATA DIVISION.
26 	FILE SECTION.
27 	FD OLO-ETF
29 	 RECORD CONTAINS PO CHARACTERS
23 	 LABEL RECORDS ARE STANDARD
30 	 DATA RECORD IS OLD-REC.

01 OLD-RET.
32 	 33 FILLER 	 PIC X.
33 	 03 OLD-KEY 	 PIC X(12).
34 	 03 	FILLER 	 PIC X(67).
35 	FD NEW-ETF
36 	RECORD CONTAINS 80 CHARACTERS
37 	 LABEL RECORDS ARE STANDARD
38 	 DATA RECORD IS NEW-REC.
39 	n] NEW-REC.
40 	03 FILER 	 PIC X.
41 	03 NEW-KEY 	 PIC X(12).
42 	03 FILLER 	 PIC X(67).
43 	FD PRNTR
44 	RECORD CONTAINS 40 CHARACTERS
45 	LABEL RECORDS ARE OMITTED
46 	DATA RECORD IS PRNT-LINE.
47 	01 PRNT-LINE 	 PIC. X(40).
40 	wORKING-STORAGE SECTION.
49 	01 PRNT-WORK-AREA.
50 	03 LINEI 	 PIC X(30).
51 	03 LINE2 	 PIC X(30).
52 	03 LINES 	 PIC X(20).
53 	01 PRNT-OUT-OLD.
54 	03 WS-LN-I.
55 	 05 FILLER 	 PIC X VALUE SPACE.
56 	 05 FILLER 	 PIC XXXX VALUE '0
57 	 05 LN1 	 PIC X(30)•
58 	 05 FILLER 	 PIC XXX VALUE SPACES.
59 	 03 WS- LN - 2.
60 	 05 FILLER 	 PIC X VALUE SPACE.
61 	 05 FILLER 	 PIC XXXX VALUE 'L 	•

Appendix A

42
63
64

05 	LN2
05 	FILLER

03 	WS-LN-3.

PIC 	X(30).
PIC XXX VALUE SPACES.

65 05 	FILLER PIC X VALUE SPACE.
66 05 	FILLER PIC XXXX VALUE 'D
67 05 	LN3 PIC 	X(20).
68 05 	FILLER PIC XXX 	VALUE SPACE.

61 01 	PANT-NEW-OUT.
70 03 	NEW-LN-1.
71 05 	FILLER PIC XXXXX VALUE ' N

05 	N-LNI PIC 	X(30).
05 	FILLER PIC XXX VALUE SPACE.

03 	NE•W-LN-2.
TS 35 	FILLER PIC XXXXX VALUE ' 	E

r, 05 	N-LN2
05 	FILLER

PIC 	X(30).
PIC XXX VALUE SPACES.

03 	NEW-LN-3.
79 05 	FILLER. PIC XXXXX VALUE ' W
8C 05 	N-LN3 PIC 	X(20).
21 05 	FILLER PIC XXX VALUE SPACES.
BO PROCEDURE 	DIVISION.
Fl 0103-OPENS.
84 	OPEN INPUT OLD-ET? NEW-ETF.

OPEN OUTPUT PRNTR.
rc 	0110-OLD-READ.

READ OLD-ETF AT ENO GO 70 0160 -0L0- E0F.
3120-NEW-PEA E.

READ NEW-ETF AT END SO TO 0170-NEW-E0F.
)130-COMPARES.

IF 01.D-KEY ■ NEW-KEY
93 	 NEXT SENTENCE

ELSE GO TO 0140-CX-ADD-DEL.
IF OLD-REC m NEW-REC

GO TO 0110-OLD-READ.
MOVE OLO-RE.. TO PRNT-WORK-AREA.
PERFORM 3210-CLO-WRT THRU 0210-EXIT.
MOVE NE' -REC TO PRNT-WORK-AREA.

";9 	PERFORM 0200-NW-WRT THRU 0200-EXIT.
GO TO 0110-OLD-READ.

132 	3140-CK-ADD-DEL.
132

IF OLD-KEY > NEW-KEY

133 	 MOVE NEW-REC TO PRNT-WORK-AREA
174 	 PERFORM 0200-NW-WRT THRU 0200-EXIT
175 	 GO TO 0120-NEW-READ
106 	ELSE CO TO 0150-CK-ADD-DEL.
107 	0150-CK-ADD-DEL.
108 	MOVE OLD-REC TO PRNT-WORK-AREA.
109 	PERFORM 0210-OLD-WRT THRU 0210-EXIT.
110 	 READ Ot.D-ET? AT END
111 	 MOVE NEW-REC TO PRNT-WORK-AREA
112 	 PERFORM 0200-NW-WRT THRU 0200 - EXIT
113 	 GO TO 0160-OLD-EC?.
114 	CO TO 0130-COmPARES.
115 	0160-OLD-E0F.
116 	READ NEW-ETF AT END GO TO 0180-EOJ.
117 	MOVE NEW-REC TO PRNT-WORK-AREA.
118 	PERFORM 0200-KW-WRT THRU 0200-EXIT.
119 	GO TO 0150-OLD-ZOF.
120 	0170-NEW-EOF.
121 	MOVE OL•-Rec TO PRNT-WORK-AREA.
122 	PERFORM 0210-OLD-WRT THRU 0210-EXIT.
123 	READ OLD-ETF AT END GO TO 0180-E0.7.
124 	GO TO 0170-NEW-EOF.
125 	0180-E0J.

Appendix A 	 A-3

126
127
128

CLOSE OLD-ETF NEW-ETF
STOP RUN.

0200-NW-WRT.

PRNTR.

129 MOVE LINE1 TO N-LN1.
130 MOVE LINE2 TO N-LN2.
131 MOVE LINE3 TO N-LN3.
132 WRITE PANT-LINE FROM NEd-LN-1 AFTER ADVANCING 2.
133 WRITE PRNT-LINE FROM NEW-LN-2 AFTER ADVANCING 1.
134 WRITE pRNT-LINE FROM NEW-LN-3 AFTER ADVANCING 1.
135 0200-EXIT.
136 EXIT.
137 0210-OLD-WRT.
138 MOVE LINE1 TO LN1.
139 MOVE LINE2 TO LN2.
140 MOVE LINE) TO LN3.
141 WRITE PSNT-LINE FROM WS-LN-1 AFTER ADVANCING 2.
142 WRITE RANT-LINE FROM WS-LN-2 AFTER ADVANCING 1.
143 WRITE PRNT-LINE FROM wS-LN-3 AFTER ADVANCING 1.
144 0210-EXIT.
145 EXIT.
146

Appendix A 	 A-4

Program A2

1 	IDENTIFICATION DIVISION.
2 	PROGRAM-ID.
3
	

PROG-1.
4
	

AUTHOR.
5
	

JAMES L. BINGHAM.
6
	

DATE-WRITTEN.
7
	

APRIL 14, 1979.
8
9
	

ENVIRONMENT DIVISION.
CONE:DURATION SECTION.

11
	

SOURCE-CCMPUTER. PRIME.
12
	

OBJECO-COMPUTER. PRIME.
13
	

INPUT-OUTPUT SECTION.
la
	

FILE-CONTROL.
15
	

SELECT IN-TRANSACTION ASSIGN TO INPUTO.
16
	

SELECT OUTPUT-PAYMENT ASSIGN TO OUTPUTO.
17
18 	DATA DIVISION.
19
	

FILE :7FCTION.
20
21
	

FD IN-TRANSACTION
22
	

RECORD CONTAINS 28 CHARACTERS,
LABEL RECORDS ARE OMITTED.

24
	

DATA RECORD IS TRANSACTION-RECORD.
25
	

21 	T:=-ANSACTION-RECORD.
26
	

05 ACCT-NUM
2 7
	

DS BILLED-Am?
23
	

05 PERCENTAGE
5 ACCT-CLASS

30
3 • 	F2 OUTPUT-PAYMENT
32
	

RECORD CONTAINS 55 CHARACTERS,
33
	

LABEL RECORDS ARE OMITTED.
34 	DATA RECORD IS OUTPUT-RECORD.
35 	CI OUTPUT-RECORD

PIC 9(8).
PIC 9(5)V99.
PIC V99.
PIC X.

PIC X(55).

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

woRKING-STORAGE SECTION.

01 W-TOTALS-OUTPUT-RECORD.
05 FILLER
05 NAME-OF-CLASS
05 TOTAL-CLASS-PAY
05 FILLER

01 W-OUTPUT-RECORD.
05 FILLER
05 W-ACCT-NUM
05 FILLER
05 W-BILLED-AMT
05 FILLER
05 W-PERCENTAGE
05 FILLER
05 W-ACCT-CLASS
05 FILLER
05 W-PAYMENT

01 TEMPORARY-ITEMS.
05 TOTAL-A-PAY
05 TOTAL-X-PAY
OS TOTAL-A-PAY
05 TOTAL-T-PAY

P/C X(4) VALUE SPACES.
PIC X(34).
PIC SSSSSS9.99.
PIC X(4) VALUE SPACES.

PIC XXX VALUE SPACES.
PIC 9(8).
PIC XXX VALUE SPACES.
PIC 9(5).99.
PIC XXX VALUE SPACES.
PIC .99.
PIC XXX VALUE SPACES.
PIC X.
PIC XXX VALUE SPACES.
PIC SS5S$9.99.

PIC 9(6)V99-
PIC 9(6)V99.
PIC 9(6)V99.
PIC 5(6)V99.

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
96
87
88
83
90
91
92
93
94
95
4e.)

9 7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Appendix A

05 TOTAL-Z-PAY
	

PIC 9(6)V99.
05 PAY-ANT-A
	

PIC 9(5)V99.
05 PAY-AMT-X
	

PIC 9(5)V99.
05 PAY-AMT-M
	

PIC 9(5)V99.
OS PAY-AMT-T
	

PIC 9(5)V99.
05 PAY-ANT-Z
	

PIC 9(5)V99.

01 ERROR-MESSAGE.
05 INVALID-DATA-RECORD 	 PIC X(50)
VALUE 'INVALID DATA ON THIS CARD'.

01 FLAG-VALUE.
05 MORE-DATA-REMAINS 	 PIC X VALUE 'Y . .

88 NO-MORE-DATA-REMAINS 	 VALUE 'N'.

PROCEDURE DIVISION.
PROCESS-TRANSACTION.

OPEN INPUT IN-TRANSACTICN
OUTPUT OUTPUT-PAYMENT.

MOVE ZEPOES 70 TOTAL-A-PAY, TOTAL-X-PAY, TOTAL-M-PAY.
TOTAL-T-PAY, TOTAL-Z-PAY.

READ IN-TRANSACTION
AT END 	'N' TO MORE-DATA-REMAINS.

PERFORM CHECK-DATA UNTIL MCRE-DATA-REMAINS 	'N'.
PERFORM WRITE-OUTPUT-TOTALS. 	.
CLOSE IN-TRANSACTION

OUTPUT-PAYMENT.
STOP RJN.

CHECK-DATA.
IF 	ACCT-NUM 	IS NUMERIC

AND BILLED-ANT IS NUMERIC
AND PERCENTAGE 75 NUMERIC
AND (ACCT-CL,-.SS - 'A' OR

ACCT-CLASS 	•x' OR
ACCT-CLASS 	'M' OR
ACCT-CLASS • 'T' OR
ACCT-CLASS - 'Z')

PERFORM PROCESS-ONE-TRANSACTION
ELSE

WRITE OUTPUT-RECORD FROM ERROR-MESSAGE.
READ IN-TRANSACTION

AT END MOVE 'N' TO MORE-DATA-REMAINS.

PROCESS-ONE-TRANSACTION.
MOVE ACCT-NUN 	TO W-ACCT-NUM.
MOVE BILLED-AMT TO 14-BILLED-AMT.
MOVE PERCENTAGE TO U- PERCENTAGE.
MOVE ACCT-CLASS TO W-ACCT-CLASS.

IF ACCT-CLASS m 'A' OR ACCT-CLASS - 'X'
COMPUTE PERCENTAGE a 1.00 - PERCENTAGE
IF ACCT-CLASS 	'A'

MULTIPLY BILLED-AMT BY PERCENTAGE
GIVING PAY-AMT-A ROUNDED

ADD PAY-ANT-A TO TOTAL-A-PAY
MOVE PAY-AMT-A TO W-PAYMENT

ELSE
MULTIPLY BILLED-ANT BY PERCENTAGE

GIVING PAY-ANT-X ROUNDED
ADD PAY-AMT-X TO TOTAL-X-PAY
MOVE PAY-AMT-X TO U-PAYMENT.

IF ACCT-CLASS a 1 1,1°

Appendix A 	 A-6

125 	 MULTIPLY BILLED—ANT BY PERCENTAGE
127 	 GIVING PAY—AMT—M ROUNDED
128 	 ADD PAY—AMT—M TO TOTAL—M—PAY
129 	 MOVE PAY—AMT—M TO W—PAYMENT.
130
131 	IF ACCT—CLASS ■ 'T'
132 	 MOVE BILLED—ANT TO PAY—AMT—T
133 	 ADD PAY—AMT—T TO TOTAL—T—PAY
134 	 MOVE PAY—At, T—T TO W—PAYMENT.
135
736 	IF ACCT—CLASS ■ '2'
137 	 MOVE BILLED—AMT TO PAY—AMT—Z
138 	 ADD PAY—ANT-2 TO TOTAL—Z—PAY
139 	 MOVE PAY—AMT—Z TO W—PAYMENT.
140
141 	WRITE OUTPUT—RCCORD FROM W—OUTPUT—RECORD.
142
143 	WRITE—OUTPUT—TOTALS.
144 	MOVE TOTAL—A—PAY TO TOTAL—CLASS—PAY.
145 	MOVE ' TOTAL AMOUNT FOR CLASS A: ' TO NAME—OP—CLASS.
146 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD.
14'
148 	MOVE TOTAL--X—PAY TO TOTAL—CLASS—PAY.
149 	MOVE ' TOTAL AMOUNT FOR CLASS X: ' TO NAME—OF—CLASS.
150 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD.
151
152 	MOVE TOTAL—M—PAY TO TOTAL—CLASS—PAY.
:53 	MOVE ' TOTAL -MOUNT FOR CLASS M: ' TO NAME—OF—CLASS.
154 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD.
155
1c6 	MOVE TOTAL—T—PAY TO TOTAL—CLASS—PAY.
15' 	MOVE ' TOTAL AMOUNT FOR CLASS T: ' TO NAME—OF—CLASS.
159 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD.
153
16) 	MOVE TOTAL—Z—PAY TO TOTAL—CLASS—PAY.
1 6 : 	MOVE ' TOTAL AMOUNT FOR CLASS 2: ' TO NAME—OF—CLASS.
162 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD.
163

4' •

Appendix A 	 A- 7

Program A3

1 	IDENTIFICATION DIVISION.
2 	PROGRAM-ID. SAMPLE-4.
3 	REMARKS. ADAPTED FROM YOURDAN, ET AL. 'LEARNING TO PROGRAM
4 	 IN STRUCTURED COBOL.'
5 	ENVIRONMENT DIVISION.
fi 	CONFIGURATION SECTION.
7 	SOURCE-COMPUTER. PRIME.
8 	OBJECT-COMPUTER. PRIME.
9 	INPUT-OUTPUT SECTION.
10 	FILE-CONTROL.
11 	SELECT APPLICATION-CARDS-FILE ASSIGN TO INPUTO.
12 	SELECT PROFILE-LISTING 	ASSIGN TO OUTPUTO.
13
14 	DATA DIVISION.
15 	FILE SECTION.
16
17 	FD APPLICATION-CARDS-FILE
18 	RECORD CONTAINS 80 CHARACTERS
19 	LABEL RECORDS ARE OMITTED
20 	DATA RECORD IS NAME-ADDRESS-AND-PHONE-IN.
21 	01 NAME-ADDRESS-AND-PHONE-IN.
22 	05 NAME-IN 	 PIC X(20).
23 	05 ADDRESS-IN 	 PIC X(40).
2e 	05 PHONE-IN 	 PIC X(11).
25 	05 FILLER 	 PIC X(3)•
25 	05 ACCT-NUM-INI 	 PIC 9(6).
27
28 	FD PROFILE-LISTING
29 	RECORD CONTAINS 132 CHARACTERS
30 	LABEL RECORDS ARE OMITTED
3) 	DATA RECORD IS PRINT-LINE-OUT.
32 	01 PRINT-LINE-OUT 	 PIC X(132).
33
3d 	WORKING-STORAGE SECTION.
35 	01 COMMON-WS.
36 	05 CARDS-LEFT 	 PIC X(3).
37 	01 CREDIT-INFORMATION-IN.
38 	05 CARD-TYPE-IN 	 PIC X.
39 	05 ACCT-NUM-IN2 	 PIC 9(6).
40 	05 FILLER 	 PIC X.
41 	CS CREDIT-INFO-IN 	 PIC X(22).
42 	05 FILLER 	 PIC X(50).
43 	01 APPLICATION-DATA-WS81.
44 	05 NAME-AND-ADDRESS-WS.
45 	 10 NAME-WS 	 PIC X(20).
46 	 10 ADDRESS-WS.
47 	 15 STREET-WS 	 PIC X(20).
48 	 15 CITY-WS 	 PIC X(13).
49 	 15 STATE-WS 	 P/C XX.
50 	 15 ZIP-WS 	 PIC X(5).
51 	05 PHONE-WS.
52 	 10 AREA-CODE-WS 	 PIC 9(3).
53 	 10 NUMBR-WS 	 PIC X(8).
54 	05 FILLER 	 PIC X(3).
55 	OS ACCT-NUM-WS 	 PIC 9(6).
56 	05 CREDIT-INFO-WS.
57 	 10 SEX-WS 	 PIC X.
58 	 10 FILLER 	 PIC X.
59 	 10 MARITAL-STATUS-WS PIC X.
60 	 10 prr.LER PIC X.
61 	 10 NUMBER-DEPENS-WS 	 PIC X.

ARnendix A

62
63
64
65
56
67
68
69
70
71

10 	FILLER
10 	INCOME-HUNDREDS-WS
10 	FILLER
10 	YEARS-EmPLOYED-WS
IO 	FILLER
10 	OWN-OR-RENT-WS
10 	FILLER
10 	MORTGAGE-OR-RENTAL-WS
10 	FILLER
10 	OTHER-PAYMENTS-WS

PIC X.
PIC 9(3).
PIC X.
PIC 99.
PIC X.
PIC X.
PIC X.
PIC 9(3).
PIC X.
PIC 9(3).

72 01 DISCR-INCOME-CALC-FIELCS-NSC8.
73 05 	ANNUAL-INCOME-WS PIC 	9(5).
, 4 05 	ANNUAL-TAX-WS PIC 	9(5).
75 05 	TAX-RATE-WS PIC 9V99 	VALUE 0.25.
76 05 	MONTHS-IN-YEAR PIC 99 	VALUE 12.
77 05 	MONTHLY-NET-INCOME-WS PIC 9(4).
78 05 	MONTHLY-PAYMENTS-WS PIC 	9(4).
79 05 	DISCR-INCOME-WS PIC 	S9(3).
80
81 01 LINE-1-4SB3.
82 05 	FILLER PIC X(5) 	VALUE SPACES.
83 05 	NAME-L1 PIC 	X(20).
S4 05 	FILLER P/C 	X(1I)
85 VALUE 	' 	PHONE 	('.
86 05 	AREA-CODE-L1 PIC 	9(3).
87 05 	FILLER PIC XX 	VALUE 	')
99 05 	NUMBR-L1 PIC 	X(8}.
99 05 	FILLER PIC X(3) 	VALUE SPACES.
90 05 	SEX-L1 PIC 	X(5).
91 05 	FILLER PIC X(9) 	VALUE SPACES.
92 05 	FILLER PIC 	X(14)
93 VALUE 	'INCOME 	S'
?4 05 	INCOME-HUNDREDS-L1 PIC 	9(3).
95 05 	FILLER PIC 	X(28)
96 VALUE 	'00 	PER YEAR; 	IN THIS EMPLOY '.

05 	YEARS-EMPLOYED-L1.
98 10 	YEARS-L1 PIC XX.
99 10 	DESCN-L1 P/C X(16).
100 01 LINE-2-WEB3.
101 05 	FILLER PIC X(5) VALUE SPACES.
102 05 	STREET-L2 PIC 	X(20).
103 05 	FILLER P/C X(27) 	VALUE SPACES.
104 75 	MARITAL-STATUS-L2 PIC 	X(8).
105 05 	FILLER PIC X(7) 	VALUE SPACES.
106 05 	OUTGO-DESCN PIC 	X(I6).
107 05 	MORTCAGE-OR-RENTAL-L2 PIC 	9(3).
108 05 	FILLER PIC 	X(11)
109 VALUE 	' 	PER MTH 	'.
110 05 	FILLER PIC X(22)
111 VALUE 	'DISCRETIONARY INCOME 8'.
112 05 	DISCR-INCOME-L2 PIC 9(3).
113 05 	FILLER PIC X(9)
114 VALUE ' 	PER MTH 	1 .
115 01 LINE-3-WSB3.
115 05 	FILLER PIC X(5) VALUE SPACES.
117 05 	CITY-L3 PIC X(13).
118 05 	FILLER PIC X VALUE SPACE.
119 05 	STATE-L3 PIC XX.
120 05 	FILLER PIC X VALUE SPACE.
121 05 	ZIP-L3 P/C X(5).
122 05 	FILLER PIC X(7) 	VALUE ' 	A/C:
123 35 	ACCT-NUM-L3 PIC 9(6).
124 05 	FILLER PIC X(12) 	VALUE SPACES.
125 NUMBER-DEPTN5-L3 PIC 9.

'.

Appendix A

126 	OS FILLER 	 PIC X(14)
127 	 VALUE ' DEPENDENTS
128 	05 FILLER 	 PIC X(16)
129 	 VALUE 'OTHER PAYMENTS S'.
130 	05 OTHER-PAYMENTS-L3 	 PIC 9(3).
131
132 	PROCEDURE DIVISION.
133 	AO-MAIN-BODY.
134 	PERFORM AI-INITIALIZATION.
135 	PERFORM A2-PRINT-PROFILES
136 	 UNTIL CARDS-LEFT ■ 'NO '.
137 	PERFORM A3-END-OF-JOB.
138 	STOP RUN.
139
140 	A1-INITIALIZATION.
141 	OPEN INPUT 	APPLICATION-CARDS-FILE
142 OUTPUT 	PROFILE-LISTING.
143 *** USELESS INITIALIZATIONS HAVE BEEN COMMENTED OUT
144 *** MOVE ZEROES TO ANNUAL-INCOME-WS.
145 *** MOVE ZEROES TO ANNUAL-TAX-WS.
146 *** MOVE ZEROES TO MONTHLY-NET-INCOME-WS.
147 *** MOVE ZEROES TO MONTHLY-PAYMENTS-WS.
148 * 0 * MOVE ZEROES TO DISCR-INCOME-WS.
149 	MOVE 'YES' TO CARDS-LEFT.
150 	READ APPLICATION-CARDS-FILE 	•
151 	 AT END MOVE 'NO ' TO CARDS-LEFT.
152 * THE FIRST CARD OF A PAIR IS NOW IN THE BUFFER.
153
154 	A2-PRINT-PROFILES.
155 	PERFORM 01-GET-A-PAIR-OF-CARDS-INTO-WS.
156 	PERFORM 02-CALC-DISCRETNRY-INCOME.
157 	PERFORM 83-ASSEMBLE-PRINT-LINES.
158 	PERFORM 64-WRITE-PROFILE.
159
160 	A3-END-OF-308.
161 	CLOSE APPLICATION-CARDS-FILE
162 	 PROFILE-LISTING.
163
164 	81-GET-A-PAIR-OF-CARDS-INTO-WS.
165 	MOVE NAME-IN TO NAME-WS.
166 	MOVE ADDRESS-IN TO ADDRESS-WS.
167 	MOVE PHONE-IN TO PHONE-WS.
168 	MOVE ACCT-NUM-IN1 TO ACCT-NUM-WS.
169 	READ APPLICATION-CARDS-FILE INTO CREDIT-INFORMATION-IN
170 *** 	AT END MOVE 'NO ' TO CARDS-LEFT.
171 	 AT END MOVE ' 	*•* MISSING SECOND CARD OF PAIR *•* 1
172 	 TO PRINT-LINE-OUT
173 	 WRITE PRINT-LINE-OUT AFTER ADVANCING 2 LINES
174 	 PERFORM A3-END-OF-JOB
175 	 STOP RUN.
176 • THE SECOND CARD OF THE PAIR IS NOW IN THE BUFFER.
177 	MOVE CREDIT-INFO-IN TO CREDIT-INFO-WS
178 	READ APPLICATION-CARDS-FILE
179 	 AT END MOVE 'MO ' TO CARDS-LEFT.
180 • THE FIRST CARD OF THE NEXT PAIR IS NOW IN THE BUFFER.
181
182 	82-CALC-DISCRETNRY-INCOME.
183 	COMPUTE ANNUAL-INCOME-44B ■ INCOME -HUNDREDS-WS • 100.
184 	COMPUTE ANNUAL-TAX-44S 	■ ANNUAL- INCOME-WS • TAX-RATE-WS.
185 	COMPUTE MONTHLY-NET-INCOME-WS ROUNDED
186 	 • (ANNUAL../NCOME-148 - ANNUAL-TAX-WS) / MONTHS-IN-YEAR.
187 	COMPUTE MONTHLY-PAYMENTS-WS • MORTGAGE-OR-RENTAL-WS
1A8 	 4. OTHER-PAYMENTS-WS.
199 	COMPUTE DISCR-INCOME-WS MONTHLY-NET - INCOME-WS

Appendix A 	 A-10

190 	 MONTHLY-PAYMENTS-WS

191 	 ON SIZE ERROR MOVE 999 TO DISCR-INCOME-WS.
192 • 	DISCRETIONARY INCOMES OVER S999 PER MONTH ARE SET AT S999.
193
194 	B3-ASSEMBLE-PRINT-LINES.
195 	MOVE NAME-WS TO NAME-L1.
196 	MOVE STREET-WS TO STREET-L2.
197 	MOVE CITY-WS TO CITY-L3.
198 	MOVE STATE-WS TO STATE-L3.
199 	MOVE 2IP-WS TO ZIP-L3.
200 	MOVE AREA-CODE-WS TO AREA-CODE-LI.
201 	MOVE NUMBR•WS TO NUM8R-L1.
202 	MOVE ACCT-NUM-WS TO ACCT-NUM-L3.
203 	IF SEX-WS .6 'M' MOVE 'KALE ' TO SEX-L1.
204 	 IF SEX-WS ■ 'F' MOVE 'FEMALE' TO SEX-L1.
2C5 	IF MARITAL-STATUS-US a 'S' MOVE 'SINGLE '
206 	 TO MARITAL-STATUS-L2.
207 	IF MARITAL-STATUS-WS ■ 'M' MOVE 'MARRIED '
208 	 TO MARITAL-STATUS-L2.
209 	IF MARITAL-STATUS-WS ■ '0' MOVE 'DIVORCED'
210 	 TO MARITAL-STATUS-L2.
211 	IF MARITAL-STATUS-WS ■ 'W' MOVE 'WIDOWED '
212 	 TO MARITAL-STATUS-L2.
213 	MOVE NUMBER-DEPEW7-WS TO NUMBER-DEPENS-L3.
214 	MOVE INCOME-HUNDREDS-WS TO INCOME-HUNDREDS-LI.
215 	IF YEARS-EMPLOYED-WS IS EQUAL TO 0
216 	 MOVE 'LESS THAN 1 YEAR' TO YEARS-EMPLOYED-L1
217 	ELSE
213 	 MOVE YEARS-EMPLOYED-WS TO YEARS-L1
219 	 MOVE ' YEARS 	' TO DESCN-L1.
220 	IF OWN-OR-RENT-WS . '0' MOVE 'MORTGAGE: 	S'
221 	 TO OUTGO-DESCN.
222 	TF OWN-OR-RENT-WS 	°R' MOVE 'RENTAL: 	 8'
223 	 TO OUTGO-DESCN.
224 	MOVE MORTGAGE-CR-RENTAL-WS TO MORTGAGE-OR-RENTAL-L2,
225 	MOVE OTHER-PAYMENTS-WS TO OTHER-PAYMENTS-L3.
226 	MOVE DI:SCR-INCOME-WS TO DISCR-INCOME-L2.
227
228 	94-WRITE-PROFILE.
223 "* MOVE SPACES TO PRINT-LINE-OUT.
230 	WRITE PRINT-LINE-OUT FROM LINE-1.44S133
231 	 AFTER ADVANCING 4 LINES.
232 "s MOVE SPACES TO PRINT-LINE-OUT.
223 	WRITE PRINT-LINE-OUT FROM LINE-2-W583
234 	 AFTER ADVANCING 1 LINES.
235 *** MOVE SPACES TO PRINT-LINE-OUT.
236 	WRITE PRINT-LINE-OUT Fncm LINE-3-WSB3
237 	 AFTER ADVANCING I LINES.
238

Appendix A 	
A-11

Program A4

1 	IDENTIFICATION DIVISION.
2 	PROGRAM-ID. SRMFREP.
3 	AUTHOR. R A OVERSEER.
4 	REMARKS. THIS PROGRAM IS USED TO PRODUCE THE STATUS REPORTS
5 	 BY DEPARTMENT, FOR ALL OF THE STUDENTS RECORDED IN
6 	 THE SRMF.
7

ADAPTED TO THE COBCL MUTATION SYSTEM BY ALLEN ACRES.
9
10 	 ERRORS DISCOVERED:
11
) 2 	 (1) ERRORS IN THE INPUT FILE SETUP, CHECKED FOR
13 	 IN THE PROGRAM, CAUSE REFERENCES TO UNDEFINED
14 	 DATA, PARTICULARLY LINE-COUNT. CORRECTED WITH
15 	 A VALUE CLAUSE.
16 	ENVIRONMENT DIVISION.
17 	CONFIGURATION SECTION.
18 	SOURCE-COMPUTER. CABS.
19 	OBJECT-COMPUTER. CMS.
20 	SPECIAL-NAMES. CC1 IS TOP-OF-PACE.
21 	INPUT-OUTPUT SECTION.
22 	FILE-CONTROL.
23 	 SELECT MASTER ASSIGN TO INPUTO.
24 	SELECT PRINT-FILE ASSIGN TO OUTPUTO.
25
26 	DATA DIVISION.
27 	FILE SECTION.
28 	FD MASTER
29 	RECORD CONTAINS 141 CHARACTERS,
30 	LABEL RECORDS ARE STANDARD,
31 	DATA RECORD IS ITEM.
32 	Cl ITEM.
33 	02 SOC-SEC-TN.
34 	 03 SOC-SEC-IN-1 	 PIC X(3).
35 	 03 SOC-SEC-IN-2 	 PIC X(2)•
36 	 03 SOC-SEC-IN-3 	 PIC X(4).
37 	02 NAME-IN 	 PIC X(5).
3d 	02 ADDR-IN-1 	 PIC X(5).
39 	02 ADDR-IN-2 	 PIC X(5)•
40 	02 MAJOR-IN 	 PIC X(4).
41 	02 STATUS-IN 	 PIC X(1).
42 	02 NO-COURSES 	 PIC 99.
43 	02 COURSE-ENTRY OCCURS 11 TIMES.
44 	 03 DEPT-OF? 	 PIC X(2)•
45 	 03 COURSE-NO 	 PIC X(2).
46 	 03 CREDITS 	 PIC 99.
47 	 03 SEMESTER 	 PIC X(1)•
48 	 03 YEAR 	 PIC X(2).
49 	 03 GRADE 	 PIC X(1).
50 	FD PRINT-FILE
51 	RECORD CONTAINS 89 CHARACTERS
52 	LABEL. RECORDS ARE OMITTED
53 	DATA RECORD IS PRINT-BUFF.
54 	01 PRINT-.801" 	 PIC X(89).
55
56 	WORXINGSTORACE SECTION.
57 	77 CND-ALL 	 PIC 99.
58 	77 MM.-MARKER 	 PIC 99.
59 	77 I"INDEX 	 PIC 9.
60 	77 POINTS 	 PIC 999.
61 	77 CR-HRS 	 PIC 999.

Appendix A
	

A-12

62
63
64
65

77
77
77
77

INCR
C-INDEX
PAGE-NO
LINE-COUNT

PIC
PIC
PIC
PIC

99.
99.
999 VALUE 	IS 1.
99 	VALUE ZERO.

66 77 SAVE-KEY PIC X(4).
67 77 TOT-NO-RECORDS PIC 9999999 VALUE IS O.
68 77 SUB-TOT-NO PIC 9999999.
69
70 01 HEADER.
71 02 	FILLER PIC X(14).
72 02 	COLLEGE PIC X(30).
73 02 	DATE-IN PIC X(8).
74 01 TRAILER.
75 02 	FILLER PIC X(49).
76 02 	NO-RECORDS PIC 9999999.
77 01 PRINT-LINE.
78 02 	FILLER PIC X(1).
79 02 	SOC-SEC-OUT.
80 02 	SOC-SEC-01 PIC X(3).
81 03 	SOC-SEC-Fl PIC X(1).
82 03 	SOC-SEC-72 PIC X(2).
93 03 	SOC-SEC-F2 PIC X(I).
84 03 	SOC-SEC-03 PIC X(4).
85 02 	FILLER PIC X(2).
86 02 	NAME-ADDR PIC X(5).
87 02 	FILLER PIC X(1).
88 02 	MAJOR-O PIC X(4).
89 02 	FILLER P/C X(1).
0 02 	STATUS-0 PIC X(1).
91 02 	FILLER PIC X(1).
92 02 	GPA PIC 9.99.
93 02 	FILLER PIC X(2).
94 02 	COURSE-0 	OCCURS 3 TIMES.
95 03 	C-DEPT PIC X(2).
96 03 	FILLER PIC X(I).
97 02 	C-NO PIC X(2).
99 03 	FILLER P/C X(I).
99 03 	CREDITS-0 PIC Z9.
100 03 	FILLER PIC X(1).
101 03 	SEMESTER-0 PIC X(1).
102 03 	DASH-0 PIC X(I).
103 03 	YEAR-0 PIC X(2).
104 03 	FILLER PIC X(2).
105 03 	GRADE-0 PIC X(1).
106 03 	FILLER PIC X(2).
10 7 02 	FILLER PIC X(2).
108 01 PACE-HEADER.
109 02 	FILLER P/C X(4) 	VALUE SPACES.
110 02 	DATE-0 PIC X(8).
111 02 	FILLER PIC X(17) 	VALUE SPACES.
112 02 	COLL-O PIC X(30).
113 02 	FILLER PIC X(17) 	VALUE SPACES.
114 02 	FILLER PIC X(5) 	VALUE IS 	'PAGE'.
115 02 	PAGE-0 PIC ZZ9.
116 02 	FILLER PIC X(5) 	VALUE SPACES.
117 01 COL-HDR-1.
118 02 	FILLER PIC X(20)
119 VALUE 	SOC SEC N 6 	A 	'.
120 02 	FILLER PIC X(10) VALUE 'MAJ ST CPA'.
121 02 	FILLER PIC X(9) VALUE SPACES.
122 02 	FILLER PIC X(6) 	VALUE 'COURSE'.
123 02 	FILLER PIC X(12) 	VALUE SPACES.
124 02 	FILLER PIC X(6) 	VALUE 'COURSE'.
125 02 	FILLER PIC X(12) 	VALUE SPACES.

Appendix A 	
A-13

126 	02 FILLER 	 PIC X(5) VALUE 'COURSE'.
127 	02 FILLER 	 P/C X(8) VALUE SPACES.
129 	01 COL-HDR-2.
129 	02 FILLER 	 PIC X(33) VALUE SPACES.
130 	02 FILLER 	 PIC X(18)
131 	 VALUE ' NMBR CR S-YR GR I.
132 	02 PILLER 	 PIC X(18)
133 	 VALUE ' NMBR CR S-YR GR I.
134 	02 FILLER 	 PIC X(20)
135 	 VALUE ' NMBR CR S-YR CR 	'.
136 	01 SUB-TOT-LINE.
137 	02 FILLER 	 PIC X(4) VALUE SPACES.
138 	02 FILLER 	 PIC X(8)
139 	 VALUE IS 'TOTAL
140 	02 SUB-TOT 	 PIC 2227229.
141 	02 FILLER 	 PIC X(70) VALUE SPACES.
142 	PROCEDURE DIVISION.
143 • MAIN-PROGRAM SECTION.
144 	START.
145 	OPEN INPUT MASTER OUTPUT PRINT-FILE.
146 	READ MASTER INTO HEADER AT END CO TO EOF.
147 	IF SOC-SEC-IN IS A SPACES GO TO GOT-HEADER.
148 	MOVE ' NC HEADER FOUND ON THE MASTER FILE ••• 1 TO PRINT-LINE.
149 	PERFORm PRINT2-ROUTINE THRU PRINT2-EXIT.
150 	CO TO CLOSE-FILES.
151 	COT-HEADER.
152 	MOVE COLLEGE TO COLL-O.
153 	MOVE DATE-IN TO DATE-O.
154 	READ MASTER AT END CO TO EOF.
155 	IF SOC-SEC-IN IS NOT 	'999999999' GO TO SAVE-DEPT-NAME.
156 	MOVE ' NC ITEM RECORDS IN MASTER FILE ••I•' TO PRINT-LINE.
157 	 PERFORM PRINT2-ROUTINE THRU PRINT2-EXIT.
158 	GO TO CLOSE-FILES.
159 	SAVE-DEPT-NAME.
167 	MOVE MAJOR-IN TO SAVE-KEY.
161 • NAME OF DEPARTMENT IS SUBTOTAL KEY. BREAK OCCURS WHENEVER
162 • FIELD IS DIFFERENT ON TWO CONSECUTIVE RECORDS.
163 	MOVE 0 TO SUB-TOT-NO.
164 	MOVE 1 TO PAGE-NO.
1c5 • PAGE-NO IS RESET TO 1 FOR EACH DEPARTMENT REPORT.
166 	MOVE 16 TO LINE-COUNT.
167 	MCVE SPACES TO PRINT-LINE.
168
169 	ITEM-LOOP.
170 	PERFORM ITEM-ROUTINE THRU ITEM-EXIT.
171 	ADD 1 TO SUB-TOT-NO.
172 	READ MASTER INTO TRAILER AT END GO TO EOF.
173 	IF MAJOR-IN IS ■ SAVE-KEY GO TO ITEM-LOOP.
174
175 	DO-SUB-TOTALS.
176 	MOVE SUB-TOT-NO TO SUB-TOT.
177 	 WRITE PRINT-BUFF FROM SUB-TOT-LINE AFTER ADVANCING 2 LINES.
178 	ADD SUB-TOT-NO TO TOT-NO-RECORDS.
179 	IF SOC-SEC-IN IS NOT ■ '999999999' GO TO SAVE-DEPT-NAME.
180 	MOVE TOT-NO-RECORDS TO SUB-TOT.
161 	WRITE PRINT-BUFF FROM SUB-TOT-LINE
182 	 AFTER ADVANCING TOP-OF-PACE.
183 	IF NO-RECORDS IS • TOT-NO-RECORDS GO TO CLOSE-FILES.
184 	MOVE ' *•• MASTER TRAILER VERIFICATION RAS FAILED • 104"
185 	 TO PRINT-LINE.
136 	PERFORM pRINT2-ROUTINE TSRU PRINT2-EXIT.
187 	CLOSE-FILES.
188 	CLOSE MASTER PRINT-FILE.
189 	STOP RUN.

Appendix A

190 	EOF.
191 	MOVE ' EOF CN MASTER FILE •••• 1 TO PRINT-LINE.

192 	PERFORM PRINT2-ROUTINE TNRU PRINT2-EXIT.
193 	GO TO CLOSE-FILES.
194
195 • SUB-ROUTINE SECTION.
195
197 	PRINT1-ROUTINE.
198 	IF LINE-COUNT IS < 16 GO TO NORMAL-PRINT.
199 	PERFORM HEADER-ROUTINE THRU HEADER-EXIT.
200 	WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING 2 LINES.
2C1 	ADD 2 TO LINE -COUNT.
202 	CO TO COMMON-POINT.
203 	NORMAL - PRINT.
204 	WRITE PRINT-BUFF FROM PRINT- LINE AFTER ADVANCING 1 LINES.
205 	ADD 1 TO LINE-COUNT.
205 	COMMON-POINT.
207 	MOVE SPACES TO PRINT-LINE.
208 	PRINT1-EXIT. EXIT.
209
210 	PRINT2-ROUTINE.
211 	IF LINE-COUNT IS > 14
212 	 PERFC ,'=M HEADER-ROUTINE THRU HEADER-EXIT.
213 	WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING 2 LINES.
214 	ADD 2 TO EIN:1-COUN - .
215 	MOVE SPACES TO PRINT-LINE.
215 	PRINT2-EXIT. 	EXIT.
21 7
218 	HEADER-ROUTINE.
219 	MOVE PAGE-NO TO PACE-0.
220 	WRITE PR:NT-BUFF FROM FACE-HEADER
221 	 AFTER, ADVANCING TOP-CF-PACE.
222 	ADD 1 TO PAGE-NO.
223 	WRITE PRNT-BUFF FROM CDL-HDR-1 AFTER ADVANCING 2 LINES.
224 	WRITE PRINT-DUFF FROM COL-HDR-2 AFTER ADVANCING 1 LINES.
225 	MOVE 0 TO LINE-COUNT.
225 	HEADER-EXIT. EXIT.
227
228 	ITEM-ROUTINE.
229 	MOVE SOO-SEC-IN-1 TO SOC-SEC-01.
230 	MOVE SOC-SEC-IN -2 TO SOC-SEC-02.
231 	MOVE SOO-SEC-IN-3 TO SOC-SEC-03.
232 	MOVE '-' TO SOC-SEC-Fl.
233 	MOVE '-' TO SOC-SEC-F2.
234 	MOVE NAME-IN TO NAME-ACDR.
235 	MOVE MAJOR-1N 70 MAJOR-O.
236 	MOVE STATUS-IN TO STATUS-0
237 • CALCULATE THE GPA.
238 	MOVE 0 TO POINTS.
239 	MOVE 0 _3 OR-HRS.
240 	 PERFORM GPA- ACCUM THRU GPA-EXIT VARYING C-INDEX
241 	 FROM 1 BY 1 UNTIL C-INDEX IS > NO-COURSES.
242 	IF CR-HRS IS *. 0 GO TO NO-GPA.
243 	DIVIDE POINTS BY CR-HRS GIVING OPA ROUNDED.
244 • 	IN THE FOLLOWING THESE INDICES ARE USED:
245 • 	END-ALL: THE INDEX OP THE FIRST UNUSED COURSE
244 • 	 ENTRY! THIS MARKS THE END OP THE COURSES
247 • 	 TO PRINT;
248 • 	 CND-MARKER: WHEN FILL-LINE IS CALLED END-MARKER
249 • 	 POINTS AT THE FIRST COURSE ENTRY PAST THE
250 • 	 LAST MIRY TO BE PUT INTO THE LINE1
251 • 	C - INDEX: WHEN FILL-LINE IS CALLED C-INDEX POINTS
252 • 	 AT THE FIRST COURSE ENTRY WHICH GETS
253 • 	 PUT INTO THE PRINT-LINE: THUS. IF C-INDEX

A-14

Appendix A

254 • 	 IS EQUAL TO END-MARKER, NO COURSE ENTRIES
255 • 	 GET PUT INTO THE PRINT LINE;
256 • 	 P-INDEX: INDEXES THE SPOT IN THE PRINT-LINE
257 • 	 WHERE THE ENTRY POINTED TO BY C-INDEX
258 • 	 IS TO BE MOVED; THUS, ITS RANGE IS 1 TO 3.
269
260 	NO-GPA.
261 	MOVE 1 TO C.-INDEX.
262 	ADD 1 NO-COURSES GIVING END-ALL.
263 	MOVE 4 TO END-MARKER.
264 	IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
265 	PERFORM FILL-LINE THRU FILL-EXIT.
266 	PERFORM PRINT?-ROUTINE THRU PRINT2-EXIT.
267 	MOVE ADDR-IN-1 TO NAME-ADDR.
268 	MOVE 7 TO END-MARKER.
269 	 IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
270 	PERFORM PILL-LINE THRU FILL-EXIT.
271 	 PERFORM PRINT1-ROUTINE THRU PRINT1-EXIT.
272 	MOVE ADDR-IN-2 TO NAME-ADDR.
273 	MOVE 10 TO END-MARKER.
274 	COURSE-LOOP.
275 	IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER.
276 	 PERFORM FILL--LINE THRU FILL-EXIT.
277 	PERFORM PRINT1-ROUTINE THRU PRINTI-EXIT.
278 	 IF C-INDEX 	END-ALL GO TO ITEM-EXIT.
279 	 ADD 3 C-INDEX GIVING END-MARKER.
290 	GO TO COURSE-LOOP.
281 	ITEM-EXIT. EXIT.
2 1 2 	FILL-LINE.
283 	MOVE 1 TO P-INDEX.
284 	CHECK-END.
285 	IF C-INDEX IS 	END-MARKER GO TO FILL-EXIT.
286 	MOVE DEPT-OFF (C-INDEX) TO C-DEPT (P-INDEX).
297 	MOVE COURSE-NO (C-INDEX) TO C-NO (P-INDEX).
288 	MOVE CREDITS (C-INDEX) TO CREDITS-0 (P-INDEX).
289 	MOVE SEMESTER (C-INDEX) TO SEMESTER-0 (P-INDEX).
290 	MOVE 	TO DASH-0 (P-INDEX).
291 	MOVE YEAR (O-INDEX) TO YEAR-0 (P.-INDEX).
292 	MOVE GRADE (C-INDEX) TO GRADE-0 (P-INDEX).
293 	ADD 1 TO C-INDEX.
294 	ADD 1 TO P-INDEX.
295 	GO TO CHECK-END.
295 	FILL-EXIT. EXIT.
297
298 	GPA-ACCUM.
299 	IF GRADE (C-INDEX) IS NOT • 'A' GO TO NOTA.
300 	MULTIPLY CREDITS (C-INDEX) BY 4 GIVING INCR.
301 	GO TO COMMON-ADD.
302 	NOTA.
303 	IF GRADE (C-INDEX). IS NOT 	'8' GO TO NOTE.
304 	MULTIPLY CREDITS (C-INDEX) BY 3 GIVING INCR.
305 	 GO TO COmMON-ADD.
306 MOM
307 	IT GRADE (C-INDEX) IS NOT • 'C' GO TO NOTC.
308 	MULTIPLY CREDITS (C-INDEX) BY 2 GIVING INCR.
309 	GO TO COMMON-ADD.
310 	NOTC.
311 	IF GRADE (C-INDEX) IS NOT • '0' GO TO NOTD.
312 	MULTIPLY CREDITS (C-INDEX) BY 1 GIVING INCR.
313 	GO TO COMMON-ADD.
314 	NOTD.
315 	IF GRADE (C-INDEX) IS NOT .1. 'F' GO TO GPA-EXIT.
316 	MOVE 0 TO INCR.
317 COMMON-ADD.

A-15

Appendix A A-16

318
?19
320
321

ADD INCA TO POINTS.
ADD CREDITS (C-INDEX) TO CR-HRS.

CPA-EXIT. EXIT.

f •

Appendix A 	
A-17

Program AS

1 	IDENTIFICATION DIVISION.
2 	•
3 	• 	REPORT CONTAINS THE INPUT DATA ALONG WITH THE
4 	• 	CURRENT COMMISSION FOR EACH SALESMAN. AT THE
5 	• 	END OF THIS SINGLE SPACED REPORT THE FOLLOWING
6 	• 	TOTALS ARE PRINTED: YEAR TO DATE SALES, CUR-
7 	• 	RENT SALES, CURRENT COMMISSION.
8
9 	• 	CURRENT COMMISSION IS CALCULATED AS FOLLOWS:
10 	 CURRENT-COMMISSION • CURRENT-SALES °
11 	• 	 (COMMISSION-RATE + VOLUME-BONUS + DEPARTMENT-BONUS)
12 	•

13 	• 	WITH DEPARTMENT BONUS DETERMINED AS FOLLOWS:
14 	• 	DEPT 	BONUS
15 	• 	 01 	0.1%
16 	• 	 02 	0.1%
17 	• 	 04 	0.7%
18 	• 	 05 	0.6%
19 	• 	 06 	0.4%
20 	• 	 07 	0.6%
21 	• 	 09 	0.4%
22 	 OTHER 	0.0%
23
24 	• 	WITH VOLUME BONUS DETERMINED AS FOLLOWS:
25 	• 	AVERAGE MONTHLY SALES 	BONUS
26 	• 	 UNOER SSC') 	 0.0%
2 7 	 S500 TO 5919.99 	 0.3%
28 	• 	 $1000 TO 51999.99 	 0.4%
29 	* 	 OVER 82000 	 0.6%
30 	•
31 	• 	WITH AVERAGE MONTHS SALES DETERMINED AS FOLLOWS:
32 	• 	AVERAGE-MONTHLY-SALES •
33 	• 	(YEAR-TO-DATE-SALES + CURRENT-SALES) / MONTHS-EMPLOYED
34
35 	PROGRAM-ID. COMMISSION-REPORT.
36
37 	AUTHOR.
38 	DANIEL CASTAGNO,ICS 3400,STUDENT NUMBER 654,PROGRAM
39
40 	REMARKS. SLIGHTLY MODIFIED FOR CMS.1 BY A.ACREE.
41 	 MUTATION TESTING UNCOVERED THE FOLLOWING ERRORS AND
42 	 INEFFICIENCIES:
43 	 (1) REPORT HEADER WITH PAGE ADVANCE WAS NOT PRINTED
44 	 AFTER FULL-PAGE CONDITION RAISED BY INVALID DATA RECORD
45 	 EXTRA PERFORM INSERTED.
46 	 (2) DATA ITEMS DEFINED AND NEVER USED -- DELETED.
47 	 (3) MOVE STATEMENT REPEATED -- SECOND VERSION DELETED.
48 	 (4) TWO USELESS INITIALIZATIONS DELETED.
49
50
51 	ENVIRONMENT DIVISION.
52
53 	CONFIGURATION SECTION.
54 	SOURCE-COMPUTER.
55 	CYBER-74.
56 	OBJECT-COMPUTER.
57 	CYBER-74.
58 	SPECIAL-NAMES.
59 	COl IS TO-TOP-OF-PAGE.
60
61 	INPUT-OUTPUT SECTION.

Appendix A

FILE—CONTROL.
SELECT CARD—FILE ASSIGN TO INPUTO.
SELECT PRINT—FILE ASSIGN TO OUTPUTO.

62
63
64
65
66
	

DATA DIVISION.
67
68
	

FILE SECTION.
69
70
71
72
73
7 4
75
	

01 CARD—RECORD.
32 I—CARD—DATA.

77
	

03 I—STORE—NUMBER
78
	

03 I—DEPARTMENT
79
	

03 I—SALESMAN—NUMBER
80
	

03 I—SALESMAN—NAME
81
	

03 I—YEAR—TO—DATE—SALES
32
	

03 I—CURRENT—SALES
53
	

03 I—COMMISSION—RATE
84
	

02 I—MONTHS—EMPLOY:0
85
	

02 FILLER
36
a•-•
	

FD PRINT—FILE
88
	

RECORD CONTAINS 132 CHARACTERS,
39
	

LABEL RECORDS ARE OMITTED,
90
	

DATA RECORD IS LINE—RECORD.
31
92
	

01 LINE—RECORD
93
94
95
	

WORKING—STORAGE SECTION.
95
97
	

77 W —DEPARTMENT — BONUS
98
	

7 7 w—VOLUME —BONUS
99
	

77 w—DEPARTMENT
100
	

77 w—STORE—NUMBER
101
	

77 w—SALESMAN—NUMBER
102
	

77 W—YEAR—TO—DATE—SALES
103
	

77 14—CURRENT—SALES
104
	

77 W—COMMISSION—RATE
105
	

77 W—MONTHS—EMPLOYED
106
	

77 W—CURRENT—COMMISSION
107
	

77 W—TOTAL—YEAR—TO—DATE—SALES
108
	

VALUE 0.
109
	

77 W—TOTAL—CURRENT—SALES
110
	

VALUE O.
111
	

77 W—TOTAL—CURRENT—COMMISSION
112
	

VALUE O.
113
	

77 W—AVERAGE—MONTHLY—SALES
114
	

VALUE O.
115
116
117 6 01 KEY—TO—RECORDS.
118
	

02 SALESMAN—NUM
119
120 	01 FLAGS.
121
	

02 VALID—DATA—FLAG
122
	

VALUE 'YES'.
123
	

02 MORE—DATA—REMAINS—FLAG
124
	

VALUE 'YES'.
125

PIC 99.
PIC XX.
PIC 999.
PIC X(20).
PIC 9(5)V99.
PIC 9(5)V99.
PIC V99.
PIC 99.
PIC X(35) .

PIC X(132).

PIC V999.
PIC V999.
PIC XX.
PIC 99.
PIC 999.
PIC 9(5)V99.
PIC 9(5)V99.
PIC V99.
PIC 99.
PIC 9(4)V99.
PIC 9(9)V99

PIC 9(8)V99

PIC 917)V99

PIC 9(7)V99

P/C 999.

PIC XXX

PIC XXX

FD CARD—FILE
RECORD CONTAINS 80 CHARACTERS,
LABEL RECORDS ARE OMITTED,
DATA RECORD IS CARD—RECORD.

Appendix A

126
127

01 CONSTANTS.
02 	DEPT.

128 03 	DEPT-1-0R-2 PIC V999
129 VALUE 0.001.
130 03 	DEPT-6-0R-9 PIC V999
131 VALUE 	0.004.
132 03 	DEPT-5-0R-7 PIC V999
133 VALUE 	0.006.
134 03 	DEPT-4 PIC V999
135 VALUE 	0.007.
136 03 	DEPT-OTHER PIC V999
137 VALUE 	0.000.
138 02 VOLUMN.
239 03 	LEVEL-1 PIC V999
140 VALUE C.
141 03 	LEVEL-2 PIC V999
142 VALUE 0.003.
143 03 	LEVEL-3 PIC V999
144 VALUE 	0.004.
145 03 	LEVEL-4 PIC V999
146 VALUE 	0.006.
147
148 01 COUNTERS.
149 07 	LINE-COUNT PIC 99
150 VALUE O.
151
152 01 FINAL-TOTAL-LINE.
153 02 	FILLER PIC 	X(10)
154 VALUE 	' 	TOTAL'.
155 02 	FILLER PIC 	X(51)
156 VALUE SPACES.
157 02 	0-TOTAL-YEAR-TO-DATE-SALES PIC 	Z(9).99.
152 02 	FILLER P/C XXX
159 VALUE SPACES.
160 02 	0-TOTAL-CURRENT-SALES PIC 	Z(8).99.
161 02 	FILLER PIC 	X(15)
152 VALUE SPACES.
153 02 	0-TOTAL-CURRENT-COMMISSION P/C 	Z(7).99.
164 02 	FILLER PIC X(20)
165 VALUE SPACES.
166
167 01 REPORT-LINE-1.
168 02 	FILLER PIC 	X(61)
169 VALUE SPACES.
170 02 	FILLER PIC X(10)
171 VALUE , conmissIow.
172 02 	FILLER PIC X(S0)
173 VALUE SPACES.
174 02 	FILLER P/C X(6)
175 VALUE 	'PACE 	'.
176 02 	0-PACE-NUMBER ' PIC 999
177 VALUE O.
178 02 	FILLER PIC XX
179 VALUE SPACES.
180
181 01 REPORT-LINE-2.
182 02 	FILLER PIC X(63)
183 VALUE SPACES.
184 02 	TILLER PIC X(6)
185 VALUE 'REPORT'.
196 02 	PILLER PIC X(63)
187 VALUE SPACES.
188
189 01 HEADING-LINE-1.

Appendix A

190 02 	FILLER PIC X(4)
191 VALUE SPACES.
192 02 	FILLER PIC X(5)
193 VALUE 	'STORE'.
194 02 	FILLER PIC X(4)
195 VALUE SPACES.
19; 02 	FILLER PIC X(10)
197 VALUE 	'7.3EpARTMENT'.
198 02 	FILLER PIC X(4)
199 VALUE SPACES.
200 02 	FILLER PIC X(9)
201 VALUE 	'SALESMAN'.
202 02 	FILLER PIC X(9)
203 VALUE SPACES.
204 02 	FILLER PIC X(8)
205 VALUE 	'SALESMAN'.
206 02 	FILLER P/C X(10)
207 VALUE SPACES.
208 02 	FILLER PIC X(12)
279 VALUE 	'YEAR TO DATE'.
210 02 	FILLER PIC X(5)
211 VALUE SPACES.
212 02 	FILLER PIC X(7)
213 VALUE 	'CURRENT'.
214 02 	FILLER PIC X(4)
215 VALUE SPACES.
216 02 	FILLER PIC X(10)
217 VALUE 	'COmmISSION'.
229 02 	FILLER PIC X(5)
219 VALUE SPACES.
220 02 	FILLER PIC X(7)
221 VALUE 	'CURRENT'.
222 02 	FILLER PIC X{6)
227 VALUE SPACES.
224 02 	FILLER PIC X(6)
225 VALUE 	'MONTHS'.
22g 02 	FILLER PIC X(8)
227 VALUE SPACES.
28

229 01 HEADING-LINE-2.
230 02 	FILLER PIC X(4)
231 VALUE SPACES.
232 02 	FILLER PIC X(6)
233 VALUE 	' NUMBER'.
234 02 	FILLER PIC X(18)
235 VALUE SPACES.
236 02 	FILLER PIC X(6)
23/ VALUE 'NUMBER'
238 02 	FILLER PIC X(12)
239 VALUE SPACES.
240 02 	FILLER PIC X(4)
241 VALUE 'NAME'.
242 02 	FILLER PIC X(16)
243 VALUE SPACES.
244 02 	FILLER PIC X(5)
245 VALUE 	'SALES'.
246 02 	FILLER PIC X(9)
247 VALUE SPACES.
248 02 	FILLER PIC X(5)
249 VALUE. 	'SALES'.
250 02 	FILLER PIC X(0)
251 VALUE SPACES.
252 02 	FILLER PIC X(4)
253 VALUE 'RATE'.

Appendix A 	
A-21

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

02 FILLER
VALUE SPACES.

02 FILLER
VALUE 'COMMISSION'.

02 FILLER
VALUE SPACES.

02 FILLER
VALUE 'EMPLOYED'.

02 FILLER
VALUE SPACES.

01 VALID-DATA-LINE.
02 FILLER

VALUE SPACES.
02 0-STORE-NUMBER
02 FILLER

VALUE SPACES.
02 0-DEPARTMENT
02 FILLER

VALUE SPACES.
02 0-SALESMAN-NUMBER
02 FILLER

VALUE SPACES.
02 0-SALESMAN-NAME
02 FILLER

VALUE SPACES.
02 0-YEAR-TO-DATE-SALES
02 FILLER

VALUE SPACES.
02 0-CURRENT-SALES
02 FILLER

VALUE SPACES.
C2 0-COMMISSION-RATE
02 FILLER

VALUE SPACES.
02 0-CURRENT-COMMISSION
02 FILLER

VALUE SPACES.
02 0-MCNTBS-EMPLOYED
02 FILLER

VALUE SPACES.

01 INVALID-DATA-LINE.
02 0-BAD-DATA 	 P/C X(45).
02 FILLER 	 PIC X(30)

VALUE ' 	INVALID DATA ON THIS CARD'.
02 FILLER 	 PIC X(57)

VALUE SPACES.

PROCEDURE DIVISION.

PREPARE-PAYMENT-REPORT.
OPEN INPUT CARD-PILE

OUTPUT PRINT-FILE.
READ CARD-FILE

AT END MOVE 'NO' TO MORE-DATA-REMAINS-FLAG.

IF MORE-DATA-REMAINS-FLAG • 'YES'
PERFORM REPORT-HEADER-OUTPUT
PERFORM HEADING-OUTPUT

PIC X(7)

PIC X(I0)

PIC X(3)

PIC X(8)

PIC X(7)

PIC X(6)

• 	
PIC Z9.
PIC X(9)

PIC XX.
PIC X(10)

PIC ZZ9.
PIC X(6)

PIC X(20).
PIC X(6}

PIC Z(6).99.
PIC X(5)

PIC Z(6).99.
P/C X(7)

PIC .99.
PIC X(7)

PIC Z(5).99.
PIC X(8)

PIC 29.
P/C X(10)

Appendix A

3I8 	 PERFORM COMMISSION-CALCULATION
1 19 	 UNTIL MOR•-DATA-REMAINS-FLAG + 'NO '.
320
321 	PERFORM CALCULATED-TOTALS-OUTPUT.
322 	CLOSE CARD-FILE
323 	 PRINT-FILE.
324 	STOP RUN.
325
326
327 • CHECK VARIABLES TO SEE IF THEY CONTAIN VALID INFORMATION
328
729 	VALIDATION.
330 	IF I-STORE-NUMBR IS NUMERIC
331 	 AND I-SALESMAN-NUMBER IS NUMERIC
332 	 AND I-YEAR-TO-DATE-SALES IS NUMERIC
733 	 AND I-CURRENT-SALES IS NUMERIC
334 	 AND I-COMMISSION-RATE IS NUMERIC
335 	 AND I-MONTHS-EMPLOYED IS NUMERIC
336 	 MOVE 'YES' TO VALID-DATA-FLAG
337 	ELSE
338 	 MOVE 'NO' TO VALID-DATA-FLAG.
339
340
341 • MOVE INPUT INFORMATION TO WORKING STORAGE
342 • VARIABLES
343
344 	DATA-MOVE.
345 	MOVE I-STORE-NUMBER TO W-STORE-NUMBER.
346 	MOVE I-DEPARTMENT TO W-DEPARTMENT.
347 	MOVE I-SALESMAN-NUMBER TO W-SALESMAN-NUMBER.
348 	MOVE I-YEAR-TO-DATE-SALES TO W-YEAR-TO-DATE-SALES.
749 	MOVE /-CURRENT-SALES TO W-CURRENT-SALES.
350 	MOVE I-COMMISSION-RATE TO W-COMMISSION-RATE.
?SI 	MOVE I-MONTHS-EMPLOYED TO W-MONTHS-EMPLOYED.
352
353 	CALCULATE-DEPARTMENT-BONUS.
354 	 IF W-DEPARTMENT - '01' OR
355 	 W-DEPARTMENT + ' 02'
356 	 MOVE DEPT-2-0R-2 TO W-DEPARTMENT-BONUS
357 	ELSE IF W-DEPARTMENT + '06' OR
358 	 W-DEPARTMENT + '09'
359 	 MOVE DEPT-6-011-9 TO W-DEPARTMENT-BONUS
360 	ELSE IF W-DEPAFTMENT ■ '05' OR
361 	 W-DEPARTMENT + '07'
362 	 MOVE DEPT-5-OR-7 TO W-DEPARTMENT-BONUS
363 	ELSE IF W- DEPARTMENT + '04'
364 	 MOVE DEPT - 4 TO W-DEPARTMENT-BONUS
365 	ELSE
366 	 MOVE DEPT-OTRER TO W-DEPARTMENT-BONUS.
367
368 	CALCULATE-VOLUME-BONUS.
369 	COMPUTE W-AVERAGE-MONTHLY-SALES ROUNDED ■

370 	 (W-YEAR-T0-DATE-SALES + W-CURRENT-SALES)
371 	 / W-MONTHS-EMPLOYED.
372 	IF W-AVERAGE-MONTHLY-SALES < SOO
373 	 MOVE LEVEL-1 TO W-VOLUME-BONUS
374 	 ELSE IF W-AVERAGE-MONTHLY-SALES < 999.99
375 	 MOVE LEVEL-2 TO W-VOLUME-BONUS
376 	ELSE IF W-AVERAGE-MONTHLY-SALES < 1999.99
377 	 MOVE LEVEL-3 TO W-VOLUME-BONUS
378 	ELSE
379 	 MOVE LEVEL-4 TO W-VOLUME-BONUS.
390
381 	COMMISSION-CALCULATION.

A-22

Appendix A
A-23

382
	

PERFORM VALIDATION.
383
384
	

IF VALID—DATA—FLAG r 'YES'
385
	

PERFORM DATA—MOVE
386
	

PERFORM CALCULATE—DEPARTMENT—BONUS
387
	

PERFORM CALCULATE—VOLUME—BONUS
388
	

COMPUTE W—CURRENT—COMMISSION ROUNDED si W—CURRENT—SALES •
389
	

W—COMMISSION—RATE + W— VOLUME—BONUS +
390
	

W—DEPARTMENT—BONUS }
391
	

ADD W—YEAR—TO—DATE—SALES TO W—TOTAL—YEAR—TO—DATE—SALES
392
	

ADD W—CURRENT—SALES TO W—TOTAL—CURRENT—SALES
393
	

ADD W—CURRENT—COMMISSION TO W—TOTAL—CURRENT—COMMISSION
394
	

PERFORM VALID—DATA—OUTPUT
395
	

ELSE
396
	

PERFORM INVALID—DATA—OUTPUT.
397
398
	

READ CARD—FILE
399
	

AT END MOVE 'NO' TO MORE—DATA—REMAINS—FLAG.
400
401
	

VALID—DATA—OUTPUT.
402
	

MOVE W—STORE—NUMBER TO 0—STORE—NUMBER.
403
	

MOVE W—DEPARTMENT TO 0—DEPARTMENT.
404
	

MOVE W—SALESMAN—NUMBER TO 0—SALESMAN—NUMBER.
425
	

MOVE I—SALESMAN—NAME TO 0—SALESMAN—NAME.
4C6
	

MOVE W—YEAR—TO—CATS—SALES TO 0—YEAR—TO—DATE—SALES.
407
	

MOVE W—CURRENT—SALES TO 0—CURRENT—SALES.
408
	

MOVE W—COMMISSION—RATE TO 0—COMMISSION—RATE.
403
	

MOVE W—CURRENT—COMMISSION TO 0—CURRENT—COMMISSION.
410
	

MOVE W—MONTHS—EMPLOYED TO O—MONTHS—EMPLOYED.
411 • 	MOVE I—SALESMAN—NAME TO 0—SALESMAN—NAME.
412
	

MOVE VALID—DATA—LINE TO LINE—RECORD.
413
	

WRITE LINE—RECORD AFTER ADVANCING 1 LINES.
414
	

ADO 1 TO LINE —COUNT.
415
	

IF LINE—COUNT IS GREATER THAN 10
415
	

MOVE 0 TO LINE—COUNT
417
	

PERFORM REPORT—HEADER—OUTPUT
419
	

PERFORM HEADING—OUTPUT.
419
420
	

INVALID—DATA—OUTPUT.
421
	

MOVE I—CARD—DATA TO 0—BAD—DATA.
422
	

MOVE INVALID—DATA—LINE TO LINE—RECORD.
423
	

WRITE LINE—RECORD AFTER ADVANCING 1 LINES.
424
	

ADD 1 TO LINE—COUNT.
425
	

IF LINE—COUNT IS GREATER THAN 10
426 • 	MOVE 0 TO LINE—COUNT
427
	

PERFORM REPORT—HEADER—OUTPUT
428
	

PERFORM HEADING—OUTPUT.
429
430
	

HEADING—OUTPUT.
431
	

MOVE HEAD/NG—LINE-1 TO LINE—RECORD.
432
	

WRITE LINE—RECORD AFTER ADVANCING 1 LINES.
433
	

MOVE HEADING—LINE-2 TO LINE—RECORD.
434
	

WRITE LINE—RECORD AFTER ADVANCING 1 LINES.
435
	

MOVE SPACES TO LINE—RECORD.
436
	

WRITE LINE—RECORD AFTER ADVANCING 2 LINES.
437
	

ADD 4 TO LINE—COUNT.
438
439 CALCULATED—TOTALS—OUTPUT.
440
	

MOVE W—TOTAL—YEAR—TO—DATE—SALES TO 0—TOTAL...YEAR—TO—DATE—SALES
441
	

MOVE W—TOTAL—CURRENT—SALES TO 0—TOTAL-CURRENT—SALES.
442
	

MOVE W—TOTAL—CURRENT—COMMISSION TO 0—TOTAL...CURRENT...COMMISSION
443
	

MOVE FINAL—TOTAL—LINE TO LINE—RECORD.
444
	

WRITE LINE-RECORD AFTER ADVANCING 2 LINES.
445

Appendix A 	 A-24

446 REPORT-8EADER-OUTPUT.
447
	

ADD 1 TO 0-PAGE-NUMMI.
448
	

KovE REPORT-LINE-1 TO LINE-RECORD.
449
	

WRITE LINE-RECORD AFTER ADVANCING TO-TOP-OF-PAGE.
450
	

MOVE REPORT-LINE-2 TO LINE-RECORD.
451
	

WRITE LINE-RECORD AFTER ADVANCING 1 LINES.
452
	

MOVE SPACES TO LINE-RECORD.
453
	

WRITE LINE-RECORD AFTER ADVANCING 3 LINES.
454
	

MOVE 4 TO LINE-COUNT.
455

Appendix A 	
A-25

Program A6

IDENTIFICATION DIVISION.
2 	PROGRAM-ID. MAINTmES.
3 	REMARKS. THIS PROGRAM IS ADAPTED FROM YOURDAN'S ° LEARNING
4 	 TO PROGRAM IN STRUCTURED COBOL° .
5 	 (1) 	THE PROGRAM AS PUBLISHED DID NOT WORK. THE LAST
6 	 PAIR CF APPLICATION CARDS WAS IGNORED. IF THERE
7 	 WAS NO LAST PAIR (EMPTY FILE) THE PROGRAM BOMBED.
8 	 THIS ERROR WAS FIXED BY ADDING ANOTHER FILE-CONTROL
9 	 FLAG AND ADDING LOGIC IN "BI-GET-A-PAIR...'
10 	 (2) 	THE NOTE ABOUT CHECKING PAIR VALIDITY
11 	 IN PARAGRAPH 'A2-UPDATE MASTER° SHOULD BE REPEATED
12 	 IN THE ANALOGOUS PARAGRAPH °A4-ADD-REMAINING-CARDS'.
13 	 (3) 	IF THE FIRST CARD IS INVALID, ITS LOG ENTRY
14 	 WOULD HAVE BEEN WRITTEN BEFORE THE LOG FILE HEADER.
15 	 (4) 	THE PUBLISHED PROGRAM CONTAINED MUCH EXTRANEOUS
16 	 CODE. THE REASON FOR SOME OF THIS WAS THE FREE USE OF
17 	 THE 'COPY' VERB. THESE PRODUCED MANY UNNECESSARY
18 	 MUTANTS, AND HAVE BEEN COMMENTED OUT WITH 	

• 19 	 (5) 	THE PROGRAM DID NOT DO ANYTHING SENSIBLE WHEN
20 	 THE END-OF-FILE WAS ENCOUNTERED AFTER THE FIRST OF A
21 	 PAIR OF CARDS.
22
23 	ENVIRONMENT DIVISION.
24 	CONFIGURATION SECTION.
25 	SOURCE-COMPUTER. PRIME.
26 	OBJECT-COMPUTER. PRIME.
2' 	INPUT-OUTPUT SECTION.
28 	FILE-CONTROL.
29 	SELECT APPLICATION-CARDS-FILE 	ASSIGN TO rspuTi.
30 	SELECT UPDATE-LISTING 	 ASSIGN TO OUTPUTI.
11 	SELECT CREDIT-MASTER-OLD-FILE 	ASSIGN TO INPUT2.
32 	SELECT CREDIT-MATER-NEW-FILE 	ASSIGN TO OUTPUT2.
33
34 	DATA 0/VISION.
35 	FILE SECTION.
36
37 	FD APPLICATION-CARDS-FILE
38 	RECORD CONTAINS 80 CHARACTERS
39 	LABEL RECORDS ARE OMITTED
40 	DATA RECORD IS NAME-ADDRESS- AND-PHONE-IN.
41 	01 NAME-ADDRESS-AND-PHONE-IN.
42 	05 NAME-AND-ADDRESS-IN.
43 	 10 NAME-IN 	 PIC X(20).
44 	*** 	10 ADDRESS-IN.
45 	*** 	 15 STREET-IN 	 PIC X(20).
4F 	*** 	 15 CITY-IN 	 PIC X(13)•
47 	*** 	 15 STATE-1N 	 PIC XX.
48 	*** 	 15 ZIP-IN 	 PIC X(5).
49 	 10 ADDRESS-IN 	 P/C X(40).
50 	05 PHONE-IN 	 PIC X(11).
51 	05 FILLER 	 PIC X.
52 	05 CHANGE-CODE-IN 	 P/C XX.
53 	05 ACCT-NUM-I$1 	 PIC 9(6).
54
55 	FD UPDATE-LISTING
56 	RECORD CONTAINS 132 CHARACTERS
57 	LABEL RECORDS ARE OMITTED
58 	 DATA RECORD IS PRINT-LINE-OUT.
59 	01 PRINT-LINE-OUT 	 PIC X(132).
60
61 	PD CREDIT-MASTER-OLD-FILE

•

62
63
64
65
66
67

Appendiz A

RECORD CONTAINS 127 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS CREDIT-MASTER-RECORD.

01 	CREDIT-MASTER-OLD-RECORD.
05 	ACCT-NUN-AAS•OLD 	 PIC 9 (6) .

ma• THE SUBFIELDS ARE NEVER REFERRRED TO IN THE PROGRAM
Ag USE FILLER 	INSTEAD
60 a" 05 	NAME-AND-ADDRESS-MAS-OLD.
70 *** 1C 	NAME-MAS-OLD PIC X(20).
71 *•* 10 	STREET-MAS-OLD PIC X(20).
72 *** 10 	CITY-MAS-OLD P/C X(13).
73 *** 10 	STATE-MAS-OLD PIC XX.

*** 10 	ZIP-MAS-OLD PIC 9(5).
75 '1 " 05 	PHONE-MAS-OLD.
76 •** 10 	AREA-COCE-MAS-OLD P/C 9(3).
77 *•* 10 	NUMBER-MAS-OLD PIC 9(7).
78
79 05 	FILLER PIC X(70).
80 •• THE SUBFIELDS ARE NEVER REFERRED TO IN THE PROGRAM.
81 0•• 05 	CREDIT-INFO-MAS-OLD.
82 000 10 	SEX-MAS-OLD PIC X.
83 000 10 	MARITAL-STATUS-MAS-OLD PIC X.
84 000 10 	NUMBER-DEPENS-MAS-OLD PIC 99.
95 • O• 10 	INCOME-HUNOREDS-MAS-OLD PIC 9(3).
90 ••0 10 	YEARS-EMPLOYED-MAS-OLD PIC 99.
87 • 0• 10 	OWN-OR-PENT-MAS-OLD PIC X.
88 • V 10 	MORCAGE-OR-RENTAL-MAS-OLD PIC 9(3).
39 fo•• 10 	OTHER-PA'IMENTS-MAS-OLD PIC 9(3).
90 05 	CREDIT-INFO-mAS-Or.D PIC X(16)
91 35 	ACCOUNT-INFO-MAS-OLD.
92 *•• 10 	DISCR-INCCM::-MAS-OLD P/C S9(3).
93 *.* 10 	CREDIT-LIMIT-OLD PIC 9(4)-
94 10 	FILLER PIC S9(3).
95 10 	FILLER PIC 9(4).
96 10 	CURRENT-BALAHCE-OWING-OLD PIC S9(6)V99.
97 05 	SPARE-CHARACTERS-OLD PIC X(20).
98
99 FO CREDIT-MASTER-NEW-FILE
120 RECORD CONTAINS 12/ CHARACTERS
101 LABEL RECORDS ARE STANDARD
102 DATA RECORD IS CREDIT-MASTER-RECORD.
103 01 CREDIT-MASTER-NEW-RECORD.
104 OS 	ACCT-NUM-MAS-NEW PIC 9(6).
105 •0 ° 05 	NAME-AND-ADDRESS-MAS-NEW.
1)6 000 10 	NAME-MAS-NEW PIC X(20).
107 0•0 10 	STREET-MAS-NEW PIC X(20).
108 000 10 	C1TY-MAE., -NEW PIC X(13).
109 0•• 10 	STATE-MAS-NEW PIC XX.
111 ••* 10 	ZIP-MAS-NEW PIC 9(5).
111 05 	NAME-AND-ADDRESS-MAS-NEW PIC X(60).
112 35 	PHONE-MAS-N214.
113 10 	AREA-CODE-MAS-NW PIC 9(3).
114
115

10 	Numsn-mxs-mrw
05 	CREDIT-INFO-mAs-NOW.

PIC 9(7).

116 10 	SEX-MAS-NEW PIC X.
117 10 	MARITALSTATUG•MAS.WEW PIC X.
118 10 	NUMBER-DEPENS-MAS•NEW P/C 99.
119
120

10 	INCOME-HUNDREDS-MAS-NEW
10 	YEARS-enpLcIED-mAs-NEW

PIC
PIC

9(3).
99.

121 10 	OWN-OR-RENT-MAS-NEW PIC X.
122 10 	MORGAGE-OR-RENTAL•MASWEW PIC 9(3).
123 10 	OTHER-PAYMENTS-MAS-NEW PIC 9(3).
124 05 	ACCOUNT-INFO-MAS-.MEW.
125 10 	DISC?;-INCOME-MAS-NOW PIC S9(3).

A-26

Appendix A
	

A-27

126
127
128
129
130
131

10 	CREDIT-LIMIT-MAS-NEW
10 	CURRENT-BALANCE-OWING-NEW

05 	SPARE-CHARACTERS-NEW

WORKING-STORAGE SECTION.

PIC 	9(4).
PIC S9(6)V99.
PIC X(20).

132 01 CREDIT-INFORMATION-IN.
133 05 	CARD-TYPE-IN PIC X.
134 05 	ACCT-NUM-IN2 PIC 9(6).
135 05 	FILLER PIC X.
136 05 	CREDIT-INFO-IN PIC 	X(22).
137 05 	FILLER PIC 	x(so).
138
139 01 C&.MON-WS.
140 05 	CARDS-LEFT PIC 	X(3).
141 05 	NEXT-CARD-THERE P/C 	X(3).
142 05 	OLD-MASTER-RECORDS-LEFT PIC 	X(3).
143 05 	NEW-MASTER-RECORDS-LEFT PIC 	X(3).
144 05 	FIRST-CARD PIC X(4).
145 05 	SECOND-CARD PIC 	X(4).
146 05 	ACCT-NUM-MATCH PIC 	X(4).
147 05 	PAIR-VALIDITY PIC 	X(4).
148
149 31 LOG-HEADER-w5A1.
150 05 	FILLER PIC X(47) 	VALUE SPACES.
151 05 	FILLER PIC 	X(38)
152 VALUE 	'LOG OF ADDITIONS DELETIONS AND CHANGES'.
153 05 	FILLER PIC X(47) 	VALUE SPACES.
154
155 '6-1 '01 HEADER-wSA5.
156 •*. 05 	FILLER PIC X(51) 	VALUE SPACES
157 05 	TITLE PIC 	X(30)
158 VALUE 'CONTENTS OF CREDIT MASTER FILE'.
159 • *• 05 	FILLER PIC X(5I) 	VALUE SPACES
160 OI APPLICATION-DATA-WSB2.
161 05 	NAmE-AND-ADDRESS-WS.
162 10 	NAME-WS PIC X(20).
163 •** 10 	ADDRESS-WS.
164 15 	STREET-WS PIC X(20).
165 •• 15 	CITY-WS P/C 	X(13).
166 ••* 15 	STATE-WS PIC XX.
167 * 0 * 15 	ZIP-WS inc X(5).
168 10 	ADDRESS-wS PIC 	X(40).
169 05 	PHONE-WS 	.
170 10 	AREA--CODE-WS PIC 9(3).
171 10 	NUMBR-WS PIC X(8).
172 05 	FILLER PIC X 	VALUE SPACE.
173 05 	CHANGE-CODE-WS PIC XX.
174 05 	ACCT-NUM-WS PIC 9(6).
175 05 	CREDIT-INFO-WS.
176 10 	SEX-WS PIC X.
177 4P• 88 	MALE 	VALUE 	'N'.
178 •• 88 	FEMALE 	VALUE 'P'.
179 10 	PILLER PIC X.
180 10 	MARITAL-STATUS-WS PIC X.
181 0 • 88 	SINGLE 	VALUE 'S'.
182 88 	MARRIED 	VALUE 'M'.
183 6, 88 	DIVORCED 	VALUE 'D'.
184 s. 88 	WIDOWED 	VALUE 'W'.
185 10 	PILLER PIC X.
186 10 	NUMBER-DEPENS-WS PIC 9.
187 10 	FILLER PIC X.
188 10 	INCOME-HUNDREDS-WS PIC 8(3).
189 10 	PILLER PIC X.

Appendix A 	 A-28

190
191
192
193
194
195
196
197
198
199

*I.

••

10 	YEARS-EMPLOYED-WS
10 	FILLER
10 	OWN-OR-RENT-WS

88 	OWNED 	VALUE
88 	RENTED 	VALUE

10 	FILLER
10 	MORGAGE-OR-RENTAL-WS
10 	FILLER
10 	OTHER-PAYMENTS-WS

PIC 99.
PIC X.
PIC X.

'0'.
'R'.

PIC 	X.
PIC 	9(3).
PIC
C C)9(3).

200 01 UPDATE-MESSAGE-AREA-W532.
021 05 	UPDATE-MESSAGE-AREA PIC X(15).
2C2
203 01 CREDIT-MASTER-PRINT-LINE.
204 05 	FILLER P/C X(4) 	VALUE SPACES.
205 05 	CREDIT-MASTER-OUT PIC X(128).
206
207 01 UPDATE-RECORD-PRINT-LINE.
208 05 	FILLER PIC X(4) 	VALUE SPACES.
209 05 	APPLICATION-DATA-OUT PIC X(102).
210 35 	FILLER PIC X(4) 	VALUE SPACES.
211 D5 	MESSAGE-APEA-OUT P/C X(15).
212
213 01 DISCR-INCOME-CALC-FIELDS-WSC3.
214 05 	ANNUAL-INCOME-WS P/C 9(5).
215 05 	ANNUAL-TAX-WS PIC 9(5).
215 05 	TAX-PATE-WS P:C 9V99 	VALUE 0.25.
217 05 	MONTHS-IN-YEAR PIC 99 	VALUE 12.
2:6 05 	MDNTHLY-NET-INCOME-WS PIC 9(4).
219 05 	MONTHLY-PAYMENTS-WS PIC 9(4).
220 05 	OISCR-INCOME-W5 P/C 59(3).
221
222 01 CREDIT-LIMIT-CALC-FIELDS-WSC9.
223 05 	CREDIT-FACTOR PIC 9.
224 05 	FACTOR1 PIC 9 	VALUE 1.
225 U 5 	FACTCR2 PIC 9 	VALUE 2.
229 05 	FACTDR3 PIC 9 	VALUE 3.
227 05 	FACTDR4 PIC 9 	VALUE 4.
228 CS 	FACTORS PIC 9 	VALUE 5.
229 05 	CREDIT-LIMIT-WS PIC 9(4).
230 05 	UPPER-LIMIT-WS PIC 9(4) 	VALUE 2500.
231 •*• NEVER USED
232 "• 05 	POTAL-CREDIT-GIVEN-WS PIC 9(7).
233
234 01 ASSEMBLE-TEL-NUM-WSD1.
235 05 	TEL-NUMBR-WITH-HYPHEN
236 10 	EXCHANGE-IN PIC 9(3).
237 10 	FILLER PIC X.
238 10 	FOUR-DICIT-NUMBR-IN PIC 9(4).
239 05 	TEL-NUMBR-WITHOUT-HYPHEN.
240 10 	EXCHANGE PIC 9(3).
241 10 	FOUR-DIGIT-NUMBR PIC 9(4).
242
243 01 CARD-ERROR-LINE1-445.
244 05 	PILLER PIC X(5) 	VALUE SPACES.
245 05 	FILLER PIC X(12)
246 VALUE 'FIRST CARD 	'
247 05 	PIRST-CARD-ERR1 PIC X(4).
248 05 	FILLER PIC XX 	VALUE SPACES.
249 05 	NAME-ERR1 P/C X(20).
250 05 	ADDRESS-ERR1 PIC X(40).
251 05 	PHONE-ERR1 PIC X(11).
252 05 	FILLER PIC X(3) 	VALUE SPACES.
253 05 	ACCT-NUM-ERR1 PIC 9(5).

Appendix A 	
A-29

254
255 	01 CARD-ERROR-LINE2-VS.
256 	05 FILLER 	 PIC X(5) VALUE SPACES.
257 	05 FILLER 	 PIC X(12)
258 	 VALUE 'SECOND CARD '.
259 	05 SECOND-CARD-ERR2 	 P/C X(4).
260 	05 FILLER 	 PIC X(2) 	VALUE SPACES.
261 	05 CREDIT-INFO-ERR2 	 PIC X(80).
262 	05 MESSAGE-ERR-LINE-2 	 PIC X(29) 	VALUE SPACES.
263
264 	PROCEDURE DIVISION.
265
256 	AO-MAIN-BODY.
267 	PERFCRM Al-INITIALIZE.
269 	PERFORM A2-UPDATE-MASTER
269 	 UNTIL OLD-MASTER-RECORDS-LEFT • 'NO '
270 	 CR CARDS-LEFT • 'NO '.
271 	IF CARDS-LEFT - 'NO '
272 • 	 THERE ARE MORE OLD MASTER REC
273 	 PERFORM A3-COPY-REMAINING-OLD-MASTER
274 	 UNTIL OLD-MASTER-RECORDS-LEFT - °NO '
275 	ELSE
276 • 	 THERE ARE NO MORE CARDS, SO
277 	 PERFORM A4-ADD-REMAINING-CARDS
278 	 UNTIL CARDS-LEFT - ' NO I . .
279
280 * 	CODE TO LIST THE CONTENTS OF THE NEW MASTER HAS BEEN OMITTED.
281 • 	IT WOULD HAVE REQUIRED CLOSING THE NEW MASTER AND REOPENING
292 • 	IT FOR INPUT. THIS IS BEYOND THE ABILITIES OF CMS.1
283 • 	THE DELETION AMOUNTS TO ABOUT 20 LINES OF CODE.
284
285 	PERFORM A7-END-CF-JOD.
286 	STOP RUN.
287
288 	A1-INITIALIZE.
229 	OPEN INPUT 	APPLICATION-CARDS-FILE
290 	 CREDIT-MASTER-OLD-FILE
291 	 OUTPUT 	CREDIT-MASTER-NEW-FILE
292 	 UPDATE-LISTING.
293 *" USELESS INITIALIZATIONS RAVE BEEN COMMENTED OUT
294 •*• MOVE SPACES TC FIRST-CARD.
295 •*• MOVE SPACES TO SECOND-CARD.
296 •** MOVE SPACES TO ACCT-NUM-MATCH.
297 ••* MOVE SPACES TO PAIR-VALIDITY.
298 *** MOVE ZEROES TO ANNUAL-INCOME-WS.
299 •" MOVE ZEROES TO ANNUAL-TAX-WS.
300 *•• MOVE ZEROES TO MONTHLY-NET-INCOME-WS.
301 ••• MOVE ZEROES TO MONTHLY-PAYMENTS-WS.
302 •*• MOVE ZEROES TO DISCR-INCOME-WS.
303 ••• MOVE ZEROES TO CREDIT-FACTOR.
304 ••* MOVE ZEROES TO CREDIT-LIMIT-WS.
305 *•* MOVE ZEROES TO TOTAL-CREDIT-GIVEN-WS.
306 	MOVE 'YES' TO CARDS-LEFT.
307 	MOVE 'YES' TO NEXT-CARD-THERE.
308 	MOVE 'YES° TO OLD-MASTER-RECORDS-LEFT.
309 •* THE POLLOWINO STATEMENT WAS MOVED HERE FROM THE END OF THE
310 " PARAGRAPH, SO THAT THE HEADER WOULD BE WRITTEN BEFORE THE
311 ** FIRST LOG RECORD, IF THE FIRST CARD PAIR IS INVALID.
312 	WRITE PRINT-LINE-OUT FROM LOG-HEADER.JWSA1
313 	 AFTER ADVANCING 3 LINES.
314 	READ APPLICATION-CARDS-FILE
315 	 AT END MOVE 'NO TO NEXT-CARD-THERE.
316 	PERFORM B1-GET-A-PAIR-OF-CARDS-INTO-WS THRU B1 -EXIT.
317 • FIRST PAIR OF CARDS IN WS: FIRST CARD OF SECOND PAIR IN BUFFER

Appendix A 	 A-30

318 	READ CREDIT-MASTER-OLD-FILE
319 	 AT END MOVE 'NO ' TO OLD-MASTER-RECORDS-LEFT.
320 • FIRST OLD MASTER RECORD IS IN BUFFER
321
322 	A2-UPDATE-MASTER.
323 • BEFORE COMPARING THE UPDATE WITH THE MASTER, WE MUST CHECK
324 • THAT WE HAVE A VALID PAIR OF CARDS - IF YOUR PROGRAM DOES
325 • NOT MAKE THIS TEST, IT WILL ONLY WORK WITH VALID PAIRS OF
326 • CARDS.
327 	IF PAIR-VALIDITY • 'BAD '
328 	 PERFORM 81-GET-A-PAIR-OF-CARDS-INTO-WS THRU 81 -EXIT
329 	ELSE IF ACCT-NUM-WS IS GREATER THAN ACCT-NUM-MAS-OLD
330 • 	 ACCT-NUM-WS IS CARD ACCOUNT NUMBER
331 	 MOVE CREDIT-MASTER-OLD-RECORD TO
332 	 CREDIT-MASTER-NEW-RECORD
333 	 WRITE CREDIT-MASTER-NEW-RECORD
334 	 READ CREDIT-MASTER-OLD-FILE
335 	 AT END MOVE 'NO ' TO OLD-MASTER-RECORDS-LEFT
336 	ELSE IF ACCT-NUM-WS • ACCT-NUM-MAS-OLD
337 	 PERFORM 82-CHANCE-OR-DELETE-MASTER
338 	 PERFORM 81-GET-A-PAIR-OF-CARDS-INTO-WS THRU 81-EXIT
339 	 READ CREDIT-MASTER•OLD-FILE
340 	 AT END MOVE 'NO ' TO OLD-MASTER-RECORDS-LEFT
341 	ELSE
342 	 ACCT-NUM-WS IS LESS THAN
343 • 	 ACCT.-NUM-MAS-OLD
344 	 PERFORM 83-ADD-NEW-MASTER
345 	 PERFORM 81-GET-A-PAIR-OF-CARDS-INTO-WS THRU BI-EXIT.
346
347 	A3-COPY-REMAINING-OLD-MASTER.
345 	MOVE CREDIT-MASTER-OLD-RECORD TO
349 	 CREDIT-MASTER-NEW-RECORD
350 	WRITE CREDIT-MASTER-NEW-RECORD.
351 	READ CREDIT-MASTER-OLD-FILE
352 	 AT END MOVE 'NC ' TO OLD-MASTER-RECORDS-LEFT.
353
354 	Ad-ADD-REMAINING-CARDS.
355 	 IF PAIR-VALIDITY • 'BAD ' NEXT SENTENCE
356 	ELSE PERFORM D3-ADD-NEW-MASTER.
357 	PERFORM 91-GET-A-PAIR-OF-CARDS-INTO-WS THRU 81-EXIT.
358
359 	A7-END-OF-308.
360 	CLOSE APPLICATION-CARDS-FILE
361 	 CREDIT-MASTER-OLD-FILE
362 	 CREDIT-MASTER-NEW-FILE
363 	 UPDATE-LISTING.
364
365 	81-GET-A-PAIR-OF-CARDS-INTO-WS.
366 	IF NEXT-CARD-THERE 	'NO '
367 	 MOVE 'NO ' TO CARDS-LEFT
368 	 GO TO 81-EXIT.
369 	PERFORM Cl-EDIT-FIRST-CARD.
370 	PERFORM C2-MOVE-FIRST-CARD-TO-WS.
371 	READ APPLICATION-CARDS-FILE INTO CREDIT- INFORMATION- IN
372 	 AT END MOVE 'NO ' TO CARDS-LEFT,
373 	 MOVE SPACES TO CREDIT-INFORMATION-IN
374 	 ACCT-NUM-MATCH
375 	 MOVE 'NONE' TO SECOND-CARD
376 	 PERFORM C4-FLUSH-CARDS-TO-ERROR-LINES
377 	 GO TO 81-EXIT.
378 	PERFORM C3-EDIT-SECOND-CARD.
379 	IF (FIRST-CARD • 'GOOD')
380 	 AND (SECOND-CARD ■ 'GOOD')
381 	 AND (ACCT-NUM-MATCH ■ 'GOOD')

Appendix A 	 A-31

382 	 MOVE 'GOOD' TO PAIR-VALIDITY
383 	 MOVE CREDIT-INFO-IN TO CREDIT...WO-WS
384 	ELSE
385 	 MOVE 'BAD ' TO PAIR-VALIDITY
386 	 PERFORM C4-FLUSH-CARDS-TO-ERROR-LINES.
387 	READ APPLICATION-CARDS-FILE
388 	 AT END MOVE 'NO ' TO NEXT-CARD-THERE.
389
390 	B1-EXIT. EXIT.
391
392 	B2-CHANGE-OR-DELETE-MASTER.
393 	IF CHANGE-CODE-WS ■ 'CH'
394 	 PERFORM C5-MERGE-UPDATE-WITH-OLD-MAST
395 	 MOVE 'RECORD CHANGED' TO UPDATE-AESSAGE-AREA
396 	 PERFORM C5-LOG-ACTION
?97 	 WRITE CREDIT-MASTER-NEW-RECORD
398 	ELSE IF CHANGE-CODE-WS • 'DE'
399 • 	 CHECK IF DELETE IS VALID
400 	 IF CREDIT-INFO-WS IS EQUAL TO SPACES
401 	 MOVE 'RECORD DELETED' TO UPDATE-MESSAGE-AREA
402 	 PERFORM C6-LOG-ACTION
403 	 ELSE
404 	 MOVE 'REC NOT DELETED' TO UPDATE-MESSAGE-AREA
405 	 MOVE CREDIT-MASTER-OLD-RECORD TO
406 	 CREDIT-MASTER-NEW-RECORD
407 	 PERFORM CS-LOG-ACTION
08 	 WRITE CREDIT-MASTER-NEW-RECORD

409 	ELSE
410 	 MOVE 'BAD CHANGE CODE' TO UPDATE-MESSAGE-AREA
411 	 MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-NEW-RECORD
412 	 PERFORM C6-LOG-ACTION
413 	 WRITE CREDIT-MASTER-NEW-RECORD.
414
415 	83-ADD-NEW-MASTER.
416 	PERFORM C8-CALC-DISCRETNRY-INCOME.
417 	PERFORM C9-CALC-CREDIT-LIMIT.
428 	PERFORM CIO-ASSEMBLE-NEW-MASTER-RECORD.
419 	MOVE 'RECORD ADDED ' TO UPDATE-MESSAGE-AREA.
420 	PERFORM C6-LOG-ACTION.
421 	WRITE CREDIT-MASTER-NEW-RECORD.
422
423 	Cl-EDIT-FIRST-CARD.
424 	MOVE 'GOOD' TO FIRST-CARD.
425 	IF NAME-IN IS EQUAL TO SPACES
426 	 MOVE "" NAME MISSING " 40 ' TO NAME-IN
427 	 MOVE 'BAD ' TO FIRST-CARD,
428 	IF ADDRESS-IN IS EQUAL TO SPACES
429 	 MOVE "1 " ADDRESS MISSING *I"' TO ADDRESS-IN
430 	 MOVE 'BAD ' TO FIRST-CARD.
431 	IF PHONE-IN IS EQUAL TO SPACES
432 	 MOVE 'NO PHONE' "0 ' TO PHONE-IN
433 	 MOVE 'BAD ' TO FIRST-CARD.
434
435 C2-MOVE-FIRST-CARD-TO-WS.
436 	MOVE NAME-IN TO NAME-MS.
437 	MOVE ADDRESS-IN TO ADDRESS-WS.
438 	MOVE PHONE-IN TO PHONE-MIS.
439 	MOVE CHANGE-CODE-IN TO CHANGE-CODE-WS.
440 	MOVE ACCT-NUM-IND TO ACCT-NUM-WS.
441
442 	C3-EDIT-SECOND-CARD.
443 	MOVE 'GOOD' TO SECOND-CARD.
444 	MOVE 'GOOD' TO ACCT-NUM-MATCH.
445 	IC CARD-TYPE-IN IS NOT EQUAL TO 'C'

•

Appendix A 	 A-3 2

446 	 MOVE 'BAD • TO SECOND-CARD.
44/ 	IF ACCT-NUM-IN2 IS NOT EQUAL TO ACCT-NUM-WS
448 	 MOVE 'BAD ' TO ACCT-NUM-MATCH.
449
450 	C4-FLUSH-CARDS-TO-ERROR-LINES.
451 	MOVE FIRST-CARD TO FIRST-CARD-ERR1.
452 	MOVE NAME-WS TO NAME-ERR1.
453 	MOVE ADDRESS-WS TO ADDRESS-ERR1.
454 	MOVE PHONE-WS TO PHONE-ERR1.
455 	MOVE ACCT-NUM-WS TO ACCT-NUM-ERR1.
456 	 MOVE SECOND-CARD TO SECOND-CARD-ERR2.
45 - 	 MOVE CREDIT-INFO-WS TO CREDIT-INFO-ERR2.
458 	THE PREVIOUS LINE WAS IN ERROR (BY A SINGLE MUTATION) IN THE
459 	PUBLISHED PROGRAM. THE CORRECT STATEMENT IS:
460 	MOVE CREDIT-INFO-IN TO CREDIT-INFO-ERR2.
461 	IF ACCT-NUM-MATCH ■ 'BAD '
462 	 MOVE 'ACCOUNT NUMBERS DO NOT MATCH'
463 	 TO MESSAGE-ERR-LINE-2
464 	ELSE
4 4 5 	 MOVE SPACES TO MESSAGE-ERR-LINE-2.

••* MOVE SPACES TO PRINT-LINE-OUT.
467 	WRITE PRINT-LINE-OUT FROM CARD-ERROR-L/NE1-WS
459 	 AFTER ADVANCING 3 LINES.
469 **• MOVE SPACES TO PRINT-LINE-OUT.
4 7 0 	WRITE PRINT-LINE-OUT FROM CARD-ERROR-L/NE2-WS
471 	 AFTER ADVANCING 1 LINES.
4 7 2
4'3
4'4 	CS-MERGE-UPDATE-WITH-OLD-MAST.
475 	MOVE ACCT-NUM-MAS-OLD TO ACCT-NUM-MAS-NEW.
4'6 	MOVE NAME-AND-ADDRESS-WS TO NAME-AND-ADDRESS-MAS-NEW.
477 	 MOVE AREA-CODE-WS TO AREA-CODE-HAS-NEW.
4 - 3 	PERFORM Di-REMOVE-HYPHEN-PROM-TEL-NUM.
479 • THE SECOND INPUT CARD HAS OREDTT DATA, IF THIS HAS TO BE
420 ' UPDATED THEN THE DISCRETIONARY INCOME CALC HAS TO BE RUN
451 IF CREDIT- INFO-WS IS EQUAL TO SPACES
492 	 MOVE CREDIT-INFO-MAS-OLD TO CREDIT-INFO-MAS-NEW
492 	 MOVE ACCOUNT-INFO-MAS-OLD TO ACCOUNT-INFO-HAS-NEW
484 	ELSE
465 	 PERFORM c8-CALC-orscReTNRy-INCOME
496 	 PERFORM C9-CALC-CREDIT-LIMIT
487 	 MOVE SEX-WS 	 TO SEX-MAS-NEW
488 	 MOVE MARITAL-STATUS-WS 	TO MARITAL-STATUS-MAS-NEW
489 	 MOVE NUMBER-DEPENS-WS 	TO NUMBER-DEPENS-MAS-NEW
490 	 MOVE INCOME-HUNDREDS-WS 	TO INCOME-HUNDREDS-MAS-NEW
491 	 MOVE YEARS-EMPLOYED-WS 	TO YEARS-EMPLOYED-MAS-NEW
492 	 MOVE OWN-CR-RENT-WS 	 TO OWN-OR-RENT-MAS-NEW
493 	 MOVE MORGAGE-OR-RENTAL-WS 	TO MORGAGE.-0R-RENTAL-MAS-NEW
494 	 MOVE OTHER-PAYMENTS-WS 	TO OTHER-PAYMENTS-MAS-NEW
495 	 MOVE DISCR-INCOME.-WS 	 TO CISCR-INCOME-MAS-NEW
496 	 MOVE CREDIT-LIMIT-WS 	 TO CREDIT-LIMIT-HAS-NEW.
497 	MOVE CURRENT-BALANCE-OWING-OLD TO CURRENT-BALANCE-OWING-NEW.
498 	MOVE SPARE—CHARACTERS—OLD TO SPARE—CHARACTERS—NEW.
499
500 	C6 — LOG—ACTION.
501 	IF CHANGE—CODE—WS o 'CH'
502 • 	 WRITE OLD TAPE RECORD
503 • 	 WRITE CARD CONTENTS 4, MESSAGE
504 • 	 WRITE NEW TAPE RECORD
505 "a 	MOVE SPACES TO CREDIT—MASTER-.PRINT—LINE
506 	 MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-OUT
507 	 WRITE PRINT-LINE-OUT FROM CREDIT—MASTER—PRINT—LINE
508 	 AFTER ADVANCING 3 LINES
509 ••• 	MOVE SPACES TO UPDATE-RECORD-PRINT-LINE

Appendix A 	

A-33

510 	 MOVE APPLICATION-DATA-WS82 TO APPLICATION-DATA-OUT
511 	 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
512 	 WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE
513 	 AFTER ADVANCING 1 LINES
514 •*• 	MOVE SPACES TO CREDIT-MASTER-PRINT-LINE
515 	 MOVE CREDIT-MASTER-MEW-RECORD TO CREDIT-MASTER-OUT
516 	 WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LINE
517 	 AFTER ADVANCING 1 LINES
518 	ELSE IF CHANGE-CODE-WS ■ 'DE'
519 • 	 WRITE OLD TAPE RECORD
520 • 	 WRITE CARD CONTENTS F. MESSAGE
521 	 MOVE SPACES TO CREDIT-MASTER-PRINT-LINE
522 	 MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-OUT
523 	 WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LINE
524 	 AFTER ADVANCING 3 LINES
525 •*• 	MOVE SPACES TO UPDATE-RECORD-PRINT-LINE
526 	 MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT
527 	 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
528 	 WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE
529 	 AFTER ADVANCING 1 LINES
530 	ELSE IF CHANCE-CODE-WS 	°
531 • 	 WRITE CARDS FOR ADDITION
532 	 WRITE NEW TAPE RECORD
533 	 HOVE SPACES TO UPDATE-RECORD-PRINT-LINE
534 	 MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT
535 	 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
536 	 WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE
537 	 AFTER ADVANCING 3 LINES
538 	 MOVE SPACES TO CREDIT-MASTER-PRINT-LINE
539 	 MOVE CREDIT-MASTER-NEW-RECORD TO CREDIT-MASTER-OUT
540 	 WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LINE
541 	 AFTER ADVANCING 1 LINES
542
543 	 ELSE
544 	 WRITE CARD CONTENTS F. MESSAGE
545 	 MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT
546 	 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT
547 	 WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE
548 	 AFTER ADVANCING 3 LINES.
549
550 	C8-CALC-DISCRETNRY-INCOME.
551 	COMPUTE ANNUAL-INCOME-WS • INCOME-HUNDREDS-WS • 100.
552 	COMPUTE ANNUAL-TAX-WS 	• ANNUAL-INCOME-WS * TAX-RATE-WS.
553 	COMPUTE MONTHLY-NET-INCOME-WS ROUNDED
554 	 • (ANNUAL-INCOME-WS - ANNUAL-TAX-WS) / MONTHS-IN-YEAR.
555 	COMPUTE MONTHLY-PAYMENTS-WS • MORGAGE-OR-RENTAL-WS
556 	 .4 OTHER-PAYMENTS-WS.
557 	COMPUTE DISCR-INCOME-WS 	MONTHLY-NET-INCOME-WS
558 	 - MONTHLY-PAYMENTS-WS
559 	 ON SIZE ERROR MOVE 999 TO DISCR-INCOME-WS.
560 • 	DISCRETIONARY INCOMES OVER $999 PER MONTH ARE SET AT S999.
561
562 	C9-CALC-CREDIT-LIMIT.
563 • 	MARRIED? 	 Y Y Y Y N N N N 	THIS DECISION TABLE 	•
564 • 	OWNED? 	 Y Y N N Y Y N N 	SETS OUT COMPANY POLICY •
565 • 	2 OR MORE YEARS? Y N Y N Y N Y N 	FOR DETERMINING CREDIT *
566 • 	 LIMIT FROM DISCRETIONARY•
567 • 	CREDIT 	FACTORI 	 X X 	INCOME. FACTORI ETC ARE •
568 • 	LIMIT 	 2 	X 	X 	SET UP IN WSC9. 	 •
569 • 	MULTIPLE 	3 	 X 	 •
570 • 	OP DISCR. 	4 	X X 	 •
571 • 	INCOME 	 5 X
572 	IF MARITAL-STATUS-WS a 'M'
573 	 IF OWN-OR-RENT-WS - '0'

Appendix A 	 A-34

5 7 4
	

IF YEARS-EMPLOYED-WS IS NOT LESS THAN 02
575
	

MOVE FACTORS TO CREDIT-FACTOR
576
	

ELSE
577
	

MOVE FACTOR4 TO CREDIT-FACTOR
578
	

ELSE
579
	

IF YEARS-EMPLOYED-WS IS NOT LESS THAN 02
580
	

MOVE FACTCR4 TO CREDIT-FACTOR
581
	

ELSE
592
	

MOVE FACTOR2 TO CREDIT- FACTCR
5E1 3
	

ELSE
584
	

IF OWN-OR- -/ENT-WS ■ 'O m
585
	

IF YEARS-EMPLOYED-WS IS NOT LESS THAN 02
586
	

MOVE FACTORS TO CREDIT-FACTOR
58' 	 ELSE
588
	

MOVE FACTCR2 TO CREDIT-FACTOR
589
	

ELSE
590
	

MOVE FACTORI TO CREDIT-FACTOR.
591
	

COMPUTE CREDIT - LIMIT-WS ■ DISCR-INCOME-14S a CREDIT-FACTOR.
592
	

IF CREDIT-LIMIT-'S IS G - EATER THAN UPPER-LIMIT-WS
593
	

MOVE UPPER-LIMIT-WS TO CREDIT-LIMIT-WS.
594 ••*, ADO CREDIT-LIMIT-w5 TO TOTAL,CREDIT-GIVEN-wS.
595
536
	

C1 ASSEMBLE-NEW-MASTER-RECORD .

59'
	

MOVE ACCT-NUM-'WS TO ACCT-NUM-MAS-NEW.
598
	

MOVE NAME-AND-ADDRESS-'WS TO NAME-AND-ADDRESS-MAS-NEW.
599
	

MOVE AREA-CODE-WS TO AREA-OODE-MAS-NEW.
60
	

PERFORM DI-REMOVE-HYPHEN-FROM-TEL-NUM.
MOVE SEX-WS 	 TO SEX-MAS-NEW

€0O
	

MOVE MARITAL-STATUS-WS 	TO MARITAL-STATUS-MAS-NEW
6.03
	

MOVE NUMBER-DEPENS-W'S 	TO NUMBER-DEPENS-mAS-NEW
1).1
	

MOVE INCOME-HUNDREDS-WS 	TO INCOME-HUNCREDS-mAS-NEW
505
	

MOVE YEARS-EMPLOYED-4S 	TO YEARS-EMPLOYED-MAs-NEW
50c, 	MOVE OWN-OR-RENT-4S 	 TO '.OWN-OR-RENT-mAS-NEW
•SO7
	

MOVE mORGAGE-OR-RENTAL-WS 	TO MORGAGE-OR-RENTAL-mAS-NEw
608
	

MOVE OTHER- PAYMENTS-WS 	TO OTHER-PAYMENTS-MAS-NEW.
609
	

HOVE OISCR-/NComE-WS TO DISCR-INCOME-mAS-NEW.
5:0
	

HOVE CREDIT-LIMIT-WS TO CREDIT-LIMIT-MAS-NEW.
611
	

MOVE ZEROES TO CURRENT-BALANCE-OWING-NEW.
612
	

MOVE SPACES TO SPARE-CHARACTERS-NEW.
613
614
	

DI-REMOVE-HYPHEN-FROM-TEL-NUM.
615
	

MOVE NUMBR-WS TO TEL-NUMBR-WITH-HYPHEN
616
	

MOVE EXCW,NCE-IN TO EXCHANGE
617
	

MOVE FOUR-DIGIT-NUMBR-IN TO FOUR-DIGIT-NUMBR
618
	

MOVE TEL 	TO NUMBR-mAS-NEW.
619

Appendix B
	

B-1

Appendix B

Program B1:

The first program is written in an Algol dialect and initially

appeared in a paper by Henderson and Snowden [Henderson, 1972]. Its

intent is to read and process a string of characters that represent

a sequence of telegrams, where a telegram is any string terminated

by the keywords "ZZZZ ZZZZ." The program scans for words longer than

a fixed limit and isolates and prints each telegram along with a

count of the number of words it contains, plus an indication of the

presence or absence of over—length words. The program has also been

studied in Ledgard [Ledgard, 1973] and Gerhart and Yelowitz [Ger-

hart, 1976]. The program contains the following loop, which is

intended to insure that blank characters are skipped and that fol-

lowing the loop the variable LETTER contains a non—blank character.

WHILE input # emptystring AND FIRST(input) =
DO input := REST(input);

IF input = emptystring THEN input = READ + ";
LETTER = FIRST(input);

The WHILE loop terminates either on an empty string or on a non—

blank character. If it terminates on an empty string and the first

character in the buffer loaded by the READ instruction is blank,

LETTER can contain a blank character.

When this program is translated into Fortran and executed, the

error is not necessarily caught. The reason for this failure is not

so much a failure of mutation testing as it is of Fortran. Algol

treats strings as a basic type, whereas in Fortran they are

simulated by arrays of integers. The fact that strings are basic to

Appendix B 	 B-2

Algol means that if we were constructing a mutation system for Algol

instead of Fortran we would have to consider a different set of

mutant operators. A natural operator one would consider can be

explained by noting that blanks play a role in string processing

programs analogous to that played by zero in numbers. Hence we

might hypothesize a "blank push" operator similar to ZPUSH. If we

had such an operator, an attempt to force the expression FIRST(in-

put) to blank would certainly reveal the error.

Program B2:

The second program appears in a paper by Wirth describing the

language PL-360 [Wirth, 1968]. It is intended to take a vector of N

numbers and sort them into decreasing order. It was also studied by

Gerhart and Yelowitz [Gerhart, 1976]. As the outer loop is

incremented over the list of elements, the inner loop is designed to

find the maximum of the remaining elements and set register R3 to

the index of this maximum. If the position set in the outer loop is

indeed the maximum, then R3 will have an incorrect value and the

three assignment statements ending the loop will give erroneous

results.

Sort(R4)
For RI = 0 by 4 to N begin

RO := a(R1)
for •2 = R1 + 4 by 4 to N begin

if a(R2) > RO then begin
RO := a(R2)
R3 := R2

end
end
R2 := a(R1)
a(R1) := RO
a(R3) := R2

Appendix B 	 B-3

There are three mutants that cannot be eliminated without discover-

ing this error. The first two change the statement RO := A(R1) into

RO := A(R1)-1 and RO := -ABS(A(R1)). The third mutant changes the

statement into A(R1) := A(R3). We leave it as an exercise to verify

that none of these mutants can be eliminated without discovering the

error.

Program B3:

The third program is written in Fortran and computes the total.

average, minimum, maximum, and standard deviation for each variable

in an observation matrix. 	The program is adapted from the IBM

scientific subroutines package [IBM, 19661. 	It was analyzed and

three artificial errors were inserted in a study by Gould and

Drongowski [Gould, 19741]. As in the study by Rowden [Bowden, 1978]

we considered only one of these errors. It occurs in a loop that

computes standard deviations. The program has the statement

SD(I) = SQRT(ABSUSD(I) - (TOTAL(I)*TOTAL(I))/SCNT)/SCNT - 1

A pair of parentheses has been left off the final SCNT - 1 expres-

sion. Let x stand for the quantity

ABS(SD(I) - (TOTAL(I)*TOTAL(I))/SCNT)

The correct standard deviation is SQRT(X/(SCNT-1)). 	The only way

this can be made zero is for X to be zero. But the program contain-

ing the error computes the standard deviation as SQRT(1-X/SCNT). If

X is zero this quantity is 1; hence the standard deviation is wrong.

Appendix B 	 B-4

Or if the incorrect expression is forced to be zero, then the

correct standard deviation should be greater than one. Hence by

forcing the standard deviation in this line to be zero the error is

easily revealed.

Program B4:

The fourth program appeared in an article by Geller in the

Communications of the ACM [Geller, 1978]. The program contains a

predicate that decides whether a year is a leap year. In the paper

this predicate is given as

((YEAR REM 4 = 0) OR
(YEAR REM 100 = 0 AND YEAR REM 400 = 0))

when the correct predicate is

((YEAR REM 4 = 0 AND YEAR REM 100 # 0) OR
(YEAR REM 400 = 0))

If YEAR is divisible by 400 then it must also be divisible by 100.

In the incorrect predicate, therefore, the second part of the OR

clause is true if and only if YEAR REM 400 is true. If a branch

analysis method attempts to follow all the "hidden paths" [DeMillo,

1978a], the error will be discovered when an attempt is made to make

YEAR REM 400 true and YEAR REM 100 false. With mutation analysis

the error is discovered when we replace YEAR REM 100 with TRUE.

Program BS:

Appendix B 	 B-5

The fifth program computes the Euclidean greatest common

divisor of a vector of integers. It appeared in an article by Brad-

ley in the Communications of the ACM [Bradley, 1970]. The program

contains the following four errors: (1) If the last input number is

the only non—zero number and it is negative, then the greatest com-

mon divisor returned is negative. (2) If the greatest common

divisor is not 1, then a loop index is used after the loop has com-

pleted normally, which is an error according to the Fortran stan-

dard. (3,4) There arc two DO loops for which it is possible to

construct data so that the upper limit is less than the lower limit,

which causes the program to produce incorrect results since Fortran

DO loops always execute at least once. None of the errors is caught

using branch analysis. All are caught with mutation analysis.

The next three programs are adapted from the IBM Scientific

Subroutines Package [IBM. 1966]. In each program three errors were

artificially inserted in a study conducted by Gould and Drongowski

[Gould, 1974].

Program B6:

The first program computes the first four moments of a vector

of observations. One of the errors would be detected using branch

analysis, the other two can be overlooked. All three errors would

be discovered using mutation analysis.

Program B7:

Appendix B
	

B-6

The second program computes statistics from an observation

table. Again, one error would be discovered using branch analysis

but all three errors are discovered with mutation analysis.

Program B8:

The third program computes correlation coefficients. 	Two of

the errors are detected with branch analysis; all three are detected

with mutation analysis.

Program B9:

The next program takes three sides of a triangle and decides

whether it is isosceles, scalene, or equilateral. It first appeared

in a paper by Brown and Lipow [Brown, 1975]. Lipton and Sayward

[Lipton, 1978] describe a bug where two occurrences of the constant

2 are replaced with the variable k. This bug is very subtle, but it

can be detected with the test case 6,3,3. Neither branch analysis

nor mutation analysis would force the discovery of this error.

Program B10:

The tenth program is the FIND program from an article by C.A.R.

Hoare [Hoare, 1961]. The bug has been studied by the group develop-

ing the SELECT symbolic execution system [Boyer, 1975]. The bug is

very subtle and neither branch analysis nor mutation analysis would

guarantee its discovery. This bug was, however, easily discovered

by mutation analysis (in the normal debugging situation) during some

early experiments on the coupling effect [Benno, 1978a].

Appendix B
	

B-7

Program B11:

This program, also written in Algol, appeared in a paper by

Naur [Nauer, 19691 and has also been studied widely [Foster, 1978],

[Gerhart, 1976], [Goodenough, 1975]. The program is intended to

read a string of characters consisting of words separated by blanks

or newline characters or both, and to output as many words as pos-

sible with a blank between every pair of words. There is a fixed

limit on the size of each output line, and no word can be broken

between two lines. The version studied here is that of Gerhart and

Yelowitz [Gerhart, 1976], containing five errors. Three of these

(1, 3, and 4 in the numbering of [Gerhart, 1976]) are caught by

mutation analysis.

Program B12:

This program maintains a stack. The user can select to enter

data on the stack (PUSH), remove information from the stack (POP),

examine the topmost stack element (TOP), or initialize the stack

(CLEAR).

Appendix C
	

C-1

Appendix C

LISTING THE PROGRAM UNIT "MOVENW 	" WITH SPECIFIED EQUIV MUTANTS

SUBROUTINE MOVENW(SOURCE,SLEN,DEST,DLEN)
INTEGER MLEN, K, SUB2, SULU, LOOPHI, I, IHI, IER
INTEGER STMT(3,10), CODE(30), SYMTAB(10,9)
CHAR MEMORY(425)
INTEGER DLEN, DEST, SLEN, SOURCE
INPUT OUTPUT IER, MEMORY
INPUT DLEN, DEST, SLEN, SOURCE
MLEN = DLEN
	

1

t7551 MLEN = ABS DLEN
1757$ MLEN = ZPUSH DLEN

IF(SLEN .LT. MLEN) MLEN = SLEN 	 2 3

t43t IF(SLEN .LT. DLEN) MLEN = SLEN
1630t IF(-- SLEN .LT. MLEN) MLEN = SLEN
i632t IF(SLEN .LT. ++ MLEN) MLEN = SLEN
t727t IF(SLEN .LE. MLEN) MLEN = SLEN
0581 IF(ABS SLEN .LT. MLEN) MLEN = SLEN
t7601 IF(ZPUSH SLEN .LT. MLEN) MLEN = SLEN
t761t IF(SLEN .LT. ABS MLEN) MLEN = SLEN
t763t IF(SLEN .LT. ZPUSH MLEN) MLEN = SLEN
1764t IF(SLEN .LT. MLEN) MLEN = ABS SLEN
$7661 IF(SLEN .LT. MLEN) MLEN = ZPUSH SLEN

LOOPHI = (DEST + MLEN) - 1

t7671 LOOPHI = (ABS DEST + MLEN) - 1
t769t LOOPHI = (ZPUSH DEST + MLEN) - 1
$770 LOOPHI = (DEST + ABS MLEN) - 1
t772t LOOPHI = (DEST + ZPUSH MLEN) - 1
*773t LOOPHI = ABS (DEST + MLEN) - 1
*775t LOOPHI = ZPUSH (DEST + MLEN) - 1
t776t LOOPHI = ABS ((DEST + MLEN) - 1)
i778i LOOPHI = ZPUSH ((DEST + }LEN) - 1)

SUB2 = SOURCE - 1 	 5

t7791 SUB2 = ABS SOURCE - 1
$781t SUB2 = ZPUSH SOURCE - 1
t782t SUB2 = ABS (SOURCE - 1)
784 SUB2 = ZPUSH (SOURCE - 1)

DO 20 SUB1=DEST, LOOPHI 	 6

1785t DO 20 SUB1=ABS DEST, LOOPHI
t787$ DO 20 SUB1=ZPUSH DEST, LOOPHI

Appendix C 	 C-2

t788t DO 20 SUB1=DEST, ABS LOOPHI
t790t DO 20 SUB1=DEST, ZPUSH LOOPHI
t892t FOR 20 SUB1=DEST, LOOPHI

SUB2 = SUB2 + 1 	 7

t791t SUB2 = ABS SUB2 + 1
t793t SUB2 = ZPUSH SUB2 + 1
t794t SUB2 = ABS (SUB2 + 1)
$796t SUB2 = ZPUSH (SUB2 + 1)

K = MEMORY(SUB2) 	 8

t797t K = MEMORY(ABS SUB2)
i799t K = MEMORY(ZPUSH SUB2)

IF(K .EQ. '#') IER = 4 	 9 10

i554t IF(MEMORY(SUB2) .EQ. '#') IER = 4
$800t IF(ABS K .EQ. '#') IER = 4
t802t IF(ZPUSH K .EQ. '#') IER = 4

20 	MEMORY(SUB1) = K 	 11

i559t MEMORY(SUB1) = MEMORI(SUB2)
$803t MEMORY(ABS SUB1) = K
i805t MEMORY(ZPUSH SUB1) = K
t808t MEMORY(SUB1) = ZPUSH K

IF(IER .NE. 0) COTO 9999 	 12 13

t7451. IF(IER .GT. 0) GOTO 9999
876 IF(IER .NE. 0) RETURN

IF(DLEN .LE. MLEN) GOTO 9999 	 14 15

t254t IF(DLEN .LE. SLEN) GOTO 9999
t749t IF(DLEN .EQ. MEN) GOTO 9999
t80921 IF(ABS DLEN .LE. MLEN) GOTO 9999
t811t IF(ZPUSII DLEN .LE. MLEN) GOTO 9999
t812t IF(DLEN .LE. ABS MLEN) GOTO 9999
814 IF(DLEN .LE. ZPUSH MLEN) GOTO 9999
t878t IF(DLEN .LE. MLEN) RETURN

I = LOOPIII + 1 	 16

t8154 I = ABS LOOPHI + 1
t817t I = ZPUSH LOOPIII + 1
t818i I = ABS (LOOPHI + 1)
$820t I = ZPUSH (LOOPHI + 1)

LOOPHI = (DEST + DLEN) - 1 	 17

t821t LOOPHI = (ABS DEST + DLEN) - 1
t823$ LOOPHI = (ZPUSH DEST + DLEN) - 1
t824t LOOPHI = (DEST + ABS DLEN) - 1

Appendix C 	 C-3

i826i LOOPHI = (DEST + ZPUSH DLEN) - 1
827 LOOPHI = ABS (DEST + DLEN) - 1
i829i LOOPHI = ZPUSH (DEST + DLEN) - 1
830 LOOPHI = ABS ((DEST + DLEN) - 1)
i832i LOOPHI = ZPUSH ((DEST + DLEN) - 1)

DO 30 SUB1=I, LOOPHI 	 18

i833i DO 30 SUB1=ABS I, LOOPHI
835 DO 30 SUB1=ZPUSH I, LOOPHI
836 DO 30 SUB1=I, ABS LOOPHI
i838i DO 30 SUB1=I, ZPUSH LOOPHI
891 DO 9999 SUB1=I, LOOPHI
893 FOR 30 SUB1=I, LOOPHI

30 	MEMORY(SUB1) = ' 	 19

*8391 MEMORY(ABS SUB1) = "
841 MEMORY(ZPUSH SUB1) = '

9999 CONTINUE 	 20

i883i RETURN

RETURN
	

21
END

MUTANT STATE FOR MOVENW

FOR EXPERIMENT "MOVENW 	" THIS IS RUN 	7

NUMBER OF TEST CASES = 11

NUMBER OF MUTANTS = 	893
NUMBER OF DEAD MUTANTS =

	
821 (91.9%)

NUMBER OF LIVE MUTANTS = 	0 (0.0%)
NUMBER OF EQUIV MUTANTS = 	72 (8.1%)

NUMBER OF MUTANTS WHICH DIED BY NON STANDARD MEANS 313
NORMALIZED MUTANT RATIO 821.0%
NUMBER OF MUTATABLE STATEMENTS = 	21
GIVING A MUTANTS/STATEMENT RATIO OF 	42.52

NUMBER OF DATA REFERENCES = 	48
NUMBER OF UNIQUE DATA REFERENCES = 	16

ALL MUTANT TYPES HAVE BEEN ENABLED

LISTING THE PROGRAM UNIT "MOVENM 	" WITH SPECIFIED EQUIV MUTANTS

SUBROUTINE MOVENM(SOURCE,SLEN,SDEC,DEST,DLEN,DDEC,TYPPE)
LOGICAL NEGNO

Appendix C 	 C-4

INTEGER X(5), PTNEGD, PTNEGS, K, SUB2, SUB1, LOOPHI, LEND
INTEGER LENS, I, IHI, DDECPT, SDECPT, IER, STMT(3,10)
INTEGER CODE(30), SYMTAB(10,9)
CHAR MEMORY(425)
INTEGER TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE
INPUT OUTPUT IER, MEMORY
INPUT TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE
PTNEGS = (SOURCE + SLEN) - 1
	

23

14650t PTNEGS = (ABS SOURCE + SLEN) - 1
t4652t PTNEGS = (ZPUSH SOURCE + SLEN) - 1
t4653t PTNEGS = (SOURCE + ABS SLEN) - 1
t4655t PTNEGS = (SOURCE + ZPUSH SLEN) - 1
14656$ PTNEGS = ABS (SOURCE + SLEN) - 1
t4658t PTNEGS = ZPUSH (SOURCE + SLEN) - 1
$4659t PTNEGS = ABS ((SOURCE + SLEN) - 1)
t4661t PTNEGS = ZPUSH ((SOURCE + SLEN) - 1)

PTNEGD = (DEST + DLEN) - 1 	 24

t46621 PTNEGD = (ABS DEST + DLEN) - 1
4664 PTNEGD = (ZPUSH DEST + DLEN) - 1
t4665t PTNEGD = (DEST + ABS DLEN) - 1
t4667t PTNEGD = (DEST + ZPUSH DLEN) - 1
t4668t PTNEGD = ABS (DEST + DLEN) - 1
$4670t PTNEGD = ZPUSH (DEST + DLEN) - 1
t4671i PTNEGD = ABS ((DEST + DLEN) - 1)
t4673t PTNEGD = ZPUSH ((DEST + DLEN) - 1)

CALL UNPACK(MEMORY(PTNEGS),X,5) 25

t46741 CALL UNPACK(MEMORY(ABS PTNEGS),X,5)
t4676t CALL UNPACK(MEMORY(ZPUSH PTNEGS),X,5)

NEGNO = X(2) 	.EQ. 26

t4545 ► NEGNO = X(2) 	.GE.
t4677t NEGNO = ABS X(2) 	.EQ.
$4679t NEGNO = ZPUSH X(2) 	.EQ.

X(2) = " 27
IF(NEGNO) CALL PACK(X,MEMORY(PTNEGS),5) 28 29

t4680$ IF(NEGNO) CALL PACK(X,MEMORY(ABS PTNEGS),5)
t4682t IF(NEGNO) CALL PACK(X,MEMORY(ZPUSH PTNEGS),5)

LENS = SLEN - SDEC 30

t4683t LENS = ABS SLEN - SDEC
$4685t LENS = ZPUSH SLEN - SDEC
t46861 LENS = SLEN - ABS SDEC
$4689t LENS = ABS (SLEN - SDEC)

LEND = DLEN - DDEC 31

t4692t LEND = ABS DLEN - DDEC

Appendix C

146941 	LEND = ZPUSII DLEN - DDEC
146951 	LEND = DLEN - ABS DDEC
146981 	LEND = ABS (DLEN - DDEC)

SDECPT = SOURCE + LENS

147011 	SDECPT = ABS SOURCE + LENS
147031 	SDECPT = ZPUSH SOURCE + LENS
147041 	SDECPT = SOURCE + ABS LENS
147071 	SDECPT = ABS (SOURCE + LENS)

C-5

32

147091 SDECPT = ZPUSH (SOURCE + LENS)

DDECPT = DEST + LEND 33

147101 DDECPT = ABS DEST + LEND
147121 DDECPT = ZPUSH DEST + LEND
147131 DDECPT = DEST + ABS LEND
147161 DDECPT = ABS (DEST + LEND)
$47181 DDECPT = ZPUSH (DEST + LEND)

SUB1 = DDECPT - 1 34

147191 SUB1 = ABS DDECPT - 1
147211 SUB1 = ZPUSH DDECPT - 1
147221 SUB1 = ABS (DDECPT - 1)
147241 SUB1 = ZPUSH (DDECPT - 1)

IF(SDEC .EQ. 0 	.OR. DDEC .EQ. 0) GOTO 22 35 36

145501 IF(SDEC .LE. 0 .OR. DDEC .EQ. 0) GOTO 22
145571 IF(SDEC .EQ. 0 .OR. DDEC .LE. 0) GOTO 22

IHI = (SDEC + SDECPT) - 1 37

147251 IHI = (ABS SDEC + SDECPT) - 1
147271 IHI = (ZPUSH SDEC + SDECPT) - 1
147281 IHI = (SDEC + ABS SDECPT) - 1
147301 IHI = (SDEC + ZPUSH SDECPT) - 1
147311 IEI = ABS (SDEC + SDECPT) - 1
147331 IHI = ZPUSH (SDEC + SDECPT) - 1
147341 IHI = ABS ((SDEC + SDECPT) - 1)
147361 IHI = ZPUSII ((SPEC + SDECPT) - 1)

IF(DDEC .LE. SDEC) IHI = (DDEC + SDECPT) - 1 38 39

143001 IF(++ DDEC .LE. SPEC) IHI = (DDEC + SDECPT) - 1
145631 IF(DDEC .LT. SDEC) IHI = (DDEC + SDECPT) - 1
147371 IF(ABS DDEC .LE. SDEC) EBI = (DDEC + SDECPT) - 1
147391 IF(ZPUSH DDEC .LE. SDEC) IHI = (DDEC + SDECPT) - 1
147401 IF(DDEC .LE. ABS SPEC) IHI = (DDEC + SDECPT) - 1
147421 IF(DDEC .LE. ZPUSH SDEC) IHI = (DDEC + SDECPT) - 1
147431 IF(DDEC .LE. SDEC) IHI = (ABS DDEC + SDECPT) - 1
147451 IF(DDEC .LE. SDEC) IHI = (ZPUSH DDEC + SDECPT) - 1
147461 IF(DDEC .LE. SDEC) PHI = (DDEC + ABS SDECPT) - 1
$47481 IF(DDEC .LE. SDEC) IHI = (DDEC + ZPUSH SDECPT) - 1

4 MORE

Appendix

4755
$4757i

C C-6

40 DO 20 SUB2=SDECPT, IHI

DO 20 SUB2=ABS SDECPT, IHI
DO 20 SUB2=ZPUSH SDECPT, IHI

$4758i DO 20 SUB2=SDECPT, ABS IHI
4760 DO 20 SUB2=SDECPT, ZPUSH IHI
5092 FOR 20 SUB2=SDECPT, IHI

SUB1 = SUB1 + 1 41

4761 SUB1 = ABS SUB1 + 1
4763 SUB1 = ZPUSH SUB1 + 1
4764 SUB1 = ABS (SUB1 + 1)
4766 SUB1 = ZPUSH (SUB1 + 1)

K = MEMORY(SUB2) 42

$47671 K = MEMORY(ABS SUB2)
4769 K = MEMORY(ZPUSH SUB2)

IF(K .EQ. 	'#') 	IER = 4 43 44

$2242t IF(K .EQ. 	'#') IER = DLEN
2244 IF(K .EQ. 	'#') 	IER = LENS
$2245t IF(K .EQ. 	'#') 	IER = SDEC
2247 IF(K *EQ. 	'#') 	IER = DDEC
3467 IF(MEMORY(SUB2) 	.EQ. 	'#') 	IER = 4
4770 IF(ABS K .EQ. 	'#') 	IER = 4
t4772t IF(ZPUSH K .EQ. 	'#') 	IER = 4

20 	MEMORY(SUB1) = K 	 45

3484 MEMORY(SUB1) = MEMORY(SUB2)
4773 MEMORY(ABS SUB1) = K
4775 MEMORY(ZPUSH SUB1) = K
4776 MEMORY(SUB1) = ABS K
$4778t MEMORY(SUB1) = ZPUSH K

IF(IER .NE. 0) GOTO 50 	 46 47

4581 IF(IER .GT. 0) GOTO 50
5026 IF(IER .NE. 0) GOTO 40

22 	IF(DDEC .LE. SDEC) GOTO 30 	 48 49

$4779t IF(ABS DDEC .LE. SDEC) GOTO 30
4782 IF(DDEC .LE. ABS SDEC) GOTO 30

I = SUB1 + 1 	 50

$4785i I = ABS SUB1 + 1
4787 I = ZPUSH SUB1 + 1
4788 I = ABS (SUB1 + 1)
4790 I = ZPUSH (SUB1 + 1)

Appendix C 	 C-7

IHI = (DEST + DLEN) — 1

147911 IRI = (ABS DEST + DLEN) — 1
t4793t IHI = (ZPUSH DEST + DLEN) - 1
$47941 IHI = (DEST + ABS DLEN) - 1
147964 IHI = (DEST + ZPUSH DLEN) — 1
t4797t IHI = ABS (DEST + DLEN) — 1
t4799t IHI = ZPUSH (DEST + DLEN) — 1
14800t IHI = ABS ((DEST + DLEN) — 1)
$48021 IHI = ZPUSH ((DEST + DLEN) — 1)

DO 25 SUB1=I, IHI

111681 DO 25 SUB1=I, PTNEGD
t4803t DO 25 SUB1=ABS I, IHI
t4805t DO 25 SUB1=ZPUSH I, EHI
4806 DO 25 SUB1=I, ABS LEI
t4808t DO 25 SUB1=I, ZPUSH IHI
t5073t DO 30 SUB1=I, IHI
t50931 FOR 25 SUB1=I, IHI

25 	MEMORY(SUB1) = '0'

t4809t MEMORY(ABS SUB1) = '0'
148111 MEMORY(ZPUSH SUB1) = '0'

30 	LOOPHI = LEND

148121 LOOPHI = ABS LEND

IF(LENS .LE. LEND) LOOPHI = LENS

51

52

53

54

55 56

112831
t4359t
145911
t4R15$
$48181
$4821t

IF(LENS .LE.
IF(++ LENS .
IF(LENS .LT.
IF(ABS LENS
IF(LENS .LE.
IF(LENS .LE.

LOOPHI) LOOPHI = LENS
LE. LEND) LOOPHI = LENS
LEND) LOOPHI = LENS
.LE. LEND) LOOPHI = LENS
ABS LEND) LOOPHI = LENS
LEND) LOOPHI = ABS LENS

SUB1 = DDECPT

$48241 SUB1 = ABS DDECPT
t4 826$ SUB1 = ZPUSH DDECPT

SUB2 = SDECPT

t4827$ SUB2 = ABS SDECPT
$48291 SUB2 = ZPUSH SDECPT

IF(LEND .EQ. 0) GOTO 50

t2338t IF(LEND .EQ. IER) GOTO 50
145991 IF(LEND .LE. 0) GOTO 50

57

58

59 60

IF(LENS .EQ. 0) GOTO 41 	 61 62

Appendix C 	 C-8

114431 IF(LOOPHI .EQ. 0) GOTO 41
146061 IF(LENS .LE. 0) GOTO 41

DO 40 1=1, LOOPHI 	 63

114461 DO 40 SOURCE=1, LOOPHI
114471 DO 40 SLEN=1, LOOPHI
114501 DO 40 DLEN=1, LOOPHI
114531 DO 40 SDEC=1, LOOPHI
114551 DO 40 DDEC=1, LOOPHI
$1456t DO 40 SDECPT=1, LOOPHI
114571 DO 40 DDECPT=1, LOOPHI
114591 DO 40 E1I=1, LOOPHI
114611 DO 40 K=1, LOOPHI
$14631 DO 40 LOOPIII=1, LOOPHI

*4 MORE

SUB1 = SUB1 - 1 	 64

t48331 SUB1 = ABS SUB1 - 1
148351 SUB1 = ZPUSH SUB1 - 1
t48361 SUB1 = ABS (SUB1 - 1)
148381 SUB1 = ZPUSH (SUB1 - 1)

SUB2 = SUB2 - 1 	 65

148391 SUB2 = ABS SUB2 - 1
148411 SUB2 = ZPUSH SUB2 - 1
148421 SUB2 = ABS (SUB2 - 1)
t48441 SUB2 = ZPUSH (SUB2 - 1)

K = MEMORY(SUB2) 	 66

148451 K = MEMORY(ABS SUB2)
148471 K = MEMORY(ZPUSH SUB2)

IF(K .E0. '#') IER = 4 	 67 68

136701 IF(MEMORY(SUB2) .EQ. '#') IER = 4
148481 IF(ABS K .EQ. '#') IER = 4
148501 IF(ZPUSH K .EQ. 	IER = 4

40 	MEMORY(SUB1) = K 	 69

136881 MEMORY(SUB1) = MEMORY(SUB2)
$4851/ MEMORY(ABS SUB1) = K
$48531 MEMORY(ZPUSH SUB1) = K
148561 MEMORY(SUB1) = ZPUSH K

IF(IER .NE. 0) GOTO 50 	 70 71

146231 IF(IER .GT. 0) GOTO 50
150501 IF(IER .NE. 0) GOTO 20

IF(LEND .LE. LENS) GOTO 50 	 72 73

Appendix C 	 C-9

i1743t IF(LEND .LE. LOOPHI) GOTO 50
$4 857$ IF(ABS LEND .LE. LENS) GOTO 50
$4859t IF(ZPUSH LEND .LE. LENS) GOTO 50
t4860t IF(LEND .LE. ABS LENS) GOTO 50
t4862$ IF(LEND .LE. ZPUSH LENS) GOTO 50

41 	IHI = SUB1 - 1 	 74

t4863$ IHI = ABS SUB1 - 1
t4865t IHI = ZPUSH SUB1 - 1
$4866t IHI = ABS (SUB1 - 1)
t4868t IHI = ZPUSH (SUB1 - 1)

DO 45 I=DEST, IHI 	 75

t4869t DO 45 I=ABS DEST, IHI
t4871$ DO 45 I=ZPUSH DEST, IHI
t4872t DO 45 I=DEST, ABS IHI
$4874t DO 45 I=DEST, ZPUSH IHI
t5091i DO 50 I=DEST, IIII
t5095t FOR 45 I=DEST, IHI

45 	MEMORY(I) = '0' 	 76

t4875t MEMORY(ABS I) = '0'
$4877t MEMORY(ZPUSII I) = '0'

50 	X(2) = '-' 	 77
IF(NEGNO) CALL PACK(X,MEMORY(PTNEGS),5) 	 78 79

t4878t IF(NEGNO) CALL PACK(X,MEMORY(ABS PTNEGS),5)
t4880t IF(NEGNO) CALL PACK(X,MEMORY(ZPUSH PTNEGS),5)

IF(.NOT. (NEGNO .AND. TYPPE .E0. 2)) RETURN 	 80 81

$4881t IF(.NOT. (NEGNO .AND. ABS TYPPE .EQ. 2)) RETURN
4883 IF(.NOT. (NEGNO .AND. ZPUSH TYPPE .EQ. 2)) RETURN

CALL UNPACK(MEMORY(PTNEGD),X,5) 	 82

i57$ CALL UNPACK(MEMORY(PTNEGD),X,4)
t2560t CALL UNPACK(MEMORY(PTNEGD),X,SDEC)
t2572$ CALL UNPACK(MMORY(PTNEGD),X,TYPPE)
t3015t CALL UNPACK(MEMORY(PTNEGD),X,1)
t3016t CALL UNPACK(MEMORY(PTNEGD),X,2)
t48841 CALL UNPACK(MEMORY(ABS PTNEGD),X,5)
t4886$ CALL UNPACK(MMORY(ZPUSH PTNEGD),X,5)

X(2) = 	 83

t2593$ X(TYPPE) = '

CALL PACK(X,MEMORY(PTNEGD),5)
	

84

t4887t CALL PACK(X,MEMORY(ABS PTNEGD),5)
t4889$ CALL PACK(X,MEMORY(ZPUSH PTNEGD),5)

Appendix C
	

C-10

RETURN
END

MUTANT ELIMINATION PROFILE FOR MOVENM

MUTANT TYPE 	 TOTAL DEAD LIVE EQUIV

85

CONSTANT REPLACEMENT 64 63 	98.4% 0 0.0% 1 1.6%
SCALAR VARIABLE REPLACEME 1920 1906 	99.3% 0 0.0% 14 0.7%
SCALAR FOR CONSTANT REP. 630 622 	98.7% 0 0.0% 8 1.3%
CONSTANT FOR SCALAR REP. 331 331 100.0% 0 0.0% 0 0.0%
SOURCE CONSTANT REPLACEME 102 100 	98.0% 0 0.0% 2 2.0%
ARRAY REF. FOR CONSTANT R 179 179 100.0% 0 0.0% 0 0.0%
ARRAY REF. FOR SCALAR REP 547 543 	99.3% 0 0.0% 4 0.7%
COMPARABLE 	ARRAY NAME RE 40 40 100.0% 0 0.0% 0 0.0%
CONSTANT FOR ARRAY REF RE 40 40 100.0% 0 0.0% 0 0.0%
SCALAR FOR ARRAY REF REP. 315 315 100.0% 0 0.0% 0 0.0%
ARRAY REF. FOR ARRAY REF. 75 75 100.0% 0 0.0% 0 0.0%
UNARY OPERATOR INSERTION 191 189 	99.0% 0 0.0% 2 1.0%
ARITHMETIC OPERATOR REPLA 107 107 100.0% 0 0.0% 0 0.0%
RELATIONAL OPERATOR REPLA 98 89 	90.8% 0 0.0% 9 9.2%
LOGICAL CONNECTOR REPLACE 10 10 100.0% 0 0.0% 0 0.0%
ABSOLUTE VALUE INSERTION 240 93 	38.8% 0 0.0% 147 61.3%
STATEMENT ANALYSIS 29 29 100.0% 0 0.0% 0 0.0%
STATEMENT DELETION 35 35 100.0% 0 0.0% 0 0.0%
RETURN STATEMENT REPLACEM 61 61 100.0% 0 0.0% 0 0.0%
GOTO STATEMENT REPLACEMEN 49 47 	95.9% 0 0.0% 2 4.1%
DO STATEMENT END REPLACEM 32 25 	78.1% 0 0.0% 7 21.9%

MUTANT STATE FOR MOVENM

FOR EXPERIMENT "MOVENM 	" THIS IS RUN 22

NUMBER OF TEST CASES = 41

NUMBER OF MUTANTS = 5095
NUMBER OF DEAD MUTANTS = 4899 (96.2%)
NUMBER OF LIVE MUTANTS = 0 (0.0%)
NUMBER OF EQUIV MUTANTS = 196 (3.8%)

NUMBER OF MUTANTS WHICH DIED BY NON STANDARD MEANS 2206
NORMALIZED MUTANT RATIO *****%
NUMBER OF MUTATABLE STATEMENTS = 	63
GIVING A MUTANTS/STATEMENT RATIO OF 	80.87

NUMBER OF DATA REFERENCES = 	158
NUMBER OF UNIQUE DATA REFERENCES = 	32

ALL MUTANT TYPES HAVE BEEN ENABLED

Appendix D
	

D-1

Appendix D

LISTING THE PROGRAM UNIT "MOVEED

SUBROUTINE MOVEED(SOURCE,SLEN,SDEC,DEST,DLEN,PLFN,PDIG,PDEC,
* PIC,IER)

LOGICAL SUPRES, NEGNO
INTEGER X(5), SUB2, SUB1, IHI, PLDIG, IVAR, I, SCOUNT, DESTHI
INTEGER CHAR, PDIGLN, SDIG, SARRAY(50), PICST, DDEC
INTEGER STMT(3,10), CODE(30), SYMTAB(10,9)
CHAR MEMORY(310)

5

INTEGER IER
CHAR PIC(10)
INTEGER PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE
INPUT OUTPUT MEMORY, IER
INPUT PIC, PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE
SUPRES = .TRUE.
DO 5 I=1, PLEN
SARRAY(I) = '0'

87
88
89

PLDIG = PDIG - PDEC 90
SDIG = SLEN - SDEC 91
IF(SDEC .EQ. 0) GOTO 11 92 93
SUB1 = PLDIG 94
SUB2 = (SOURCE + SDIG) - 1 95
DO 10 I=1, SDEC 96
SUB1 = SUB1 + 1 97
SUB2 = SUB2 + 1 98
IF(MEMORY(SUB2) 	.EQ. 	'#') 	IER = 4 99 100

10 SAREAY(SUB1) = MEMORY(SUB2) 101
IF(IER .NE. 0) GOTO 101 102 103

11 IF(SDIG .E0. 0 .OR. PLDIG .EQ. 0) GOTO 16 104 105
IHI = PLDIG 106
IF(SDIG .LT. PLDIG) IHI = SDIG 107 108
SUB1 = PLDIG + 1 109
SUB2 = SOURCE + SDIG 110
DO 15 I=1, IHI 111
SUB1 = SUB1 - 1 112
SUB2 = SUB2 - 1 113
IF(MEMORY(SUB2) 	.EQ. 	'#') 	IER = 4 114 115

15 SARRAY(SUD1) = MEMORY(SUB2) 116
IF(IER .NE. 0) GOTO 101 117 118

16 SUB1 = (SOURCE + SLEN) - 1 119
CALL UNPACK(MEMORY(SUB1),X,2) 120
NEGNO = X(2) 	.EQ. 121
SUB1 = DEST 122
SCOUNT = 0 123
DO 100 I=1, PLEN 124
SUB1 = SUB1 + 1 125
IF(SUB1 .GT. DLEN + DEST) GOTO 101 126 127
CHAR = PIC(I) 128
IF(PIC(I) 	.EQ. 	'9') 	SUPRES = .FALSE. 129 130
IF(SARRAY(SCOUNT + 1) 	.NE. 	'0') SUPRES = .FALSE. 131 132
IF(CHAR .NE. 	'-') GOTO 20 133 134
LEMORY(SUD1 - 1) = ' 135
IF(NEGNO) MEMORY(SUB1 - 1) = 136 137

Appendix D

IF(I .EQ. 1) GOTO 100
SCOUNT = SCOUNT + 1
IF(.NOT. SUPRES) GOTO 99
IF(MEMORY(SUB1 — 2) 	.EQ. 	'—') MEMORY(SUB1 — 2)
GOTO 100

D-2

=

138 139
140

141 142
143 144

145
20 IF(CIIAR .NE. 	'+') GOTO 30 146 147

IF(NEGNO) MEMORY(SUB1 — 1) = 148 149
IF(.NOT. NEGNO) MEMORY(SUB1 — 1) = '+' 150 151
IF(I .EQ. 1) GOTO 100 152 153
SCOUNT = SCOUNT + 1 154
IF(.NOT. SUPRES) GOTO 99 155 156
IF(MEMORY(SUB1 — 2) 	.EQ. 	'+') MEMORY(SUB1 — 2) = 157 158
IF(MEMORY(SUB1 — 2) 	.EQ. 	MEMORY(SUB1 — 2) - 159 160
GOTO 100 161

30 IF(CHAR .NE. 	'i') GOTO 40 162 163
MEMORY(SUB1 — 1) = ' i t 164
IF(I .EQ. 1) GOTO 100 165 166
SCOUNT = SCOUNT + 1 167
IF(.NOT. SUPRES) GOTO 99 168 169
IF(MEMORY(SUB1 — 2) 	.EQ. 	i t s) MEMORY(SUB1 — 2) = 170 171
GOTO 100 172

40 IF(CHAR .NE. 	's') GOTO 50 173 174
SCOUNT = SCOUNT + 1 175
IF(.NOT. SUPRES) GOTO 99 176 177
MEMORY(SUB1 — 1) = "0 ' 178
GOTO 100 179

50 IF(CHAR .NE. 	'Z') GOTO 55 180 181
SCOUNT = SCOUNT + 1 182
IF(.NOT. SUPRES) GOTO 99 183 184
MEMORY(SUB1 — 1) = ' 185
GOTO 100 186

55 IF(CHAR .NE. 	'9') 	GOTO 60 187 188
SCOUNT = SCOUNT + 1 189
MEMORY(SUB1 — 1) = SARRAY(SCOUNT) 190
GOTO 100 191

60 IF(CIIAR .NE. 	'B') 	GOTO 70 192 193
MEMORY(SUB1 — 1) = ' 194
GOTO 100 195

70 IF(CHAR .NE. 	'/') GOTO 80 196 197
MEMORY(SUB1 — 1) = '/' 198
GOTO 100 199

80 IF(CHAR .NE. 	'V') GOTO 81 200 201
SUB1 = SUB1 — 1 202
GOTO 100 203

81 IF(CHAR .NE. 	'.') GOTO 82 204 205
MEMORY(SUB1 — 1) = 206
GOTO 100 207

82 IF(CHAR .NE. 	1 ,9 GOTO 83 208 209
IF(.NOT. 	SUPRES) MEMORY(SUB1 — 1) = 1 . 1 210 211
IF(SUPRES) MEMORY(SUB1 — 1) = 	' 212 213
GOTO 100 214

83 TER = 3 215
GOTO 101 216

99 MEMORY(SUB1 — 1) = SARRAY(SCOUNT) 217
100 CONTINUE 218
101 RETURN 219

Appendix D

END

Bibliography 	 Bibliography-1

Bibliography

[Acree, 1979]
A.T. 	Acree, R.A. DeMillo, T.A. Budd, R.J. Lipton, and F.G.
Sayward. "Mutation analysis." Technical Report GIT—ICS-79/08,
Georgia Institute of Technology, 1979.

[Acree, 1980]
A. 	T. Acree, On Mutation, Ph.D. Thesis, Georgia Institute of
Technology.

[Agarwal, 1979]
Vinod K. Agarwal and Gerald M. 	Masson, "Recursive Coverage
Projection of Test Sets,", IEEE Transactions on Computers,
Volume C-28(1):865-870, November 1979.

[Aho, 1975]
A. Aho and I. Ullman. The Theory of Parsing Translation and
Compiling, Vol 2: Compiling, Prentice—Hall, 1975.

[Baldwin, 19791
D. 	Baldwin and F. 	Sayward. 	"Heuristics for Determining
Equivalence of Program Mutations," Yale University, Department
of Computer Science Research Report, No. 276, 1979.

[Boyer, 19751
R.S. 	Boyer, B. Elspas, and K.N. Levitt. "SELECT: A formal
system for testing and debugging programs by symbolic execut-
gion." SIGPLAN Notices 10(6):234-245, June 1975.

[Bradley, 1970]
G.H. 	Bradley. 	"Algorithm and bound for the greatest common
divisor of n integers." Communications of the ACM 13 (7): 	433-
436, July 1970.

[Brooks, 1979]
Martin Brooks, Autoatic Generation of Test Data for Recursive
Programs having Simple Errors, Ph.D. Thesis, Stanford Univer-
sity.

[Brown, 1975]
J.R. 	Brown and M. Lipow. "Testing for software reliability."
Proceedings of the 1975 International Conference on Reliable
Software (IEEE catalog number 75 CHO 940-7CSR), pages 518-527.

[Budd, 1978]
T.A. 	Budd and R.J. 	Lipton. "Mutation analysis of decision
table programs." Proceedings of the 1978 Conference on In-
formation Sciences and Systems, pages 346-349. The Johns Hop-
kins University, 1978.

[Budd, 1978a]
T.A. Budd and R.J. Lipton. "Proving LISP programs using test
data." Digest for the Workshop on Software Testing and Test
Documentation, pages 374-403, 1978.

Bibliography 	 Bibliography-2

[Budd, 1978b]
T.A. Budd, R.A. DeMillo, R.J. Lipton and F.G. Sayward. "The
Design of a prototype mutation system for program testing,"
Proc. 1978 NCC, AFIPS Conference Record, pp. 623-627.

[Budd, 1980]
T.A. 	Budd. 	Mutation analysis of program test data. PhD
thesis, Yale University.

[Budd, 1980a]
Timothy A. Budd and Dana Angluin, "Two Notions of Correctness
and their Relation to Testing," Report TR 80-19, Department of
Computer Science, University of Arizona.

[Budd, 1980b]
T.A. Budd, R.A. Demillo, R.J. Lipton and F.G. 	Sayward. 	PI

Theoretical and empirical studies of using program mutation to
test the functional correctness of programs." Proc. 1980 ACM
Symposium on Principles of Programming Languages, January, 1980,
pp. 220-233.

[Budd, 1981]
Timothy 	A. 	Budd, 	"Mutation Analysis: 	Ideas, Examples,
Problems, and Prospects," in Computer Program Testing, B. Chan-
drasekaran and S. Radicchi (eds.), North-Holland, pp. 129-148.

[Budd, 1982]
Timothy A. Budd, "A Portable Mutation System", manuscript,
Department of Computer Science, University of Arizona.

[Burns, 1978]
J. 	Burns. "The stability of test data from program mutation,"
Digest for the Workshop on Software 	Testing 	and Test
Documentation, Fort Lauderdale, Fla. 1978, pp. 324-334.

[Chang, 1970]
H.Y. Chang. Fault diagnosis of digital systems. Wiley- Inter-
science, 1970.

[Davis, 1958]
Martin Davis, Computability and Unsolvability, McGraw-Hill.

[DeMillo, 1978]
R.A. 	DeMillo and R.J. 	Lipton. 	"A probabilistic remark on
algebraic program testing," Information Processing Letters, Vol.
7(4). (June, 1978), pp 193-195.

[DeMillo, 1978a]
R.A. DeMillo, R.J. Lipton, and F.G. Sayward. "Hints on test
data selection: Help for the practicing programmer." Computer
11(4): 34-43, April 1978.

[DeMillo, 1979]
R.A. DeMillo, R.J. Lipton and A.J. Perlis. "Social Processes
and proofs of theorems and programs," CALM Vol 22(5), (May,
1979), pp. 271-280.

Bibliography 	 Bibliography-3

[DeMillo, 1979a]
R.A. 	DeMillo, 	R.J. 	Lipton and F.G. 	Sayward, "Program
mutation: A new approach to program testing," INFOTECH State of
the Art Report on Software Testing, Vol. 2, INFOTECH/SRA, 1979,
pp. 107-127 [Note: also see comentaries in Volume 1].

[Duran, 1982]
Joe W. Duran and Simeon C. Ntafos, "An Evaluation of Random
Testing", manuscript, Department of Mathematical Sciences,
University of Texas at Dallas.

[Foster, 1978]
K. Foster. "Error sensitive test cases." Digest for the Work-
shop on Software Testing and Test Documentation, pates 206-225,
1978.

[Gannon, 1983]
Carolyn Gannon, "Software Error Studies", Proceedings NSIA
National Conference on Software Test and Evaluation pp. I-1 —
1-7.

[Geller, 1978]
M. Geller. "Test data as an aid in proving program correct-
ness." Communications of the ACM 21(5):368-375, May 1978.

[Gerhart, 1976]
S.L. Gerhart and L. Yelowitz. "Observations of failibility in
applications of modern programming methodologies." IEEE Transac-
tions on Software Engineering SE-2(3): 195-207, September 1976.

[Gilb, 1977]
T. Gilb. Software Metrics, Winthrop, 1977.

[Goodenough, 19751
J.B. 	Goodenough and S.L. Gerhart. "Towards a theory of test
data selection." IEEE Transactions on Software Engineering SEA
(2):156-173, June 1979.

[Goodenough. 1979]
J.B. 	Goodenough. 	"A survey of program testing issues." In P.
Wegner, editor, Research Directions in Software Technology,
pages 316-340, MIT Press, 1979.

[Gould, 1974]
J.D. 	Gould and P. Drongowski. "An exploratory study of com-
puter program debugging." Human Factors 16(3):258-277, May 1974.

[Hamlet, 19771
R.G. Hamlet. "Testing programs with the aid of a compiler."
IEEE Transactions Software Engineering, Vol. SE-3 (4), (July
1977), pp.

[Hamlet, 1978]
R.G. Hamlet. "Critique of reliability theory". Digest for the
Workshop on Software Testing and Test Documentation, pages 57-
69, 1978.

Bibliography 	 Bibliography-4

[Hanks, 1980]
Jeanne M. 	Hanks, Testing Cobol Programs by Mutation, M.S.
Thesis, Georgia Institute of Technology.

[Hardy, 1975]
S. 	Hardy. 	"Synthesis of LISP programs 	from 	examples."
Proceedings of the Fourth International Joint Conference on
Artificial Intelligence, pages 240-245. Held in Tbilisi, Geor-
gia, USSR, 1975.

[Henderson, 1972]
P. 	Henderson and R. 	Snowden. "An experiment in structured
programming". BIT 12:38-53, 1972.

[Hoare, 1961]
C.A.R. 	Hoare. 	"Algorithm 65: 	FIND." CACM, Vol. 	4(1),
(January, 1961), p. 321.

[Hoare, 1971]
C.A.R. 	Hoare. 	"Proof of a program: FIND." Communications of
the ACM 14(1): 31-45, January 1971.

[Hoperoft, 1969]
J.E. Hoperoft and J.D. Ullman. 	Formal Languages and Their
Relation to Automata. Addison-Wesley, 1969.

[Howden, 1975]
W.E. 	Howden. 	"Methodology for the generation of program test
data." IEEE Transactions on Commputers c-24(5): 	554-560, May
1975.

[Howden, 19761
W.E. 	Hoyden. 	"Reliability of the path analysis testing
strategy." IEEE Transactions on Software Engineering SE-
2(3):208-214, September 1976.

[Howden, 1976a]
W. 	E. 	Howden, "Algebraic Program Testing", Technical Report,
University of California, San Diego.

[Howden, 1978]
W.E. Howden. "An evaluatiion of the effectiveness of symbolic
testing." Software: Practice and Experience 8:381-397, 1978.

[Howden, 1 9821
W. 	E. 	Howden, "Weak Mutation Testing", IEEE Transactions on
Software Engineering, Volume SE-8(4): 371-379, July, 1982.

[Huang, 1975]
J.C. Huang. "An approach to program testing." Journal of the
ACM 7(3):113-128, September 1975.

[IBM, 1966]
International 	Business 	Machines. 	System/360 	Scientific
Subroutine Package. IBM Application Program H20-0205-3,1966.

Bibliography 	 Bibliography-5

[Kernhigan, 1978]
B.W. Kernhigan and P. Plauger. The Elements of Programming
Style. McGraw—Hill, 1978 (Second Ed).

[Knuth, 1971]
D.E. Knuth. "An empirical study of fortran programs." Software
Practice and Experience, Vol. 1(2), (1971), pp. 105-134.

[Ledgard, 1973]
H. 	Ledgard. "The case for structured programming." BIT 13:45-
57, 1973.

[Linger, 1979]
R.C. Linger, H.D. Mills and B.I. Witt. 	Structured Program-
ming Theory and Practice, Addison-Wesley, 1979.

[Lipton, 1978]
R.J. 	Lipton and F.G. 	Sayward. 	"The status of research on
program mutation". Digest for the Workshop on Software Testing
and Test Documentation, pages 355 -378, 1978.

[Manna, 1974]
Z. Manna. The Mathematical Theory of Computation, McGraw-Hill,
1974.

[Minsky, 1967]
Marvin Minsky, Computation: 	Finite and Infinite Machines,
Prentice—Hall.

[Montalbano, 1974]
M. Montalbano. Decision Tables. Science Research Associates,
1974.

[Nauer, 1969]
P. 	Nauer. 	"Programming by action clusters." BIT 9, 250-258,
1969.

[Osterweil, 1974]
L.J. Osterweil and L.D. Fosdick. "Data flow analysis as an
aid in documentation, assertion generation, validation and error
detection." University of Colorado, Department of Computer
Science, Technical Report No. CU—CS-055-74, 1974.

[Osterweil, 1978]
L.J. Osterweil and L.D. Fosdick. " Experiences with DAVE -- A
FORTRAN program analyzer." Proceedings of the 1978 AFIP National
Computer Conference, pages 909-915, 1978.

[Ostrand, 1978]
T.J. Ostrand and E.J. Weyuker. " Remarks on the theory of
test data selection." Digest for Workshop on Software Testing
and Test Documentation, Fort Lauderdale, Fla, 1978, pp. 1-18.

[Pollack, 19711
S.L. 	Pollack, H.T. 	Hicks, and W.I. 	Harrison. 	Decision
Tables: Theory and Practice. John Wiley and Sons, 1971.

Bibliography 	 Bibliography-6

[Schaefer, 1973]
M. Schaefer. 	A Mathematical Theory of Global Program Op-
timization, Prentice—Hall, 1973.

[Shaw, 1975]
D.E. Shaw, W.K. Swartout, and C.C. 	Green. 	"Inferring LISP
programs from examples." Proceedings of the Fourth International
Joint Conference on Artificial Intelligence, pages 260-267.
Held in Tbilisi, Georgia, USSR, 1975.

[Summers, 1975]
P.D. Summers. Program Construction from Examples. PhD thesis,
Yale University, 1975.

[Tanaka, 1981]
Akihiko Tanaka, Equivalence Testing for Fortran Mutation System
using Data Flow Analysis, M.S. Thesis, Georgia Institute of
Technology.

[Thayer, 1978]
T.A. Thayer, M. Lipow, E.C. 	Nelson. 	Software Reliability,
North—Holland, 1978.

[Thibodeau, 1978]
R. Thibodeau, "The State—of—the—Art in Software Error Data Col-
lection." General Research Corporation, January, 1978.

[White, 1978]
L.J. 	White, E.I. 	Cohen, and B. Chandrasekaran. A Domain
Strategy for Computer Program Testing. 	Technical Report OSU-
CISRC—TR-78-4, Ohio State University, 1978.

[Wirth, 1968]
N. Wirth. 	"171,360: 	A programming language for the 360 com-
puter." Journal of the ACM 15(): 37-74, 1968.

[Youngs, 1974]
E.A. Youngs. 	"Human errors in programming," International
Journal of Man-Machine Studies, Volume 6 (1974), pp. 361-376.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315

