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Chapter 1 

Testing for Correctness  

Computability and Programming Systems 

Turing Machines. 	We will assume familiarity with elementary 

computability theory. A Turing machine decides or solves a com-

putational problem in the following way: when the machine is 

presented an input x, the machine eventually halts and either 

accepts or rejects the input. We say that a decision problem is 

solvable (or, equivalently, a predicate is decidable) if there is a 

Turing 	machine which accepts exactly those inputs which are 

solutions to the decision problem and rejects all others. 	Such a 

machine is said to be a decision procedure. A problem is said to be 

unsolvable if no decision procedure exists. 

During its operation, a Turing machine carries out a number of 

basic operations (e.g., moving its read/write heads). The basic 

operations are called steps. If a Turing machine on input x carries 

out m basic operations and enters a halt state, the machine is said 

to have halted after exactly  m steps. 

We assume some canonical indexing of Turing machines. That is, 

an effective procedure whereby the ith Turing machine can be listed, 

for all i 2 0. This indexing is fixed throughout. 
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The Kleene T—predicate is the predicate T(i,j,k) which is true 

exactly when the ith Turing machine (in the canonical listing of 

Turing machines), when given input j, halts in exactly k steps. The 

halting problem for Turing machines is the problem of deciding the 

truth of the the predicate (3 x)(T(i.j,x)). The halting problem is 

unsolvable. The fundamental technique for showing that a problem is 

unsolvable will be to reduce the halting problem (or some other 

problem known to be unsolvable) to the problem in question. In 

general terms, such a proof involves showing how an aribtary 

instance of the halting problem can be transformed or reduced to an 

instance of the problem which is to be shown unsolvable in such a 

way that the Turing machine halts (or fails to halt) exactly when 

the transformed instance is a solution to the problem. The argument 

then proceeds as follows. If the problem is solvable, then the hal-

ting problem can be solved by applying the transformation to its 

instarces and using the (assumed) decision procedure. Since this 

contradicts the unsolvability of the halting problem, the problem in 

question must also be unsolvable. 

A Turing machine may also function as a transducer. 	That is, 

given an input x such that T(i,x,k), the ith Turing machine will 

write onto a designated portion of one of its tapes a value y. The 

function f determined by f(x) = y is said to be computed by the ith 

Turing machine. A function which is computed by some Turing machine 

is said to be computable. 

An oracle Turing machine contains designated query states. 	In 

a query state, the machine submits a fixed value x to an oracle. If 

the oracle is for a function f, in one step the machine will respond 
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to the query with f(x). Notice that the oracle f need not be com-

putable. The canonical indexing can be modified to include all 

oracle machines. 

Programming Systems. 	Any model of effective computation is 

called a programming.  system.  In a programming system, it is pos-

sible to construct representations for algorithms; each such 

representation is said to be a program.  We identify a programming 

system P with the set of programs it defines. It is not necessary 

that a programming system be universal, only that all programs be 

effective. We will usually identify a programming system with the 

set of programs that can be written in the system. Thus examples of 

programming systems are the set of Markov algorithms, the set of 

straightline programs which compute polynomials of some fixed 

degree, the set of linear recursive programs schemes, and the set of 

syntactically correct APL programs. 

We assume that each program in a programming system presented 

in a uniform way, (and, like Turing machines, can be uniformly 

indexed) and that each program is defined on an input space,  D. The 

programming system defines a method of interpreting programs. If a 

program P e P is started on an input  x e D, the semantics of the 

programming system defines the manner in which values are assigned 

to input variables, machine states are altered and output is 

delivered. Since the input spaces of programming systems vary, we 

will assume that each input space D can be coded in a natural way 

into the nonnegative integers N. 
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Let P be a programming system. 	To each P in P, there 

corresponds a computable function P* . The correspondence is as 

follows: for each x a D we determine the n(x) e N that encodes x, 

and execute P on x to obtain an output y; then P*(n(x))=n(y). We 

sometimes extend this notation to P: P* = (P*IPeP). 

The equivalence problem for a programming system P is the fol-

lowing decision problem. Given programs P,Q e P determine whether 

or not for all x e D, P*(x) = Q*(x). 

The Programming Model 

The testing theory described here differs from most theoretical 

studies in that we make some assumptions about how programs (in a 

programming system) are produced. 

We assume that the intended behavior of a program is given by a 

function f -- the specification. In practice, describing f is very 

difficult, perhaps as difficult as programming itself. 	For our 

purposes, 	however, we need only assume that some functional 

specification exists and it is that function which is to be 

implemented by the programmer. 

The programming task itself resembles a root—finding procedure. 
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produce 

initial program 

P 

c)?\ 

modify P 

done 
L 

Figure 1. 

The Iterative Programming Process 

The initial program produced in Figure 1 corresponds to the 

initial guess of a root—finding procedure. During the initial 

iterations, the fact that the program at hand does not satisfy the 

specification will be obvious (e.g., the program is syntactically 

incorrect or has a run—time error). During later iterations, 

however, the pe=f test is carried out by direct comparison of the 

current version of P with f. 

In the case that f is uniformly presented -- for example, by a 

predicate calculus formula -- the direct comparison may take the 

form of a proof of correctness. In the situation encountered most 

frequently in practice, however, f is not uniformly presented. 
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Rather, the programmer has available a number of instances of f of 

the form (x,f(x)). In this case, the determination of whether or 

not P* = f is made by observing a finite number of executions of P 

on instances of f. Since we want the theoretical development to be 

independent of any specific implementation of testing procedures, we 

will not distinguish these alternatives. Rather, we assume the 

existence of an oracle for f, i.e., a device for supplying instances 

of the form (x, f(x)) for finitely many x e D. 

A finite subset of D for which values of f are available is 

said to be a test set for P and f. Conceptually, f is an oracle for 

a procedure which executes P on an input x, queries f and checks 

P*(x) = f(x). 

Deductive and Inductive Inferences 

We let P be an arbitrary but fixed programming system. We are 

interested in testing a program P with specification f during the 

interative process of producing a correct program. 

Definition: P is correct with respect to a specification f if 

P*(D) = f(D). If P is correct with respect to f, the P is said to 

compute f. 

A natural requirement for a test set that is useful in 

determining program correctness is that execution of the program on 

the test set should demonstrate the correctness of the program. Not 

every test set carries the same weight in demonstrating correctness. 

The testing process itself can be described by a rule of inference: 
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P*(a1)=f(a1) A P*(a2)=C(a2) A ... A P (a n)=f(ad A ... 

P*(D) = f(D) 

That is, from the observations P*(a) = f(ai), the tester wishes to 

infer the generalization YxeD P*(x) = f(x). Clearly, if the values 

ai  run through all of D, the inference is deductively valid. But, 

in general, D is either infinite or large enough to make such 

procedure impractical. 

Another way to view such an inference is in the context of an 

experiment. 	To establish the truth of the conclusion, the tester 

looks for confirming instances of the form P*(a)=f(a). 	If an 

experiment ever results in a value b such that P*(b) # f(b), then P 

is not correct, and the experiment has rejected the conclusion. On 

the other hand, the existence of a confirming instance does not 

guarantee correctness: there might be an undiscovered experiment 

that will show that P is incorrect. So the question arises: when 

does the tester stop experimenting and infer the correctness of P? 

In order to insure objective standards for testing P, these con-

ditions should be stated in general terms as a stopping rule. We 

distinguish two forms of inference allowed by such rules. Suppose 

that a stopping rule R for a program P results in a set of values 

R(P) and experimental trials P*(x)=f(x) for x s R(P). 

Deductive Fora: From R(P) to infer that P is correct 
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Inductive Fora: 	From R(P) to infer that P is correct with 

probability S. 

Beyond the observation that the stopping rule should be useful 

in making either deductive or inductive inferences of this form, it 

is not at all clear what other properties stopping rules should 

have. 	Typical naive stopping rules (e.g., make voluminous tests, 

make tricky tests) have limited effectiveness. 	Useful rules are 

based on the following principle: the stopping rule should force 

the tester to produce a strong  set of confirming instances. The 

notion of strong and weak confirming instances is particularly 

important in the context of testing program correctness since by 

simply compiling a finite table t(a i ,f(a i )] ().Ki.Kn), a program can be 

easily modified to give correct output on a finite set of test 

cases. 

To see the underlying problem in assessing the strength of con-

firming instances, consider the following thought experiment. By 

experimental observation, we are to determine whether or not 

WA(x) 	B(x)) 	 (1) 

is true. This entails finding confirming instances x such that A(x) 

is true and checking to see that B(x) also holds. But (1) is 

logically eauivalent to 

Vx(-T(x) 4 -, A(x). 	 (2) 

Therefore, another experiment to check the validity of (1) might 

entail finding confirming instances y such that B(y) fails  and chec-

king to see that A(y) also fails. The problem is that strong con- 
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firming instances of (2) need not be strong confirming instances of 

(1). Suppose, for example, that (1) is the statement 

"All ravens are black" 

Then (2) states, 

"All non—black objects are non—ravens." 

Thus, while an experiment to verify (1) involves finding ravens and 

checking their colors, an experiment to verify (2) need not involve 

ravens at all. Strong confirming instances of (2) can be red shoes 

or gray walls, and such observations, while supporting a logically 

equivalent proposition, should provide no rational support for 

proposition (1). 

To insure that the stopping rules which guide testing provide 

strong confirming instances of correctness, a number of pos-

sibilities have been suggested. 

Input Space Partitioning: A path  through a program P is a 

seenence of computations that correspond to a possible flow of 

control through the program. If a program contains loops, then 

differing numbers of iterations through loops give rise to different 

paths. It is possible to associate with every path n a subset D
n o

f 

D which causes that path to be executed. Thus, P* can be decomposed 

into a set of functions P*
n' where n runs through all paths in P, 

and the correctness of P can be determined by testing whether or not 

P* n = fn' where f n represents the specification for the path n. 
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Consider a programming system P in which each program P satis-

fies the following condition: for each pair of paths no, ni , 

 Ps ir0  (x) 0 P* n 1 (x), for all x a D. Suppose that we have obtained a 

stopping rule for each of the (possibly infinitely many) Pn and that 

we can infer the correctness of each of them from the tests. Then 

we can use these tests to infer the correctness of programs in P if 

and only if P*ODn ) = fn (DIT ), for all paths n implies that 13* = f. 

This latter condition is equivalent to requiring that domain of f ir 

 and D
n be disjoint for all paths n, i.e., the path domains D n 

 partition the domain D and the selection of points on which an 

incorrect program fails can be made randomly from the partitions. 

Since the number of distinct paths in a program can be infinite 

the conditions given above are not particularly useful. On the 

other hand, it may be possible to choose a subset of all paths for 

consideration which is sensitive enough to guarantee that the 

inference can be made with a high degree of confidence. For exam-

ple, the set of paths to be tested may involve only single 

iterations of loops and all non—looping paths. 

Random Testing: Suppose that D is supplied with a probability 

distribution and that p(x) is the probability that P*(x) # f(x), 

when x is chosen according to this distribution. Since p can be 

expected to converge to the failure rate when P is executed on x a D 

chosen according to the given distribution, we wish to derive a 

stopping rule which gives an indication of whether p = 0, after n 

tests. One way to derive an appropriate value of n is to calculate 

a quantity q based on the results of the tests so that q is greater 

than p with probability 1—a. If n tests are carried out and k 
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instances x such that P*(x) # f(x) are observed, then q is the lar-

gest value of r such that 

2 (i)r i(i-r)n-i > a. 

i=0 

Therefore, in a testing experiment, if no errors are observed 

q = 1—a1 i n . 

The testing experiment, then, is to set the statistical limits on 

the confidence desired from the test (i.e., 1—a) and derive the 

appropriate value for n. Checking correctness on the random domain 

elements completes the test and allows the inference of correctness 

to be made. 

If D is partitioned into m subsets D l , ...Dm , then it may be 

possible to assess the probability d i  that a random x e D is in D i

-For example, if the Di  are path partitions and the paths correspond 

to functions that the program is to carry out, each function being 

selected with known distribution then d. is simply the probability 

that the ith function is selected. Similarly, if p i  is the failure 

rate for the ith function determined by D i , we have: 

m 

P = 2dip i . 

i=1 

Now, consider an experiment in which D is partitioned and for each 

Di P*i(x) = fi(x), where f i  is the specification for the ith 

partition, for a random choice of x. 	Then regardless of the 
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distribution of the d I
Si i  

1 — al/ n
. 

In this way a simple stopping rule can be used to give an inductive 

inference of correctness. 

Reliability of Test Data 

The point of these techniques is to insure that the test set 

chosen allows the inference of correctness to be made with a high 

degree of confidence. However the test set is chosen, it should 

allow such an inference. Two versions of a stopping rule which are 

useful for such an inference are obvious generalizations of the 

rules given in the examples above. 

Deductive Stopping Rule: Choose a set of test data so that 

correct performance on the test data implies correctness. 

Inductive Stopping Rule: 	Choose a set of test data so that 

correct performance on the test data implies correctness with 

probability 1 —p. 

The first version provides a convenient characterization of 

test data which is strong enough to allow a valid inference of 

correctness. 
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Definition: 	A test set T is reliable for a program P and 

specification f if P*(T) = f(T) implies that P computes f. 

Suppose that T is a reliable test set. If P*(T) = f(T), then 

by definition P is correct. On the other hand, if P* = f, then 

P*(T) = f(T) for any subset of D. Thus, if a test set T is reliable 

for P and f, then P*(T) = f(T) if and only if P is correct. In 

essence, reliability of test data restates program correctness. For 

example, a proof that T is reliable for a correct program is by 

definition a proof of correctness. Unlike pure correctness proofs, 

finding a reliable test set for an incorrect program involves locat-

ing a program error, since P* and f must differ on at least one 

point of a reliable test set. 

Theorem 1: For any P,f there is a reliable test set. 

Proof: If P computes f then any test set will do. If P does 

not compute f, let x e D be any point for which P*(x) # f(x). 

Clearly T= {x} is reliable. 

Given a program P to be tested, two related problems arise. On 

one hand we may be called upon to judge from available evidence 

whether or not P is correct. On the other hand, we may be called 

upon to produce evidence that is certain to convince such a judge. 

If the acceptance criteria is the existence of a reliable test set, 

the problems reduce to the following. Since P is correct exactly 

when it performs correctly on a reliable test set, a proof that T is 

reliable for P is a proof of correctness for P, provided only 

P*(T)=f(T). By the same token, a mechanical way of producing 
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reliable test sets, implicitly provides mechanical proofs of correc-

tness. Since every program has a reliable test set, procedures to 

prove that a test set is reliable and to generate reliable test sets 

are possible. 

Definition : The decision problem for reliable test sets is to 

determine for program P, test set T, and specification f whether or 

not T is reliable for P and f. 

Definition : 	Let G be a mapping from program—specification 

pairs to finite subsets of D. G is said to be a reliable test  

strategy if G(P,f) is reliable for P and f. 

In referring to the decision problem for reliability and 

reliable test strategies we will not mention the underlying program-

ming system or the specification when there is no danger of con-

fusion. Thus, we will often refer to a test strategy for P, when 

the specification is clear from context. 

A decision procedure for reliable test sets consists of a Tur-

ing machine with oracle f. P is encoded into the input alphabet of 

the machine (using, for example, the indexing function of oracle 

machines). When presented with P and an encoding of T, the 

procedure either accepts or rejects T. 

Theorem 2: Assume that the decision problem for reliable test 

sets is solvable. Then there is a computable reliable test 

strategy. 
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Proof: Let Ti ED consist of the first i elements of D under 

some effective ordering of D. By Theorem 1, there is a reliable 

test set for any (P,f), and any test containing it is also reliable. 

Thus, for some reliable. The test strategy simply 

generates T0, T1 , ..• at each stage testing to see whether or not 

the test set so far generated is reliable for (P,f). I] 

Theorem 3: If a programming system has a computable reliable 

test strategy, then the corresponding decision problem for reliable 

test sets is solvable. 

Proof: Assume a reliable test strategy G. We decide whether 

or not T is reliable as follows. Given (P,f), we first produce a 

reliable test set G(P,f). By definition, if P*(G(P,f))=f(G(P,f)), 

then P is correct and so every  test set is reliable. The decision 

procedure thus should accept T as reliable. 	Suppose P*(G(P,f)) 

f(G(P,f)). Since P is not correct, T is reliable exactly when P*(T) 

f(T). Since the process of checking P*(x)=f(x) for finitely many 

values of x can be carried out by a Turing machine which simulates P 

and queries an oracle for f, this procedure is a decision 

procedure.Il 

Notice that the decision procedure above, does not really use 

any information about T when P is correct. This is simply a 

consequence of the fact that reliable test sets do not demonstrate  

correctness in any meaningful way. Indeed, if we have any indepen-

dent proof that P is correct, then we can choose T as we please --

as a source of evidence to a third party who must be convinced of 

P's correctness this is not very satisfying. Furthermore, since the 
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decision problem is equivalent by this argument to the decision 

problem for a powerful system of logic (e.g., the logic used to 

prove that P is correct), we would expect on intuitive grounds that 

the decision problem for reliability is, in general, unsolvable. 

Theorem 4: There are classes of programs which have neither 

solvable decision problems nor computable test strategies. 

Proof: 	Consider the following programming system P = (P.1 

i4). Each program P i  is defined by the following specification: 

0, if i=0 

0, if DO, and x # i 

1, if i>0, and x = i 

It is easy to see that, since Pi  gives output 1 only when given its 

own index as input, P * i  = P*i  exactly when i=j. It follows from 

this observation that the equivalence problem for P is solvable. 

We claim that there is no computable test strategy for P. Sup- 

pose otherwise. A strategy G for (P0,f0) queries f0 a finite number 

of times and halts with some reliable T. 	Let i be an integer 

greater than any element of T and any element involved in a query 

for fo. Then G(P0, f i ) = T. 	Clearly T is not reliable for 

(po j i)), contradicting our choice of G. 

By Theorem 2, the existence of a decision procedure for 

reliable test sets would also produce a computable test strategy, so 

the decision problem for reliable test sets is also unsolvable for 

P.[] 
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compiler certification) the expense of constructing a specification—

sensitive device is justified by the number of programs which will 

be validated. Thus the non—uniform problem may be of interest. 

Definition 	Let the specification f be fixed and let P be a 

programming system. The f—decision problem for reliability in P is 

the problem of deciding, given p e P and test set T, whether or not 

T is reliable for P,f. 

Definition : Let the specification f be fixed and let P be a 

programming system. 	An f—reliable test strategy is a mapping Gf 

from P to finite subsets of D such that, for each P e P, G
f
(p) i s 

 reliable for P and f. 

The proof of the following theorem is nearly identical to the 

uniform case, and we omit it here. 

Theorem 6: Let P be a programming system and let f be a 

specification. Then P has an f—decision procedure for reliability 

if and only if P has a reliable test strategy Gf.  

Furthermore, just as in the uniform case, we can effectively 

obtain a test strategy from any f—decision procedure and conversely. 

The equivalence problem for P also has the same relevance for 

the non—uniform problems, provided that we limit specifications to 

functions that are actually computed by some program in the program-

ming system. 
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Theorem 7: 	If a programming system, P, has a decidable 

equivalence problem then its f—decision problem for reliability is 

solvable for each f e P*. 

Proof: Let f be a specification in P*. Then some program Po a 

 P computes f. Since we are dealing here with the non—uniform 

decision problem, no procedure for determining Po needs to be sup-

plied. To decide whether T is reliable for P and f, we will use the 

decision procedure for equivalence: decide whether or not P = P 0
, 

If so, then P is correct and T is therefore reliable. If P 0 Po' 

test P against specification f = P o *, If P*(T) = f(T), then since T 

does not contain a point on which P fails, it is not reliable. On 

the other hand, if P*(T) 0 f(T), then T is clearly reliable.[] 

Not surprisingly (given Theorem 7), the ability to decide 

equivalence also gives enough power to compute a non—uniform test 

strategy. The proof of this fact follows closely constructions we 

have seen already, so we will not reproduce it here. 

Theorem 8: 	If a programming system, P, has a decidable 

equivalence problem, then for each f e P*, there is a computable 

f—test strategy. 

It might be hoped that restricting the decision or strategy 

problems to the non—uniform cases will make them easier. 

Unfortunately, reliability is such a strong property that, even in 

the non—uniform case, the decision (and hence the test strategy) 

problem is formally as hard as testing equivalence in the program-

ming system. 
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Theorem 9: Let f e P* and suppose that P computes f. If some 

f—test strategy is computable, then the problem of deciding 

equivalence to P is solvable for all programs in P. 

Proof: Suppose that G
f is a reliable test strategy. Let T = 

Gf 
If Q*(T) = P*(T) = f(T), then, since T is reliable, Q* = f 

P*. On the other hand, if Q*(T) # f(T), then P # Q. Therefore, to 

decide equivalence to P generate T and run the test for Q on T with 

specification r*-1. The result of the test is the result of the 

decision procedure.[] 

Adequacy and its Measurement 

Our first goal is to find a stopping rule which is as useful as 

reliability in inferring correctness, but which is also useful as 

evidence that a program is correct. Recall that the chief defect of 

reliability is that, if a program is correct, a reliable test set 

does not have to make any case at all for correctness. Our strategy 

will be to require that a test set provide an "explanation" of why 

the program is believed to be correct. For adequate test sets, this 

explanation simply states that the program is not incorrect and 

demonstrates this conclusion with test cases causing incorrect 

programs to fail but on which the original program does not fail. 

Definition: Let f be a specification with domain of definition 

D for a program P (which may not be correct). A set of test data T 

is adequate for P with respect f if (a) P*(T) = f(T), and (b) for 

all programs 0 such that 0*(D) A f(D), Q*(T) A f(T). 
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In other words, T is adequate for P if P behaves correctly on T 

and all incorrect programs behave incorrectly on at least one 

element of T. Notice that the definition of adequacy incorporates 

correct execution on the test set as part of the definition while 

reliability does not. This makes comparisons between reliability 

and adequacy somewhat awkward. If T is adequate, then it is a sim-

ple conseouence of the definitions that T is also reliable. On the 

other hand, suppose that P is correct. Then T = If is reliable but 

not adequate. On the other hand, if P is incorrect, then it has no 

adequate test set, but it always has a reliable test set. Most of 

the theoretical developments based on adequacy can be are left 

intact if we use only part (b) of the definition. However, the goal 

of testing based on adequacy and related notions is to infer correc-

tness. The usefulness of the process of deriving adequate test sets 

in revealing errors in incorrect programs is incorporated into 

experimenal implications of the theory. 

Theorem 10: If T is adequate (for P), then T is reliable, but 

not conversely. 

Recall from the previous section that reliable test sets always 

exist. 	Adequate test sets, on the other hand, must distinguish a 

program from a possibly infinite set of incorrect programs. 	Since 

this may require infinitely many test points, we cannot guarantee 

adequate test sets always exist even for correct programs. 

Theorem 11: There are programming systems P such that for any 

program P c P, and any (finite) test set T, there is a function f 

such that P*(T)=f(T) but P*(x) # f(x) for all x e D—T. 
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Proof: Consider the set of straightline programs that compute 

polynomials. Let P be such a program and let f=P* be a polynomial 

of degree d. If T is any finite set, there is a program Q and 

polynomial g=0* of degree d' > d such that f(T)=g(T) but f and g 

disagree on all points not in T. [1 

Notice that although T is reliable for P and f, it is reliable 

for neither (P,g) nor (Q,f), even though all agree on T. 

Corollary: Let P be a set of straightline programs to evaluate 

polynomials. Then no program in P has an adequate test set for the 

specifications in P*. 

Proof: The proof of Theorem 11 gives an example of a program 

which for every finite test set agrees with an incorrect program. 

So far, we have been dealing exclusively with the deductive 

form of the inference problem. There is a probabilistic algorithm 

for the set of programs in Theorem 11. Denote byinkm,d) the class 

of m variable nonzero polynomials of degree d. Notice that the 

problem of determining whether or not P* = f can be turned into a 

problem about zeroes of polynomials by checking P*-f = Q. Define 

p(m,d,r) to be 

min ProbI 1Kx1Kr, f(xl,...,xm) # 01 

where the minimum is taken over all f 	 We derive a lower 

bound on P = p(m,d,r) to get an upper bound 1-p on the error in 

selecting a random point from the m-cube. 	The procedure is then 
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iterated t times to obtain an error probability of (1-p)t. Since a 

polynomial of degree d has at most d roots, ignoring multiplicity, 

the largest probability of finding a root must be at least the 

probability of finding a root by random sampling in the interval 

1Kx1Kr, and hence p(l,d,r) 2 1-d/r. 	Now, consider some f aTT. 

There are polynomials fgoi<d such that 

d 

f(x1,...xm ,y) = 2 gi ( x, , 	xm)yi• 
1=0 

Suppose that gk  e T. Then we have: 

Prob{1<xi  r, f(x l  ,,,,, x,y) 	0} 2 

Probig k (xl 	xm) 	0, y not a root) 

p(m,d,r)(1-d/r). 

Continuing inductively gives 

p(m,d,r) 	(1-dir) m , 

and 

lim (1-dir) m  = exp(-dm/r) 

Thus, for large m and r=dm, we have p(m,d,dm) > 	Therefore, 

with t evaluations of f for independent choices from the m-cube with 

sides r, a (finite) test set can be constructed which is adequate 

with probability (1-e-1)t. 
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In the previous section, we examined the problem of deciding 

whether Or not a test set is reliable and generating reliable test 

sets. We have the same interest in deciding test data adequacy and 

generating adequate test sets, if they exist. The definitions adapt 

readily to our purpose. 

Definition: 	Let P be a programming system. The decision 

problem for adequacy in P is the problem of determining for a 

program P c P, a specification f and test set T, whether or not T is 

adequate for P,f. 

Theorem 12: 	There is a programming system P such that the 

decision problem for adequacy in P is unsolvable. 

Proof: We define a programming system P = (P.1 i 	0) as fol- 

lows. 

  

0 , if i=0 

1, if i>0 and T(i,i,x) 

0, if i>0 and 'T(i,i,x) 

 

 

   

Notice that for all values of i, Pyx) is defined for all values of 

x. 	P .  
1 is the constant zero if and only if the ith Turing machine 

fails to halt on all inputs, so the problem of deciding equivalence 

to Po is unsolvable. 

We claim that an adequate test set exists for P and P* just in 

case P I Po. Suppose P*(x) = 1 and suppose that Q*(x) = 1. Then Q 

and P both give the results of simulating some ith Turing machine 

for exactly x steps and must be equivalent. Thus {30 is an adequate 



Testing for Correctness 	 1-25 

test set. If P* is the constant zero function then there is no 

finite adequate test set since for every m there is a machine which 

halts on its index in more than m steps. 	Therefore, an adequate 

test set for Pi exists if and only if P* i  is not identically zero, 

that is, p i  is not equivalent to Po. But equivalence to P o  is 

undecidable, so the problem of deciding whether Pi has an adequate 

test set must be unsolvable. [1 

Thus, two problems arise in connection with test data adequacy. 

First, adequate test sets need not exist. Second, as with 

reliability, adequacy is a deductive concept, and by virtue of this 

fact has an unsolvable decision problem. We would like to weaken 

the notion of adequacy slightly in order to remove both defects. 

The discussion following Theorem 11 provides some clues as to how 

this might be done. We would like a property of test sets that 

allows an inductive inference of correctness, preferably one that 

can be carried out with a fixed a priori probability of error. In 

practice, the probability of error may be determined by obser-

vations; in such situations, the inference of correctness will be a 

statistical inference whose strength depends on the strength of a 

fixed set of empirical observations. 

Definition: Let f be a specification with domain D, let P be a 

program and let A be a set of programs (possibly depending on P). A 

set of test data T is adequate relative to A (with respect to f) if 

(a) P*(T) = f(T), and (b) for all programs Q e A, if Q*(D) 0 f(D), 

then Q*(T) # f(T). 
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Thus, a set of test data is adequate for a program F relative 

to A if the data distinguishes P from all incorrect programs in A. 

That adequacy relative to A is formally weaker than either 

adequacy or reliability is established by the following Theorem. 

Theorem 13: If T is adequate for P relative to A, then either 

T is reliable or P t A. 

Proof: Let T be adequate relative to A and suppose that T is 

not reliable. Then P*(D) # f(D). But for all Q e A, if Q is not 

correct, then Q*(T) # f(T). Since P*(T) = f(T), P cannot be in A.[] 

For example, A might represent a certain set of errors which 

are likely to be introduced into P. Then the existence of a test 

set T adequate relative to A demonstrates one of two things. Either 

P is correct (i.e., T is reliable) or P does not contain an A—type 

error. This property of relative adequacy fits nicely into induc-

tive inferences. Suppose that P e A with probability 1-6. Then if 

P has a test set T adequate relative to A, the probability that P 

subsequently fails is at most 6 (if T is reliable then P fails with 

probability 0, and if P is not correct, then it is not in A, an 

event of probability 6). 

Therefore, if a set A can be found (or generated) which is 

extensive enough to insure that 6 is small, the inductive  inference 

can be made with a well—defined level of confidence. 
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Unlike adequacy,relative adequacy requires only "alternatives" 

in A be considered. If A has a particularly simple structure, then 

the problem of distinguishing P from A might be considerably easier 

than the problem of distinguishing P from all programs in the 

programming system. At this point, it is not at all clear what sim-

ple structure can be imposed upon A. However, two possibilities are 

likely candidates. The first is to require that A have a decidable 

equivalence problem. The second is to require that A be finite. 

Definition: 	The decision problem for relative adequacy is the 

problem of determining for program P, subset A(P) of the programming 

system, and test set T, whether or not T is adequate relative to 

A(P). 

Definition: 	Let G be a function that for program P, subset 

A(P) of the programming system, and specification f, defines T = 

G(P,A(P),f) D. If all such T are adequate relative to A(P), then 

the function G is said to be an adequate test strategy (relative to 

A(P)). 

If A = P, then adequacy relative to A is simply adequacy. 

Therefore, it is possible that relatively adequate test sets do not 

exist, and a computable test strategy may be only a partial func-

tion. 

Theorem 14: Assume that A a: P, that every program in P has an 

adequate (relative to A) test set and that there is a decision 

procedure for adequacy relative to A for P. Then there is a com- 
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putable adequate test strategy for all programs in P. 

Proof: 	As in the proof of Theorem 2, consider any decision 

procedure for relative adequacy. Given P, A and a specification, a 

test strategy simply enumerates subsets of D, deciding for each sub-

set whether or not it it adequate relative to A. If a relatively 

adequate test set exists, the enumeration procedure will eventually 

discover a test set containing it, and output that set as the result 

of the strategy.[] 

However, the converse does not hold 

Theorem 15: 	The existence of a (total) computable adequate 

test strategy does not imply that the decision problem for adequacy 

is solvable. 

Proof: Define a programming system P = (Pij(0.-“,j) as follows. 

"i0 is the function that is i on input 0 and 0 otherwise. For all 

j > 0 let P ij compute the function P*ij defined below: 

i, if x = 0, 

j, if x=1, 

p*.. (x) = 0, if x=2, 	and T(i,i,j), 

1, if x=2 and 

0, if x>2. 

For each Pij.., let A = A(P..) be the set of programs [Pik: k ij 

0). 	Since {OW distinguishes any two programs in A, (0,1) is 

adequate relative to A. Hence the strategy that produces OM is 
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adequate and is clearly computable. 

To show that adequacy relative to A is undecidable, notice that 

if the ith Turing machine halts in k steps, then P*ik(2) =0, and the 

test set {2} fails to distinguish P
10 and 	But But P*A(1) # 

p* iic (1). 	If the ith Turing machine fails to halt on input i, then 

for all m, Ps im(2) = 1 and {2} is adequate for P io . 	Suppose there 

is a decision procedure. Then the procedure announces that {2} is 

adequate relative to A for P io  iff the ith Turing machine fails to 

halt on input i. [1 

Corollary: 	There are programming systems with a decidable 

equivalence problem and for which every program has an adequate test 

set for which adequacy is not decidable. 

Proof: Since the equivalence problem for the programming 

system P constructed above is decidable, the corollary follows 

immediately.[] 

Theorem 16: There are programming systems with a decidable 

equivalence problem and for which adequate test sets exist for each 

program that do not have a computable adequate test strategy. 

Proof: Let P = {P ij I0 S i,j} be a programming system defined 

as follows. For each i,j, define 

1"..(x) = 1 3 1, if 0<xKj and T(i,i,x) 

0, otherwise. 
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By construction, P ij  = pkm  exactly when i=k and 	 where 

min(j,m) < n < max(j,m). Clearly equivalence is decidable. 

Choose A(Pij) = [Pim : m  Z 0). For given i, if the ith Turing 

machine fails to halt on input i, then all elements of A compute the 

same function, and so any nonempty test set is adequate for Pij 

relative to A. On the other hand, if T(i,i,m), then (0,m) is 

adequate. 	Thus, each program, P, has an adequate test set relative 

to A(P). 	Assume that a computable strategy, GA, exists, and 

consider GA (F ij )• 	The ith Turing machine halts on input i iff it 

halts at the mth step, for some m in GA(pii). Since test sets are 

finite, this is impossible. Ll 

Therefore, there are some very bad choices for A, indeed. Even 

assuming that A has a decidable equivalence problem does not improve 

the situation much. Vie will now examine the effects of requiring 

only that A be finite. 

Definition: Let P be a programming system. For each program 

P, let p(P) be a finite subset of P. Assume further that p is com-

putable in the sense that there is an effective procedure that lists 

p(P) for all P. p(P) is said to be a set of mutants of P. 

Theorem 17: Every correct program has a test set adequate 

relative to p(P). 

Proof: 	There are only finitely many programs Q in p(P) and 

each such Q is either correct or not. If f(x) = P*(x) A 0(x), add x 

to the test set. Only finitely many points need be added to obtain 
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an adequate (for g(P)) test set. [] 

Definition: 	The g equivalence problem is that of deciding 

whether or not Q e g(P) and P = Q. 

Theorem 18: The following statements are equivalent. 

(a) the p(P)—adequate decision problem is solvable. 

(b) there is a computable p(P) test strategy. 

(c) the p equivalence problem is decidable. 

Proof: If there is a 1i(P) decision procedure, then a com-

putable g(P) test strategy may be constructed as in the proof of 

Theorem 2. Thus, (a) implies (b). 

To show that (b) implies (c) assume a computabe strategy. 

Given programs P,Q decide p—equivalence as follows. Compute g(P) 

and check Q e p(P), and reject if not. Otherwise, generate a test 

set which is adequate relative to p(P) and check equality of P* and 

Q* on this set. By the definition of adequacy, equality on the test 

set implies equality over D. 

Suppose that we are given a decision procedure for g(P) 

equivalence, and we are to decide whether a test set T is g(P)-

adequate for specification f. Assume that P*(T)=f(T). First, 

construct the set g(P) and determine those Q s g(P) which are not 

equivalent to P. This procedure is effective. For each such Q # P, 

we search for some a e T such that P*(x) & Q*(a). Obviously, T is 

adequate if and only if each such search is successful. Therefore, 

(c) implies (a).[] 
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Although there is an equivalence between the decision problems 

for p(P) adequacy, equivalence and test strategies, the finiteness 

of a(P) alone is not sufficient to guarantee that any of these 

problems are solvable. 

Theorem 19: There are programming systems P and functions a so 

that none of (a) — (c) in the statement of Theorem 18 are true. 

Proof: Let P be as constructed in the proof of Theorem 12, and 

let p(P) = (130,P) for all P e P. Then [0) is adequate for P i  iff 

the ith Turing machine on input i does not halt. Since the decision 

problem for adequacy is unsolvable, Theorem 18 can be used to com-

plete the proof. n 

In order for µ(P)—adequacy to be useful in practice, we 

evidently have to exercise some care in defining a, insuring that 

either the appropriate decision problems are easily decidable, or 

that heuristics are available. 

A key aspect of µ(P)—adequacy is that it admits measurement of 

how close a given test set is to being adequate. This is a relaxa-

tion of the decision problem for adequacy which is frequently 

encountered in testing situations. Since µ(P)—adequacy may itself 

be a (statistically) strong predictor of program correctness, it may 

not be cost effective to develop a test set which is a—adequate. 

Rather, the inference of correctness may be made on much more slen-

der foundations: the test set is "almost" adequate. Se will 

consider the definition of such a measure here. In later chapters 

we will consider the evidence for its effectiveness as a stopping 
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rule. 

Let AE(P) be the set of those programs in g(P) which are func-

tionally equivalent to P; that is, Q E gE (P) if P*(D) = Q*(D). For 

a set of test data T, we define A(P,T) to be the set of programs Q s 

g(P) which disagree with P on at least one point in T. We will con-

fuse the size of a set with its cardinality; in particular, g(P) 

will be used to denote Ig(P)I. Then the mutation score of T is the 

fraction of the nonequivalent elements of p(P) which differ from P 

on one or more points in T: 

Definition: The mutation score of T for P is defined to be 

m(P,T) = A(P,T)/g(P)—gE (P). 

Notice that once OP) is fixed, µ E (p) and A(P,T) are determined 

by the semantics of the programming system. We want m to be a 

measurement of test data quality. That is, the function m should be 

useful in a stopping rule for inductive inferences of correctness: 

it should be possible to choose a function g so that 

(a) g(P) is relatively easy to compute, and 

(b) m(P,T) approaches one as our confidence in the 

correctness of P increases by virtue of P's 

correct execution on T. 

It is an easy observation that m(P,T) is a direct measurement 

of how close the test set T is to being adequate for P relative to A 

= g(P). 
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Theorem 20: Assume that p(P) contains a correct program. Then 

P*(T) = f(T) and m(P,T) = 1 implies that T is adequate for P 

relative to p(P). 

Proof: Assume that p(P) contains a correct program Q, and sup-

pose that P*(T) = f(T) and m(P,T) = 1. If P is correct, then for 

any program R, R # P iff R # f. If R e p(P) and R f = P and if 

m(P,T) = 1,then R*(T) # f(T). We claim that P cannot be incorrect, 

for suppose otherwise. Since p(P) contains a correct program 0, 

m(P,T) cannot be 1 unless Pa(T) # Q*(T) = f(T), a contradiction.[] 

The assumption that p(P) contains a correct program is called 

the Competent Programmer Assumption. The competent programmer 

assumption is a limiting empirical hypothesis. In a previous sec-

tion (see Figure 1) we defined the programming model by analogy with 

a root finding procedure in which the process of creating and debug-

ging a program can be stated 

Pf = (valid representation of program correct for f). 

The program playing the role of the iterative in this process can be 

expected to change less and less as the programming process 

continues. When the program is "close" to a correct program, the 

process stops. Thus, a program to be evaluated by any of the tech-

niques described above is not a random response to a specification: 

if it has been produced by a competent programmer, it has already 

been subjected to the iterative programming process. Therefore if 

p(P) represents those programs which are close (in the sense of 

root—finding) to a correct program, with high probability, P will 

either be correct or within a small neighborhood of a correct 
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program. Our goal in subsequent chapters will be to define g(P) so 

that this assumption is useful in practice. 

Theorem 20 can be restated in another form which is often more 

useful. The specific function g we will deal with later behaves in 

a "reversible" manner; that is, P s g(Q) if and only if Q a g(P). 

Theorem 21 follows by an argument similar to the one above. 

Theorem 21: If P*(T) = f(T) and m(P,T) = 1, then either T is 

correct or for all correct programs 0, P e g(Q). 

Therefore, by analogy to Theorem 13, we have a measurement of 

test quality which either accurately reflects the reliability of the 

test data or requires the violation of a specific empirical 

hypothesis. 
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Chapter  2 

Errors  and Mutations  

The Competetent Programmer Assumption 

Let us recall the following definitions from Chapter 1. If p 

is a mapping which associates a set of programs with a given program 

P, pE (p) qiii(P) is the set of programs in p(P) which are func-

tionally equivalent to P, and if for a given test set T, A(P,T) 

consists of those programs in p(P) which disagree with P on at least 

one point in T, then the measure 

m(P,T) = A(P,T)/p(P)—pE (p) 

can be defined. Theorem 1.21 guarantees that if P executes correc-

tly on the test set T and m(P,T)=1, then either P is correct or P 

does not belong to p(0) for any correct program Q. 

For a given program P, the set p(P) is called a set of mutants  

of P. Thus, if every program P is a mutant of some correct program, 

calculation of the measure m(P,T) can be used to infer correctness. 

The assumption that any program being tested is a mutant of a 

correct program is called the Competent Programmer Assumption. The 

Competetent Programmer Assumption formalizes an observation of human 

activity. In this case, the observation is that programmers do not 

create programs at random. Rather, programs that are written by 

experienced programmers, are written in response to formal or 

informal understandings of what the program is intended to do. 

Thus, in response to specifications for a payroll system, a com- 



Errors and Mutations 	 2-2 

petent programmer will produce a program that is very much like a 

correct payroll system. The program produced may be incorrect, 

inefficient or sloppy, but in the final analysis, it will be more 

like a correct payroll system than a compiler. The competent 

programmer assumption asserts that programmers create programs that 

are close  to being correct. During the iterative programming 

process, competent programmers constantly whittle away the distance 

between what their programs look like now and what they are intended 

to look like. 

Suppose that the task at hand is to design a Fortran program to 

compute the (Euclidean) magnitude of an N—dimensional vector X in a 

Cartesian coordinate system with fixed origin. Then the subroutine 

P1 below certainly could have been produced by a competent program-

mer. 

SUBROUTINE P1(X,MAG) 
MAO = 1 
DO 1 I = 1,N 
NAG = MAG+X(I)**2 

1 NAG = SORT(MAG) 
RETURN 
END. 

We would question the competence of a programmer who produced 

subroutine P2: 

SUBROUTINE P2(X,MAG) 
NAG = X(1) 
DO 1 I = 1,N 

1 MAG = MAX(X(I), MAW 
RETURN 
LID. 



Errors and Mutations 	 2-3 

There is no reasonable sense in which P2 is a "buggy" version of the 

program asked for. P1 can easily be debugged, but P2 is not even a 

program of the same kind -- it is so radically incorrect that its 

incorrectness can be discovered without testing it! 

The competent programmer assumption states that a program is 

assumed to be either correct or a mutant of a correct program. For 

example, in the problem of computing magnitudes of N—vectors, 

subroutine P1 is a mutant of the correct P below. 

SUBROUTINE P(X,MAG) 
MAG = 0.0 
DO 1 I = 1,N 

1 MAG = MAG+X(I)**2 
MAG = SORT(MAG) 
RETURN 
END 

Subroutine P2, on the other hand, is not a mutant of P. 

The notion of closeness is summarized by the function p. 

Informally speaking, the set of mutants of a program P should 

reflect the possible errors that might have been made in the crea-

tion of P by a competent programmer. If a general concept of error 

can be derived in such a way that the Competent Programmer 

Hypothesis can be shown to hold with probability 1-8 then the cal-

culation of m(P,T)=1 allows an inference of correctness with the 

same level of confidence. 

The classification of programming errors is not a well under-

stood process. However, it appears that there are at least four 

mechanisms responsible software errors. 
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1. failure to satisfy specifications due to an 

implementation error, 

2. failure to satisfy a requirement, 

3. failure to write specifications that correctly represent 

a design, and 

4. failure to understand a requirement. 

The problems surrounding requirements and specification testing and 

evaluation are beyond the scope of this book and are probably not 

within the domain of correctness testing. The mechanisms referred 

to in (1) and (2), however, are always reflected in specific program 

errors: either a program carries out an action that it should not, 

fails to carry out a necessary action, or carries out an action 

improperly. This suggests that errors resulting from (1) and (2) 

are reflected in programs as missing control paths, inappropriate 

path selection, and inappropriate or missing actions. 

In order to satisfy the Competent Programmer Assumption, carry 

out the following conceptual experiment. We observe a community of 

programmers and classify the errors they make into categories 

E1 ,E2 

 

Ek• 

 

We are free to observe the programmers for as long as we wish and 

make whatever specialized assumptions we wish about the programming 

task they will be called upon to perform. It is, in principle, pos- 
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sible to gain whatever degree of confidence we desire that among the 

k classifications we have encountered the errors most likely to be 

made by this particular group of programmers. Given a program P to 

test in this setting, we must derive a relatively adequate set of 

test data, T, for P. If P is incorrect, we will never be able to 

find an adequate set; indeed, the point of testing P is to find a 

set of test data that calls attention to the fact that P is 

incorrect. If P is correct, however, adequate T should at least 

convince us that P does not contain the errors most likely to be 

made. 

Let 

p(P) = {P1, p2 	 Pm) 

differ from P only in each containing a single error chosen from one 

of the error categories. Then an adequate set of test data T should 

at least provide the following assurance. For each P. which is not 

equivalent to P, p*(D) R3.1 *(1)). In other words for each of the most 

likely errors, it should be possible to show that P does not contain 

that specific error. This experiment is specialized to the original 

group of programmers whose errors we observed and recorded. To 

attempt such an experiment for all programmers is surely hopeless, 

unless we can be assured that typical programmers tend to make the 

same, classifiable errors. 
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Error Classification 

The strength of the technique described above rests on our 

ability to assess the errors that programmers are most likely to 

make. Rather than speculate on the sources of errors, it is 

probably more fruitful to examine the errors that programmers 

actually do make. 

A number of studies of programmer errors have been conducted 

over the years. These studies have been carried out using a variety 

of programs, error classification schemes, and methods for detecting 

errors. While several researchers have pointed out methodological 

flaws in the reporting, classification, and documenting of program 

errors, at least 46 independent, large—scale error data gathering 

efforts have been carried out and reported. For the most part, 

problems arising from error classification arise when data gatherers 

try to interpret the errors arising from the mechanisms (3) and (4) 

described above. However, the data on errors arising from 

mechanisms (1) and (2) show remarkable consistency. 

The following data is based on E.A. Young's analysis of 69 

programs and a total of 1,258 errors in several languages. 
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Job Ident. 1 0.00 
Exec. Request 1 0.00 
External I/O 0 0.00 
Other System 0 0.00 
Subrout. 	Ident. 3 0.00 
Allocation 189 0.15 
Label 20 0.02 
Computation 343 0.27 
Non—comput. 2 0.00 
Iteration 117 0.09 
GO TO 13 0.01 
Conditional 59 0.05 
I/O Format 71 0.06 
Other I/O 91 0.07 
System Call 35 0.03 
Subrout. 	Call 22 0.02 
Par/Sub List 62 0.05 
Subrout. Term. 7 0.01 
Other/Multiple 72 0.06 
Data 27 0.02 
Vert. 	Delim. 54 0.04 
None 69 0.05 

1258 1.00 

Table 1. E. A. Young's Error Data 

What is is striking about this data is the relatively small 

contribution of sophisticated error conditions. Errors such as 

operating system interface errors, incorrect job identification, and 

erroneous external I/O assignments accounted for only negligible 

quantities of the observed errors. It might be the case, however, 

that the significant contributors to the major error categories were 

themselves complicated errors. Vie will describe in a little more 

detail the nature of the errors which Youngs discovered. 

Allocation: 	These included errors in declaring shapes and 

sizes of data structures as well as errors in allocating and deal— 

locating local storage for named data objects. 	These errors 
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accounted for 15% of the total. Almost all of them appeared in 

Algol, Cobol, or PL/I programs. 

Computation: 	These 	errors 	occurred within 	assignment 

statements and comprised 275 of the observed errors. Almost half of 

them were caused by the use of a wrong variable or other data 

object. Wrong variable usage constituted the highest percentage. A 

large number of errors in this class stemmed from failures to 

initialize variables properly. 

Iteration: Iteration sequence difficulties were semantic in 

nature (111 of 117). A typical example of such an error is an error 

in the number of loop iterationsresulting from a confution of DO and 

FOR loop semantics. Other examples include errors in loop scope and 

nonterminating loops. These errors accounted for 9% of the total. 

I/O: 	13% of the errors were due to I/O deficiencies, although 

most of these were syntactic in nature. Other common errors include 

the reading or writing of incorrect variables. 

Parameter/Subscript List: 	Although 5% of the total were 

attributed to these errors, more than than sixty percent of the 

errors in this category were due to mismatching formal and actual 

parameters. 

Conditional Branch/Execution: 	Most of these errors resulted 

from testing incorrect variables or using the wrong test in a con-

ditional expression. These errors accounted for 5% of the total. 
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A second study was conducted by T. A. Thayer and his col-

leagues at TRW's Space Systems and Defense Group. The TRW clas-

sification broadly groups errors into twenty categories. We will 

concentrate on 4 categories which altogether account for 80' of the 

errors recorded in a study of two large—scale software development 

projects. The following distribution of reported errors is shown in 

Table 2. 

Percent of Total Errors 

Major Error Categories 	I 	Project A Project B 

Computational 9.0 1.7 
Logic 26.0 34.5 
Data Handling 34.6 36.1 
Interface 17.0 22.5 
Data Definition 0.8 3.0 
All Others 12.6 2.2 

Table 2. TRW Error Data 

Computational Errors: These were errors introduced into arith-

metic computations (the classification is insensitive to the nature 

of the computation; the computation could be the actual calculation 

of a physically interpretable quantity or merely a bookkeeping cal-

culation of no significance outside the program). The calculations 

themselves occurred in assignment statements. The errors which make 

up this category include the incorrect use of an operand in an 

equation, the incorrect use of parentheses, an error in sign con-

vention, an error in units or data conversion, the production of 

over/under flow in a computation, the application of an incorrect or 

inaccurate equation, and the loss of precision due to mixed mode 

arithmetic, and missing computations. 
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Logic Errors: The TRW classification scheme is vague about 

exactly what constitutes a logic error. Indeed, the assignment of 

specific errors to the logic category varied with the data gathering 

procedures. However, the studies published using this classifica-

tion all seem to point toward errors which somehow affect logical 

decisions in the source code, even though the error under considera-

tion may, in fact, be the result of failing  to include a decision. 

Thus errors in this category included missing logic or condition 

tests. Logic errors also resulted from a lack of code to perform 

logical functions. Other errors which were classified as logical 

errors related to code written to carry out some particularly 

troublesome function (e.g., checking the settings of switches), or 

code which was erroneous due to misunderstandings of requirements or 

specifications. These resulted in incorrect operands in logical 

expressions, logic activities coded out of sequence, checking wrong 

variables, errors in the scope of loops, errors in the number of 

loop iterations, and duplicated logic. 

Data Handling Errors: 	These errors included errors in input 

and output operations and errors in internal data handling. Typical 

data input errors included errors due to reading invalid input from 

the correct data file and reading from incorrect files. Also of 

significance were errors due to incorrect input formats and end of 

file processing. Internal data handling errors included errors in 

initializing data storage areas, using variable before they had been 

properly set, incorrect type usage, and subscripting errors. 

Finally, the data output errors mirrored the input errors. Errors 

such as garbled output or output not matching requirements were also 
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considered. In addition, data definition errors such as errors in 

dimensions, referencing out of array bounds and pointer handling 

were also be classified as data handling errors. 

Interface Errors: These errors roughly correspond to those 

that were introduced in the process of integrating program units or 

modules. These included calls to incorrect subroutines, misplaced 

subroutine calls, and errors in parameter passing during an invoca-

tion of a module. 

The remaining errors considered in the TRW studies involved 

errors which were introduced and detected at other phases of the 

software lifecycle. They included operator/user errors, documenta-

tion errors, errors in interfacing to systems software, and 

requirements errors. In contrast, the remaining errors tended to be 

fairly complex and difficult to associate with specific program 

characteristics. 

Mutant Operators 

Practice may dictate so many error types that the calculation 

of mutation scores becomes intractable. By concentrating only on 

"simple" mutants of P the technique becomes manageable. For exam-

ple, in the case of computing magnitudes of vectors, P1 is not a 

simple mutant of P, but Mi and M2 are simple: 
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SUBROUTINE Ml(X,MAG) 
MAG = 1 
DO 1 I=1,N 

1 MAG = MAG+X(I)**2 
MAG = SORT(MAG) 
RETURN 
END 

SUBROUTINE M2(X,MAG) 
MAG = 0.0 
SO 1 I=1,N 
MAG = MAG+X(I)**2 

1 MAG = SORT(MAG) 
RETURN 
END. 

The mutants we will consider arise from the single application of a 

mutant operator,  a simple syntactic or semantic program transforma-

tion such as changing a particular instance of a relational operator 

to one of the remaining operators or changing the target of an 

unconditional transfer to another labelled target. A problem that 

arises immediately is that this is apparently a violation of the 

Competent Programmer Assumption. While error classification data 

indicates that programmer errors fall into a small number of 

identifiable categories, there is little to suggest that programmers 

make errors one at a time. Thus, while concentrating on simple 

errors may allow a tester to derive adequate test sets relative to a 

small class of errors, the data may not be adequate relative to a 

set of errors that are most likely to occur in practice. In fact, 

there is little lost in restricting mutants to those which can be 

defined by simple errors. As we will discuss below there is an 

observable coupling  of simple and complex errors so that test data 

that causes all nonequivalent simple mutants to die is so sensitive 
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that likely  complex mutants also die. The coupling of simple and 

complex errors implies that if P is correct for an adequate test T 

while Mi and M2 disagree with P, then P1 must also disagree with P 

on T. 

A set of mutants g(P) is defined by a set of mutant operators 

that model a set of errors according to the Competent Programmer 

assumption. That is, for each error category Ei there is a set of 

programs g i (P) which corresponds to the errors defined by Ei• There  

is no single correct set of mutant operators -- the Competent 

Programmer hypothesis is specialized to a given community of 

programmers. In practice, however, it is usually only necessary to 

consider a fixed set of mutant operators which are derived from 

error data such as the data presented above. 

One way to view mutation operators is a mapping between 

representations of source programs (see Chapter 4 for details on 

implementation strategies). Let the tree T1 represent some program 

P, parsed into a tree—structured form as shown in Figure 1(a). Then 

a mutation operator when applied to T 1  produces a new tree T2 by 

modifying a single leaf t of T1  as shown in Figure 1(b). 
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(b) 

Tree T 
	

Tree T 
2 

Figure 1. 

Mutation by Modifying a Leaf 

of a Parse Tree 

The tree T2 remains a valid internal representation of some  

mutant program of P. In practice, not all of the mutant operators 

fit exactly into this model, but it is nevertheless a helpful 

organizing principle. 

The result of applying such an operator is a 1—order  or simple  

mutant of the original program. 2—order mutants are the result of 

two applications of (not necessarily the same) mutant operators. 

Continuing inductively, the notion of a k—order mutant can be 

defined for any k 1. Since the result of applying a mutant 

operator always results in a syntactically correct program, the num-

ber of k—order mutants is given byk, where 

n  = max{p(P) I size(P) = n) 

and size(P) is any convenient size measure (see Chapter 5). 



Errors and Mutations 	 2-15 

Unless specified otherwise, the term mutant will apply to sim-

ple mutants, and the set of mutants of P, g(P), will be defined in 

terms of (simple) mutant operators. When we want to distinguish 

p(P) from k—order mutants for some k Z 2, we will use 4(P) for the 

set of complex mutants. 

We now define a set of mutant operators which will form a basis 

for much of the rest of this book. These operators are mainly 

language independent with appropriate adaptation can be used as a 

core of mutant operators for machine implementation. Furthermore, 

the operators introduced below are designed to model error 

categories as described above. The effectiveness of the operators 

in modelling and detecting errors will be taken up in more detail in 

later chapters. 

Mutant operators can be classified according to whether they 

affect operands, operators, or statements as a whole. 

Operand Mutants: 	Mutations which affect operands alter the 

data objects of the program. For simplicity, we assume that there 

are three kinds of data objects: constants, scalar variables, and 

arrays. Thus there are nine mutant operators which replace a 

variable x with each distinct occurrence of y, where x and y range 

over all constants, scalar variable and array references in the 

program being tested. 

In addition to these operators, there is an operator which 

alters the values of constants appearing in the program. The fol-

lowing table defines the alterations according to the type of the 

object to which the operators is applied. 



Boolean complement 

lIntegers 

Nonzero reals 

Real zero 

+10% 

+ .01 

replace first character 
by adjacent character in 
collating sequence 

Strings 

Table 3. Data Mutations 
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A third type of operand mutation replaces array names in each 

occurrence of an array expression with all other array names of the 

same dimensionality. In specializing these operators to particular 

languages, additional operators which account for language dependent 

features may be needed to augment this list (cf. data mutations for 

Cobol). 

Operator Mutations: 	Arithmetic operator mutations are formed 

by replacing each arithmetical operator with an operator chosen from 

the set (+,—,/, *,**4,1], where r and 1 are operators described 
below. 

Relational operators are mutated by replacing each relational 

operator with an operator chosen from the set (<,I, =, 

trueop, falseop), where trueop and falseop are the operators 

described below. Similarly boolean operator mutations are formed by 

replacing each boolean operator with an operator chosen from the set 

[V, 	leftop, righttop, trueop, falseop). 
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Each unary operator may be removed by a unary operator removal 

mutation. Insertions are formed by inserting the elements of the 

set (—, "1, ++, ABS, —ABS,ZPUSII), whenever appropriate. 

Several operator mutants are intended to model the errors clas-

sified above. These operators produce mutants which are not stric-

tly internal forms of any correct program, but are nonetheless 

useful in detecting certain categories of errors. 

The first two operators are binary operators r and I which can 
stand instead of either arithmetic or logical operators. The effect 

of these operators is to evaluate both operands and to return either 

the right or left hand argument, ignoring the other one. 

A second pair of binary operators, trueop and falsoop, can be 

of boolean type only. These operators evaluate both operands and 

return either the constant value TRUE or FALSE, depending on which 

operator is applied. 

There are several unary operators. Twiddle (denoted ++ or --) 

is an operator which returns its argument + 1 if the argument is an 

integer and + .01% or .01 (whichever is greater) if the argument is 

real. The operator —ABS returns the negative of the absolute value. 

The ZPUSII(X) operators returns X if X is nonzero. However, if X is 

zero, ZPUSH by definition causes the mutant to be eliminated, thus 

forcing the expression X to be zero. 

Statement and Control Mutations: A sequence of unlabelled non—

decision statements in a program is called a basic block.  It is a 

property of a basic blocks that if any one of the statements in a 



Errors and Mutations 	 2-18 

block is ever executed, then all statements in the block must also 

be executed. 

One type of statement mutation determines whether or not the 

initial statement of each basic block is ever executed. The 

statement operators replaces the first statement of a basic block 

with a special statement called TRAP. The semantics of the TRAP 

statement is that if it is ever executed, it immediately causes the 

mutant to be eliminated. On the other hand, if such a mutant ever 

survives, then the corresponding basic block has never 	been 

executed. 	In this fashion, mutants can model a basic statement 

coverage measure of test data adequacy. 

Statement coverage is strengthened by using a mutation operator 

which replaces each statement with a statement that has no effect, 

such as the Fortran CONTINUE statement. These mutants are designed 

to determine whether, in addition to being executed, the mutated 

statement has any effect on the program's execution. 

A third statement operator changes the labels on control trans-

fer statements and arithmetic conditionals to other labels which 

appear in the program. 

The final statement operator to be discussed here modifies the 

structure of loops. One form of this operator changes the final 

label on Fortran DO loops to other labels which lie between the 

beginning of the loop and the end of the program. A second form of 

the operator changes the loop statement semantics. Recall, for 

example that the difference between a Fortran DO and an Algol FOR 

statement is that if the initial value of the FOR loop variable is 
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smaller than the final value, the FOR loop is not executed, but a DO 

loop body is always executed at least once. Confusing this two loop 

constructs is a common programming error. A mutation operator that 

models such an error simply changes a DO statement to a FOR 

statement. 

A set of mutant operators that is applicable to Fortran 

programs includes the following: 

Operand Mutations 

1. Constant Replacement (by +1, —1) 
2. Scalar for Constant Replacement 
3. Source Constant Replacement 
4. Array Reference for Constant Replacement 
5. Scalar Variable Replacement 
6. Constant for Scalar Replacement 
7. Array Reference for Scalar Replacement 
8. Comparable Array Name Replacement 
9. Constant for Array Reference Replacement 

10. Scalar for Array Reference Replacement 
11. Array Reference for Array Reference Replacement 

Operator Mutations 

12. Arithmetic Operator Replacement 
13. Relational Operator Replacement 
14. Logical Connective Replacement 
15. Unary Operator Replacement 
16. Unary Operator Removal 
17. Unary Operator Insertion 

Statement Mutations 

18. Statement Execution (replacement by TRAP) 
19. Statement Deletion 
20. RETURN Statement Replacement 

Control Structure Mutations 

21. Jump Statement Replacement 
22. DO statement Replacement 
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Adapting this set of operators to other languages involves 

analyzing the errors which can occur due to language features not 

present in Fortran. For example, to expand the Fortran operators to 

the simple Cobol subset discussed in Chapter 4, the following 

mutants should be considered. 

Operand Mutations 

1. Move implied decimal point in numeric items one place to 
the left or to the right. 

2. Add or subtract one from an OCCURS clause count. 
3. Insert FILLER of length one between two adjacent 

record items; also change FILLER lengths by one. 
4. Reverse adjacent elementary items in records. 
5. Alter file references. 

Operator Mutations 

6. Change ROUNDED TO truncation in arithmetic 
assignments 

7. Change the sense of a MOVE 

Control Structure Mutations 

S. Interchange PERFORM and GOTO 

We use the notation a==>0 to indicate the application of a 

mutant operator to construct a to produce mutation 0. In general a 

can be a statement, group of statements, program or program frag-

ment. If a is not a complete program, a==>0 is to be interpreted so 

that a is changed to J3 and the remaining context of a remains intact 

if the result is a syntactically correct program. 
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A Procedure for Developing Adequate Test Data 

Given a program P to test and a set of test data T, apply the 

mutant operator p to obtain the set p(P) of mutants. The first step 

is to execute the program P using test data. If P does not perform 

as specified on T, then certainly P is in error. If P performs as 

specified on T, we must determine whether T is adequate relative to 

p(P). Only two possibilities arise. 

1. a mutant 0 e p(P) gives different results from P, or 

2. a mutant t3 e p(P) gives the same results as P. 

In case (1), Q is said to be dead,  while in case (2), the mutant is 

called live.  Obviously, if T leaves only live mutants that are 

equivalent to P, m(P,T)=1, and therefore T is adequate relative to 

the set of mutants. If T leaves live, nonequivalent mutants, then 

either T can be augmented by some test strategy to an adequate 

(relative to p(P)) test set, or there is an error in P that has not 

yet been revealed. 

It is not apparent from this description that the procedure is 

either feasible or effective in detecting errors. As we will show 

in later chapters, there is a methodology for implementing this 

procedure which makes it computationally attractive. By the same 

token, we will demonstrate the error detection capabilities of this 

procedure. In lieu of these developments, however, the reader 

should notice that we have outlined a principle which can provide 

inferences of correctness. The inductive strength of those 

inferences is directly related to a single set of experimental 

observations -- the observations which support the Competetent 



Errors and Mutations 	 2-22 

Programmer Assumption with a specified degree of confidence. 

Error Coupling 

A coupling effect asserts that test data that is sensitive 

enough to cause all simple mutants to fail is also sensitive enough 

to cause all complex mutants to fail. Note that error coupling is 

not a provable phenomenon in a mathematical sense; indeed, there are 

very simple counterexamples to it. It is, however, a useful 

principle that can be observed to hold for broad classes of programs 

and which can be measured in typical programming environments. 

Since error classifications result in sets of mutants, it may 

help to define error coupling in terms of mutant operators. 

Definition: 	Let g(P) and $(P) define sets of mutants for each 

P in a programming system. Then g is said to be coupled to + if 

mg (P,T) =1 implies m4(P,T) = 1. 

It may have occurred to the reader that program mutation is the 

software version of fault detection: that is the origin of a 

hypothesized coupling effect. The fault detection problem may be 

specified as follows. Given a digital circuit C and Boolean func-

tion f (the specification of the circuit), determine whether or not 

the circuit C realizes the function f. A natural way of solving a 

fault detection problem is to submit inputs to C. If C works as 

expected then the circuit is most likely to be fault—free. Suppose 

C determines the cemplement of a 32 bit number. Exhaustive testing 

of an arbitrary circuit might require as many as 2 32  inputs. 
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However, the faults (or errors) that are assumed to occur are 

usually constrained in some way. 	For example, it is commonly 

assumed that all faults are of the form: 	a single wire is 

permanently "stuck at" 0 or 1. These are called single faults.  The 

single fault assumption reduces the number of test case to under 

100. Such assumptions are derived on the basis of experience, the 

independence of the components of C and the statistical analysis of 

similar circuits. Using a single fault assumption in a given fault 

detection problem, a tester obtains a test set I such that C per-

forms correctly on I and no other single fault circuit performs 

correctly on I. Then either C is correct or it is not in the set of 

single fault circuits for a circuit correctly realizing f. 

The problem that arises in fault detection is how close a 

single fault test set comes to detecting multiple faults which might 

actually occur (circuit testers call this phenomenon coverage of the 

multiple faults). In many circumstances single fault tests sets 

provably cover many or all multiple faults. For example, there are 

classes of circuits (e.g., cascaded two—level networks and internal 

fanout—free networks) such that if I is a set of test data which 

solves the single fault detection problem on a given set of k wires, 

then I also solves all multiple fault detection problems on those 

wires. As a concrete example, consider the combinational logic cir-

cuit shown in Figure 2 below. 
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Let K = [1,3,6,8,11,13,16,18,21,23,26,28,31,33,36,38) denote 

the indicated 16 inputs of the circuit, and let I be the test set of 

56 input vectors shown in Table 4. The entries under i denote the 

number of the input vector. The vector and parity entries must be 

read together to determine the value of the vector. For example an 

entry with vector entry a1,a2,a3 and parity entry j3  e 0,1) denotes 

an input vector in which inputs numbered a i , 1 S i S 3, are set to 0 

and the remaining inputs are set to 13+1 mod 2. 
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Vector 

1 0 3,5,11,13,15 29 12,18,19,31,32,38,39 
2 0 1,5,11,13,15 30 14,16,17,33,34,36,37 
3 0 8,10,16,18,20 31 13,14,17,33,34,36,37 
4 0 6,10,16,18,20 32 11,12,19,31,32,38,39 
5 0 1,3,5,13,15 33 1,8,9,21,22,28,29 
6 0 1,3,5,11,15 34 3,6,7,23,24,26,27 
7 0 6,8,10,18,20 35 3,4,6,23,24,26,27 
8 0 6,8,10,16,20 36 1,2,8,21,22,28,29 
9 0 1,2,3,4,11,13,15 37 11,18,19,31,32,38,39 

10 0 6,7,8,9,16,18,20 38 13,16,17,33,34,36,37 
11 0 1,3,5,11,12,13,14 39 13,14,16,33,34,36,37 
12 0 6,8,10,16,17,18,19 40 11,12,18,31,32,38,39 
13 0 23,25,31,33,35 41 1,2,8,9,22,28,29 
14 0 21,25,31,33,35 42 3,4,6,7,24,26,27 
15 0 28,30,36,38,40 43 3,4,6,7,23,24,27 
16 0 26,30,36,38,40 44 1,2,8,9,21,22,29 
17 0 21,23,25,33,35 45 11,12,18,19,32,38,39 
10 0 21,23,25,31,35 46 13,14,16,17,34,36,37 
19 0 26,28,30,38,40 47 13,14,16,17,33,34,37 
20 0 26,28,30,36,40 48 11,12,18,19,31,32,39 
21 0 21,22,23,24,31,33,35 49 1,2,8,9,21,28,29 
22 0 26,27,28,29,36,38,40 50 3,4,6,7,23,26,27 
23 0 21,23,25,31,32,33,34 51 3,4,6,7,23,24,26 
24 0 26,28,30,36,37,38,39 52 1,2,8,9,21,22,28 
25 1 2,8,9,21,22,28,29 53 11,12,18,19,31,38,39 
26 1 4,6,7,23,24,26,27 54 13,14,16,17,33,36,37 
27 1 3,4,7,23,24,26,27 55 13,14,16,17,33,34,36 
28 1 1,2,9,21,22,28,29 56 11,12,18,19,31,32,38 

Table 4. Single Fault Test I 

It can be shown that I also covers every multiple fault involv-

ing every k—tuple of the lines from K, for k=2,3. Furthermore, I 

covers 905 of the multiple faults involving m of these lines for 

m=4,5,6. For multiple faults simultaneously involving all 16 wires, 

however, less than half of the 2 16  faults are covered. It is 

essentially a problem in electrical engineering to determine whether 

or not k simultaneous faults are likely for k .K 6. If so, then it 

would seem appropriate to use the 56 test vectors in I. 
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The coupling of errors in programs has much in common with the 

notion of test set coverage. It appears that test data which is 

adequate for simple errors is also adequate for many complex errors. 

In fact, the assumptions made about the programming process in Chap-

ter 1 give us some hope that error coupling in programs is a 

stronger effect than coverage of multiple faults in digital cir-

cuits. A fault in a circuit is an event of nature -- it is 

essentially random. However, since programs are not created ran-

domly, it seems unlikely that errors are created randomly Neither 

are errors created by an adversary. Rather, errors are introduced, 

corrected and reintroduced by programmers diligently creating 

programs which they intend to be error—free. The result of this 

activity is that errors are not created specifically to avoid  error 

coupling. There is a great deal of information sharing within a 

program, and textually distant source statements can exert subtle 

influences on each other during program execution. The net effect 

of this interdependence is that complex errors can make their 

presence known through their effects on single statements and single 

syntactic items within those statements. Hence, a test that deals 

with an an error through a simple mutant in one portion of a program 

can implicitly reveal errors in portions of the program that depend 

Or affect the statement to which the mutant is explicitly applied. 

Test set coverage also illustrates a theme that runs through our 

treatment of the coupling effect: the interplay between subcases 

for which simple errors cover complex errors and statistical 

estimates for the general case. 
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We will illustrate this principle with a simple example. 

Consider the Fortran program B7 for computing statistics from a 

table of observations. 

SUBROUTINE TAB1(A,NV,NO,NINT,S,UBO,FREQ,PCT,STATS) 
INTEGER INTX 
REAL TEMP,SCNT,SINT 
INTEGER INN,J,IJ 
REAL VMAX,VMIN 
INTEGER I, NOVAR 
REAL WBO(3),STATS(5),PCT(NINT),FREQ(NINT) 
REAL LB0(3),S(NO) 
INTEGER NINT, NO, NV 
PEAL A(600) 
NOVAR = 5 
DO 5 1=1,3 

5 	WBO(I)=UBO(I) 
VMIN = 0.1000000000E+11 
VMAX =— 0.1000000000E+11 
IJ=N0*(NOVAR-1) 
DO 30 J=1,NO 
IJ = IJ+1 
IF(S(J)) 10,30,10 

10 	IF(A(1J)—VMIN)15,20,20 
15 	VMIN = A(IJ) 
20 	IF(A(I3)—VMAX)30,30,25 
25 WAX = A(II) 
30 CONTINUE 

STATS(4) = VMIN 
STATS(5) = VMAX 
IF(UB0(1)—UB0(3)40,35,40 

35 	UB0(1) = VMIN 
UB0(3) = WAX 

40 	INN = UB0(3) 
DO 45 I=1,INN 
FREQ = 0.0000 

45 	PCT(I) = 0.0000 
DO 50 1=1,3 

50 	STATS(I) = 0.0000 
SINT = ABS((UB0(3) —UB0(1))/(UB0(2)-2.0000)) 
SCNT = 0.0000 

= NO (NOVAR-1) 
DO 75 J=1,NO 
IJ = 13+1 
IF(S(J))55,75,55 

55 	SCNT = SCNT+1.0000 
STATS(1) = STATS(1)+A(IJ) 
STATS(3) = STATS(3)+A(I3)*A(IJ) 
TEMP = UB0(1)—SINT 
INTXT = INN-1 
DO 60 I=1,INTXT 
TEMP = TEMP+SINT 
IF(A(U)—TEMP)70,60,60 
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60 CONTINUE 
IF(A(IJ)—TEMP)75,65,65 

65 	FREQ(INN) = FREQ(INN)+1.0000 
GO TO 75 

70 	FREQ(I) = FRE0(I)+1.0000 
75 CONTINUE 

IF(SCNT)79,105,79 
79 DO 80 I=1, INN 
80 	PCT(I) = (FREQ(I)*100.0000)/SCNT 

IF(SCNT-1.0000)85,85,90 
85 	STATS(2) = STATS(1) 

STATS(3) = 0.0000 
GO TO 95 

90 	STATS(2) = STATS(1)/SCNT 
STATS(3) = SQRT(ABS((STATS(3)—(STATS(1)*STATS(1)/ 

* SCNT)/(SCNT-1.0000))) 
95 	DO 100 1=1,3 
100 UBO(I) = MOM 
105 RETURN 

END 

This program is adapted from a collection of statistical and 

scientific programs and contains an artificially inserted error. An 

error occurs in the line that reads 

40 INN = UB0(3). 

The statement should be 

40 INN = UB0(2). 

Consider, 

the mutant 

IF (A(IJ) — TEMP)75,65,65 => IF (A(IJ) — 1.000)75,65,65 

Control reaches this point only if A(IJ) is bigger than TEMP, so 

control always passes to 65. 	By tracing the flow of control we 

discover that TEMP is equal to the value of the input parameter 

UB0(3) at this point. To eliminate this mutant, then, we must find 
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a value where A(IJ) is less than one but larger than .00(3). 

Therefore 00(3) must be less than one. There is nothing in the 

specifications that rules out UB0(3)'s being less than one, but the 

error causes UB0(3) to be assigned to the integer variable INN. All 

the feasible paths that go through the mutated statement also go 

through label 65, which references FP.EQ(INN). Since INN is less 

than or equal to zero, an array index out of bounds error is detec-

ted. 

As we have already mentioned, there is no useful sense in which 

errors are provably coupled in real programs. Therefore, it makes 

sense to inquire into the extent to which errors are coupled. 

Definition: 	Let P be a program and consider g(P) and 4(P) as 

defined above. We will say that g is coupled to 4 with coupling 

coefficient (1—u) if co is the largest number such that for any test 

set T with m[sub p(P,T) = 1 $(P) —A4(p,T) Kw14(1) )1. 

We plan on using this definition in experimental investigations 

into the coupling effect. The goal of these investigations is to 

determine whether or not a tester can assume with a reasonable 

degree of confidence that test data which is adequate for simple 

mutants is also adequate for mutants which explicitly satisfy the 

competent programmer assumption. Examining all possible test cases 

is not feasible, so this definition needs some modification to be 

experimentally useful. We will ,therefore, usually work with 

another coefficient, z. 
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Definition: 	The 	coefficient z is the fraction of the 

nonequivalent members of 4 that are not killed by some particular 

test case. 

z is then a random variable distributed over the space of pairs 

(P,T), where P is a program, and T is adequate relative to g(P). 

Clearly o is an upper bound on z. An experiment on the coupling 

effect is a measurement of the strength of that effect by 

measurement of z. The measurement of z is in turn, an estimate on 

w. In practice, z itself can only be estimated by sampling. The 

usual case is that we will determine a confidence interval for z. 

The conclusion of an experiment organized in this way will then be 

of the following form. For programs selected from a given popula-

tion and test data generated by process G (adequate for g) the 

values of z were estimated by sampling from 4 and found to range 

between x and y. 

Thus, if the population from which we sample is similar to the 

population of programs about which we want to make quantitative 

estimates, and G is the method available for generating test data 

whose strength we want to determine, and if 4 is an estimate of the 

distribution of likely mutants, we can use the estimated values of z 

to bound the probability that errors remain in a given program. 
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Chapter  3 

Theoretical Studies  

There are two possible approaches to applying mutation: (1) 

For fixed programming system P define the mutants of P in terms of 

syntactic and semantic transformation rules that alter P's syntax 

and interpretation in a way that formally reflects the errors a com-

petent programmer could have made in producing P, or (2) define p = 

P. Notice that, by virture of Theorems 1.20 and 1.21, (2) has the 

effect of reducing test data adequacy relative to a set of errors to 

simple test data adequacy. For theoretical studies, (2) is often 

the more tractable approach since many useful properties of programs 

can be inherited from their programming systems. 

We recall the following fact from Chapter 1: 

Theorem 1.18: The following statements are equivalent. 	(a) 

the p(P)—adequate decision problem is solvable. (b) there is a com-

putable p(P) test strategy. (c) the p—equivalence problem is 

decidable. 

Then the following corollary is immediate. 

Corollary: If there is a computable test strategy to generate 

p(P) adequate test data T, then the equivalence of P and any program 

Q in p(P) must be decidable. 

At first glance the result of this theorem appears to cast 

serious doubt on our ability to derive any interesting positive 

results, since the equivalence problem is undecidable for most 
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interesting language classes. As will be seen in this chapter, 

however, we can obtain useful theoretical results by choosing the 

set p(P) to capture some special properties of the original program 

P. 

For the remainder of this chapter we will consider two specific 

programming systems: decision tables and LISP programs. 

Decision Tables. 

A decision table is a structured way of describing decision 

alternatives. Decision tables are mainly used for data processing 

applications although from time to time they have been suggested as 

tools for certain analytic studies and for organizing test data 

selection predicates. 

A decision table is composed of a set of conditions, a set of 

actions, and a table divided into two parts. Entries in the upper 

part are chosen from the set (YES, NO, DON'T CARE) (denoted Y, N, 

and * ); entries in the lower table are either DO or DON'T DO 

(denoted X and 0). Each column in the matrix is called a rule. An 

example is shown in Figure 1. 
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RULES 

1 2 3 4 

condition 	1 

condition 2 

condition 3 

condition 4 

Y 

N 

* 

N 

Y 

* 

Y 

Y 

N 

Y 

Y 

* 

* 

Y 

N 

* 

action 	1 X X 0 X 

action 2 X 0 0 0 

action 3 0 0 X X 

Figure 1. 

A Typical Decision Table 

To execute such a program on an input, the conditions are first 

simultaneously evaluated, forming a vector of YES—NO entries. This 

vector is then compared to every rule. If the vector matches any 

rule, the indicated actions are performed. If, for each possible 

data item, there is at least one rule that can be satisfied, we say 

the decision table is complete. We say it is consistent if there is 

at most one rule. 

Definition: Let P be a decision table with rules RIB 

 and for each x e D, the domain of P, let v(x) be a sequence with 

values in the set (YES,NO) such that v(x) i  is the value of condition 

i when evaluated on input x. Rule Rj  (1 1 j < n) is said to be 
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satisfied by input x if whenever Rji e {YES,NO), Rji = v(x)i' 

Definition: 	Let P be a decision table with domain D. P is a 

complete decision table if for all x e D, there is at least one rule 

of P that is satisfied by x. 

Definition: Let P be a decision table with domain D. P is a 

consistent decision table if for all x e D, there is at most one 

rule of P that is satisfied by x. 

We define the programming system P to be the set of consistent 

decision tables. In this case, the behavior of programs on D can be 

characterized functionally. Without loss of generality, we assume 

that P consists of complete decision tables, since an incomplete 

decision table can always be simulated by a complete decision table 

by adding actions that return error flags and rules that are satis-

fied by previously unmatched inputs in such a manner that the domain 

of the incomplete table is consistently extended to all of D. 

Without loss of generality, we may also assume that no two 

rules specify exactly the same set of actions. Suppose that P is a 

decision table with two such rules R and R'. Then by the addition 

of at most one new condition to P, R and R' can be combined into a 

single rule. With this assumption, we can -- given an example of 

input—output behavior -- always determine which rule was applied to 

give the required output. 
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Definition: For each P c P, we define a set of mutants of P as 

follows: (P(P) c:P is the set of all consisent decision tables hav-

ing the same conditions and actions as F. 

Notice that the mutants of P differ from P only in the tabular 

portion of the program. The number of rules may be different, the 

assignment of actions to satisfied rules need not be correlated, and 

the occurrences of YES, NO and * entries may be unrelated. This 

notion of mutant program models the concept of an aribtrary coding 

error in a decision table: since the conditions and actions must be 

preserved, it is assumed that the source of errors is not in under-

standing requirements or specifications, but rather in implementing 

the sequences of actions to be invoked. 

Definition: For each P e P, the set of simple mutants of P, 

11 (P) E4(P) is defined as follows: P' a p(P) if P' is a mutant of P 

such that if some entry R id  in rule i of P is *, then the correspon-

ding entry R'., in rule i of P' is either YES or NO and all other 

rules and actions are identical. 

The simple mutants of P are those members of $ that are formed 

by changing a single * entry into either a YES or NO entry. If P is 

consistent then all simple mutants are consistent. Some of these 

mutants may be equivalent to P. The mutant that changes position j 

in rule i from a * to a Y is equivalent to P only if it is impos-

sible for any input to satisfy rule i and not satisfy this con-

dition. 
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Suppose we test decision table programs by applying Theorem 

1.21. That is, we determine the relative adequacy of a test set by 

computing the mutation score of the test set for a given set of 

mutants. By naively modelling all possible errors, we have a mutant 

set 4(P) that can be as large as 3n + 2m, if P has n conditions and 

m actions. Since each mutant in C(P) could require a distinct test 

set to distinguish it from P, the number of tests required in a test 

set adequate relative to 4(P) could be exponential in the size of P. 

On the other hand, there are at most two simple mutants for every 

table entry in P. This means there are no more than 2nm simple 

mutants. Each mutant requires at most a single test case to 

differentiate it from P. Therefore, even though there are 

potentially 2n different inputs, a test set that is adequate 

relative to p(P) need have only at most 2nm inputs. 

Since 4 models arbitrary coding errors while g models a rather 

more restricted class of errors, the relative advantage computing 

the mutation score on the set of simple mutants cannot really be 

exploited unless there is a coupling of simple and complex errors 

for programs in P. 

Our goal will be to derive a provable  coupling effect for the 

programming system P. In particular, we wish to show that if mq, and 

P are the mutation scores computed over 4(P) and p(P), respec-

tively, then for all P e P, 

ml(P,T) = 1 if and only if m r (P,T) = 1. 
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Assume we have such a set T. 	We require that T satisfy a 

minimal test requirement, the decision table analog of statement 

coverage. We will assume that every rule in P is satisfied at least 

once by some member of T, adding points if necessary to meet this 

condition. If all rules contain *'s, then this condition is met 

initially. 

This condition on T can be insured in test sets adequate 

relative to a rich enough mutant set. Indeed, if 4 had been defined 

to allow modifications to the actions of decision tables, then it 

would have been possible to define 4 so that m4(P,T) = 1 only if T 

satisfies each rule of P at least once. This expansion of 4 does 

not change the error coupling properties of p, but it would add 

considerable complexity to the arguments to follow. 

Definition: 	Let P and Q be decision tables, Q a 4(P), and let 

T be a test set. If P*(T) = Q*(T), then Q is said to test equal  to 

P on T. 

Since each rule in P has a unique set of actions, it follows by 

a simple counting argument that, if Q tests equal to P, then for 

each rule in P there is a corresponding rule in 0 with exactly the 

same actions. Using this fact, we can show the following: 

Theorem 1: 	Suppose m (p,T)=1, and Q tests equal to P (on T). 

Let V(P) i  be the set of inputs satisfying rule Ri if P and let V(Q)i 

be the set of input satisfying the corresponding rule of Q. 	Then 

V(P) i c V(Q) i• 
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Proof: First note that it is not possible for a rule to have a 

Y entry in P and for the corresponding rule in 0 to have an N, or 

vice versa. Otherwise, no data that satisfied the rule in P could 

satisfy the rule in O. 

Consider each * entry in P. 	There are two cases. If the 

change that replaces this * by a Y (the same argument holds for N) 

results in an equivalent program, then the conjunction of the other 

conditions implies a YES in this position. In this case, it doesn't 

matter whether Q has a Y or a * (and these are the only two pos-

sibilities) -- this change cannot contribute to decreasing the size 

of the set V(0) i. On the other hand, if this change does not result 

in an equivalent mutant, then D contains points that satisfy the 

rule and both satisfy and fail to satisfy this particular condition. 

Both these must be accepted by the same rule in Q. Therefore Q must 

also have a * in this position. 

The only remaining possibility is that some rule Ri in P has a 

Y (or N) and the corresponding position in Q has a *. This strictly 

increases the size V(0) i , giving our result. C] 

Theorem 2: Let P s P and let T be a test set. 	If mii (P , T)=1,  

then m l (p,T) = 1. 

Proof: Let V(P) i  be the set of inputs satisfying rule R i  in P. 

Since P is consistent, the V(P)i are disjoint. Since P is complete, 

they cover the entire space of inputs. Each rule in Q must be 

satisfied by at least the set satisfying the corresponding rule in 

P. Since 0 is consistent, it can satisfy no more. [] 
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Recall that Theorem 1.18 stated that we could form an adequate 

test set relative to the set of mutants only if we could decide 

equivalence of P and each of its mutants. Obviously there are some 

cases where this is true (for example, when all conditions are 

independent and therefore none of the mutants are equivalent). We 

can easily find examples where this is not true. Consider, for 

example, two conditions where the implication 

condition) 4 condition2 

is. 	construct a decision table as shown in Figure 2. 

condition 

condition 2 

print "YES" 

  

Y 

X 

  

  

     

Figure 2. 

Example of Undecidable Equivalence 

We can replace the * in the condition 2 row with a Y if and 

only if condition 1 always implies condition 2. In this fashion 

using almost any undecidable question we can construct a program 

with the property that the equivalence question for it and one of 

its mutants is undecidable. 
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The most restrictive assumption made in proving Theorem 2 seems 

to be that each rule must have a distinct set of actions. To show 

that this restriction cannot be eliminated altogether, consider the 

two decision tables shown in Figure 3. The two programs are not 

equivalent (they process the input NNYN differently), yet they agree 

on a set of test inputs CNNYY,NYYN,YYNN,YNNY,NNNN,NYNY,YYYY,YNYN}, 

which is adequate relative to 1i(P). 

Program P 	 Program Q 

 

N Y N Y 

* * * 

Y N N Y 

* * 

 

 

, X 0 0 

0 0 X X 

 

      

Figure 3. 

A Case not Covered by Mutation 

It is not known whether the restriction to rules having 

distinct actions can be replaced with a weaker assumption, or 

whether there is any test method that can be used to demonstrate 

correctness in this case other than trying all 0(2n) possibilities. 



Theoretical Studies 	 3-11 

Lisp Programs 

In this section we will consider the programming system P 

consisting of programs written in the subset of LISP containing the 

functions CAR, CDR, and CONS and the predicate ATOM. 

We will refer to S—expressions as points. We assume that all 

points have unique atoms. Clearly if two programs agree on all 

points then they are equivalent over the entire domain, so there is 

no generality lost in this assumption. 

Definition: A LISP program is a selector program if it is com-

posed of just CAR and CDR. We inductively define a straight—line  

program as a selector program or a program formed by the CONS of two 

other straight—line programs. 

Straight— line programs: We will show in this section that in 

the subsystem consisting of straightlino programs, if p is the 

constant mapping onto the entire subsystem, then m 
P 
 (p

' 
 00) = 1, 

provided only that X is a point such that P(X) is defined. 

We first note that the power of a selector program is very 

weals. 

Theorem 3: If two selector programs test equal on any input 

for which they are both defined, they must compute identical values 

on all points. 
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Proof: The only power of a selector program is to choose a 

subtree out of its input and return it. We can view this process as 

selecting a position in the complete CAR/CDR tree and returning the 

subtree rooted at that position. Since there is a unique path from 

the root to this position, there is a unique predicate that selects 

it. Since atoms are unique, by merely observing the output we can 

determine the subtree that was selected. [] 

Definition: A straight—line program P(X) is well formed if for 

every occurrence of the construction CONS(A,B) it is the case that A 

and B do not share an immediate parent in X. 

The intuitive idea of this definition is that a program is well 

formed if it does not do any more work than it needs to. Notice 

that being well formed is a structural property of programs. 

We now define a complexity measure for straight—line programs. 

Definition: The CONS—depth of a program is defined induc-

tively. 

1. The CONS—depth of a selector program is zero. 

2. The CONS—depth of a straight—line program 

P(X) = CONS(P1(X),P2(X)) 

is 

1 + MAX(CONS—depth(P1(X)),CONS—depth(P2))). 
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Theorem 4: If two well formed selector programs test equal on 

any point for which they are both defined, then they must have the 

same CONS—depth. 

Proof: 	Assume we have two programs P and Q and a point X such 

that P(X) = Q(X), yet the CONS—depth(P) < CONS—depth(Q). 	This 

implies that there is at least one subtree in the structure of 0 

that was produced by CONSing two straight—line programs while the 

same subtree in P(X) was produced by a selector. But then the 

objects Q CONSed must have an immediate ancestor in X, contradicting 

the fact the Q is well formed. 

Theorem 5: If two well formed straight—line programs test 

equal on any point X for which they are both defined, then they must 

test equal on all points. 

Proof: 	The proof will be by induction on the CONS—depth. By 

Theorem 4, any two programs that agree on X must have the same CONS—

depth. By Theorem 3 the theorem is true for programs of CONS—depth 

zero. Hence, we will assume it is true for programs of CONS—depth n 

and show the case for n+1. 

If program P has CONS—depth n+1 then it must be of the form 

CONS(P,Q) where P and Q have CONS—depth no greater than n. Assume 

we have two programs P and 0 in this fashion. Then for all Y: 

P(Y) = Q(Y) 	 if and only if 

CONS(P1(Y),P2(Y)) = CONS(01(Y),Q2(Y)) if, and only if 

P1(Y) = Q1(Y) and P2(Y) = 02(Y) 
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Hence by the induction hypothesis P and Q must test equal for 

We can easily generalize Theorem 5 to the case where we have 

multiple inputs. Recall that each atom is unique; therefore given a 

vector of arguments we can form them into a list and the result will 

be a single point with unique atoms. Similarly, a program with mul-

tiple arguments can be replaced by a program with a single argument 

by assuming the inputs are delivered in the form of a list, and 

replacing each occurrence of an argument name with a selector func-

tion accessing the appropriate position in this list. Using this 

construction and assuming that Theorem 5 does not hold in the case 

of multiple arguments, it is possible to construct two programs with 

single arguments for which Theorem 5 fails, giving a contradiction. 

To summarize this section: for any well formed straight—line 

program, any unique atomic point for which the function is defined 

is adequate to differentiate the program from all other well formed 

straight line programs. 

Recursive programs: The type of programs we will study in this 

section can be described as follows. The input to the program will 

consist of selector variables, denoted x 1,—,x 111 , and constructor 

variables, denoted yi  Yp . A program will consist of a program 

body and a recurser. A program body consists of n statements, each 

statement composed of a predicate of the form ATOM(t(xl )) where t is 

a selector function and x1 a selector variable, and a straight—line 

output function over the selector and constructor variables. A 

recurser is divided into two parts. The constructor part is com- 
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posed of p assignment statements for each of the p constructor 

variables where y i  is assigned a sraight—line function over the 

selector variables and  Y- 1 - 
selector part is composed of m 

assignment statements for the m selector variables where xi is 

assigned a selector function of itself. 

The example in Figure 4 should give a more intuitive picture of 

this class of programs. Given such a program, execution proceeds as 

follows: Each predicate of the execution; otherwise if any 

predicate is TRUE the result of execution is the associated output 

function. Otherwise, if no predicate evaluates TRUE then the 

assignment statements in the recurser and constructor are performed 

and execution continues with these new values. 
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Program P(x 	x m , Y 1 	y p) = 

IF p i (x11 ) THEN f 1  (x 7  , 	 x m  y 	y p  ) 

ELSE IF ... 

	

ELSE IF p ("x ) THEN f n  ("x 1  , . . . , x m  ,y 1 	y p ) 

ELSE 

y := g 7  (y , x 	x m ) 

.Y p  := 	p (Yp, x7,..., x m ) 

X1 := n 1  (x 1  ) 

x m 	n m (x  m) 

P(x 	x m , y 1 	y p)1 

Figure 4. 

A Recursive Program 

We will make the following restrictions on the programs we will 

consider: 

1. All the recursion selector and recursion constructor functions must 

be non—trivial. 

2. Every selector variable must be tested by at least one predicate. 

3. There is at least one output function that is not a constant. 

4. (Freedom) For each 1 < k < n and X. 1 0 there exists at least 

	

one input that causes the program to recurse 	times before exiting 

with output function k. 
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Let t be the set of all programs with the same number of 

selector and constructor variables as P, the same number of 

predicates, and output functions no deeper than some fixed limit 

olimit. 	Our goal is to construct a set of test cases T that is 

adequate relative to 4 • 	The set of simple mutants g will be 

described in the course of the proof, as they enter into the 

arguments. The proof will proceed in several smaller steps: We 

first give some basic definitions and demonstrate some tools that we 

will use in later sections. We then show how to use testing to 

bound the depth of the selector functions. Vie then narrow the form 

of the selector functions still further, and finally show that they 

must exactly match P. In preparation for the main theorem, we first 

deal with the points tested by the predicates. 

As in the previous section. we will use capital letters from 

the end of the alphabet to represent vectors of inputs. Renee we 

will refer to P(X) rather than P(xi ,...,xm,yi,.„,yp). Similarly we 

will abbreviate the simultaneous application of constructor func-

tions by C(X) and recursion selectors by R(X). 

We will use letters from the start of the alphabet to represent 

positions in a variable, where a position is defined by a finite 

CAR—CDR path from the root. When no confusion can arise we will 

frequently refer to "position a in X", whereby we mean position a in 

some xi or yi in X. We will sometimes refer to position b relative 

to position a, by which we mean to follow the path to a and starting 

from that point follow the path to b. 
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The depth of a position will be the number of CARs or CDRs 

necessary to reach the position starting from the root. Similarly 

the depth of a straight—line function will be the deepest position 

it references, relative to its inputs. Let w be the maximum depth 

of any of the selector, constructor, recurser, or output functions 

in P. The size of an input X will be the maximum depth of any of 

the atoms in X. 

We can extend the definition of _K to the space of inputs by 

saying X S Y if and only if all the selector variables in X are 

smaller than their respective variables in Y, and similarly the 

constructor variables. We will say Y is X "pruned" at position a if 

Y is the largest input less than or equal to X in which a is atomic. 

This process can be viewed as simply taking the subtree in X rooted 

at a and replacing it by a unique atom. 

If a position (relative to the original input) is tested by 

some predicate we will say that the position in question has been 

touched. Call the n positions touched by the predicates of P 

without going into recursion the primary positions of P. 

The assumption of freedom asserts only the existence of inputs 

X that will cause the program to recurse a specific number of times 

and exit by a specific output function. Our first theorem shows 

that this can be made constructive. 

Theorem 6: Given X 2. 0 and 1 S i S  n we can construct an input 

X so that P(X) is defined and when given X as an input P recurses X 

times before exiting by output function 1. 
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Proof: 	Consider m+p infinite trees corresponding to the m+p input 

variables. Mark in BLUE every position that is touched by a 

predicate function and found to be non-atomic in order for P to 

recurse X times and reach the predicate i. Then mark in RED the 

point touched by predicate i after recursing X times. 

The assumption of freedom implies that no BLUE vertex can 

appear in the infinite subtree rooted at the RED vertex, and that 

the RED vertex cannot also be marked BLUE. Now mark in YELLOW all 

points that are used by constructor functions in recursing X times, 

and each position used by output function i after recursing X times. 

The assumption of freedom again tells us that no YELLOW vertex can 

appear in the infinite subtree rooted at the RED vertex. The RED 

vertex may, however, also be colored YELLOW, as may the BLUE 

vertices. 

It is a simple matter then to construct an input X so that 

1. all BLUE vertices are interior to X (non-atomic), 

2. the RED vertex is atomic, and 

3. all YELLOW vertices are contained in X (they may be atomic). 

Notice that the procedure given in the proof of Theorem 6 

allows one to find the smallest X such that the indicated conditions 

hold. If a is the implies that no point can be twice touched; hence 

the minimal a point is a well defined concept. 

Given an input X such that P(X) is defined, let Fx (Z) be the 

straight-line function such that Fx (x) = P(X). Note that by Theorem 

5, Fx  is defined by this single point. 
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Theorem 7: For any X for which P(X) is defined, we can 

construct an input Y with the properties that P(Y) is defined, Y 2 x 

and Fx k Fy• 

Proof: 	Let X and i be the constants such that on input X, P 

recurses X times before exiting by output function i. 	Let the 

predicate pi test variable x j . 

There are two cases. First assume f is not a constant func-

tion. Now it is possible that the position that would be tested by 

P.1  after recursing X+1 times is an interior position in X, but since 

X is bounded there must be a smallest k > X such that the predicate 

P i (R(xj )) is either true or undefined. Using Theorem 6 we can find 

an input Z that causes P to recurse k times before exiting by output 

function i. Let Y be the union of X and Z. Since Y 2 Z, P must 

recurse at least as much on Y as it did on Z. Since the final point 

tested is still atomic P(Y) will recurse k times before exiting by 

output function i. Since 

f i (RX ( X ) ,RX ( Y)) k f i (Rk (X),Ck (Y)) 

we have that Fx  k Fy - 

The second case arises when f. 1 is a constant function. By 

assumption 3 there is at least one output function that is not a 

i  constant function. 	Let fbe this function. Let the predicate p i  

test variable.• We can apply the same argument as before, except x j  

that it may happen by chance that P(Y) = P(X), i.e. P(Y) returns 

the constant value. In this case increment k by 1 and perform the 

same process and it cannot happen again that P(Y) = P(X). [] 
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Theorem 8: 	If P touches a location a, then we can construct 

two inputs X and Y with the properties that P(X) and P(Y) are 

defined. Then for any Q in 4, if P(X) = Q(X) and P(Y) = WY), then 

Q must touch a. 

Proof: Let Z be the minimal a point. Using Theorem 7 we can 

construct an input X such that P(X) is defined, X Z Z, and Fx 

Let Y be X pruned at a. 

We first claim that P(Y) is defined and F y  = F. To see this, 

note that every point that was tested by P in computing P(Z) and 

found to be non-atomic is also non-atomic in Y. Position a is 

atomic in both, and if the output function was defined on Z then it 

must be defined on Y, which is strictly larger. 

Suppose that, given input Y, a program Q recurses X times 

before exiting by output function i but does not touch position a. 

Since X is strictly larger than Y, on X, Q must recurse at least as 

much and at least reach predicate i. Let the position in Y that was 

touched by predicate i and found to be atomic be b. Since position 

b is not the same as position a, position b is also atomic in X. 

Therefore, given input X, Q will recurse X and exit by output func-

tion i. But this implies by Theorem 5 that Fx  = Fy, a contradic-

tion. Ll 

Bounding the depth of the recursion and predicate functions: 

Our first set of test inputs uses the procedure given in Theorem 8 

to demonstrate that each of the n primary positions in P are indeed 

touched. 
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Next, for each selector variable, use the procedure given in 

Theorem 8 to show that the first n+1 postions (by depth) must be 

touched. Let d be the maximum size of these m(n+l) positions. (We 

will assume d is at least 3 and is larger than both 2w and olimit.) 

Theorem 9: 	If Q is a program in 4 that correctly processes 

these 2m(n+1) points, then the recursion selectors of Q have depth d 

or less. 

Proof: Consider each selector variable separately. 	At least 

one of the n+1 points touched in that variable must have been 

touched after Q had recursed at least once. If the recursion selec-

tor had depth greater than d, the program could not possibly have 

touched the point in question. [] 

Theorem 10: 	If Q e 	$ correctly processes these 2m(n+1) 

points, then none of the selector programs associated with the 

predicates can have a depth greater than d. 

Proof: At least one of the inputs causes Q to recurse at least 

once; hence all the predicates must have evaluated FALSE and 

theretore were defined. If any of the predicates did have a depth 

greater than d, they would have been undefined on this input. [] 

Since d > olimit we also know that d is a bound on the output 

functions of Q. 
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We are now in a position to make a comment concerning the size 

of the points computed by the procedure given in Theorem 8. Let 

be the maximum depth of the "relative root" (the current variable 

position relative to the original variable tree) at the time posi-

tion a is touched. We know the minimal a tree is no larger than 

l+w. This being the case, to find an atomic or undefined point (as 

in the procedure associated with Theorem 7) we will at worst have to 

recurse to a position l+w deep, but no more than l+w+d deep. Hence  

neither of the two points constructed in Theorem 8 need be any lar-

ger than 1+2w+d. This fact will be of use in proving Theorem 13. 

Narrowing the form of the recursion selectors: We will say a 

selector function f factors a selector function g if g is equivalent 

to f composed with itself some number of times. For example, CADR 

factors CADADADR. We will say that f is a simple factor of g if f 

factors g and no function factors / other than f itself. Let us 

denote by si, i = 1,...,m, the simple factors of , 

	

r.1 	the recursion 

selector functions. 	That is, for each variable i there is a 

constant X. so that the recursion selector r i  is s. composed with 1 	 1 

itself xi times. 	Let q be the greatest common divisor of all the 

Xs. Hence the recursion selectors of P can be written as Sq for 

some recursion selector S. 

We now construct a second set of data points in the following 

fashion: Foreachsejector va riablex .,let a be the first position 

touched with depth greater than 2d 2  in x. Using Theorem 8, 1* 

generate two points that demonstrate that position a must be 

touched. Let To be the set containing all the (2n + 2m(n+1 + 2m) 

points computed so far. 
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Theorem 11: If Q e 4 computes correctly on To then recursion 

selector i of O. must be a power of s. 
1- 

Proof: Assume the recursion selector of xi in Q is not a power 

of s. 	Recall that the depth of the selector cannot be any greater 

than d. 	Once it has recursed past the depth d, it will be in a 

totally different subtree from the path taken by the recursion 

selector of P. 

Since d > 3, it is required that Q touch a point that has depth 

at least 3d. Q must therefore touch this point prior to recursing 

to the depth d. By Theorem 9 this is impossible. [] 

We can, in fact, prove a slightly stronger result. 

Theorem 12: If Q E 4 computes correctly on To  then there 

exists a constant r such that the recursion selectors of Q are exac-

tly Sr. 

Proof: 	By Theorem 11, the recursion selectors of Q must be 

powers of s i . For each selector, construct the ratio of the power 

of s. in Q to that in P. Theorem 12 is equivalent to saying that 

all these ratios are the same. Assume they are different and let xi 

be the variable with the smallest ratio and x. the variable with the 

largest. 

Let X and Y be the two inputs that demonstrate that a position 

a of depth greater than 2d2  in xi is touched. Both P and Q must 

recurse at least 2d times on these inputs. In comparison to what P 

is doing, xj gains at least one level every time Q recurses. By the 
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time xi  is within range to touch a, x. will have gone 2d levels too 

far. Since 2d. > d + 2w, x. will have run off the end of its input; 

hence Q cannot have received the correct answer on X and Y. E] 

Theorem 8 gave us a method to demonstrate a position is 

touched. We now give a way to demonstrate a position is not 

touched. 

Theorem 13: 	If Q e 	+ computes correctly on all the test 

points so far constructed, then for any position a not touched by P 

we can construct two inputs X and Y so that if P(X) = Q(X) and P(Y) 

= Q(Y) then Q does not touch a. 

Proof: Let position a be in variable x.l. Let m be the smal— 

lest number such that after recursing m times the recursion selector 

i is deeper than a. Let X be the maximum depth of any recursion 

selectors at this point. Let X be the complete tree of depth 1+2d 

pruned at a. 

There are two cases: If P(X) is not defined, assume Q touches 

a. The relative roots of Q cannot be deeper than 1+d at the time 

when a is touched. Hence the minimal a point is no deeper than 

1+2d. Since X is strictly larger than the minimal a point we know 

that Q(X) must be defined, which contradicts the fact that Q(X) = 

P(X). 

The second case arises if P(X) is defined. Using Theorem 7 we 

construct an input Z X such that Fx A Fz. Let Y be Z pruned at a. 

Assume Q touches a. Since Y 2 X, QM must be defined, so assume 

P(Y) is defined. By construction Fy = FZ # Fx . But since Q touched 
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a,  Fx  = Fy$ which is a contradiction. 

Recursion selectors must be the same as P: If Q e 	4,  executes 

correctly on T0' then by Theorem 12, the recursion selectors of Q 

must be S for some constant r. From Theorem 9 we know the depth of 

S is no larger than d; hence there are at most d/(depth of S) 

choices. For each possible r (not equal to q), construct a mutant 

program P', which is equal to P in all respects but the mutant 

selectors, which are Sr. 

In this section we will consider test cases as pairs of inputs, 

generated using the procedure given in Theorem 12, which return 

either the value YES, saying they were generated by the same 

straight—line program, or the value NO, saying they weren't. Other 

than this we will not be concerned with the output of the mutants. 

If each mutant touches a point that P does not, then construct 

two points (using Theorem 13) to demonstrate this. If any mutant 

touches only points that P itself touches, then we will say P cannot 

be shown correct by this testing method. Call this set of test 

cases 1.1• 

Theorem 14: If Q e 4 executes correctly on To  and T1 , then 

the recursion selectors of Q must be exactly Sq. 

Proof: Assume not, and that the recursion selectors are Sr for some 

constant r # q. No matter what the primary positions of Q are, we 

know it must touch at some point the primary positions of P. It 

therefore must always touch the primary positions of P relative to 

the position it has recursed to. But, therefore, it must at least 
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touch the points that the mutant associated with r does. [1 

Testing the primary positions of P: Consider each primary 

position separately. Assume that in some program Q in $ the posi-

tion is not primary, but that it is touched after having recursed 

times. Let b be the position of a relative to SqX. This means in Q 

that b is primary. Now b cannot even be touched (let alone be 

primary) in P because of the assumption of freedom. Using the 

procedure given in Theorem 13, construct two points that demonstrate 

that b is not touched, which demonstrates that a must be primary. 

Taken together, these test points insure that the primary positions 

of P must be primary in all other programs. 

Notice that we need to make no other assumptions about the 

other primary positions in Q; we can treat each of them indepen-

dently. We, therefore, have at most n(d/(depth of Sq) mutant 

programs, hence at most twice this number of test points. Call this 

test set T2 • 

Theorem 15: 	If Q c 4 executes correctly on To , Ti , and T2 

then the primary positions of Q are exactly those of P. 

Notice that by Theorem 5 this also gives us the following. 

Theorem 16: The output functions of Q are exactly those of P. 

Main Theorem: Once we have the other elements fixed, the 

constructors are almost given to us. Remember one of the assump- 

tions is that each of the constructor variables appears in its 
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entirety in at least one of the output functions. All we need do is 

to construct P data points so that data point i causes the program P 

to recurse once and exit using an output function that contains the 

constructor variable i. Call this set T3. Using Theorem 5 we then 

have 

Theorem 17: 	The recursion constructors of Q must be exactly 

those of P. 

The only remaining source of variation is the order in which 

the primary positions are tested. The only solution we have been 

able to find here (short of making more severe restrictions on $ ) 

is to try all possibilities. There are ni of these, some of which 

may be equivalent to the original program. Let T4 be a set of data 

points that differentiates P from all non-equivalent members of this 

set. 

Putting all of this together gives us our main theorem: 

Theorem 18: Given a program P in 4, if Q e $ executes correc-

tly on the test points constructed in Theorems 9, 14, 15, and 17, 

then Q must be equivalent to P. 

Corollary: 	Either P is correct or no program in 	realizes 

the intended function. 

Even though the depth of the output functions is bounded, we 

did not bound the number of CONS functions they contain; hence there 

are an infinite number of programs in the set $. This is true even 

after we have bounded the depth of the recursion selectors and the 
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predicate selectors in Theorem 10. 

The most important aspect of this result is the method of the 

proof. Once we have fixed the recursion selectors via test sot To' 

the remainder of the arguments can be proved by constructing a small 

set of mutants and showing that test data designed to distinguish 

these from the original actually will distinguish P from a much lar-

ger class of programs. In all we constructed 

d(1/(depth of S) + n/(depth of Sq.)) + p + n1 

mutants, and we proved that test data that distinguished P from this 

set of mutants actually distinguished P from the infinite set of 

programs in 4). 
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Chapter  4. 

A Mutation Analyzer 

In overall structure, a mutation analyzer serves as a test har-

ness and aids in performing mutation analysis. This chapter 

provides a detailed description of the implementation of a mutation 

analyzer. 

Although 	existing 	mutation 	analyzers differ in certain 

respects, there are essential similarities. Briefly, the systems 

allow an interactive user to enter a program to be tested. The 

program is parsed to a convenient internal form and appropriate data 

files are created. The user then enters test data, executing the 

program on the test data to check for errors. At the point of cal-

culation of the mutation score, the user "turns on" or enables  a 

subset of the mutant operators. The system creates a list of mutant 

description records, descriptions of how the internal form is to be 

modified to create the required mutant. The changes are induced 

sequentially with additional heuristics to speed up processing and 

the modified internal form is executed. The results are compared to 

the original results to determine whether or not the mutant survives 

the execution on that data. At the completion of the pass, summary 

reports are presented to the user, and several options are provided 

for examining the remaining live mutants. The user may also declare 

mutants to be equivalent and therefore remove them from future 

consideration. This function can be partially automated with 

considerable improvement in performance. The issue of equivalent 

mutants will be discussed more fully in Chapter E. 
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System Overview 

The user interface of a mutation analyzer is interactive. 

Tasks are assigned to both the user and the analyzer which are best 

suited to their capabilities. One way to see how this might be 

accomplished is to imagine the system as an adversary who, when con-

fronted with a program asks the user a set of questions about the 

program (e.g., "Why did you use this type of statement here when an 

alternative statement works just as well?"). The task of the user 

is then to provide justification in the form of test data which will 

give an answer to such a question. 

An overview of the structure of such a system is shown in 

Figure 1. 
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Figure 1. 

System Organization 

The heart of a mutation analyzer is roughly that portion of the 

system which lies within the dotted box in Figure 1. This portion 

is largely language independent since it is driven by an internal  

form of the source program rather than the source program itself. 

Given a sufficiently general internal form, it is possible to 

implement a mutation analyzer for a new language by modification of 

the input/output interface. In later sections, we will describe the 

details of a mutation analyzer for a simple subset of Cobol. 

A single run of a mutation analyzer divides naturally into 

three phases: the run preparation phase, in which the information 

which is required by the analyzer is prepared, the mutation phase, 
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during which the mutations are generated and a mutation score is 

calculated, and a post  run phase in which results are analyzed and 

reports are generated. 

Run Preparation. The role of the run preparation phase is to 

initialize various files and buffer areas. This phase is charac-

terized by its high degree of user involvement. The user is first 

asked to supply the name of the file which contains the source 

program to be tested. Depending on whether or not the system has 

previously been run on this file the program file is either parsed 

to an internal form or a previously generated internal form file is 

retrieved. This internal form is subsequently interpreted to 

simulate program execution. A fragment of a typical internal form 

generated by the Fortran statement 

IF (A .LT. X(2)) P = 1 

is shown in Figure 2. 
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Internal Form 

The user is then interactively prompted for the test data on 

which the program is to be tested (and against which the mutation 

score is to be calculated). After each test case has been specified 

(either by direct user entry at the keyboard or by reference to a 

test file), the original program is executed on the test case and 

the results of execution are displayed (or written onto an output 

file for later examination). The role of the oracle who determines 

whether or not the calculated output of the program is satisfactory 

may be played by either the user or the system. If the user plays 

the role of the oracle, then he must literally examine the input—

output relation determined by the program's execution to determine 
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whether the computed input—output relation is the one required by 

the specification. If the system plays the role of the oracle, it 

must be supplied with a predicate subroutine. A predicate 

subroutine is an executable, uniform specification of input—output 

behavior, The system invokes the predicate subroutine each time the 

subject program is executed on a test case to determine if the 

input—output relation computed during that execution is the one 

required by the specification. In either case. if the test case is 

processed satisfactorily, the user is allowed to either enter 

additional test cases or to compute the mutation score and 

associated statistics. 

After the user has entered test data, he is prompted for a 

specification of which mutant operators he wishes to apply. Instead 

of constructing multiple copies of the program (one for each 

mutant), a short descriptor of each mutation to be performed is 

generated and stored in an auxiliary file. Each time the mutant is 

to be run, the internal form is modified according to the informa-

tion stored in the descriptor and the modified program is 

interpreted in the mutation phase. The user may also specify a per-

centage of the mutant operators to be applied. 

Experience has shown that it is best to partition the task of 

developing test data which is adequate relative to the entire set of 

mutants in stages. Each stage further refines the test data to 

distinguish the program under test from a more extensive class of 

mutants. A convenient partitioning of the mutant operators is the 

following: 
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Level 1: Statement Analysis 

Goal: Insure that every branch is taken and 

that every statement is necessary 

Mutants: all statement and control mutants 

Level 2: Predicate Analysis 

Goal: Exercise predicate boundaries 

Mutants: Alter predicate and loop limit 

subexpressions by small amounts 

ABS insertions in predicates 

Relational operator substitutions 

Level 3: Domain Analsysis 

Goal: Exercise data domains 

Mutants: Alter constants and subexpressions 

by small amounts 

ABS insertions 

Level 4: Coincidental Correctness Analysis 

Goal: Determine coincidental correctness conditions 

Mutants: Operand substitutions 

Operator substitutions. 

In addition, the user may specify that certain of the mutants 

are to be randomly sampled in computing the mutation score. While 

there is some loss of effectiveness in randomly sampling mutants (as 

opposed to exhaustively executing all mutants), experimental 

evidence (cf. Chapter 5) suggests that test data which delivers a 
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high mutation score under the sampling strategy also results in a 

high mutation score when computed according to the definitions in 

Chapter 1. The advantage to the user in reducing processing time 

can be considerable, especially for large monolithic programs. 

Mutation Phase. Once the user has specified the program, test 

data and level of test (mutation operators and percentage) to be 

applied, the system enters the mutation phase. During this phase 

there is virtually no user interaction. Mutation descriptor records 

are processed sequentially or randomly sampled depending on whether 

or not the user has specified a percentage other than 100%. The 

mutant program is generated by modification to the internal form of 

the source program. The mutant is then executed on the test data 

and is either marked "dead" or "alive". A mutant is marked dead if 

it has delivered results which differ from the program being tested 

by, for example, producing different output, violating a 

predicate subroutine, or inducing a runtime error -- on at least one 

test case. Otherwise the mutant remains alive. The mutation score 

is then the ratio of dead mutants to the total number of 

nonequivalent mutants. A dynamic record is kept of the number and 

percentage of living mutants of each type. These records are 

organized to allow access in a number of dimensions (e.g., live 

mutants by statement, by mutant type, randomly sampled). Since the 

final mutation score is the ratio of dead mutants to the total num-

ber of nonequivalent mutants, equivalent mutants must be deleted 

before the score is correctly interpretable. There are two times 

when it is appropriate to delete equivalent mutants. Many 

equivalent mutants can be detected automatically (cf. 	Chapter 8). 
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If a mutant can be deleted automatically it is deleted during the 

mutation phase. Equivalent mutants can also be deleted under user 

control during the post run phase. 

Post Run Phase. When the mutant programs have been run on the 

current test cases, the system enters a post run phase. In this 

phase, statistics are displayed indicating the results of the muta-

tion run to that point. The user can interactively select descrip-

tions of live and dead mutants and display them on the screen. Dur-

ing the post run phase certain reports may also be generated; these 

reports provide a detailed permanent record of the mutation run. 

The user nay also declare certain mutants to be equivalent. 

Equivalent mutants do not enter into the mutation score calculation. 

There are two reason a user may declare a mutant to be equivalent. 

First, the user may have actually determined that the mutant belongs 

topE • Such a mutant has not been automatically eliminated during 

the mutation phase, but the system provides some automated help in 

the post run phase for determining equivalence. Some 

implementations provide data flow analyzers and various static 

analysis tools that allow the user to determine equivalence (see 

Chapter 8) Second, the user may choose to ignore a portion of the 

program being tested. For example, a subroutine or module may 

already have been tested adequately during a previous phase. The 

decision to mark all mutants which change code in that subroutine 

then essentially eliminates that portion of the program from further 

consideration even though the routine is still present in executable 

form and delivers results to modules which invoke it during the 

mutation and pre run phases. 
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The user can re—run the system and augment the test cases in an 

attempt to improve the mutation score. The user may also specify 

that additional mutation operators are to be applied to the program. 

This cycle can continue until the user is satisfied that the current 

test data is adequate relative to the given set of mutation 

operators. 

Several files hold information between system runs. These are 

shown in Figure 3, which outlines the functions of each phase. The 

internal form file stores the parsed version of the source program 

being tested. The test data file stores for each test case the test 

data input and the results of execution of the program being tested 

on the test data. The mutation information file sorts the mutation 

descriptor records and other statistics generated during the muta-

tion and post run phases. 
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Figure 3. 

Major Files 

A Mutation Analyzer for Cobol 

We will now describe in some detail the organization of a muta-

tion analyzer for a subset of Cobol which we refer to as "Level 1" 

Cobol. A Level 1 Cobol program is written in the standard Cobol 

format (columns 1-6 containing sequence numbers, column 7 containing 

continuation marks, columns 8 through 72 containing Level 1 Cobol 

statements). 
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The following syntax chart defines Level 1 Cobol: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. program-name 
[AUTHOR. comment-entry.] 
[DATE-WRITTEN. comment-entry.] 
[DATE-COMPILED. comment-entry.] 
[SECURITY. comment-entry.] 
[REMARKS. comment-entry.] 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
[SOURCE-COMPUTER..comment-entry.] 
[OBJECT-COMPUTER. comment-entry.] 
[SPECIAL-NAMES. ][CO]. IS mnemonic-name.] 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

[SELECT file-name ASSIGN TO {INPUTi1OUTPUTi}...] 

DATA DIVISION. 
FILE SECTION. 
[FD file-name RECORD CONTAINS integer CHARACTERS] 

[LABEL RECORDS ARE [STANDARDIOMMED}] 
DATA RECORD IS data-name 
level-number [data-name 1 FILLER} 
[REDEFINES data-name-2] 
[{PICTURE1PIC) IS character-string] 
[OCCURS integer TIMES] 
• • • 

6.. 
[WORKING STORAGE SECTION. 

[77 level entries.? 
[record entries.)...] 

PROCEDURE DIVISION. 
[paragraph-name.] 

ADD {identifier-Illiteral-1}[identifier-2111-2]... [TOGIVING) identifier-m 
[ROUNDED][ON SIZE ERROR imperative-statement]. 
CLOSE file-name-1 [file-name-2]... . 
COMPUTE id [ROUNDED] = arithemtic-expression 
[ON SIZE ERROR imperative-statement ] 
DIVIDE {identifier-111iteral-1} {INTO1BY}} {identifier-211iteral -2} 
[GIVING identifier-3][ROUNDED][ON SIZE ERROR imperative-statement]. 
EXIT. 
GO TO paragraph-name 
CO TO paragraph-name-1 [[paragraph-name-2]... DEPENDING ON id]. 
IF condition { statement- 1INEXT STATEMENTS} 

[ELSE statement-2 [1NEXT STATEMENT)] 
MOVE identifier-1 TO identifier-2 [identifier-3] 	. 
MULTIPLY {identifier-111iteral-1} BY {identifier-211-2) 
[GIVING identifier-3][ROUNDED][ON SIZE ERROR imperative-statement]. 
OPEN [INPUT file-name-1 [file-name-2]} 
[OUTPUT file-name-3 [file-name-4]] 
PERFORM paragraph-name-1[THRU paragraph-name-2] 
PERFORM paragraph-name-1 [THRU paragraph-name -2] {identifier-11 int-1} TIMES 
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PERFORM paragraph-name-1 [THRU paragraph-name-2] 
[VARYING identifier-1 FROM {identifier-211iteral-1] 

BY {identifier-311iteral-21 UNTIL condition] 
READ file-name RECORD [INTO identfier] 

AT END imperative-statement 
STOP RUN 
SUBTRACT fidentifier-illiteral -1ilidentifier-211iteral-2]... 
FROM 	[identifier-militeral-m] 
[GIVING identifier-n][ROUND][ON SIZE ERROR imperative-statement]. 

WRITE record-name [FROM identifier-1] 
[AFTER ADVANCING [identifier-2iintegerlmnemonic] LINES]. 

Implementation Overview. 	The user provides the name of the 

file containing the source program. Of course this program should 

be a legal Level 1 Cobol program. The program is parsed to its 

internal form. The system then produces all mutation descriptors. 

The legal mutations are the following: 

Decimal Alteration: move implied decimal in numeric items one 

place to the left or right, if possible. 

Dimensions: reverse two-level table dimensions 

OCCURS clause alteration: add or subtract a constant (usually 

1) from an occurs clause. 

Insert FILLER: 	insert a FILLER of length 1 between adjacent 

items of a record. 

FILLER size alteration: add or subtract a constant (usually 1) 

from the length of a FILLER. 
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Elementary item reversal: reverse adjacent elementary items in 

a record. 

File reference alteration: interchange names of files at the 

point of reference. 

Statement deletion: replace a statement by the null statement. 

GO TO —> PERFORM: change GOTOs to PERFORMS 

PERFORM —> GOTO: change PERFORMs to GOTOs 

Conditional reversal: 	negate the condition in an IF—THEN 

clause. 

STOP statement substitution: replace a statement by a STOP 

statement. 

TUB clause extension: expand the scope of the THRU clause by 

a fixed number of statements (usually 1) 

TRAP statement replacement: 	replace each statement by a 

statement. 	TRAP statements are not included in Level 1 Cobol. The 

effect of a TRAP statement is to call a routine which ceases normal 

program operation and returns control to the mutation analyzer with 

the information that a statement has been TRAPped. 
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Substitute arithmetic verb: interchange arithmetic verb with 

all other arithmetic verbs. 

Substitute 	operator 	in COMPUTE: 	interchange arithmetic 

operator with all other arithmetic operators in an arithmetic 

expression. 

Parenthesis alteration: move one parenthesis one character to 

the right or left. 

ROUNDED alteration: interchange ROUNDED and truncation. 

MOVE reversal: reverse the sense of a move in a simple MOVE 

statement if the resulting statement is legal. 

Logical 	operator 	replacement: 	interchange 	all Boolean 

operators. 

Scalar for scalar replacement: substitute one tablular item 

reference for another when the result is a legal expression in Level 

1 Cobol. 

Constant for constant replacement: interchange constants that 

appear in the program. 

Scalar for constant replacement: replace constant references 

with non—tabular item references. 
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Constant for Scalar replacement: 	replace non- tabular item 

references with constant. 

Constant adjustment: adjust the value of a constant by a fixed 

percentage (always at least 1 if the constant is an integer). 

Mutants may be enabled selectively and a fixed precentage of 

the mutants to be processed may be specified as described in the 

previous section. 

Mutants may die in a variety of ways. 	A mutant may deliver 

incorrect results (i.e., it may fail to match the output of the 

program being tested or may fail to satisfy 	the 	predicate 

subroutine). Mutants may also die by producing runtime faults 

(e.g., attempting to read unopened files or dividing by 0). 

Infinite loops in mutants are detected by setting a timing constant  

which sets an absolute upper bound on the number of iterations of a 

single loop which are allowed. A typical setting of the timing 

constant might be three times the number of statements executed by 

the program being tested of the test case currently being processed. 

Level 1 Cobol is limited to a fixed number of sequential input 

and output files. Ten nonrewindable files seem to be sufficient for 

such common data processing applications as posting sorted transac-

tions against a master file and updating the master. For this sim-

ple system there should be a limit set on the amount of storage 

allocated for each file for each test case. Files are packed into 

arrays by replacing each string of repetitions of a single character 

(such as a string of blanks) by storing a token which represents the 

character and a repeat count. 
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As described in the previous section, the system should create 

a number of auxiliary files. Some of these files are random access 

files used to process the mutants and test cases. Others are needed 

for the restart capability. A convenient naming scheme is to use 

the name of the auxiliary file as an extension to the name of the 

program file provided by the user. For example, if the user submits 

TEST—PROD-1 to the system, the system might store the internal form 

of the program in the file TEST—PROG-1.if. 

A file that deserves special attention is the logfile. This 

file contains: 

1. a listing of the program with line numbers assigned. 

2. a record of the percentage of mutants to be created. 

3. a summary of test case and mutant transactions, in the 

order in which they occurred (whenever a test case is 

submitted a message is logged about that transaction, 

including the location of the test case and whether the 

test case was accepted or rejected by the user; mutants 

are entered as they are enabled), 

4. a summary of mutant status after each mutation phase, 

5. a listing of live mutants after each mutation phase, 

6. an optional listing of test cases after each pre run 

phase. 
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These files should not be automatically deleted after a run is com-

pleted, but rather should be available for a possible resumption of 

testing. 

Suggested File Formats. 	The files which are required for 

processing have been described above. 	In this section, we will 

examine the structure of those files in enough detail to permit easy 

implementation of an analyzer for Level 1 Cobol. 

SOURCE PROGRAM <filename> 

The source program is assumed to be in a sequential system 

file, in the standard Cobol format. 

INPUT FILE (EXTERNAL) 

Input file can either be supplied by the user as a standard 

sequential file or can be entered directly from the terminal. It 

is, of course, possible to create some input files outside the 

system using whatever tools the user has access to, and to create 

the others interactively. 

TEST FILES (INTERNAL) 

The internal test files contain all test cases that have been 

created at that time. There are two files containing test 

information, the test status file, and the test data file. 



contents 

1 if INPUTO is used in the program 
0 otherwise. 

similar for INPUTI to INPUT9 
and OUTPUTO to OUTPUT9. 

The total number of test cases that 
have been defined. 

The number of test cases that were 
defined prior to this pass. 

pointer to the next record position 
after the last, for appending. 

2-20 

21 

22 

23 

Table 1. Test Status Global Information 

entry 

1 

entry 

1 

2 

3-40 

41 

contents 

The starting position of INPUTO in 
<filename>.TD (see below) 

The number of records in INPUTO. 

Similar for the other files. 

The number of statements executed by 
the original program on this testcase 

Table 2. Test Status File — Test Case Record 1 
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TEST STATUS FILE Wilename>.ts): The first record of this 

file contains global information. 

This record will be followed by two records for each test case. 

The first test case record has the format: 

The second record contains a bit map for the statements executed by 

this test case. This bit map is used to speed up processing during 

the mutation phase. If a statement is not executed by a test case, 

then no mutant cf that statement should be executed. By using the 
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bit map to record statement executions, the applicability of a 

mutant to a given test case can be easily determined. 

TEST DATA FILE ((filename>.td): The test data file contains 

the actual test cases, with the input file(s) first, followed by the 

output file(s) of the original program. To save space these should 

be stored in packed format with strings of repeated characters 

replaced by single characters and repeat counts. 

MUTANT RECORD FILE Wilename>.mr): The mutant records are 

stored in binary format, at four integers per mutant record. All 

records for a particular mutant type are stored contiguously, fol-

lowed by all records for the next mutant type. 

MUTANT STATUS FILE ((filename>.ms): The first section of the 

file contains a total mutant count and headers for each mutant type. 

ientry 	 contents 

1 
	

mutant type 	 1 
2 
	

on or off ever (initially zero) 	 I 
3 
	

on or off this run 	 I 
4 
	

mutant status file record pointer for status block 1 

Table 3. Mutant Rtatu- Fji Fenders 

For each mutant type there is then a status block, of 

one record. The status block contains the following 

information: 



entry) 	 contents 

  

    

1 1 total mutants for this type 
2 1 bit map length in words 

	

3 	mrf pointer for the first mutant record of 
this type 

4 1 number of live mutants 

	

5 	number of dead mutants 

	

6 	number killed by trap(*) 

	

7 	number killed by time—out 
8 	number killed by data fault 

	

9 	number killed by initialization fault 

	

10 	number killed by I/O fault in OPEN/CLOSE 

	

11 	number killed by attempt to read past EOF 

	

12 	number killed by writing too much 

	

13 	number killed by output too large for buffer 

	

14 	number killed by array subscripts out—of—bounds 

	

15 	number killed by incorrect output 

	

16 	number killed by garbage in the code array 

Table 4. Status Block 
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The status block is followed by counts indicating live, dead, 

and equivalent mutants, indexed by mutant number. 

INTERNAL FORM (ffilename>.if): The internal form file contains 

the following tables: 

SYMBOL TABLE 

STATEMENT TABLE 

CODE ARRAY 

INIT 

DASH TABLE 

INIT is the initial segment of memory containing literals, PICTUREs, 

and memory initialization information. The remaining tables are 

described below. 
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OUTPUT FILE (ailename›.1o): 	This is a file 	containing 

information on the run. Its contents are controlled by the user. 

Typical contents would be a listing of the source program, the test 

cases, the status after each pass through the system, and a listing 

of some or all of the live mutants. 

INITIAL.HASH: This table is the same as HASH—TABLE except that 

it contains only the reserved words and their tokens. 

Internal Form Specifications 

SYMBOL TABLE: The symbol table is an 10xN array of integers. 

A simple data item (group or elementary) is described by one row in 

the array. A table item is described in two rows, the second is a 

dope vector. The following conventions are useful. Entry 1 in each 

row (record) points to the hash table entry for the name of the 

item. If the item has no name (such as a filler or literal), entry 

1 is zero. Entry 2 is always a code for the type of the record. 

Its value determines the meaning of the other entries. The overall 

organization of the symbol table entries is as shown in Figure 4. 
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FILE 
DEFINITION 

PROGRAM 
NAME 

INPUTO 

INPUTI - OUTPUT8 

04...7-PU T9 

HASH 
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VALUE 
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RE- 
DEFINE 

SOURCE 
LINE 
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FIRST 
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CODE 
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POSITION 
LITERAL 
POOL LENGTH 

NAME CODE 
FIRST 
STMT. 

LAST 
STMT. 

DATA ITEM 

TABLE ENTRY 

LITERAL 

PARAGRAPH 

NAME 

Figure 4. 

Symbol Table Organization 

Table 5 describes the contents of the first 21 rows of the sym-

bol table. 

Row Purpose 

Program Name 

Entry 

1 

Contents 

pointer to program name 
2 INPUTO 1 hash table pointer to file name 
2 INPUTO 2 pointer to symbol table entry for 

data record 
2 INPUTO 3 record length 

21 CU TPUT9 1 hash table pointer to file name 
21 OUTPUT9 2 	pointer to symbol table entry for 

data record 
21 OUTPUT9 3 	record length 

Table 5. First Rows of Symbol Table 



i ------------ 	-- 

entry 

  

contents 

 

Index of the identifier in the hash table, 
so that print name can be recalled. For 
FILLERS, this is zero. 

A code for the type of the object. 
1 for unsigned numeric identifier 
2 for signed numeric identifier 
3 for non—numeric identifier 
4 for edited numeric item 
5 for group item 

The level number 

Pointer to the PICTURE string in program 
memory for edited numeric items. 
OR the decimal position (from right) for 
unedited numeric items. 
OR not used. 

A pointer to the start of the item in program 
memory. For an item in a table, this is the 
constant term in the address calculation. 

The length of the item, in characters. 
All items are stored with usage of DISPLAY. 

The depth of the item in the table structure. 
(0 for scalars, 1 for one—level tables or for 
rows in two—level tables, 2 for two—level 
tables entries.) 

Pointer to VALUE string in program memory. 

The Symbol table row for the item that is Av 
REDEFINEd 

The source program line number on which the 
item description began 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table 6. Symbol Table Data Items 
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DATA ITEMS .  The following table describes the organization of 

the entries for the elementary data items. 



entry! 	 contents 

2 	code = 6 

4 	the multiplier for the first subscript. 

5 	the multiplier for the second subscript. 

6 	the maximum value for subscript-1. 

7 	the maximum value for subscript-2. 

8 	the number of OCCURances of the item. 

Table 7. Symbol Table — Table Items 

entry] 	 contents 

4 

5 

6 

2 	code = 7 for numeric literals 
code = S for non—numeric literals 
code = 10 for the twiddle of a numeric literal 

decimal position, for numeric literal 

pointer to value in literal pool 

length 

Tables 8. Symbol Table — Literals 
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SECOND ROW FOR TABLE ITEMS A second row is required for the 

dope vector when the data item is a table entry. 

LITERALS DEFINED IN THE PROCEDURE DIVISION; For entering 

references to literals which are defined in the procedure division, 

the following table format is used. SPACES and ZERO (and twiddles 

of ZERO) have entries of this format which are present by default, 

even if not used in the program. 
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PARAGRAPH NAMES Paragraph names are entered in the following 

format: 

   

    

entryl 	 contents 

1 	pointer to name 

2 	code = 9 

3 	statement table index of first statement 

4 	statement table index of last statement 

Table 9. Symbol Table — Paragraph Names 

Entries in the symbol table are stored in the same order as the 

items are encountered . In particular, entries for data items 

defined in the DATA DIVISION are stored almost as they appear in the 

source code, with nesting being implicit in the level numbers and 

the sequence. One exception to this rule is the inclusion of dummy 

FILLER entries of length zero between elementary items. This is to 

accommodate the mutant operator that inserts fillers to avoid having 

to change procedure division references. 

Memory is organized as shown in Figure 5. 



CALCULATOR 

CONSTANTS 
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Figure 5. 

Memory Organization 

The first 30 characters of memory are used as a temporary 

arithmetic register. Following that comes the constant data area. 

This area includes: 

PICture strings — for edited numeric items. 	There are 3+N 

descriptors, where N is the length of the picture string. The first 

is the length of the string; descriptor 2 is the number of digit 

positions; and descriptor 3 is the number of digits to the right of 

the decimal point. Then follows the picture string. An editing 

MOVE uses this string to interpretively execute the MOVE instruc-

tion. 



A Mutation Analyzer 	 4-28 

VALUE literals. for numeric items — descriptor 1 is the number 

of digits, descriptor 2 is the number of digits in fraction, and 

descriptors 3 to n+2 are the digits themselves. An operational sign 

is coded in the last descriptor with the last digit. for nonnumeric 

items — descriptor 1 is the length N in characters, and descriptors 

2 to N+1 are the characters. 

Procedure Division literals. 	These are digits or characters 

only. Since these items have individual symbol table rows, the 

extra information (e.g., length, decimal position) is stored there. 

SPACES and ZERO are stored in positions after the arithmetic 

register in a format that can be referenced either as VALUE or 

Procedure Division literals, depending on the start pointer. 

A variable area follows the constant area. All data is stored 

on a USAGE IS DISPLAY basis, one character at a time. Since some 

mutations change the data structure, reallocation between executions 

is sometimes necessary. 

STATEMENT TABLE: The statement table is composed of triples of 

integers. The first is the starting position of an instruction in 

the code table. When a procedure division statement is mutated, the 

original code is not modified. Instead, a mutated copy of the 

instruction is created and appended to the end of the code table. 

This entry is then modified to point to this mutant copy of the 

instruction. The second entry in the triple is the line number of 

the statement on the source listing. The third entry contains a 

code. A value of 0 means this statement is a continuation in a 
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sentence (no period after previous statement.) A value of 1 means a 

new sentence. A value greater than 1 means the beginning of an ELSE 

clause. 

INTERNAL FORM OF PROCEDURE DIVISION: The following table 

describes the format of the internal form for each Cobol instruc-

tion. The bracketed entries "identifier","ident", and "id", as well 

as "op" are pointers to symbol table entries describing identifiers 

or literals. The symbol table contains information about type, 

length. and location. Notice that an operand can also be a table 

reference. In this case, instead of a single integer we would have 

[cre][index-1] or [op][index-1] [index-2]. The interpreter will know 

from the symbol table entries for op whether 0,1, or 2 indices (sub-

scripts) are needed for a valid reference. Index-1 (and index-2) 

are also symbol table references to simple (unsubscripted) variables 

or to numeric literals. The notations "procedure" and "Proc" 

represent pointers to symbol table entries describing paragraph 

names. The symbol table will contain pointers to the first and last 

statements in the paragraph, in the statement table. 

Each instruction is preceded by a word containing the length of 

that instruction. 



source internal form syntax 

MOVE 	 <MOV><n><source><dest-l>...<dest-n> 
ADD 	 <AD><rnd><size><n><op-1>...<op -n> 
ADD-GIVING 	<ADO><rnd><size><n><op-l>...<op-n><dest> 
SUBTRACT 	 <SU><rnd><size7<n><op-1>...<op-n> 
SUE-GIV 	 <SUG><rnd><size><n><op-l>...<op-n><dest> 
MULTIPLY 	 <MU><rnd><size><op-1><op-2> 
MULT-GIV 	 <MUG><rnd><size><op-1><op-2><dest> 
DIVIDE 	 <DI><rnd><size><op-1><op-2> 
DIV-GIV 	 <DIG><rnd><size><op-1><op-2><dest> 
COMPUTE 	 <C0><rnd><size><ident><arith. exp.> 

IGO To 
	

<G0><procedure> 
GO TO...DEPEND 	<GOD><n><proc-l>...<proc-n><ident> 
PERFORM 	 <PE><procedure><procednre-2> 
PERFORM-UNTIL 	<PEU><proe-1><proc-2><condition> 
PREFORM-VARYING 	<PEV><proc-1><proc-2><ident><from><by> 

<REP1><pl-stmt-ptr><p2-code-ptr><condition> 
PERFORM-TIMES 	<PET><procedure><procednre-2><ident> 

<REP2><count><start><stop> 
no op 	 <RET><O> 
return 	 <RET> <addr> 
IF 
	

<IF>Celse-stmt-ptr><condition> 
!NEGATED IF 
	

<NIF><else-stmt-ptr><condition> 
10PEN 
	

<OP><1..20> 
;CLOSE 
	

<CL><1.-20> 
!READ 
	

<RE><1..10><from-ident> 
WRITE 
	

<WR><1..10><from-ident><advance> 
STOP RUN 
	I <STOP> 

TRAP 
	

I <TRAP> 
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Table 10_ Tnternal Form Syntax 

The items <rnd> and <size> are codes. <rnd> is set to 0 for 

truncated values and 1 for rounded values. <size> is set to 0 if no 

SIZE ERROR clause has been specified and 1 otherwise. In the inter-

nal form the SIZE ERROR clause immediately follows the current 

statement. Arithmetic expressions are interpreted (see algorithms 

below) by a "calculator" that uses the initial memory locations for 

subexpression and intermediate storage. 

In PERFORM-VARYING and PERFORM7-TIMES statements <REP1> 

represents the iteration control instruction. On returning from the 

PERFORM, control is returned to this instruction. <pl-stmt-ptr> is 
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a statement table pointer corresponding to the symbol table <pointer 

proc-l>. < p2-code-ptr> is a code pointer for the insertion of the 

return. <REP2> is similar to REP1, but <count> holds the value that 

was in <ident> when the statement was first executed. Start and 

stop are statement table pointers for the perform range. 

Each paragraph ends with a no op statememt. When a PERFORM 

statement is executed, it first changes the no op at the end of its 

range to a return by inserting the return address (in the statement 

table) and then transferring to the beginning of the range. When a 

RETURN is executed, it transfers to the address in the instruction 

and also changes itself to a no op by changing its address field to 

0. No op's are also inserted when NEXT SENTENCE is used or implied 

in an IF statement. 

in the WRITE statement <advance> is a symbol table pointer. 

MUTANTS: The mutant descriptions are stored in four integers. 

The first is the mutant type, and the others (not all types use all 

four integers) are used for auxiliary information. The following 

mutants are defined. 
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mutant semantics 

DECIMAL 

DIMENS1 

DIMENS2 

INSERTF 

ALTERF 

REVERSE 

FILEREF 

DELETE 

GO.-PERF 

PERF—GO 

THENELS 

STOPINS 

THRUEXT 

TRAP 

ARIVERB 

ARIOPER 

PARENTH 

ROUND 

MOVEREV 

LOGIC 

S—FOR—S 

C—FOR—C 

C—FOR—S 

S—FOR—C 

CONSADJ 

Move implied decimal in numeric items one place 

Reverse row and column OCCURS counts 

Increment or decrement (by 1) an OCCURS count. 

Insert a filler with PICTURE X. 

Alter a filler with PICTURE X(n) to X(n-1) or X(n+1) 

Reverse adjacent elementary items in a record. 

Change a file reference from one file to another 

Delete a statement (change it to a NO—OP). 

Change a CO TO to a PERFORM 

Change a PERFORM to a GO TO. 

Reverse the THEN and ELSE clauses in an IF 

Insert a STOP RUN in the program. 

Extend the TRHU range of a PERFORM. 

Change a statement to a TRAP 

Change one arithmetic verb to another. 

Change an arithmetic operator in a COMPUTE statement. 

Alter the parenthesization of an arithmetic expression 

Change rounding to truncation, or vice versa. 

Reverse the direction of the MOVE 

Change a logical comparison to some other comparison. 

Substitute one scalar data references 

Substitute a constants (numeric or nonnumeric literal) 

Substitute a constant for a scalar. 

Substitute a scalar for a constant. 

Increment or decrement a numeric literal by 1 or by 1% 

Table 11. Mutant Semantics 



A Mutation Analyzer 	 4-33 

We now describe the effects of each of these mutations on the 

internal form entries. The mutations are grouped by the Cobol 

syntactic structures affected during the mutation: data, input, 

output, control, and procedural. Each mutant is described by four 

integers which specify the type of mutation, relevant table entries, 

and parameters defining the mutant. In the notation below, blank 

entries in the descriptors are indicated by <x>. <field> denotes 

the location in the code table relative to the start of the 

statement. All other locations and limits are defined through their 

symbol table entries. Thus, the mutants can be stored in a file of 

4xN integers. 

DATA MUTATIONS 

(1) <DECIMAL><syn.tab.loc><+1 1 —1><x> 
(2) <DIMENS1><sym.tab.loc><x><sym.tab.loc.-2> 
(3) <DIMENS2><sym.tab.loc><+1 1 —1><x> 
(4) <INSERTF><symbol table location><x><x> 
(5) <ALTERF><sym.tab.loc><+11-1><x> 
(6) <REVERSE><sym.tab.loc.><next.elementary.loc><x> 

INPUT/OUTPUT MUTATIONS 

(7) <FILEREF><statement><x><new file—code> 

CONTROL STRUCTURE MUTATIONS 

(8) <DELETE><statement><x><x> 
(9) <GO—PERF><statement><x><x> 
(10) <PERF—GO><statement><x><x> 
(11) <THENELS><statement><x><x> 
(12) <STOPINS><statement><x><x> 
(13) <THRUEXTXstatement><new paragraph limit><x> 
(14) <TRAP><statement><x><x> 

PROCEDURAL MUTATIONS 

(15) <ARIVERB><statement><new operation><x> 
(16) <ARIOPER><statement><field><new operation> 
(17) <PARENTH><statement><from—field><to—field> 
(18) <ROUND><statement><x><x> 
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(19) <MOVEREV><statement><x><x> 
(20) <LOGIC><statement><field><new value> 
(21) <S—FOR—S><statement><field><new symtab loc.> 
(22) <C—FOR—C><statement><field><new loc> 
(23) <C—FOR-S><statement><field><new loc> 
(24) <S—FOR—C><statement><field><new loc> 
(25) <CONSADD<statement><field><new loc> 

Processing Algorithms 

In this section, we will describe the principal processing that 

takes place during the mutation phase of the analyzer. The overall 

organization of these algorithms is as shown in Figure 6. 

PARSE ID 

PARSE DATA 
PARSE PROC. 
PARSE ERROR 	ABORT 

PARSE 

EXIST 
CREATE 
DELETE 
OPENF 
CLOSEF 
WRTRAN 
GETCMD ABORT 
EXIST 
OPENF 
CLOSEF 
TESTCAS READLN 

PACK 
UNPACK 

1NTERP 

DRIVER 
	

ENTRY 

PREPH 

MAKMU 
CETMU 
MUTATE 
INTERP 

— CORREC 
PUTMU 
RESTOR 
OPENF 
CLOSEF 

POSTPH DSPTT 
GETCMD 
DSPMU 
DSPPRG 

Figure 6. 

Call Structure for Processing Algorithms 

MUTPH 
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Each major algorithm is described below. Minor algorithms are 

described briefly in the major algorithms that use them. 

In addition to the processing algorithms described below, an 

implementor will need some utilities for common file processing 

operations. The utilities which are most likely to be helpful are 

those which take and replace a given mutant (indexed by its number) 

in a mutant buffer, create and delete files, check to see if a 

specified file (on a specified unit) is open or already exists. 

Sequential and random access reads and writes are also required. 

ABORT — stop the run 

ABORT prints a message indicated in its call. It then closes all 

open files without further processing. No files are deleted. ABORT 

then terminates the run and returns control to the operating system. 

Be aware that ABORT does not actually cause the output file to be 

printed. The user must do that outside the system. 

ALCATE -- allocate storage 

ALCATE scans the symbol table, filling in the fields for the lengths 

of group items, and for the positions and multipliers for all items. 

CLOSEF — close a file 

CLOSEF closes currently open files. It will also detect if the file 

was not opened and return an error message to the calling algorithm. 
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CORREC - check mutant correctness 

CORREC compares an output of the program being executed with the 

output of the original program. Depending on the mode of correct-

ness checking chosen by the user (or by the default methods), this 

may be done after each record is "written", after the program has 

completed execution (unless the program has failed by some other 

method), or not at all. Also selectable by the user should be the 

precision of the checking: total agreement, or agreement up to 

spacing. 

DECOMP - decompile statement 

DECOMP decompiles a statement in internal form to its Cobol 

equivalent. 

DRIVER the main program 

This program controls the looping through the mutation process at 

the highest level. It controls the prerun, mutation, and postrun 

phases of the run. This is the routine that may be altered later if 

the "phase" concept is dropped. 

DSPSTT - display status 

Display the status of the mutants that have been turned on. This 

includes a listing by mutant type of the numbers of mutants live and 

eliminated, and a listing by elimination method of the number 

eliminated by each method. 
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ENTRY — entry routine for set—up. 

This algorithm is entered only once, at the beginning of a testing 

session. ENTRY first asks the user for the name of the raw program 

file. It then checks to see if the temporary files needed already 

exist (their names will be derived from the raw program file name). 

If they do, then the user will be asked if he wants to purge them 

for a fresh run. If a fresh run is desired, or if the temporary 

files did not exist, ENTRY causes the program to be parsed, and 

causes the needed temporary files to be created and initialized. 

INITM — initialize core memory 

This algorithm initializes program memory for the start of an 

interpretive interaction. This routine is called before each execu-

tion of each mutant program, as well as before the execution of the 

original program. 

INHASH -- insert info into hash table 

INHASH can only be used after QUASH has already been called to 

determine the proper point of insertion for the name. QUASH also 

does the actual insertion of the name. INHASH makes the insertion 

permanent. If a name is not permanently inserted the name will be 

overwritten the next time QUASH accesses that location. 

INTERF — interpretively execute the program. 

INTERP interprets the internal form of the program. The program can 

fail in INTERP by attempting to read past the end of file, by writ-

ing too many records on an output file, by taking too much time, by 

arithmetic fault, or by mode mismatch. The limits for time and out- 
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put records are in ERSTAT. 	For the original program these are 

arbitrary values. but for mutant programs, they should be set for 

comparisons with the original program. INTERP leaves a code for the 

mode of failure, or nonfailure, in ERSTAT. Also placed in ERSTAT 

are counts of the actual time used and records written. INTERP 

calls CORREC after each "write" or after the end of execution, or 

not at all, depending on the correctness checking mode selected by 

the user. 

MAKEMU — make mutants 

MAKEMU creates the descriptor record file, and initializes the 

mutant status record. The first time it is called, it writes header 

information and the first batch of mutants. On subsequent calls it 

appends mutant records. 

MUTATE — mutate the program 

MUTATE mutates the program. For a data division mutation, this 

means altering one or several entries in the symbol table, and also 

possibly the already initialized memory. For the procedure division 

the affected statement is copied, in its mutated version, at the end 

of the code table. The statement table is then modified so that the 

pertinent entry points to the modified version, rather than the 

original. The original statement is not affected, so that restora-

tion is easy. 

MUIPH — control the mutation phase. 

MUTPR first creates the mutants that have been requested by the 

user, and then performs the mutations and runs the mutants, updating 
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the mutant status as it does so. Each test case and each mutant 

record carries a flag that indicates whether or not it was created 

on this pass. While looping through the mutants, each new mutant is 

run against all test cases. Each old mutant that has not already 

been killed is run only against the new test data. 

OPENF — open a file 

OPENF opens a file. This algorithm will have concentrated system 

dependencies. 	Typical parameters passed to OPENF include the type 

of file (e.g., sequential output file or random input file), the 

starting 	position in the file (e.g., beginning, end, random 

address), and a flag to indicate success of the 	operation. 

Extensive use should be made of the native operating system file 

handling routines in implementing OPENF. 

PARSE — driver routine for parsing subroutines. 

This routine controls the four divisional routines that actually 

perform the parsing. It also prints error messages. The pilot 

system, at least, will abort the parsing when the first error is 

detected. The user will be informed of the offending line and the 

type of error. 

POSTPH -- the post run phase 

POSTFH is guided by user dialogue. 	Its purpose is to display 

information for the user. The mutant status should be automatically 

displayed upon entry, all other information is by request. The user 

may ask to see the program, the test cases (by number), or the 

mutants (all, selected, or one random mutant of each type). 
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Finally, the user may return to the pre-run phase by command or end 

the session. 

PREPH - the controlling routine for the prerun phase 

The prerun phase is guided by user dialogue. PREPH will ask about 

test cases for this pass. These may be in a file or they may be 

entered from the terminal. Several test cases may be entered at 

once. 	After each test case the user is presented with the results 

of the run and is asked if the test case should be retained. 	After 

the test cases are entered PREPH asks the user which mutants are to 

be turned on. The user may turn them all on, or he may name a sub-

set, or he may select mutants to be activated. 

PRSDAT - parse the data division 

PRSDAT parses the data division, building the symbol table for later 

use by PRSPRO, INTERP, and MAKEMU. PRSDAT enters one line in the 

symbol table for each identifier declared in the DATA DIVISION. 

PRSDAT also builds an array for the initialization of memory before 

each run. 

PRSENV - parse the environment division. 

This routine parses the environment division. 	The only lines of 

importance are the SELECT statements, which contain the file 

declarations, The file names are placed in the symbol table in 

entries 2-5. 
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PRSID — parse the identification division. 

This 	routine 	essentially recognizes a correct identification 

division. The only effect on the internal form is to insert the 

program name (from the PROGRAM— ID statement) into the first location 

of the symbol table. 

PRSPRO — parse the procedure division 

RSPRO parses the procedure division, creating the code array and the 

statement array. PRSPRO also adds literals and paragraph names to 

the symbol table. 

PUTNAM — put name in NAMES array 

PUTNAM inserts character string in NAMES for future reference, such 

as by decompiler. 

MASH -- query hash -- is item already in hash table? 

MUSE takes a name of 30 characters and checks to see if it is 

already in the hash table. If so, it sets and index to the position 

in the table where the name was found. If no match is found, an 

index is set to that insertion position. 

RESTOR - restore a mutant to the original version 

Restore the internal form of the program to its original state. For 

a Data Division mutant this means removing a filler, re—reversing 

two elementary items, or restoring table attributes. In all of 

these cases the symbol table must be modified, and space must be 

reallocated. For a Procedure division mutant, restoration is 

easier. All that must be done is to change entry 1 in the statement 
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table entry to its previous value. 

SCAN — the scanner routine 

SCAN passes to the parsing routines tokens from the source file . 

For an idenfifier token, scan calls the hash query routine to see if 

the symbol is already in the table and if so, where. 

TSTCAS -- process a test case 

TSTCAS inputs one test case from the user, either directly or from a 

file, runs the test case, and displays the result to the user. If 

the test case is accepted, it is merged into the test file, marked 

as "new". 

A Testing Session 

The following is the output of a level 1 Cobol system whose 

design parallels the design given above. The program under test was 

modified somewhat, mainly in the reduction of the record sizes to 

make a better CRT display. The program takes as input two files, 

representing an old backup tape and a new one. The output is a sum-

mary of the changes. The input files are assumed to be sorted on a 

key field. The program has 1195 mutants, of which 21 are easily 

seen to be equivalent to the original program. Initially ten test 

cases were generated to eliminate all of the nonequivalent mutants. 

Subsequently a subset of five test cases was found to be adequate. 

The entire run took about 10 minutes of clock time, and 2 minutes 

and 13 seconds of CPU time on the PRIME 400. 
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WELCOME TO THE COBOL PILOT MUTATION SYSTEM 
PLEASE ENTER THE NAME OF THE Cobol PROGRAM FILE:>log-changes 
DO YOU WANT TO PURGE WORKING FILES FOR A FRESH RUN ?>yes 
PARSING PROGRAM 
SAVING INTERNAL FORM 
WHAT PERCENTAGE OF THE SUBSTITUTION MUTANTS DO YOU WANT TO CREATE?>100 
CREATING MUTANT DESCRIPTOR RECORDS 
PRE-RUN PRASE 
DO YOU WANT TO SUBMIT A TEST CASE ? >program 

PROGRAM LAST COMPILED ON 1 11 80. 

1 	IDENTIFICATION DIVISION. 
2 	PROGRAM-ID. POQAACA. 
3 	AUTHOR. CPT R W MOREHEAD. 
4 	INSTALLATION. HOS USACSC. 
5 	DATE-WRITTEN. OCT 1973. 
6 	REMARKS. 
7 	THIS PROGRAM PRINTS OUT A LIST OF CHANGES IN TEE ETF. 
8 	ALL ETF CHANGES WERE PROCESSED PRIOR TO THIS PROGRAM. THE 
9 	OLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO 
10 	FURTHER PROCESSING OF THE ETF HERE. THE ONLY OUTPUT IS A 
11 	LISTING OF THE ADDS, CHANGES, AND DELETES. THIS PROGRAM IS 
12 	FOR HQ USE ONLY AND HAS NO APPLICATION IN THE FIELD. 
13 	***************** 
14 	MODIFIED FOR TESTING UNDER CPMS BY ALLEN ACREE 
15 	JULY, 1979. 
16 	ENVIRONMENT DIVISION. 
17 	CONFIGURATION SECTION. 
18 	SOURCE-COMPUTER. PRIME. 
19 	OBJECT-COMPUTER. PRIME. 
20 	INPUT-OUTPUT SECTION. 
21 	FILE-CONTROL. 
22 	SELECT OLD-ETF ASSIGN INPUT1. 
23 	SELECT NEW-ETF ASSIGN INPUT2. 
24 	SELECT PRNTR ASSIGN TO OUTPUT1. 
25 	DATA DIVISION. 
26 	FILE SECTION. 
27 	ED OLD-ETF 
28 	RECORD CONTAINS 80 CHARACTERS 
29 	LABEL RECORDS ARE STANDARD 
30 	DATA RECORD IS OLD-REC. 
31 	01 OLD-REC. 
32 	03 FILLER 	 PIC X. 
33 	03 OLD-KEY 	 PIC X(12). 
34 	03 FILLER 	 PIC X(67). 
35' FD NEW-ETF 
36 	RECORD CONTAINS 80 CHARACTERS 
37 	LABEL RECORDS ARE STANDARD 
38 	DATA RECORD IS NEW-REC. 
39 	01 NEW-REC. 
40 	03 FILLER 	 PIC X. 
41 	03 NEW-KEY 	 PIC X(12). 
42 	03 FILLER 	 PIC X(67). 
43 	FD PRNTR 
44 	RECORD CONTAINS 40 CHARACTERS 
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45 	LABEL RECORDS ARE OMITTED 
46 	DATA RECORD IS PRNT-LINE. 
47 	01 PRNT-LINE 	 PIC X(40). 
48 	WORKING-STORAGE SECTION. 
49 	01 PRNT-WORK-AREA. 
50 	03 LINE1 	 PIC X(30). 
51 	03 LINE2 	 PIC X(30). 
52 	03 LINE3 	 PIC X(20). 
53 	01 PRNT-OUT-OLD. 
54 	03 WS-LN-1. 
55 	 05 FILLER 	 PIC X VALUE SPACE. 
56 	 05 FILLER 	 PIC XXXX VALUE '0 
57 	 05 LN1 	 PIC X(30). 
58 	 05 FILLER 	 PIC XXX VALUE SPACES. 
59 	03 WS-LN-2. 
60 	 05 FILLER 	 PIC X VALUE SPACE. 
61 	 05 FILLER 	 PIC XXXX VALUE 'L 
62 	 05 LN2 	 PIC X(30). 
63 	 05 FILLER 	 PIC XXX VALUE SPACES. 
64 	03 VIS-LN-3. 
65 	 05 FILLER 	 PIC X VALUE SPACE. 
66 	 05 FILLER 	 PIC XXXX VALUE 'D 
67 	 05 LN3 	 PIC X(20). 
68 	 05 FILLER 	 PIC XXX VALUE SPACE. 
69 	01 PRNT-NEW-OUT. 
70 	03 NEW-LN-1. 
71 	 05 FILLER 	 PIC XXXXX VALUE ' N 
72 	 05 N-LN1 	 PIC X(30). 
73 	 05 FILLER 	 PIC XXX VALUE SPACE. 
74 	03 NEW-LN-2. 
75 	 05 FILLER 	 PIC XXXXX VALUE ' E 
76 	 05 N-LN2 	 PIC X(30). 
77 	 05 FILLER 	 PIC XXX VALUE SPACES. 
78 	03 NEW-LN-3. 
79 	 05 FILLER 	 PIC XXXXX VALUE ' W 
80 	 05 N-LN3 	 PIC X(20). 
81 	 05 FILLER 	 PIC XXX VALUE SPACES. 
82 	PROCEDURE DIVISION. 
83 	0100-OPENS. 
84 	OPEN INPUT OLD-ETF NEW-LTF. 
85 	OPEN OUTPUT PRNTR. 
86 	0110-OLD-READ. 
87 	READ OLD-ETF AT END GO TO 0160-OLD-EOF. 
88 	0120-NEW-REAP. 
89 	READ NEW-ETF AT END GO TO 0170-NEW-EOF. 
90 	0130-COMPARES. 
91 	IF OLD-KEY = NEW-KEY 
92 	 NEXT SENTENCE 
93 	ELSE GO TO 0140-CK-ADD-DEL. 
94 	IF OLD-REC = NEW-REC 
95 	 GO TO 0110-OLD-READ. 
96 	MOVE OLD-REC TO PRNT-WORK-AREA. 
97 	PERFORM 0210-OLD-WRT IBRU 0210-EXTT. 
98 	MOVE NEW-REC TO PRNT-WORK-AREA. 
99 	PERFORM 0200-NW-WRT THRU 0200-EXIT. 
100 	GO TO 0110-OLD-REAP. 
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101 0140-CK-ADD-DEL. 
102 	IF OLD-KEY > NEW-KEY 
103 	 MOVE NEW-REC TO PENT-WORK-AREA, 
104 	 PERFORM 0200-NW-WRT THRU 0200-EXIT 
105 	 GO TO 0120-NEW-READ 
106 	ELSE GO TO 0150-CK-ADD-DEL. 
107 0150-CK-ADD-DEL. 
108 	MOVE OLD-EEC TO PRNT-WORK-AREA. 
109 	PERFORM 0210-OLD-WRT THRU 0210-EXIT. 
110 	READ OLD-ETF AT END 
111 	 MOVE NEW-REC TO PENT-WORK-AREA 
112 	 PERFORM 0200-NW-WRT THRU 0200-EXIT 
113 	 GO TO 0160-OLD-EOF. 
114 	GO TO 0130-COMPARES. 
115 	0160-OLD--ROF. 
116 	READ NEW-ETF AT END GO TO 0180-EOJ. 
117 	MOVE NEW-REC TO PRNT-WORK-AREA. 
113 	PERFORM 0200-NW-WET THRU 0200-EXIT. 
119 	GO TO 0160-OLD-EOF. 
120 0170-NEW-E0F. 
121 	MOVE OLD-RED; TO PENT-WORK-AREA. 
122 	PERFORM 0210-OLD-WRT THRU 0210-EXIT. 
123 	READ OLD-ETF AT END GO TO 0180-EOJ. 
124 	GO TO 0170-NEW-EOF. 
125 	0180-E0J. 
126 	CLOSE OLD-ETF NEW-LTF PRNTR. 
127 	STOP am. 
128 0200-NW-WRT. 
129 	MOVE LINE1 TO N-LN1. 
130 	MOVE LINE2 TO N-LN2. 
131 	MOVE LINE3 TO N-LN3. 
132 	WRITE PENT-LINE FROM NEW-LN-1 AFTER ADVANCING 2. 
133 	WRITE PENT-LINE FROM NEW-LN-2 AFTER ADVANCING 1. 
134 	WRITE PENT-LINE FROM NEW-LN-3 AFTER ADVANCING 1. 
135 	0200-EXIT. 
136 	EXIT. 
127 0210-OLD-WET. 
138 	MOVE LINE1 TO LN1. 
139 	MOVE LINE2 TO LN2. 
140 	MOVE LINE3 TO LN3. 
141 	WRITE PENT-LINE FROM WS-LN-1 AFTER ADVANCING 2. 
142 	WRITE PENT-LINE FROM WS-LN-2 AFTER ADVANCING 1. 
143 	WRITE PRNT-LINE FROM WS-LN-3 AFTER ADVANCING 1. 
144 	0210-EXIT. 
145 	EXIT. 

>yes 
WHERE IS OLD-ETF? 
>1c9 
WHERE IS NEW-ETF? 
>1c6 
OLD-ETF PROVIDED TO THE PROGRAM 

I123456789012IIIIIIIIII0=JJJJKKKKKKKKRKLULLULLLNNNNNNNNNNBEBBBUBBEGGGGG 
J234567890123YYYYYYYYYYGGGGGGGGGGEFFEFFEFFFODDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 

NEW-ETF PROVIDED TO THE PROGRAM 
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113345678901200000000000000000000000000000000000000000000000000000000000000000 
J234567890123YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 
345678901234UVUUU1JUUUMMIHNIIHMIGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA 

PRNTR AS WRITTEN BY THE PROGRAM 

O 112345678901211111111110JJJJJ3 
L JJJKKKYKKKKKKLLLLLELLLLNNNNNNN 
D NNNBBBBBBBBBBGGGGGGG 

N 113345678901200000000000000000 
E 000000000000000000000000000000 
W 00000000000000000000 

O J234567890123YYYYYYYYYYGGGGGGG 
L GGGEFFEFFEFFFODDDDDDDDDSSSSSSS 
D SSSXXXXXXXXXXEEEFEEE 

N J234567890123YYYYYYYYYYGGGGGGG 
E GCGFFIFFFEFFEDDDDDDDDDDSSSSSSS 
W SSSXXXXXXXXXXEEEEEEE 

N 345678901234UT11J UUUU1JU111111171ffi11 
E IHIEGGGGGGGGGGDDDDDDDDDDSSSSSSS 
W SSSEEEEEEEEEEAAAAAAA 

THE PROGRAM TOOK 84 STEPS 
IS THIS TEST CASE ACCEPTABLE ? >yes 
DO YOU WANT TO SUBMIT A TEST CASE ? >no 
MUTATION PHASE 
WHAT NEW MUTANT TYPES ARE TO BE CONSIDERED ? 	>select 

ENTER THE NUMBERS OF THE MUTANT TYPES YOU WANT TO TURN ON AT THIS TIME. 

4 	**** 	INSERT FILLER TYPE 	**** 
5 	**** 	FILLER SIZE ALTERATION TYPE 	**** 
6 	**** 	ELEMENTARY ITEM REVERSAL TYPE 	**** 

7 	**** 	FILE REFERENCE ALTERATION TYPE 	**** 

8 **** STATEMENT DELETION TYPE 	**** 
10 **** PERFORM --> GO TO TYPE 	**** 
11 **** THEN — ELSE REVERSAL TYPE 	**** 
12 **** STOP STATEMENT SUBSTITUTION TYPE 	**** 
13 **** ThRU CLAUSE EXTENSION TYPE 	**** 
14 **** TRAP STATEMENT REPLACEMENT TYPE 	**** 

19 **** MOVE REVERSAL TYPE 	**** 
20 **** LOGICAL OPERATOR REPLACEMENT TYPE 	**** 
21 **** SCALAR FOR SCALAR REPLACEMENT 	**** 
22 **** CONSTANT FOR CONSTANT REPLACEMENT 	**** 
23 **** CONSTANT FOR SCALAR REPLACEMENT 	**** 
25 **** CONSTANT ADJUSTMENT 	**** 

TYPES ? >4 to 14 stop 
TESTCASE 	1 -- 

250 
284 CONSTITRED 
	

224 KILLED 	60 REMAIN 
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MUTANT STATUS 

TYPE TOTAL LIVE PCT palm( 
INSERT 41 7 82.93 0 
FILLSZ 38 14 63.16 0 
ITEMRV 21 0 100.00 0 
FILES 5 1 80.00 0 
DELETE 54 13 75.93 0 
PER GO 7 2 71.43 0 
IF REV 3 1 66.67 0 
STOP 53 10 81.13 0 
THRU 8 2 75.00 0 
TRAP 54 10 81.48 0 

TOTALS 
284 60 78.87 0 

DO YOU WANT TO SEE THE LIVE MUTANTS?>no 
DO YOU WANT TO SEE THE EQUIVALENT MUTANTS?>no 
WOULD YOU LIKE TO SEE THE TEST CASES?>no 
LOOP OR HALT ? >loop 
PRE-RUN PHASE 
DO YOU WANT TO SUBMIT A TEST CASE ? >yes 
WHERE IS OLD-ETF? 
>1c15 
WHERE IS NEW-ETF? 
>1c5 
OLD-ETF PROVIDED TO THE PROGRAM 

0000000000012 III III II I IJ JJJJ J J.TJ JKKKKKRICKKKI,LLLLLLLLLNNNNNNNNNINEBBBBBBBBBGGGGG 
I123456789012IIIIIIIIIIJJJJJJJJJJKKKKKKKKKKLLLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG 
J23 4567890123 YY YYYYYYYYG GGGGGGGGGEFFFEFFEFFDDDDDD DDDDS SSSSSSSSSXXXX2OUVOCEEEEE 

NEW-ETF PROVIDED TO THE PROGRAM 

I123456789012IIIIIIIIII=JJJJJSKKKKK=KKULLULLUNNNNNNNNNNBBBBBBBBBBOGGGG 
32345678 901 23YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 

PRNTR AS WRITTEN BY THE PROGRAM 

O 0000000000012IIIIIIIIIIJJJJJJJ 
L JJJKKETIUKKKLLLLLLLLLENNNNNNN 
D NNNBBBBBBBBBBGGGGGGG 

THE PROGRAM TOOK 44 STEPS 
IS THIS TEST CASE ACCEPTABLE ? >yes 
DO YOU WANT TO SUBMIT A TEST CASE ? >yes 
WHERE IS OLD-ETF? 
>1c14 
WHERE IS NEW-ETF? 
>1c5 
OLD--ETF PROVIDED TO THE PROGRAM 

I 1 23 456789012 I I IIIII II IKJJ JJJJJJJEaKIM=KELLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG 
3234567890123YYYYYY YYYYGGGGGGGGGGFTFFFFFFFEDDDDDDDDDDS S SS SS SS SSXXX.XXXXXXXEEEEE 

NEW -ETF PROVIDED TO WE PROGRAM 
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11 23456789012 IIIII II 1MM 	KKKICKYSKICKLLLLELLELLNNNNNNNNNNBBBBBBBBBBOGGG 
J23 4567890123 YYYYYYYYYYG GGGG GGOGGFFEFFFEEFEDDDDDDDDDDS SS S S S SSSSXXXXXXXXXXEEEEE 

PRNTR AS WRITTEN BY THE PROGRAM 

O 11234567890121111111111KMJil 
L JJJKI(KKIcKVIUKKELI.LLELLELNNNNYNIN 
D NNNEBBLEBBBBBGGGGOGG 

N 112345678901211111111111MM 
E MMCKKKKKKILLLLELLLLENNNNNNN 
W liNNBBBBBBBBBBGGGOCCG 

THE PROGRAM TOOK 48 STEPS 
IS THIS TEST CASE ACCEPTABLE ? >yes 
DO YOU WANT TO SUBMIT A TEST CASE ? >yes 

WHERE IS OLD—ETF? 
>1c11 

WHERE IS NEW—ETF? 
>lcl 
OLD—ETF PROVIDED TO THE PROGRAM 

00000000000000000000000000000000000000000000 

NEW—ETF PROVIDED TO THE PROGRAM 

1123 456789012111111 II IIMMJJJJKIXIIKKKKKELLLELLLELNNNNNNN1VNNIIBBBBBBBBB OGGGG 
J234 5678 9O123YYYYYYYYYYGGGCGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 

34567 890123 4131JUUUUUUMMIIIIIILTEUBIffiGGGGGGGGGGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA 

PIINTR AS WRITTEN BY THE PROGRAM 

O 000000000000000000000000000000 
L 00000000000000 
D 

N 11234567890121111111111M1J11 
E JJJKKKKKIaCKKKLLELELLELLNNNINNINN 
W NNNBBBBBBBBBBOOGGGOG 

N 1234 567890123YYYYYYYYYYGGGOGGG 
E GGGFFEFFFIFFEDDDDDDDDDDSSSSSSS 
W SSSXXXXXXXXXXEEEEEEE 

N 34567890123 4 UIIUUUUUIJUUIIIHIIIIHIII  
E IIIIIIGGGGGGGGGGDDDDDDDDDDSSSSSSS 
W SS SEEEEEEEEEEAAAAAAA 

THE PROGRAM TOOK 64 STEPS 
IS THIS TEST CASE ACCEPTABLE ? >yes 
DO YOU WANT TO SUBMIT A TEST CASE ? >yes 

WHERE IS OLD—ETF? 
>lcl 
WHERE IS NEW—ETF? 



640 KILLED 

82 KILLED 

1 KILLED 

61 KILLED 

69 KILLED 

174 REMAIN 

152 REMAIN 

151 REMAIN 

90 REMAIN 

21 REMAIN 
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OLD-ETF PROVIDED TO TIME PROGRAM 

I123456789012IIIIIIIIIIHMJJJJJEKKILKKKKKKILLLLLLLLLNNNNNNNNNNBBBBBBBBBBGGGGG 
12345678 901 23YYYYYYYYYYGGGGGGGGGGFFFFFFFFFFDDDDDDDDDDSSSSSSSSSSXXXXXXXXXXEEEEE 

34567 890123 4UUUUUUUUUUIIHIIHIIR1HIJIIJGGGGGGGGQGDDDDDDDDDDSSSSSSSSSSEEEEEEEEEEAAAAA 

NEW-Elk PROVIDED TO THE PROGRAM 

00000000000000000000000000000000000000000000 

PRNTR AS WRITTEN BY THE PROGRAM 

N 000000000000000000000000000000 
E 00000000000000 
W 

O I123456789012IIIIIIIIIIJMUJJ 
L JJJKYLKICUKKKKILLLLLLLLLNNNNNNN 
D NNNBBBBBBBBBBGGGGGGG 

• J234567890123YYYYYYYYYYGGGGGGG 
L GGGEFFFFEFFFEDDDDDDDDDDSSSSSSS 
D SSSXXXXXXXXXXEEEEEEE 

O 345678901234UUUMATUUUHHHHHHH 
L HIHIGGGGGGGGGGDDDDDDDDDDSSSSSSS 
D SS SEEEEEEEEEEAAAAAAA 

THE PROGRAM TOOK 64 STEPS 
IS THIS TEST CASE ACCEPTABLE 
DO YOU WANT TO SUBMIT A TEST 
MUTATION PHASE 
WHAT NEW MUTANT TYPES ARE TO 
- TESTCASE 	1 -- 

250 
500 
750 
814 CONSIDERED 

- TESTCASE 	2 --- 
234 CONSIDERED 

- TESTCASE 	3 -- 
152 CONSIDERED 

- TESTCASE 	4 — 
151 CONSIDERED 

- TESTCASE 	5 -- 
90 CONSIDERED 

MUTANT STATUS 

? >yes 
CASE ? >no 

BE CONSIDERED ? >all 

TYPE TOTAL LIVE PCT EQUIV 
INSERT 41 3 92.68 0 
FILLSZ 38 12 68.42 0 
ITEMRV 21 0 100.00 0 
FILES 5 0 100.00 0 
DELETE 54 1 98.15 0 
PER GO 7 0 100.00 0 
IF REV 3 C 100.00 0 
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STOP 53 0 100.00 0 
TILRU 8 0 100.00 0 
TRAP 54 0 100.00 0 
MOVE R 13 0 100.00 0 
LOGIC 15 1 93 .33 0 
SUB SFS 704 4 99.43 0 
SUBCFC 12 0 100.00 0 

58 0 100.00 0 SUBCFS 
C ADJ 12 0 100.00 0 

TOTALS 
1098 21 98.09 0 

DO YOU WANT TO SEE THE LIVE MUTANTS?>yes 
THE LIVE MUTANTS 

FOR EACH MUTANT : HIT RETURN TO CONTINUE. TYPE 'STOP' TO STOP. 
TYPE 'EQUIV' TO JUDGE THE MUTANT EQUIVALENT. 

**** INSERT FILLER TYPE **** 

THERE ARE 	3 MUTANTS OF THIS TYPE LEFT. 
DO YOU WANT TO SEE THEMnyes 
A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER 
THE ITEM WHICH STARTS ON LINE 52 
ITS LEVEL NUMBER IS 3 

A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER 
THE ITEM WHICH STARTS ON LINE 53 
ITS LEVEL NUMBER IS 3 

A FILLER OF LENGTH ONE HAS BEEN INSERTED AFTER 
THE ITEM WHICH STARTS ON LINE 69 
ITS LEVEL NUMBER IS 3 

**** 	FILLER SIZE ALTERATION TYPE 	**a* 

THERE ARE 	12 	MUTANTS OF THIS TYPE LEFT. 
DO YOU WANT TO SEE THEM>yes 
THE FILLER ON LINE 58 HAS HAD ITS SIZE DECREMENTED BY ONE. 

TUE FILLER ON LINE 58 HAS HAD ITS SIZE INCREMENTED BY ONE. 

THE FILLER ON LINE 63 HAS HAD ITS SIZE DECREMENTED BY ONE. 

THE FILLER ON LINE 63 HAS HAD ITS SIZE INCREMENTED BY ONE. 

THE FILLER ON LINE 68 HAS HAD ITS SIZE DECREMENTED BY ONE. 
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HAAS HAD ITS SIZE INCREMENTED BY ONE. THE FILLER ON LINE 68 

THE FILLER ON LINE 73 HAS HA]) ITS SIZE DECREMENTED BY ONE. 

THE FILLER ON LINE 73 HAS HAD ITS SIZE INCREMENTED BY ONE. 

THE FILLER ON LINE 77 HAS HAD ITS SIZE DECREMENTED BY ONE. 

THE FILLER ON LINE 77 HAS HAD ITS SIZE INCREMENTED BY ONE. 

THE FILLER ON LINE 31 HAS HAD ITS SIZE DECREMENTED BY ONE. 

THE FILLER ON LINE 81 HAS HAD ITS SIZE INCREMENTED BY ONE. 

**** STATEMENT DELETION TYPE **** 

THERE ARE 	1 MUTANTS OF THIS TYPE LEFT. 
DO YOU WANT TO SEE THEM?>yes 
ON LINE 106 THE STATEMENT: 

GO TO 0150—CS—ADD—DEL 
HAS BEEN DELETED. 

**** LOGICAL OPERATOR REPLACEMENT TYPE **** 

THERE ARE 	1 MUTANTS OF THIS TYPE LEFT. 
DO YOU WANT TO SEE THEM?>yes 
ON LINE 102 THE STATEMENT: 

IF OLD—KEY > NEW—KEY 
HAS BEEN CHANGED TO: 

IF OLD—KEY NOT < NEW—KEY 

**** SCALAR FOR SCALAR REPLACEMENT **** 

THERE ARE 	4 MUTANTS OF THIS TYPE LEFT. 
DO YOU WANT TO SEE THEM?>yes 
ON LINE 129 THE STATEMENT: 

MOVE LINE1 TO N—LN1 
HAS BEEN CHANGED TO: 

MOVE NEW—PEC TO N—LN1 

ON LINE 129 THE STATEMENT: 
MOVE LINFi TO N—LN1 
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HAS BEEN CHANGED TO: 
MOVE PENT—WORK—AREA TO N—LN1 

ON LINE 138 THE STATEMENT: 
MOVE LINE1 TO LN1 

HAS BEEN CHANGED TO: 
MOVE OLD—REC TO LN1 

ON LINE 138 THE STATEMENT: 
MOVE LINE1 TO LN1 

HAS BEEN CHANGED TO: 
MOVE PENT—WORK—AREA TO LN1 

DO YOU WANT TO SEE TUE EQUIVALENT MUTANTS?>no 
WOULD YOU LIKE TO SEE THE TEST CASES?>no 
LOOP OR HALT ? >halt 

**** STOP 
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Chapter  5 

The Complexity  of Program Mutation 

In this chapter, we will deal with the cost of mutation 

analysis and with methods for reducing the cost. The efficiency of 

calculating the m(P,T) value for a program T is limited by the num-

ber of mutants in p(P) and, to a lesser extent, by the running time 

of P. We will discuss the worst case size of p(P) for the mutation 

operators described in Chapter 2 and give observed values for the 

size of M(P). We will also present some Justification for reducing 

the total cost of analysis by random sampling of mutants and discuss 

the effects of sampling techniques on the quality of test data. 

Estimating 111(P)1 

The effects of the running time of P on the overall complexity 

of calculating m(P,T) are difficult to determine in quantitative 

terms. Because of the variety of ways in which a mutant may die, 

mutants tend to be very unstable. That is, a mutant may not die by 

actually producing an output which differs from P. It is more 

likely that a mutant will die by executing a trap statement, an 

illegal operation (a zero divide, for instance), or by one of a num-

ber of other "non—standard" means. Furthermore, not every live 

mutant is executed on every test case. As described in Chapter 4,it 

is convenient to keep a count of executed statements available dur-

ing mutation phases. If a mutant occurs in an unexecuted portion of 

a program, then that mutant is not executed on the test case, since 

it cannot possibly be killed by the test case. Thus, even though 
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'programs with long running times are more costly to test by mutation 

analysis (or by any other dynamic testing technique, for that mat-

ter), the best estimate of the cost of calculating m(P.T) is u(P). 

It is this quantity on which we will concentrate. 

Mutant operators are chosen to balance two conditions. 	The 

first condition is that p(P) be kept reasonably small -- say, a 

small polynomial function of some simple size parameter such as num-

ber of statements or number of data names. The second condition is 

that p(P) come as close as possible to satisfying the Competent 

Programmer Assumption. 

Recall that we have defined simple mutants as follows. 	Let P 

be a program in in a programming system defined by a grammar G, and 

let parse(P) be the syntax tree for P obtained by parsing P accord- 

ing to G. Then a 1—order simple mutant operator is a function map- 

ping T1  to a tree T2  so that T1  and T2 differ by at most one 

terminal node (i.e., leaf). T 2 
defines a simple 1—order mutant of 

P. Proceeding inductively, a k—order mutant is simply a k—fold 

iteration of 1—order mutants. In particular, notice that simple 

mutants do not alter the "semantic structure" of a program -- that 

is they do not modify the internal nodes of the parse tree. Error 

operators are with few exceptions simple 1—order mutants. 

7e will give a heuristic analysis of the expected number of 

mutants of a program as a function of several size parameters. 

First, it is possible to derive an order—of—growth expression 

for the number of Fortran mutants. Data reference replacements are 

accomplished by interchanging reference names occurring within the 
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program. In a program with N statements and K distinct data 

references this number is F(N,K)= (5) =0(K 2). The reader can con-

vince himself that for each of the constant and operator replacement 

schemes there is a constant c so that the number of generated 

mutants is bounded by cK. Therefore, F(N,K) dominates the total 

number of of mutants, and the number of generated mutants is in the 

worst case quadratic in the number of distinct data references. 

Observations of typical programs lead to another estimation of 

the expected number of mutants generated. In programs that are not 

inordinately dense each statement contains relatively few data 

references, so F(N,K) is more closely approximated by F(N,K)= 0(NK). 

In typical programs, the data references tend to be so sparsely 

distributed that the rate of growth is usually closer to quadratic 

in N: F(N,K) = 0(N2 ). 

In generating mutants of Cobol programs, it is possible to more 

nearly approach linear growth, since the number of data reference 

interchanges is limited by syntactical redundancies. In fact, an 

analysis similar to the one carried out above gives the worst case 

estimate for the expected number of mutants for a Cobol Trogram as 

the number of data division lines multiplied by the number of 

procedure division lines. For typical Cobol programs this estimate 

is C(N,K) << N2 . 

Observed values of p(P) fall 	considerably 	under 	these 

estimates. Tables 1 and 2 show mutant growth rates for some typical 

Fortran and Cobol programs. Notice that in both cases (except for 

the variation in small Fortran programs) the estimates given above 

are generous upper bounds on the observed number of mutants. In 
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experimental settings the average growth rate for "production" Cobol 

programs to be more nearly linear in the product of procedure 

division lines and K than quadratic in N. 

I 	1 
N 	I 	N2 	I Average Number of Mutants 

12 	144 
13 	169 
14 	196 
16 	256 
17 	289 
24 	576 
26 	676 
28 	784 
30 	900 
33 	1089 
34 	1156 
36 	1296 
42 	1764 
45 	2025 
65 	4225 
66 	4356 
71 	5041 
98 	96 04 
123 	15129 

Table 

2508 
307 
427 
360 
390 

2666 
649 

3213 
1209 
12116 
3361 
1085 
1057 
1658 
1514 
2425 
2817 
842 4 
883 8 

1. Fortran Mutants 

No.Procedure * 	1 	Total Mutants 
N 	I 	N2 	No Data Div Lines 	I 	Generated 

57 3249 576 370 
64 4096 789 679 
73 5329 756 78 
74 5476 800 235 
75 5625 837 225 
78 6084 918 376 
99 9801 1674 377 

102 10404 1806 715 
111 12321 2115 740 
143 20449 3330 628 
170 28 900 5184 1195 
453 205209 46803 14639 
670 448900 92964 50983 

Table 4.2. Cobol Mutants 



Number 
of 

Lines 

N 

McCabe! 
Metric! 

V 

!Number ! Number 
Data 	!Distinct 
Refs 	I 	Refs 

X 

!Number 
I 	of 

Effort 	!Mutants 

E 	1 	M 

12 1 103 21 32033 2580 
13 5 27 8 4071 317 
17 4 32 8 6928 386 
17 7 45 9 15246 634 
24 7 72 40 17565 2716 
26 	9 40 11 16270 646 
33 12 55 13 41819 859 
33 1 407 53 249701 23382 
56 9 129 23 138939 3657 
66 10 115 15 17 04 92 2425 
67 15 158 28 189585 5230 
71 11 135 16 166715 2888 
98 22 227 32 365825 8457 

112 26 237 68 320331 163 80 
277 122 545 63 3024488 34657 
514 	1 	113 1138 93 19267409 120000 

Table 3. Complexity Metric Relationships 

The Complexity of Mutation 	 5-5 

Choosing to measure the complexity of mutation analysis on the 

basis of a single size measure can, however, be deceptive. For 

example, consider a single assignment statement. If the right hand 

side of the assignment is extremely complex, then the number of data 

references and operators will determine completely the number of 

mutants generated. The 33 line program in Table 1 is an example of 

a program with such a dense structure. 

Another size measure is the complexity of the control struc-

ture. The so—called McCabe metric measures branching complexity. 

The Halstead effort measurement is another measure of complexity. 

The following table summarizes the observed relationship between 

these six size measures for 16 Fortran programs. 



Measurable 
Factor 

Correlationi 	Data 
Coefficient 	Mutants 

Operator 	I Statement 
Mutants 	I 	Mutants 

N .950 .946 .953 .940 

V .798 .795 .880 .764 
.978 .980 .993 .921 

K .826 .836 .874 .722 
XK .999 .999 .961 .970 
E .975 .970 .880 .999 
M .999 .953 .940 

Table 4. Correlation of Complexity and Mutants 
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The strength of the correlation of the number of mutants with 

each of the other measurements is given in the following table. 

The correlation coefficient is for a linear fit between the number 

of mutants and the factors discussed above (first column). The 

second, third, and fourth columns represent the correlation between 

the number of mutants and the mutants arising from the three 

categories of mutation operators. It is possible to develop useful 

linear models to predict the number of mutants in terms of the most 

significant factors. For example, the linear model for the data 

above is 

M = 79+.766U+4X+.0008E. 

However, this model is correlated only marginally better than the 

simple statistic IK. 	It is unlikely that the coefficients can be 

generalized to form a reliable predictive model for other data sets. 
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Mutant Instability. 

Even though the number of mutants generated by these methods is 

observed to grow rather slowly as a function of program size, of the 

As noted above, however, a mutant seldom runs to completion; rather, 

mutant programs tend to be rather unstable, dying by executing 

"illegal" statements which are trapped and which cause premature 

termination of the programs. The statistics in Table 5 show typical 

stability data for Fortran programs tested under a mutation 

analyzer. 

               

   

observation 

      

               

  

Average number of test 
cases mutants remain live 
. sp 
Average total mutant executions 
per session (units = F(N,K)) 
.sp 
Average fraction of nonequivalent 
mutants killed by first test case 
sp 

Average execution time of live 
mutant (percent of original test) 

   

1.75 

2.00 

68% 

75% 

  

        

  

Table 5. Lifespan of Unstable Fortran Mutants 

  

               

The instability of mutants has some theoretical basis. From 

standard software reliability studies of software we have the work-

ing principle that the probability of failure in a given time inter-

val is proportional to the number of errors in the program. 

Whenever this principle holds, the expected time to failure of the 

program is inversely proportional to the number of errors present. 

If t is the time to failure (measured, say, in number of statements 

executed), and if cn is the probability of failure during the execu-

tion of any given statement, then the expected time to failure is 
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given by 

CO 

E(t) = 	(1-en) (i-1) (en)i • 

i=1 

This reduces to E(t) = cn-1 . 

Although the speed with which mutants can be eliminated is a 

function of the capabilities of the human tester, it is our 

experience that somewhat more than 30% of the remaining live mutants 

are killed by each test case, yielding rapid convergence. 

The following table represents the average number of statements 

executed before failure for program with k—order mutants (02). The 

programs represented are from the set of six Cobol programs 

described in Appendix A. 

Program 2nd ORder 3rd Order 14th Order 5th Order 

Al 30 24 21 19 
A2 47 27 19 15 
A3 50 38 31 27 
A4 124 85 67 59 
AS 52 35 27 22 
A6 132 98 74 60 

Table 5. Time to Failure Data 

As the graph in Figure 1 shows, the analytical model holds 

quite well. Not only is there an apparent linear relationship 

between 1/Avg(T) and n for each of the programs, but also for all 

but one of the programs, the line segments can be extrapolated back-

wards to show the intercepts near zero. That one program is the 

smallest of the six and, presumably, the worst simulation of a large 



1/Avg(T) 
.08 

.07 

.06 

.05 

.04 

.03 

.02 

.01 

0.00 
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module. 	This data cannot be interpreted as strongly as we would 

like, however, since the probabilistic assumptions are based on 

typical operational data; the test cases that generated this data 

were intentionally chosen to be nontypical: the test cases were 

required to exercise the exception—handling code that would rarely 

be executed in practice. 

Program 
AS 

Program 
A5 

--- 

Program 
A4 

Program 
A3 

Program 
A2 

Program 
Al 

0 
Number of Errors 

Figure 1. Failure Rate Data 

Reducing Complexity by Sampling 

The bounds of practicality for monolithic 

1 2 

programs 	are 

somewhere in the 5,000 to 10,000 line range for Fortran and somewhat 

higher for Cobol programs. Even this must be treated as an 

optimistic upper limit -- certainly mutation is not easy to apply at 

the 5,000 statement level. A valuable technique for handling large 
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programs is to use Monte Carlo methods to sample from large 

populations of mutants. A simple argument to support such an 

analysis goes as follows. Let f(x) appear in a specific context of 

a program undergoing mutation analysis; if a set of test data is too 

weak for the program but the program is nevertheless correct, then 

there is an adequate set of test data , T, on which [f(x)]*(T) 

#[f(x')]*(T), where x' is some specified data reference replacement 

mutation of x and [f(x)]* denotes the functional interpretation of 

f(x). But x and x' in these expressions are bound variables; it 

only matters that they refer to distinct positions of a state vector 

which has been specially constructed to exhibit the inequality. In 

other words, it is important that we are able to "explain" with test 

data why x is an argument of f, but perhaps less important that we 

be able to explain why the argument is not x' or any other specific 

alternative. But this can be accomplished by sampling from enough 

alternative choices x' to insure that identities that we are observ-

ing are not mathematical. If the functions involved arc at all 

well—behaved algebraically then algebraic identities can be discer-

ned in this way 

Using the Cobol program Al—A6 in Appendix A, we want to study 

the effects of testing using only randomly selected substitution 

mutants. The table which follows summarizes the results of this 

study. The columns labelled "survive" indicate the counts of the 

number of mutants (using 100% of the substitution mutants) that sur-

vive the specified testing criteria and are not equivalent to the 

original program. 



The Complexity of Mutation 	 5-11 

Program # Mutants # Mutants Survive Survive 
at 10% at 100% TRAP 10% 

Al 389 1098 6 0 
A2 603 2814 906 0 
AS 1125 6340 129 2 
A4 1609 7334 97 16 
AS 1527 7957 407 14 
A6 4011 28275 789 66 

Table 7. Random Sampling Experiment 

We have included the strength of data that merely covers all 

statements for comparison purposes. While simple statement coverage 

does not by itself lead to strong test data, generating mutants to 

kill only 10% of the substitution mutants is almost as good as 

generating test data to kill 100% of the mutants. This trend is 

almost as strong at the 5T and 1% levels for large programs. 

The apparent decrease in the strength of the test as program 

size increases is probably due to the naive sampling strategy used 

to sample the mutants. A sampling strategy which inserts default 

values or avoids selection of mutants which are correlated to 

previously selected mutants should avoid this 	effect. 	This 

experiment has been repeated several times using differing sets of 

programs. 

In a similar experiment, three Fortran programs (B1—B3 in 

Appendix B) were subjected to mutation using test data that killed 

all nonequivalent mutants. In a double blind experiment, the same 

programs were analyzed by three different subjects. Subject 1 

analyzed all three programs sampling 10% of the mutants, subject 2 

sampled using 25% of the mutants, while subject 3 analyzed all three 

programs at the 50q level. The number of nonequivalent mutants left 
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undetected by the three subjects is shown in the following table as 

a fraction of the total number of mutants. 

Program 1 1 2 3 

B1 .0063 1 .0037 .0012 
B2 .0080 1 .0027 .0028 
B3 .0082 I .0028 .0027 

Table 8. 3 Subject Experiment 

Notice that even using 10% of the total number of mutants, the 

strength of the test data is within 1% of the adequate set. This 

experiment was repeated using the programs cited in another study 

(see Chapter 6). In each case it was determined that the test data 

remained within 1% of the adequate test data. 

These experiments suggest strongly that a cost effective 

approach to generating adequate test data is to generate only a 

small percentage of the total number of mutants and develop test 

data which is adequate relative to this set of mutants. 

Efficiency and Redundancy in Operators 

The results quoted above dealing with random sampling of the 

mutants might measure still another effect: 	redundancy among the 

operators. 	That is, it may be possible to derive strong test data 

from a random subset of the mutants simply because so many mutations 

deal with the same error or type of error. 	Thererfore, it is 

natural to look for efficiency in the mutation process by eliminat- 



The Complexity of Mutation 	 5-13 

ing those mutants from consideration which do not add significantly 

to the strength of the test data generated. 

For an operator to be useful it must force the tester in some 

way to produce stronger test data than could have been produced 

without it. If all of the mutation produced by a given operator are 

eliminated by virtually any test data that executes the affected 

line, then it is natural to assume that the operator does not 

significantly improve on the statement coverage operators. 

Let us fix a mutation operator and define the following 

parameters. Nt is the total number of mutants generated by that 

operator, Nu is the number of mutants that are eliminated on the 

first execution by a given data set, and Ne is defined to be the 

number of equivalent mutants. 

A measure of efficiency for such an operator is given by 

(Nt—(Nu+Ne ))/N t - 

Notice that N
t and Ne depend only on the program being considered 

and the mutation operator. Nu  depends on the choice of test data 

being supplied. The redundancy of a mutation operator is then given 

by: 

(Nu+Ne )/Nt . 

A procedure for collecting operator efficiency data is the fol-

lowing. First, select several programs representative of the space 

of programs in the intended application. Second, generate test data 

that is just strong enough to execute all statements. Third, 

generate test data to obtain a mutation score of 1. The point of 
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the second step is to intentionally produce weak tests, which force 

statement coverage but do as little other testing as possible. 

After such measurements have been made on several programs and 

for multiple independent test data generations for each program, a 

set of efficiency measurements for each operator will be obtained. 

If an operator consistently has a high redundancy, then the deletion 

of the operator from the system appears justified. An operator pos-

sessing high efficiency on all programs and all test sets evidently 

forces the tester toward stronger test data and should be retained. 

The approach outline above has two limitations. First, it does 

not consider interactions between operators. That is, operators may 

have the same high efficiencies, but each actually has the same 

effect. In this case, one or the other may be necessary, but 

certainly not both. The efficiency measurements will not give an 

indication of this condition since they provide only the interaction 

of the TRAP operator with all of the others. Therefore, the 

experiment can be widened to indicate operator redundancy with any 

subset of the operators by replacing step 2 of the data gathering 

procedures with the following: generate test data just strong 

enough to eliminate all of the nonequivalent mutants generated by 

the given subset of error operators. Of course, the definition of 

N
u 

needs to be accordingly modified. 

Ideally, we would like to measure the efficiency of operators 

relative to all possible subsets in order to find the minimal set of 

operators which delivers adequate tests. Since this is not 

feasible, a less demanding strategy is required. For example, it is 

possible to choose the most efficient operator relative to TRAP, 
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then choose the most efficient relative to TRAP and the first 

operator, and so on. The process terminates when there is no 

remaining operator whose efficiency relative to the set chosen is 

above a given threshold. 

Obviously, this approach applies only to a given class of 

program from which the sampling takes place. Changing the language 

or even the programming discipline might effect operator efficiency. 

However, if the sample population is representative it is always 

possible to "tune" the set of operators for that population by using 

only operators which derive useful testing information. 

The results of a single data generation experiment for the 

Cobol program Al—A6 are given in the following table. An asterisk 

indicates that no mutants of that type were generated for the 

program. 
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Operator 
Program 

1 2 3 4 5 6 

Decimal * 0.96 0.30 0.21 0.33 0.18 
Occurs * 0.00 * 
Insert 0.00 0.00 0.01 0.00 0.00 0.00 
Fill.Siz 0.00 0.00 0.00 0.00 0.00 0.00 
Item Rev 0.05 0.04 0.07 0.00 0.00 0.01 
Delete 0.00 0.34 0.00 0.01 0.04 0.03 
Go-Perf. * * * 0.00 0.00 
Perf.-Go 0.00 0.00 0.00 0.00 0.08 0.00 
IF Rev. 0.00 0.67 0.00 0.06 0.00 0.00 
Stop 0.00 0.00 0.00 0.00 0.00 0.00 
Thru 
Arith 

0.00 
* 0.75 * 

0.06 
0.04 

* 
0.05 

0.00 

Compute * 0.50 0.25 * 0.00 0.00 
Parenth. * 0.00 * 0.00 0.00 
Round 0.44 0.20 0.00 0.11 0.17 
Move Rev 0.00 0.00 0.00 0.00 0.04 0.01 
Logic 0.07 0.51 0.00 0.13 0.24 0.05 
SFS 0.01 0.34 0.03 0.01 0.04 0.02 
CFC 0.00 0.25 0.00 0.01 0.10 0.04 
CFS 0.00 0.36 0.03 0.01 0.05 0.04 
SFC * 0.18 0.00 0.03 0.09 0.04 
C Adjust 0.00 0.50 0.14 0.06 0.22 0.03 
Files 0.00 * * 0.00 

Table 8. Operator Efficiency Data 

There is obviously a wide variation in efficiencies between the 

programs. This a partly due to the indirect test data selection 

procedures and partly due to the inherent differences in the 

programs. 

The first five operators are of special interest . These are 

Cobol data mutations that force the system into interpretive execu-

tion using a run-time symbol table. If these mutants can somehow be 

eliminated; then a more efficient compiled execution of mutant is 

feasible. The first operator moves the implied decimal point in a 

numeric item. It is useful primarily in that it forces the tester 

to provide nonzero values for that variable. The same effect can be 
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achieved by an operator which resembles ZPUSH. The second operator 

alters the OCCURS count in a table description. Since the sample 

programs make little use of tables, nothing can be inferred from the 

data for this operator. Inserting an extra filler in a record is of 

little use, as is altering the size of a filler. Reversing two 

adjacent elementary items within a record is sometimes a useful 

operation, but the same effect can most likely be achieved by sub-

stituting one field for another in the procedure division. 

In the procedure division, changing a GOTO to a PERFORM usually 

provides no testing power. Perhaps most of the testing effort in 

trying various path alternatives is already achieved by simple 

statement coverage. Inserting a STOP statement is not helpful 

because in most program files, files will be left open which is an 

error. STOP insertion thus play essentially the same role as TRAP. 

THRU clause alteration, reparenthesization of arithmetic expressions 

and the reversal of the direction of a binary MOVE and changing an 

I/O reference from one file to another are also rarely useful in 

this study. It may be that these mutations are too drastic. Errors 

this large may be detected by almost any test case that exercises 

all program statements. The errors sought after simple statement 

coverage are rather more subtle ones. The major errors have already 

been ruled out. 

A non—redundant set of Cobol operators then might be the fol-

lowing: statement deletion, IF reversal, and the substitution 

operators for arithmetic operators, scalar for constants, constants 

for scalars, constants for constants, scalars for constants, and 

constant adjustment. 
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Bibilographic Notes 

An overview of practical experiences with mutation analyzers 

which support the analytic and experimental bounds discussed in this 

chapter can be found in the papers [Acree, 1979],[Acree, 1980], and 

[Budd, 1980]. The data relating to the number of mutants generated 

as a function of program size was developed by Acree, Budd, DeMillo, 

Lipton and Sayward and is reported in [Acree, 1979]. The data 

relating complexity with the number of mutants appears in Budd's 

thesis [Budd, 1980]. 

Experimental results on mutant stability and the effectiveness 

of sampling have been treated by Budd and Acrce in [Acree, 1980] and 

[Budd, 1980) and are also reported in [Acree, 1979). 

The notion of operator efficiency was developed in Acree's 

thesis [Acree, 1980). 
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Chapter 6 

Further Experimental Studies  

In experimental studies of program testing, the problems of 

interest are: 

1. What is the cost of performing the test? 

2. What is gained from performing the test? 

In general, quantitative answers to these questions are the most 

desirable, but that seems to be beyond the state—of—the—art. A less 

precise but still valuable solution is to discover how testing costs 

relate to the performance of the test. In practice, this cost—

benefit ratio is the one that will be of most use in determining 

which testing technique to apply. 

The cost of program mutation is ultimately constrained by the 

number of mutants which must be executed. As described in previous 

chapters, the set of mutants p of a program is defined by a set of 

mutant operators  that result in a set p whose size is bounded 

roughly by the product of the number of data references and the num-

ber of distinct data references. As discussed in Chapter 5, it is 

generally not necessary to execute all mutants in p, since random 

sampling yields test data whose mutation score is only slightly 

inferior to an adequate test set. 

However,one should question the effectiveness of applying 

program mutation with only simple mutants since other more com-

plicated (but reasonable) alternatives are apparently overlooked. 

This is an apparent violation of the Competent Programmer Assump-

tion. The coupling effect  indirectly addresses the more complicated 
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mutants of P: test data that causes all simple mutants of P to fail 

is so sensitive that it implicitly causes all complex combinations 

of them to fail. In Chapter 3, we examined two situations in which 

error coupling guarantees that test data adequate for a simple set 

of mutants is also adequate for mutants which satisfy the Competent 

Programmer Assumption. In this chapter we will examine some 

experimental evidence for the address the observable properties of 

error coupling. 

Beat the System Experiments 

Evidence against error coupling is any event in which incorrect 

program are successfully tested against an adequate test set. Since 

such examples can always be "cooked—up" for any test technique, a 

problem of more practical importance may be what kind of errors are 

always detected and what kind of errors arc overlooked. 

At present these questions can only be studied empirically 

because of the lack of any widely accepted formal models of program-

ming errors. 

One sort of experiment is a many—subject experiment. The 

experiment has N subjects with varying levels of programming and 

testing skill and M programs that have zero or more errors known 

only by the experimenter, and each subject reports on the errors 

detected in trying to pass the mutant test. 
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Another useful experimental technique is a single—subject 

experiment. We call such an experiment a beat the system  

experiment. The single subject is someone having a very high level 

of programming expertise and much familiarity with the concepts of 

program mutation. The M programs have one or more errors, and the 

subject has complete knowledge  of what the errors are. The subject 

tries to beat the mutation system -- to pass the mutation test with 

an incorrect program by developing test data on which the program is 

correct but on which all mutants of the program fail. If there are 

error types for which the highly skilled subject cannot beat the 

system, then these error type will probably be detected by any user 

of the system. On the other hand, if there are error types for 

which the subject can consistently beat the system, then the given 

set of mutant operators has a certain weakness in detecting these 

errors. 

A beat the system experiment is an attempt at a worst—case 

analysis. We attempt to find out how the system will perform under 

the worst system circumstances. Beat the system experiments are 

extensions of experimental reliability studies. A testing technique 

is said to be reliable  for for an error type if the use of the test-

ing technique is guaranteed  to reveal the presence of the errors of 

that type. Reliable studies are aimed at comparing two or more com-

peting methodologies and deriving statistical information of the 

form "On the following examples of programs, method A discovered X% 

of the errors and method B discovered A." In the beat the system 

experiments we are more concerned with the type of errors missed. 
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For 	example, 	several of the programs studied in early 

experiments revealed that a significant number of errors in Fortran 

are caused by programmers' treating the DO statement as if it were 

an Algol FOR statement. These errors are detected by introducing a 

mutant that changes a DO statement into a FOR statement, bringing 

this fact to the programmer's attention and forcing him to derive 

data that indicates he had knowledge of this potential pitfall. 

We will describe two sets of experiments. The first set is a 

beat the system experiment using the Fortran programs B1—B11. These 

programs are described in Appendix D. Appendix B also contains 

descriptions of the errors in these programs. The second set of 

experiments adapts earlier reliability studies in a comparative 

analysis of program mutation and a number of other testing tech-

niques. 

It is difficult to construct a classification scheme for error 

types that is neither so specific that each error forms its own type 

nor so general that important patterns cannot be detected (cf. 

Chapter 2). If the classification is based on logical mistakes, 

then it is often hard to relate errors to mistakes in the code. On 

the other hand, it seems difficult to base a scheme just on mistakes 

in the code, since often a single logical mistake will be 

responsible for changes in several locations in the program. Fol-

lowing the classification scheme in Chapter 2, we group errors into 

the following categories: 

Missing path errors: 	These are errors where a whole sequence of 

computations that should be performed in special circumstances is 

omitted. 



Error Type Number I Caught 
	1 	 

Missing path error 6 1 5 
Incorrect predicate error 3 1 2 
Incorrect computation statement 12 1 11 
Missing computation statement 3 1 2 
Missing clause in predicate I 

Table 1: Number of errors detected by error type 
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Incorrect predicate errors: 	These are errors that arise when all 

important paths are contained in the program, but a predicate that 

determined which path to follow is incorrect. 

Incorrect computation statement: These are errors that arise from a 

computation statement that is incorrect in some respect. 

Missing computation statement: These are errors that arise from the 

omission of one or more computational steps. 

Missing clause in predicate: This is a special case of an incorrect 

predicate error, but, since it is hard to detect, we give it special 

treatment. 

The 25 errors in the program B1—B11 range from simple to subtle 

errors. Because of the worst—case nature of the experiment, the 

fact that 5 errors are not discovered does not mean that these 

errors would always remain undiscovered if mutation analysis was 

used in a normal debugging situation. Table 1 gives the number of 

errors detected by error type. Of these 25 errors, only 8 would be 

caught using branch analysis. 

In three of these categories, the errors are caused by the lack 

of certain constructs in the program. Since the testing method is 

asked to guess at something that is not in the program, we should 
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really be surprised that it does as well as indicated. Nonetheless, 

missing path errors and missing clauses in predicates are probably 

the most difficult errors for any testing method to discover. 

The failure of the mutation in detecting these 5 errors is 

probably not an indication of a weakness in the method, rather, it 

reflects on our choice of mutant operators. It is quite possible 

that with another set of mutant operators many of these errors would 

be caught. 

The second experiment is derived from an earlier reliability 

study by Bowden and uses two sources of data. The first is the book 

Elements of Programming, Style by B. Kernighan and P. Plauger. In 

a chapter entitled "Common Blunders" Kerighan and Plauger offer 

twelve 	program fragments, each containing errors inserted to 

illustrate common programming mistakes. 	In a beat the system 

experiment, these twelve program fragments were subjected to sym-

bolic evaluation, path analysis (each loop executed at least twice), 

a combination of symbolic evaluation and path analysis, and program 

mutation. Once path domains are identified, the experimenter uses a 

random choice of test data for the domains. Therefore, it is pos-

sible that more sensitive input partition tests will yield slightly 

different results. 

The following table summarizes the results of this experiment 



Test Method Error Caught 

Symbolic Evaluation 13 
Path Testing 9 
Combine Methods 16 
Program Mutation 20 

I Total Error I 
I 	 I 
1 	22 	! 

I 	22 	I 
1 	22 	I 
I 	22 	I 
 	1 

Table 2. First Reliability Study 	 I 
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The 20 errors detected by program mutation are detected in six ways. 

The interpreter of an automated mutation analyzer was responsible 

for detecting 8 errors, 5 were detected by spoiling coincidental 

correctness expressions (cf. Chapter 10), 2 were caught by finding 

a correct mutant of the incorrect program, 2 are caught by ABS 

insertion, two are detected by predicate testing (see Chapter 4) and 

1 error was detected by an explicit branch analysis mutant. The two 

errors not detected consisted of a two statement interchange in a 

routine for computing the sine function and an error involving an 

equality test between reals. The following table describes the 

errors and the mutants which detect them. 
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Error 

variable SUM uninitialized 

DABS operator needed 

—1**(I/2) used instead 
of (-1)**(I/2) 

interchange of statements 

variable E uninitialized 

type mismatch 

variable C not reset 

error when CI = 0 

expression should be NUM(1) 

override of DATA statement 
initialization 

failure on 46 transactions 

2 should be > 

undefined variable 

error if fi+C < .01 

loop exits incorrectly 

uninitialized variable 

one entry tables cause error 

failure to match A(1) 

J=MARICS(I)-1/10 should be 
J=(MARKS(I)-1)/10 

missing parthentheses around 
expression AN-1.0 

10*.1 = 1 

equality test on reals 

Method of Detection 

interpreter 

explicit mutant 

1/2 ==> I/1 or 1/2 
with no effect 

not detected 

interpreter 

interpreter 

to eliminate branch analysis 
mutants, SC+CI trust be 
less thrIL or ?cual to TC 

caught by ZPUSH mutant 

interpreter 

interpreter 

> ==> 

==> > 

1==>2 on lower DO loop limit 

twiddle 13-1-C by .01 

increase iterations by 1 

interpreter 

(LOW+HIGH)/2 ==> LOWHIGH-2 

(LOWHIGH)/2 ==> LOWHIGH-2 

I/10 ==> 0/10 

ZPUSH (SUMSQ—(SUMSQ**2/AN)) 

caught by all data 

not detected 

Table 3. Mutants Detecting Errors 
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Error 19 is one of the errors not detected by either path 

analysis or symbolic evaluation, although a symbolic evaluator with 

a special two dimensional output could have caught the error. In 

Fortran, the expression 1/10 evaluates to O. Therefore, the mutant 

which replaces 1/10 with 0/10 catches the error. Neither path 

analysis nor symbolic evaluation detect error 2, which is an 

explicit mutant of a correct program. 

A second experiment uses the programs B1 — B4 in a comparison 

of the error detection capabilities of path analysis, branch 

analysis, functional testing, special values testing, anomaly 

testing, and black—box analysis. The path analysis discipline for 

this experiment requires each loop to be executed at least once. 

Special values testing is a collection of heuristics (e.g., force 

every expression to 0). 

Table 4 presents the results of this experiment. 

Test Method Error Caught I Total Errors 

Path Analysis 4 1 5 
Branch Analysis 0 1 5 
Functional Testing 3 I 5 
Static Analysis 0 I 5  
Black Box Testing 3 1 5 
Program Mutation 4 1 5 

Table 4. Second Reliability Study 

The error which was not detected by program mutation 

is a missing path error (see Appendix B). Apparently these errors 

are the most difficult for dynamic testing techniques. On the 

other hand test techniques which work from functional descriptions 

or specifications of program behavior seem to do quite well at 
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detecting these errors. 

Experiments on the Coupling effect 

We begin with an example of the experimental evidence for the existence 

of error coupling. 

The subject program is Hare's 

FIND program (see Appendix B, Program B10). 	FIND was used in 

the following experiment. 

1. A test data set of 49 cases was derived and 

shown to be adequate. 

2. The test data set from 1 was heuristically 

reduced to a set of 7 test cases which also 

turned out to be adequate. 

3. Random simple k—order mutants were selected 

(k > 1). 

4. The higher order mutants of step 3 were 

executed on the reduced test data set. 

It would be evidence against the coupling effect if it was pos-

sible to randomly generate very many higher order non—equivalent 

mutants on which the reduced test data set behaved in a manner 

indistinguishable from FIND. Notice that Step 2 biases the 

experiment against the coupling effect since it removes the man—

machine orientation of mutation analysis. We concentrated first on 

the case k=2, with the following results: 



Property 
____ 

2-order mutants 
indistinguishable from FIND 
equivalent to FIND 

Table 6. 2-order Mutants 

1 	Number of Mutants 1 
I 	  1 
I 	21,100 1 
I 	 19 1 
I 	 19 1 

1 

However, a limited analysis of higher order mutants produced the 

following results: 

Property 	 !Mutants! 
	 1 1 

Number of k-order mutants (k>2) 	1 1,500 	1 
Number indistinguishable from FIND 1 0.1 

	 1 1 
Table 7. Higher Order Mutants 	I 

The following argument shows a defect in this experiment. 	Just as 

the competent programmer assumption states that programs are not 

written at random, the coupling effect is implied by the fact that 

program statements are not composed at random; indeed, there is 

considerable flow and sharing of information between statements of a 

program, so that a change to one portion of a program is likely to 

have observable, albeit subtle, effects on its global context. Now 

for the problem with this experiment: the k-order mutants are 

chosen randomly and by independent drawings of 1-order mutants. 

Therefore, the resulting higher-order mutant is very unstable and 

subject to quick failure. The experiment should also be conducted 

when the higher-order mutants contain subtley related errors. To 

this 	end, 	the 	experiment was repeated using the following 

replacement for step 3: 
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3': Randomly generate correlated k—order 

mutants of the program. 

In Step 3', "correlated" means that each of the k applications of 

1—order mutant operators will be related in some way to all of the 

preceding applications, all affecting the same line, for example. 

As before, if a program is successfully subjected to mutation 

analysis on a test data set, then the coupling effect asserts that 

the correlated k—order mutants are also likely to fail on the test 

data. 

To broaden the experiment we use, in addition to FIND, the 

programs (B12) STKSIM which maintains a stack and performs the 

operations clear, push, pop, and top, and TRIANG (139) which clas-

sifies integers as either not representing the lengths of sides of 

any triangle or as representing the sides of scalar, isosceles or 

equilateral triangles. 

Table 8 contains a summary of the results of the experiment. 

The data suggests strongly that there is a meaningful sense in which 

errors are coupled by an appropriate choice of error operators. 

    

	I 	  
k = 2 	I 	k = 3 	 k = 4 

 	1 	  
NUMBER 	NUMBER I NUMBER 	NUMBER NUMBER 	NUMBER 
GENERATED ALIVE !GENERATED ALIVE GENERATED ALIVE 

I  	 1 
3000 	2 	1 3000 	0 	3000 	0 
3000 	3 	1 3000 	0 	3000 	0 
3000 	1 	1 3000 	1 	3000 	0 
	 1 

Table 	8. Correlated k—order Mutants 

PROGRAM 
NAME 

  

FIND 
STKSIM 
TRIANG 

  

    

The results are for the most part self explanatory. Except for the 

correlated three—order irutant of TRIANG, all of the correlated 
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k—order mutants described in the table are equivalent to their sub-

ject programs. The remaining live TRIANG mutant would have been 

eliminated with a more sophisticated error operator for detecting 

loop boundaries. 

Essentially the same study was repeated using Al—A6. The basic 

format of the experiment remained the same: develop adequate test 

data, randomly generate a large number of complex mutants, execute 

the selected mutants on the test data, keeping track of those not 

eliminated, and remove equivalent mutants from the list of uncoupled 

complex mutants. 

In all cases the strategy in randomly selecting complex mutants 

was to use uniform sampling with replacement from the given space of 

complex mutants. The parameters of each experiment are the program 

being tested, the tester, the types of complex mutants considered 

and the sample size. It is possible that the effects of the human 

tester are relevant. The repetition of this experiment by other 

investigators should determine the variation in the strength of 

error coupling due to test data generation. 

As before, we concentrate on second order mutants, both 

correlated and uncorrelated. The statistic that is developed is a 

confidence interval on the fraction of second order mutants that are 

uncoupled. Since error coupling is not expected to be total in 

practice, this gives us an estimate of the probability that a second 

order mutant escapes detection by mutation analysis. If we find any 

uncoupled mutants, we obtain a two—sided confidence interval and if 

we find none we still obtain a one—sided -- upper bound -- con-

fidence interval. 



Program 
Pairs Survive 

1st Order 
Test Data 

I 95% Confidence 
I 	Interval on 
I 	(z 10,000)* 

I 
I Not Equiv. 
I 

Al 26 0 0.0 -- 	7.4 
A2 12 0 0.0 -- 	7.4 
A3 22 5 3.2 -- 23.3 
A4 10 2 0.5 -- 14.4 
AS 45 0 0.0 -- 	7.4 
A6 13 0 0.0 -- 	7.4 

Table 	9. 50,000 Uncorrelated Mutants 
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For the experiments with uncorrelated pairs of mutants, a sam-

ple size of 50,000 meaningful second order mutants was used for each 

of the six programs. Table 9 summarizes the results. 

Test data generated to kill first order mutants proved to be 

sufficient to kill at least 99.976% of all second order mutants in 

all cases considered, and 99.992% in most cases. Significantly, 

program size does not seem to be an important factor in the strength 

of error coupling. If these results hold over a broad range of 

programs, the addition of second order mutants can be expected to 

give almost no additional power not already present in simple 

mutants, and certainly not enough to justify their cost. 

The experiments on second order mutants used 10,000 mutants for 

each program. The format of the experiments is otherwise identical 

to the ones above. The results of these experiments are summarized 

in Table 10. 
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Pairs Survive 95% Confidence 
Program 1st Order Not Equiv. Interval on 

Test Data (z 10,000)* 

Al 0 0 0.0 -- 36.9 
A2 3 1 0.3 -- 55.7 
AS 60 19 114.4 --296.6 
A4 3 3 6.1 -- 87.6 
A5 1 0 0.0 -- 36.9 
A6 1 0 0.0 -- 36.9 

Table 10. 10,000 Correlated Mutants 

The 	same 	six 	programs 	were 	subjected 	to a final series of 

experiments to look for uncoupled mutants of orders 2 through 5. 

20,000 complex substitution mutants were generated for each program 

and each order. Intuition suggests that it is not necessaary to 

carry out such experiments for extremely large values of k: the 

more errors introduced into a program, the more the Competent 

Programmer Assumption is violated. On the other hand, the behavior 

of extremely high order mutants is not well understood, and it seems 

prudent to examine some data on multiple mutations, if only to 

insure that there arc no unexpected processes at work. 

For this experiment, 20,000 complex substituion mutants of 

order k (2 < k S 5) were generated for each of the six Cobol 

programs. All mutants examined were uncorrelated. The mutants were 

randomly selected and then examined to insure that all mutations 

applied to distinct data references. The folowing table shows the 

number of mutants that passed the first order test data for each 

program, and the number that were not equivalent -- these are 

uncoupled mutants. 



Further Experimental Studies 

Al A2 A3 
Program 

A4 AS A6 

6-16 

Number 
that 1 2 5 0 9 5 

2nd Order Pass Test 
Mutants 

Uncoupled 
Errors 0 0 1 0 0 0 
(Nonegiv.) 

Number 
that 	I 	0 0 0 

3rd Order Pass Test 
Mutants 

Uncoupled 
Errors 	I 	0 0 
(Nonegiv.) 

Number 
that 	1 	0 0 0 0 0 0 

4th Order Pass Test 
Mutants 

Uncoupled 
Errors 	I 	0 0 0 0 0 0 
(Nonegiv.) 1 

Number 
that 0 0 0 0 0 	1 	0 

5th Order Pass Test 
Mutants 

Uncoupled I 	I 
Errors 0 0 0 0 	1 	0 	1 	0 
(Nonegiv.) 

Table 11. Higher Order Mutants 

Uncoupled Errors: 

The 	uncoupled 	errors 	discovered 	in 	the 	last 	three 	series 	of 

experiments described above involved alterations 	to 	predicates 	in 

conditional expressions. They can be classified as follows. 

Type I Errors: Changing both operands in a comparison 

IF(a operation b) ==> IF(a' operation b') 
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Type II Errors: Changing an operand and operation in a comparison 

IF(a operation b) ==> IF(a' new—operation b) 

Type III Errors: Changes to non— interacting comparisons 

IF(Pi(a) AP2(h) A ...) ==> IF(NOT P1(a) A p2 (b) V ...) 

If an uncoupled error is thought of as a potential error in the 

program, then these three types of uncoupled errors represent a form 

of coincidental correctness (see Chapter 10): taking the right path 

for the wrong reason. A plausible reason that these are the only 

known types of uncoupled errors is that mutation analysis does not 

explicitly test higher level path coverage. Indeed the problem of 

testing higher level path coverage is so complex (due simply to the 

number of paths) that it is probably out of reach of any systematic 

testing technique. 

Coupling and Complexity Measures 

There are frequent references in the literature to a possible 

relationship between program reliability and structural charac-

teristics of the program. If such a relationship exists, then it is 

possible that there is a similar relationship between those struc-

tural characteristics and error coupling. One such characteristic 

is structural complexity, measured, for instance, by the number of 

program branches). 
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Consider the following simple test strategy, often called DD 

path coverage. The goal is to develop test data that forces the 

program down every path from decision point to decision point. This 

strategy may require test data which drives the program down a 

particularly complex path to discover an error. For example, 

consider the following program, which sorts the triple (A,B,C). 

Ll: if A < B then goto L2; 
T:=A; A:=B;B:=C; 

L2: if B < C then gotto L3; 
T:=A; A:=C;C:=T; 

L3: if B < C then goto L4; 
T:=B; B:=C;C:=T; 

L4: stop 

The program is incorrect. The condition at L2 should be ACC. The 

input (1,2,3) and (3,2,1) both give correct results and force the 

execution of all decision to decision branches. (1,2,3) takes the 

TRUE branches at L1—L3 while (3,2,1) takes the FALSE branches. The 

error is not uncovered in this way: what is needed is a test case 

that forces execution of a complex path corresponding to differing 

outcomes at Ll and L2 . Thus simply covering all branches leaves 

some errors undetected. It is possible that mutation contains the 

same weakness, since mutations tend to be localized in the program 

(note, however, that mutation analysis contains DD path coverage as 

a special case, so it can be no weaker; cf. Chapter 2). The number 

of test cases required for exhaustive testing of all possible con-

ditions in this program is 2 3  = 8. 

To test the relationship between the number of branches and 

error coupling, we hypothesize that the more branches a program has, 

the harder it is to develop adequate test data. In more concrete 

terms: the proportion of uncoupled errors rises with the structural 



I 	Number 
Program 	I 	of 

I Branches 

Number 
of 

Records 

Number 
I 	of 
I Mutants 

Number 
that 
Pass 

Number 	I 
Uncoup—I 

led 	I 

C-1 I 0 1 I 474 329 0 I 
C-2 I 1 3 I 480 153 1 I 
C-3 3 	 7 I 492 84 1 I 
C-4 I 5 	12 I 504 50 3 I 
C-5 7 	15 I 516 18 9 I 

Table 12. Complexity Metric Data 

Eleven of the surviving uncoupled mutants are of type I. 	The 

other three are of type II. 	The relatively large number of 

equivalent mutants in these programs is due to the padding that was 
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complexity of the program. An experiment to test this hypothesis 

would match program for length and number of mutants and would allow 

the branching count to vary, measuring the coupling coefficient, 

defined in Chapter 2. 

If the confidence intervals on 	the 	estimates 	of 	the 

coefficients overlap, then no relationship may be inferred. If 

there is no overlap, then there is a statistical relationship. If, 

in addition, there is a causal mechanism responsible for the 

statistical relationship, an argument could be made for simplicity 

in program structure for program to be tested by program mutation. 

For this experiment, a sequence of small programs was written, 

all using the same data items and data references, but with an 

increasing number of branches. The experiments examined 50,000 

pairs of mutants for each program. The following table shows the 

number of branches, test cases , mutants, pairs passing the test 

data and uncoupled mutants for each program 
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used to insert extra branches without greatly affecting the number 

of mutants generated. The 95% confident interval on z(100,000) 

plotted against the number of branches is shown in Figure 1. 

z* ( 100, 00) 

40 

30 

20 

     

 

10 

0 

 

 

    

0 	1 
	

2 	3 	4 
	

5 
	

6 
	

7 

Number of Branches 

Figure 1. 

95% Confidence Intervals 

It is apparent that in this set of programs, the effect of 

adding complexity is very slight. It can be accounted for by the 

type of uncoupled mutants seen in the experiments described above. 

If this relationship holds in practice, then the branching com-

plexity of programs has little impact on the difficulty of mutation 

analysis. 
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Charter  / 

Mutant Equivalence  

Experience indicates that in production programs, the number of 

equivalent mutants can vary between 2% and 5% of the total mutant 

count. In more finely tuned programs, however, it is common for 

source statements to appear in a particular form solely for 

efficiency reasons. In these program such statements can be altered 

without affecting the output behavior. A typical example of this 

behavior is beginning a loop at 2 instead of 1 or 0, so that a muta-

tion which changes "2" to "1", for example, causes an extra itera-

tion but does not alter the outcome of the looping operation. In 

tuned programs, the equivalent mutants can comprise as much as 10% 

of the total. 

Equivalent mutants are not distributed with respect to their 

operators in the same proportion as other mutants. In fact, a samll 

number of mutant types account for the preponderance of equivalent 

mutants. The following table provides some data on the distribution 

of equivalent mutants for typical Fortran programs. 

Mutant Type % Equiv. % of all 

Absolute Value Insertion 75 4.0 
GOTO Replacement 12 0.7 
Relational Operator Replacement 5.5 0.5 
All Other Mutant Types 5.5 0.5 

Table 1. Distribution of Equivalent Mutants by Type 

It has become increasingly clear that determining mutant 

equivalence ranges from very difficult to very easy. It is helpful 

to classify the t:pes of equivalence which must be judged. At the 
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first level are mutants which are detectable as equivalent by noting 

that (1) if a parameter has a variable upper bound, the value of the 

upper bound must be positive, and (2) the values on loop variable 

limits determine the range of values of the loop variable for the 

extent of the loop. At the second level are mutants which can be 

judged equivalent by examining. 

It is easy to show that equivalent mutant detection is an 

undecidable problem Assume a fixed programming language which is 

expressive enough to allow the programming of all recursive func-

tions, and let PI and P2 be arbitrary procedures written in the 

language. Since "goto" mutations are meaningful and likely 

mutations, consider the following program to which goto replacement 

has been applied. 

goto L; 	 go to M; 

L:P1;halt; 	==> 	L:Pl;halt; 

M:P2;halt; 	 M:P2;halt; 

Clearly, these two programs are equivalent (that is, they either 

halt together and deliver the same output or they diverge together) 

if and only if P1 and P2 are equivalent, and that is undecidable for 

the language described above. 

In spite of this, most equivalent mutants which arise in prac-

tice are stylized and rather easy to judge equivalent. This is per-

haps due to the Competent Programmer Assumption: the subject 

program and an allegedly equivalent mutant are not chosen randomly 

-- in fact, they are chosen by a very careful sieving of all pos-

sible programs and the structure of this relationship should be 
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something that one can exploit in determining mutant equivalence. 

Hunan Evaluation of Equivalence 

It would be desirable to measure in an experimental setting the 

accuracy of human testers in judging mutant equivalence. This sec-

tion describes an experiment conducted using the programs A-3,A-4,A-

5, and A-6 . For each program, a sequence of test cases was used to 

eliminate mutants, but testing was stopped when the number of 

mutants remaining was approximately twice the number of remaining 

mutants. This process eliminated most of the obviously inequivalent 

mutants. From the remaining mutants, for each program, a subset of 

fifty mutants was randomly selected. Two subjects were used in this 

experiment. 

Both subjects had been involved in the development of mutation 

nalysis systems, and both were competent programmers. Neither sub-

ject had been enposed to the programs used in the experiment. Each 

subject was given the list of mutants and the source listing for 

each of the programs and was instructed to mark each mutant 

equivalent or not equivalent. There were no other intructions or 

restrictions placed on the subjects. 

There are two kinds of errors that can be made in judging 

equivalence. The first type of error is the marking of a non-

equivalent mutant as equivalent. The second type of error mistakes 

equivalent mutants as non—equivalent. Errors of the second type are 

not very serious, since in the process of mutation analysis, the 



Program No. 
Equiv 

No. 
Not 

Subject 1 

Correct 

Subject 

Type 

2 

Type Correct Type Type 
1 2 1 2 

3 20 30 44 0 6 42 2 6 
4 21 29 36 2 12 33 6 11 
5 20 30 46 0 4 40 5 5 
6 13 37 33 16 16 45 1 4 

Table 2. Human Evaluation of Equivlance 
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mutant remains in the system and can be reconsidered at any later 

time. However, when a type 1 error occurs, a mutant which can be 

valuable in detecting errors is prematurely removed from the system. 

Premature removal of mutants increases the likelihood that an 

erroneous program will be accepted as correct by the tester. 

The results of human evaluation of the four programs is shown 

in the following table. 

The tables show the number of equivalent and non-equivalent 

mutants in the mutant sample present late in the testing process, 

and the number of correct identifications of errors. More 

significantly the table documents the number of errors of each type 

in judging mutant equivalence. 

Subject 1 was more variable in accuracy that Subject 2, but 

overall their results were similar. Subject 1 identified 79.5% of 

the mutant correctly. Subject 2 was correct on 80% of the mutants. 

In measuring type 1 errors the best computation is probably the 

total type 1 errors as a percentage of the total number of non-

equivalent mutants, since these represent the potential type 1 
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errors. Subject 1 made type 1 errors on 14.3% of the non—equivalent 

mutants, while Subject 2 made type 1 errors on 11.1%. On the other 

hand, Subject 1 made type 2 errors on 31.5% of the equivalent 

mutants, and Subject 2 made type 2 errors on 35.1%. 

The number of type 1 errors may be high enough to significantly 

reduce confidence in the abilities of human evaluators if it is an 

accurate reflection of the frequency of such errors in practice. It 

should be remembered, however, that the subjects were required to 

mark each mutant as equivalent or ndt with only the evidence at hand 

(the source listing), while a tester in practice may postpone the 

decision pending further testing and thought. In addition, the sub-

jects worked in isolation and thus were denied both helpful consul-

tation and the motivation of accountability for potential errors. 

These are important factors in actual testing situations. High 

error rates for type 2 errors indicate that the subjects were being 

conservative in their judgements, marking mutants as non—equivalent 

when in doubt. 

This observation leads us to consider automated techniques for 

judging mutant equivalence. An automated technique will have the 

desirable properties of the human evaluators. Namely, an automated 

technique will make type 2 errors. On the other hand, an automated 

equivalence tester never makes type 1 errors. 
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Automated Equivalence Checking 

Before we proceed it may be instructive to examine a few 

instances of equivalent mutants which show this structure. In the 

analysis of the FMS.1 scanner (see Section 2), a relatively large 

number of mutants resulting from the transformation 

X ==> RETURN 

appear as live mutants on even very good test data. On closer 

examination, however, most of these reveal that 

X = GO TO 90, 

where statement labelled 90 is itself a RETURN. 	The programmer's 

style is to always jump to a common RETURN statement, allowing an 

easy "proof" of equivalence. 

For another example, let us return to the NXTLIV routine 

described in Chapter 9. A principal source of equivalent mutants in 

that example was the troublesome test for a word of zeroes. Its 

only purpose is to save the effort of looking through the words bit 

by bit. If the condition in the test is replaced by any identically 

true expression, 

IF(L.NE.0)GOTO 23 ==> IF(12.NE.0)G0 TO 23 

the program runs a bit longer but is otherwise identical. Similarly 

the mutation 

IF(MUTNO.GT.MCT)GOTO 40 ==> IF(MUTNO.GE.MCT)GOTO 40 
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changes the performance of the program only, but this time it 

improves it! 

These last two examples are not accidental. 	Mutations of a 

program are similar to simple transformations that are made in code 

optimization; it is not surprising that some of them should turn out 

to be optimizing or do-optimizing transformations. 	Conversely, 

correctness preserving optimizing transformations should be 

applicable to detecting equivalent mutants. If this is a useful 

heuristic then the task of identifying equivalent mutants can be 

reduced to detecting those which are equivalent for an interesting 

reason. 

Almost all of the techniques used in optimizing compiled code 

can be applied in some way to decide whether a mutant is equivalent 

to the subject program. Some optimizing transformations are widely 

applicable while others are limited in scope. We will give a sampl-

ing of the useful transformations. 

Constant Propagation: Constant propagation involves replacing 

constants to eliminate run-time evaluation. A typical optimizing 

transformation would replace statement 3 as shown below 

1 	A=1 	 1 	A=1 

2 	B=2 	==> 	2 	B=2 

3 	C=A+B 	 3 	C=3 

There are several elegant schemes for global transformations of this 

form. 
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Constant propagation is most useful for detecting cases in 

which a mutant is not equivalent to the subject program; any change 

which can affect the known value of a variable can be detected in 

this fashion. The mechanism for testing equivalence of mutants 

using constant propagation is to compare at all points after the 

mutation site the constants which are globally propagated through 

the program. If they differ it is likely that the programs are not 

equivalent. The test is certain if there is a RETURN, HALT or some 

other exit statement in which the set of associated constants 

contains an output variable and if there is a path from the entry 

point of the program to the exit point. This is resolvable by dead 

code detection. 

Invariant 	Propagation: 	Invariant propagation generalizes 

constant propagation by associating with each statement a set of 

invariant relations between data elements (e.g., X<0 or B=1). 

Although invariant propagation has met with limited applicability in 

compiler design, it is a powerful technique for detecting equivalent 

mutants, particularly those involving relational mutant operators. 

These operators frequently affect an expression only if it has a 

certain relationship to 0. For example lxi changes the value of x 

only if x<0. In the program—mutant pair 

IF(A.LT.0)GOTO1 	IF(A.LT.0)GOTO1 

B=A 	 ==> 	B=ABS(A) 

the conditional allows us to determine the invariant (A>0) and this 

allows us to determine that the program and its mutant are 

equivalent since the absolute value of a positive number is that 
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Consider the mutation 

A=B+C (partition = A;B+C) ==> A=B—C (partition = A;B—C) 

Comparing the partitions shows that A has a different value in the 

two programs. 

The same ideas are used to show equivalence. If a mutation has 

changed part of expression E to an expression E' but E and E' are in 

the same equivalence class, then the mutant is equivalent. 

Loop Invariants: Another common transformation removes code 

from inside loops if the execution of that code does not depend on 

the iteration of the loop. Since many mutations change the boun-

daries of loops techniques for recognizing this invariance is useful 

for detecting equivalent mutants. In those cases where the mutation 

either increases or decreases the code within a loop, loop invariant 

recognition can be used to decide whether or not the effect of the 

loop is changed. In the following mutation, excess code is brought 

within the scope of the DO statement. 

DO 1 1=1,10 	==> 	DO 2 1=1,10 
A(I)=0 	 A(I)=0 

1 	CONTINUE 	 1 	CONTINUE 
2 	B=0 	 2 	B=0 

Since the assignment B=0 is loop invariant, it does not matter how 

many times it is executed. 

Hoisting and Sinking: Hoisting and sinking is a form of code 

removal from loops in which code which will be repeatedly executed 

is moved to a point where it will be executed only once; this is 

accomplished by a calculus which gives strict conditions on when a 
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block of code can be moved up (hoisted) or down (sunk). 

The applications for equivalence testing are similar to the 

applications for loop invariants. The major difference is that 

hoisting and sinking applies to cases in which code is included or 

excluded along an execution path by branching changes. These are 

the sorts of changes obtained by GOTO replacement and statement 

deletion mutations. In these cases, we get equivalence if the added 

or deleted code can be hoisted or sunk out of the block involved in 

the addition or deletion. 

An example will illustrate. 

IF(A.EQ.OGOTO1 ==> 	IF(A.EQ.0)GOTO 2 
A=A+1 	 A=A+1 

2 	B=0 	 2 	B=0 
GO TO 3 	 CO TO 3 

1 	B=0 	 1 	B=0 
3 	 3 

In this example B is set to 0 regardless of whether it is 

assigned its value at line 1 or at line 2. The assignment to B can 

be hoisted as follows: 

B=0 
IF(A.EQ.0)GO TO 3 
A=A+1 

3 

Since both programs are thus transformed, they are equivalent. 

Dead Code: Dead Code detection is geared toward identifying 

sections of code which cannot be executed or whose execution has no 

effect. Dead code algorithms exist for detecting several varieties 
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of dead code situations. We have already used dead code analysis as 

a subproblem in the propagation problems above. Dead code analysis 

is also useful to directly test equivalence, particularly for those 

mutations arising from an alteration of control flow. 

A typical application is to analyze the program flowgraphs. 

If, for example, a mutation disconnects the graph and neither con-

nected component consists entirely of dead statements, then the 

mutant cannot be equivalent. Such disconnection is possible by the 

mutant which inserts RETURNs in Fortran subroutines. 

Another common situation involves applying mutations to sites 

in a program which are themselves dead code; this is the classical 

compiler code optimization problem: we must detect dead code since 

any mutations applied to it are equivalent. 

Dead code analysis can also be used to show nonequivalence by 

using it to demonstrate that a mutation has "killed" a block of 

code. 

Postprocessing the Mutants: Optimizing transformations can be 

implemented as a postprocessor to a mutation system. User 

experience is that it is relatively easy to kill as may as 905 of 

the live mutants. To the remaining 10%, an equivalence heuristic 

such as the rules sketched above can be applied. 

The difficulty of judging equivalent mutants from those remain-

ing after the postprocessing stage both helps and hinders the test-

ing process. On one hand, forcing testers and programmers to "sign 

off" on equivalent mutants enforces a unique sort of accountability 
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in the testing phase of program development . On the other hand, 

particularly clever programming leads to many equivalent mutants 

whose equivalence is rather a nuisance to judge; carelessness for 

these programs may lead to error proneness. Our experience, 

however, is that production programs present no special difficulties 

in this regard. 
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Chapter 8 

Error Detection 

A program testing technique serves two purposes. It raises the 

user's confidence that a correct program is really correct. The 

other major function of program testing is to detect errors in 

programs that are not correct. In Chapter 6, we saw a number of 

instances in which program mutation is capable of detecting the 

presence of errors -- even when other techniques fail to do so. 

Recall that a testing technique is reliable if it always detects 

errors of a certain type. Much current research in program testing 

centers on developing test techniques which are reliable for classes 

of errors. Our goal in this chapter will be to examine program 

mutation in comparison with other well studied reliable test 

methodologies. We will describe a number of error types and show by 

example how the mutant operators desribed in Chapters 2 and 4 

Simple Errors 

If the program contains a simple error (i.e., one represented 

by an error operator), then one of the mutants generated by the 

system will be correct. The error will be discovered when an 

attempt is made to eliminate the correct program since its behavior 

will be correct but the progam being tested will give differing 

results. If the program contains simple k—order errors the errors 

will also be detected (see Chapter 11 for an example). 
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Dead Statements 

Many programming errors manifest themselves in "dead code", that is, 

source statements that are unexecutable or, more seriously, give 

incorrect results regardless of the data presented. Such errors may 

persist for weeks or oven years if the errors lie in rarely executed 

portions of the program. 

Therefore, a reasonable first goal in testing a program is to 

insist that each statement be executed at least once. Typical 

methods for achieving this goal include, for example, the insertion 

of instruction counters into straight line segments of the program, 

SO that a non—zero vector of counters indicates that the 

instrumented statements have all been executed at least once. 

During mutation analysis, the goal outlined above will be 

viewed from a slightly different perspective. If a statement cannot 

be executed, then clearly we can change the statement in any way we 

want, and the effects of the changes will not be noticeable as the 

program runs in particular the altered program will not be 

distinguishable in its output behavior from the original one. There 

is, however, a mutant operator which draws the tester's attention to 

this situation in a more economical way. Among the mutants are 

those which replace in turn the first statement of every basic block 

by a call to a routine which aborts the run when it is executed. 

Such mutations are extremely unstable since any data which causes 

the execution of the replaced statement will also cause the mutant 

to produce incorrect results and hence to be eliminated. The con-

verse is also true. That is, if any of these mutants survives the 

analysis then the altered statement has never been executed. 
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Therefore, accounting for the survival of these mutants gives 

important information about which sections of the program have been 

executed. 

This analysis shows why apparently useful testing heuristics 

can lead one astray. For example, it has been. suggested that not 

executing a statement is equivalent to deleting it, but this discus-

sion shows how such a strategy can fail. A statement can be 

executed and still serve no useful purpose. Suppose that we replace 

every statement by a convenient NO—OP such as the Fortran CONTINUE. 

The survival or elimination of such mutants gives more information 

than merely whether or not the statement has been executed. It 

indicates whether or not the statement has any observable effect 

upon the output. If a statement can be replaced by a NO—OP with no 

observable effect, then it can indicate at best that machine time is 

wasted in its execution (possibly a design error) and very often a 

much more serious error. 

Insuring that every statement is executable is no guarantee of 

correctness. 	Predicate errors or coincidental correctness may pass 

undetected even if every statement is successfully executed. 	We 

will return to these error types later in this Chapter. 

Dead Branches 

An 	improvement 	over 	simply analyzing the execution of 

statements can be had by analyzing the execution of branches, attem-

pting to execute every branch at least once. 
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Consider the program segment 

A; 
IF(<expression>) THEN B; 
C; 

All statements A,B and C can be executed by a single test case. 	It 

is not true however that in this case all branches have been 

executed. In this example the empty else clause branch can be 

bypassed even though A,B and C are executed. 

However, the requirement that every branch be traversed can be 

restated: every predicate must evaluate to both TRUE and FALSE. 

The latter formulation is used in mutation analysis. The mutant 

operators trueop and falseop replace each logical expression by 

Boolean constants. Like the statement analysis mutations described 

above, these mutations tend to be unstable and are easily eliminated 

by almost any data. If these mutants survive, they point directly 

to a weakness in the test data which might shield a possible error. 

Mutating each relation or each logical expression independently 

actually achieves a stronger test than that achieved by the usual 

techniques of branch analysis. For consider the compound predicate 

IF(A.LE.B.AND.C.LE.D)THEN 

Simple branch coverage requires only two test cases to test the 

predicate. But suppose that the test points for the covering test 

are A<BAC<D and A <B C > D. 

These points have the effect of only testing the second clause. 

This kind of analysis fails to take into account the hidden paths 

implicit in compound predicates. In testing all the hidden paths, 
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program mutation requires at least three points to test the 

predicate, corresponding to the branches (A>B,C>D), (A<B,C>D), and 

(A<B,C<D). 

As a more concrete example, consider the program shown in 

Figure 1 (cf. Program B4). It is intended to calculate the number 

of days between two given dates. The predicate which determines 

whether a year is a leap year is incorrect. Notice that if the year 

is divisible by 400 (i.e., if year REM 400 = 0) it is necessarily 

divisible by 100 (ie, year REM 100 = 0). Therefore, the logical 

expression formed by the conjunction of these clauses is equivalent 

to the second clause alone. Alternatively the expression year REM 

100 = 0 can be replaced by the logical constant TRUE and the result-

ing mutant is equivalent to the original program. Since it is not 

obvious what the programmer had in mind, the error is discovered. 

Mutation analysis also shows that the assignment daysin(12):=31 is 

redundant and can be removed from the program. 
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PROCEDURE calendar(INTEGER VALUE dayl,monthl,day2,month2,year); 
BEGIN 
INTEGER days 
IF month2=monthl THEN days=days2—daysl 
COMMENT if the dates are in the same month, then 

we can compute the number of days directly; 
ELSE 
BEGIN 
INTEGER ARRAY daysin(1..12) 
daysin(1):=31;daysin(3):=31;daysin(4):=30; 
daysin(5):=31;daysin(6):=30;daysin(7):=31; 
daysin(8):=31;daysin(9):=30;daysin(10):=31; 
daysin(11):=30;daysin(12):=31; 
IF ((year REM 400)=0) OR 

((year REM 100)=0 and (year REM 400)=0) 
THEN daysin(2):=28 ELSE daysin(2):=29; 

COMMENT set daysin(2) according to whether or not 
year is leap year; 

days:=day2+(daysin(month1)—day1); 
COMMENT this yields the number of days in complete 

intervening months; 
FOR i:=monthl +1 UNTIL month2-1 DO days:=daysin(i)+days; 
COMMENT add in the days in complete months; 

END 
WRITE(days) 

END; 

Figure 1. 

Data Flow Errors. 

A program may access a variable in one of three ways. A 

variable is said to be defined if the result of a statement is to 

assign a value to the variable. A variable is said to be referenced 

if its value is required by the execution of a statement. Finally, 

a variable is said to be undefined if the semantics of the language 

does not explicitly give any other value to the variable. Examples 

of undefined variables are the values of local storage after 

procedure return or Fortran DO loop indices after normal loop 

termination. 



Error Detection 

We define three types of data flow anomalies which are often 

indicative of program errors. These anomalies are consecutive 

accesses to a variable of the following forms: 

1. undefined then referenced, 

2. defined then undefined, 

3. defined then redefined. 

Anomaly 1 is almost always indicative of an error, even if it 

occurs only on a single path between the point at which the variable 

becomes undefined and its point of reference. Anomalies 2 and 3 

tend to indicate errors when they are unavoidable, that is, when 

they occur along every control path. 

The second and third types of anomalies are attacked directly 

by mutation operators. If a variable is defined and is not used 

then in most cases the defining statement can be eliminated without 

effect (by insertion of a CONTINUE statement for instance). This 

may not be the case if in the course of defining the variable a 

function with side effects is invoked. In this case, the definition 

can very likely be altered in many ways with no effect on the side 

effect, resulting in the variable being given different values. An 

attempt to remove these mutations will usually result in the anomaly 

being discovered. 

It is more difficult to see which operators address anomalies 

of the first type; the underlying errors are attacked by the 

discipline imposed by program mutation. A tester creates and 

executes 	mutants 	in 	a specific test environment: 	a large 

interpretive system. Whenever the value of a variable becomes 
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undefined, it is set by the interpreter to the unique constant 

UNDEFINED. Before every variable reference, a check is performed by 

the interpreter to see if the variable has undefined values. If the 

variable is UNDEFINED the error is reported to the user, who can 

then take action. Several examples of error detection by the 

interpreter are presented in Chapter 6. 

Domain Errors. 

A domain error occurs when an input value causes an incorrect path 

to be executed due to an error in a control statement. Domain 

errors are to be contrasted with computation errors which occur when 

an input value causes the correct path to be followed but an 

incorrect function of the input value is computed along that path 

due to an error in a computation statement. These notions are not 

precise and it is difficult with many errors to decide in which 

category they belong (cf. the error classifications in Chapter 2). 

For a program containing N input variables (e.g., parameters, 

arrays, and I/O variables), any predicate in the program can be 

treated algebraically and can thus be described by a surface in the 

N dimensional input space. If, as often happens, the predicate is 

linear, then the surface is a hyperplane. 

Consider a two dimensional example with input variables I and 

J. : 1+23 < -3. The domain strategy tests this predicate using three 

test points, two on the line 1+23=3, and one point which lies off 

the line, but within an envelope of width 2d centered on the line 

Call these points A,B and C (see Figure 2). If A,B, and C yield 
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correct output, then the defining curve of the predicate must cut 

the sections of the triangle ABC. Choosing d small enough makes the 

chance of the predicate actually being one of these alternatives 

small. Therefore, we have gained some confidence that the predicate 

is correct. 

Values of J 

Values of I 

Figure 2. 

Domains for I+2J < 3 

Program mutation also deals with the issue of domain errors. 

Indeed the domain strategy can be implemented using mutation once a 

simple observation is made: it is not necessary that points A and B 

both lie on the line -- it is only necessary that the line separate 

them or that they do not both lie on the same side of the line. 

Hereafter, we will work with the domain stategy using this simplify-

ing assumption. 
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There are three error operators which generate mutants causing 

the tester to generate the required points. Intuitively, we can 

think of the mutations as posing certain alternatives to the 

predicate in question. These alternatives require the tester to 

supply "reasons" (in the form of test data) why the alternative 

predicate cannot be used in place of the original. 

Relational Operator Replacement. 	Changing an inequality 

operator to a strict inequality, weakening the operator, or changing 

its sense generates a mutant which can only be eliminated by a test 

point which exactly satisfies the predicate. For example changing 

I+2J<3 to 1+230 requires the tester to generate a point on the line 

1+23=3 which satisfies the first predicate but which does not 

satisfy the second predicate. 

Twiddle. 	Recall from Chapter 2 that twiddle is a unary 

operator denoted by ++ or --, depending on its sense. 	Usually ++a 

is defined to be a+1 if a is an integer and a+.01, if a is real. In 

some cases ++a is defined to be sensitive to the magnitude of a. 

The complementary operator --a is defined similarly. 

Graphically, the effect of twiddle is to move the proposed 

constraint a small distance from the original line. In order to 

eliminate these mutants, a data point must be found which satisfies 

one constraint but not the other and is hence very close to the 

original lire. 
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Other Replacements. These operators replace data references 

with other syntactically meaningful data references and similarly 

for operators. These effects are related to the phenomenon of 

"spoilers" which are described later in this chapter. 

Replacements are the main source of complexity in the mutation 

process, since the number of data substitution mutant alone grows 

approximately quadratically in the size of the program being tested 

(see Chapter 5). The practical effect of considering so many alter-

natives is to increase the total number of data points necessary for 

their elimination. This leads by the domain strategy to an 

increased confidence that the predicate has been correctly. chosen. 

For comparison, let us work through the program in Figure 3. 

No specifications are given for this program, but the program can be 

compared against a presumably correct version; in any case the 

program is useful since it involves only two input variables. 

READ I,J; 
IF I<JA-1 

THEN K=1+J-1 
ELSE K=2*I+1; 

IF 101+1 
THEN L=I+1 
ELSE L=J—l; 

IF 1=5 
THEN M=2*L+K; 
ELSE M=L+2*K-1 

WRITE N; 

Figure 3. 

The program has only three predicates: 

I(J+1, 101+1, and 1=5. 

The effect of changing the first of these is typical, so we will 
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deal with it. 

Figure 4 is a listing of all the alternatives tried for the 

predicate I<J+1. Some of these are redundant (e.g., ++I<J+1 and I<-

-J+1), but this is merely an artifact of the generation device; the 

redundancies can be easily removed. The alternative predicates 

introduced in this way are illustrated in Figure 5. The original 

predicate line is the heavy line. It has been suggested that the 

program of Figure 3 contains the errors shown in Table 1. 

         

statement/expression 

  

should be 

 

  

K>I+1 
1=5 
L=J-1 
K=I+J-1 

    

K>I+2 
I=5—J 
L=I-2 
THEN IF(2*J<-5*I-40) 

THEN K=3; 
ELSE K=I+J-1; 

 

         

Table 	1. Domain Errors 

We leave it to the reader to verify that attempting to 

eliminate the alternative K>I+2 necessarily ends with the discovery 

of the first error. Note that this is not trivial since errors 1 

and 4 can interact in a subtle way. In the sequel we show how the 

remaining errors are dealt with. 



Error Detection 	 8-13 

1. IF(I<J) 
2. IF(I<J+2) 
3. IF(I<J+1) 
4. IF(I<J+J) 
5. IF(1<J+1) 
6. IF(2<J+1) 
7. IF(5<J+1) 
8. IF(I<1+1) 
9. IF(I<2+1) 
10. IF(I<5+1) 
11. IF(I<J+5) 
12. IF(—I<J+1) 
13. IF(++I<J+1) 
14. IF(--I<J+1) 
15. IF(I<—J+1) 
16. IF(I<++J+1) 
17. IF(I<--J+1) 
18. IF(I<—(J+1)) 
19. IF(I<J-1) 
20. IF(I<MOD(J.1)) 
21. IF(I<J) 
22. IF(I<1) 
23. IF(I<J+1) 
24. IF(I=J+1) 
25. IF(.NOT.I=J+1) 
26. IF(I>J+1) 
27. IF(I>J+1) 

Figure 4. 
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Alternative Predicate Domains 

The introduction of the unary ++ and -- operators can be 

generalized in several useful ways. In addition to the twiddle 

operators, we consider the unary operator — and the operators ABS 

(absolute value), —ABS (negative absolute value), and ZPUSH (zero 

push). Consider the statement A=B+C. In order to eliminate the 

mutants A= ABS(B)+C, A=B+ABS(C), and A=ABS(B+C), we must generate a 

set of test points in which B is negative (so that B+C differs from 

ABS(B+C), C is negative, and B+C is negative). Notice that if it is 

impossible for B to be negative then this is an equivalent mutation. 

In this case, the proliferation of these alternatives can either be 

a nuisance or an impertant documentation aid, depending upon the 
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testers' point of view. The topic of equivalent mutants will be 

taken up again later. 

In similar fashion, negative absolute value insertion forces 

the test data to be positive. We use the term domain pushing for 

this process. By analogy to the domain strategy, these mutations 

push the tester into producing test cases where the domains satisfy 

the given requirements. 

Zero Push is an operator defined so that ZPUSH(x) is x if x is 

nonzero, and otherwise is undefined so that the mutant dies 

immediately. Hence the elimination of this mutant requires a test 

point in which the expression x has the value zero. 

Applying this process at every point where an absolute value 

sign can be inserted gives a scattering effect. The tester is for-

ced to include test cases acting in various positions in several 

problem domains. Very often, in the presence of an error, this 

scattering effect causes a test case to be generated in which the 

error is explicit. 

Returning to the example in Figure 3, we can generate the 

additional alternatives shown in Figure 6. Figure 7 shows the 

domains into which these mutants push. Even this simple example 

generates a large number of requirements! 
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1. IF(ABS(I)>J+1) 
2. IF(I>ABS(3)+1) 
3. IF(DABS(J+1)) 
4. K=(ABS(I)+J)-1 
5. K=(I+ABS(J)) -1 
6. K=ABS(I+J) -1 
7. K=ABS((I+3) -1) 
8, K=2*ABS(I)+1 
9. K=ABS(2*I)+1 
10. K=ABS(2*I+1) 
11. IF(ABS(K)<I+1) 
12. IF(K<ABS(I)+1) 
13. IF(K<ABS(I+1)) 
14. L=ABS(I)+1 
15. L=ABS(I+1) 
16. L=ABS(J)-1 
17. L=ABS(J-1) 
18. IF(.NOT.ABS(I)=5) 
19. M=2*ABS(L)+K 
20. M=2*L+ABS(K) 
21. M=ABS(2*L+K) 
22. M=ABS(L)+2*K-1 
23. M=L+2*ABS(K)-1 
24. M=ABS(L+2*K)-1 
25. M=ABS(L+2*K-1) 

Figure 6. 
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Effects of Domain Pushing 
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One effect of the error L=J-1 is that any test point in the 

area bounded by I=J+1 and I=1 will return an incorrect result. But 

this is precisely the area that mutants 8,9, and 10 push us into. 

So, the error could not have gone undiscovered in mutation analysis. 

This process of pushing the tester into producing data satisfy- 

ing some criterion is also often accomplished by other mutations. 

Consider the program in Figure 8, which is based on a text reformat— 

ter program and which is also discussed in Appendix B (Program B11). 

alarm:=FALSE 
bufpos:=0; 
fill:=0; 
REPEAT 
incharacter(cw); 
IF cw=BL or cw=NL THEN 

IF fill+bufpos < maxpos THEN 
outcharacter(BL); 

ELSE 
BEGIN 
outcharacter(NL); 
fill:=0; 
FOR k:=1 STEP 1 UNTIL bufpos DO outcharacter(buffer[k]) 
fill:=fill+bufpos; 
bufpos:=0 
END 

ELSE 
IF bufpos = maxpos THEN alarm:=TRUE; 
ELSE BEGIN 
bufpos:=bufpos+1; 
buffer[bufpos]:=cw 

END 
UNTIL alarm or cw=ET 

Figure 8. 

Consider the mutant which replaces the first statement fill:=0 

with the statement fill:=1. The effect of this mutation is to force 

a test case to be defined in which the first word is less than max-

pos characters long. This test case then detects one of the five 

errors originally reported in Appedix B. The surprising thing is 

that the effect of this mutation seems to be totally unrelated to 
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the statement in which the mutation takes place! 

Special Values 

Another form of test which has been studied is special values  

testing. Testing of special values is defined in terms of a number 

of "rules". For example: 

1. Every subexpression should be tested on at least 
one test case which forces the expression to be zero. 

2. Every variable and every subexpression should 
take on a distinct set of values in the test case. 

The relationship between the first rule and domain pushing (via 

zero values mutations) has already been discussed. The second rule 

is undeniably important. If two variables are always given the same 

value then they do not act as free variables and a reference to the 

first can be uniformly replaced with a reference to the second. But 

this is also an error operator and the existence of these mutations 

enforces the goals of Rule 2. 

A slightly more general method of enforcing Rule 2 might use 

the following device. A special array exactly as large as the num-

ber of subexpressions to be computed in the program is kept. Each 

entry in this array has two additional tag bits which are intialized 

to their low values indicating that the array is uninitialized. As 

each subexpression is encountered in turn, the value at that point 

is recorded in the array and the first tag bit is set. Sub-

sequently, when the subexpression is again encountered if the second 

tag is still off the current value of the expression is compared 

against the recorded value. If these values differ the second tag 
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is set to high values; otherwise no change is made. 	By counting 

those expressions in which the second tag bit is low and the first 

is high one can infer which expressions have not had their values 

altered over the test case. Mutations could be constructed to 

reveal this. 

Coincidental Correctness 

The result of evaluating a given test point is coincidentally 

correct if the result matches the intended value in spite of a com-

putation error. For example, if all our test data results in the 

variable I taking on the values 2 and 0, then the computation J=I*2 

may be coincidentally correct if the intended calculation was 

J=I**2. 

The problem of coincidental correctness is central to program 

testing. Every programmer who tests an incorrect program and fails 

to find the errors has really encountered an instance of 

coincidental correctness. In spite of this, there has been no 

direct assault on the problem and some authors have gone so far as 

to say that the problems of coincidental correctness are intrac-

table. 

In mutation analysis, coincidental correctness is attacked by 

by the use of spoilers. Spoilers implicitly remove from considera- 

tion data 	points for which the results could obviously be 

coincidentally correct -- this "spoils" those data points. 	For 

example by explicitly creating the mutation 
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J=I*2 ==> J=I**2, 

we spoil those test cases for which 1=0 or 1=2 are coincidentally 

correct and require that at lest one test case have an alternative 

value. 

Continuing with the example of Figure 3, Figure 9 shows the 

spoilers and their effects associated with the statement M=L+2*K-1. 

Notice that a single spoiler may be associated with up to four 

different lines depending on the outcome of the first two predicates 

in the program. In geometric terms (see Figure 11), the effects of 

the spoilers are that within each data domain for each line there 

must be at least one test case which does not lie on the given line. 

In broad terms, the effects of this are to require that a large num-

ber of data points for which the possibilities of coincidental 

correctness are very slight. 
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1. M=M+1*10-1 26. M=M+2*-10-1 
2. M=(L+3*K)-1 27. M=(L+2*-K)-1 
3. W(I+2.10-1 28. M=(L+2*K)-1 
4. M=(J+2*K)-1 29. M=((L+2*K)-1) 
5. M=M+2*10 -1 30. M=(L+2+K)-1 
6. M=(L+2*J)-1 31. M=(L+2-K)-1 
7. M=(L+2*I)-1 32. M=(L+MOD(2,K))-1 
8. M=(L+2*L) -1 33. M=(L+2/K)-1 
9. M=(L+I*11)-1 34. M=(L+2**K)-1 

10. M=(L+J*K)-1 35. M=(L+2)-1 
11. M=(L+K*K)-1 36. M=(L+K)-1 
12. M=(L+L*K)-1 37. M=L-2*K-1 
13. M=M+2*10-I 38. M=(MOD(L,2*K))-1 
14. M=(L+2*K)-J 39. M=L/2*K-1 
15. M=(L+2*K)-K 40. M=L*2*K-1 
16. M=(L+2*K)-L 41. M=L**(2*K)-1 
17. M=(1+2*0-1 42. M=L-1 
18. M=(2+2*K)-I 43. M=(2*K)-1 
19. M=(5+2*K)-1 44. M=L+2+K+1 
20. M=(L+2*1)-1 45. M=MOD(L+2*K,1) 
21. M=(L+2*2)-1 46. M=(L+2*K)/1 
22. M=(L+2*5)-1 47. M=(L+2*K)*1 
23. M=M+5*10-1 48. M=(L+2*K)**1 
24. M=(-L+2*K)-1 49. M=(L+2*K) 
25. M=M+-2*10-1 50. M=1 

Figure 10 
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Effects of Spoilers 
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Often the fact that two expressions are coincidentally the same 

over the input data is a sign of a program error or of poor testing. 

The sorting program of Figure 12 is described in Appendix B (Program 

B2), and it performs correctly for a large number of input values. 

If, however, the statements following the IF statement are never 

executed for some loop iteration it is possible for R3 to be 

incorrectly set and an incorrectly sorted array will result. 

By constructing the mutant which replaces the statement 

a(R1):=R0 ==> a(R1):=a(R3) 

it is clear that there are two ways of defining RO, only one of 

which is used in the test data. This exposes the error. 

FOR R1=0 BY 1 TO N BEGIN 
RO:=a(R1); 
FOR R2=R1+1 BY 1 TO N BEGIN 
IF a(R2)>R0 THEN BEGIN 
RO:=a(R2); 
R3:=R2 

END 
END 
R2:=RO; 
a(R1):=RO; 
a(R3):=R2 

END; 

Figure 12. 

Missing Path Errors 

A program contains a missing path error if a predicate is 

required which does not appear in the subject program, causing some 

data to be computed by the same function when an altogether 

different function of the input data is called for. Such missing 

predicates can 	ea11y be the result of two different problems, 
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however, so we might consider the following alternative definitions. 

A program contains a specificational missing path error  if two 

cases which are treated differently in the specifications are 

incorrectly combined into a single function in the program. On the 

other hand, a program contains a computational missing path error  if 

within the domain of a single specification a path is missing which 

is required only because of the nature of the algorithm or of the 

data involved. 

An example of a specificational error is the fourth error from 

Table 1. Although this error might result from a specification 

there is nothing in the code itself which could give any hint that 

the data in the range 2*I < 5*I-40 is to be handled any differently 

than shown in the program. 

As an example of the second class of path error consider the 

subroutine shown in Figure 13. The input consists of a sorted table 

of numbers and an element which may or may not be in the table. The 

only specification is that upon return X(LOW) < A < %(HIGH) and HIGH 

< LOW+1. A problem arises if the program is presented with a table 

of only one entry, in which case the program diverges. 

In the specifications there is no clue that a one—entry table 

is to be treated any differently from a 101 entry table. The 

algorithm makes it a special case. 
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SUBROUTINE BIN(X,N,A,LOW,HIGH) 
INTEGER X(N) ,N,A,LOW,HIGH 
INTEGER MID 
LOW=1 
IIIGII=N 

6 	IF(HIGH-LOW-1)7,12,7 
12 	RETURN 
7 	MID=(1,0W+HIGH)/2 

IF(A-X(MID))9,10,10 
9 	HIGH=MID 

GO TO 6 
10 LOW=MID 

GO TO 6 
END 

Figure 13. 

Computational missing path problems are usually caused by 

requirements to treat certain values (e.g., negative numbers) 

differently from others. When this occurs, data pushing and spoil-

ing often lead to the detection of the errors. In the example under 

consideration here an attempt to kill either of the mutants 

IF(HIGH-LOW-1)12,12,7 

or 

MID=(LOW+EIG11)-2 

will cause us to generate a test case with a single element. 

Since mutation analysis -- like all testing techniques -- deals 

mainly with the program under test, the problem of dealing with 

specificational missing path errors appears to be considerably more 

difficult. Under the Competent Programmer Assumption and the coupl-

ing effect, however, a tester who has access to an "oracle" for the 

program specifications can assume that the mutants cover all program 

behavior! So by consulting the specifications the tester can detect 

missing paths by noting incomplete behavior and thus uncover any 
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missing paths. But since the assumptions of a competent programmer 

and coupling are statistical and since it may be infeasible to check 

for incomplete behavior, the chances of detecting such missing paths 

are not certain. 

To see this failure, consider the missing path error discussed 

above (the fourth error in Table 1). It is possible to generate 

test data which is adequate but which fails to detect the missing 

path error because there is no oracle to consult for completeness of 

behavior. This appears to be a fundamental limitation of the test-

ing process. Unlike, say, program verification, program testing 

does not require uniform a priori specifications; rather we only ask 

that the tester be able to judge correctness on a case—by—case 

basis. It is our view that the only way to attack these problems is 

to start with a core of test cases generated from specifications, 

independent of the subject program. This core of test cases can 

then be augmented to achieve stronger goals. 

Missing Statement Errors 

By analogy with missing path errors, a missing statement  error 

is defined by a statement which should appear in the program but 

which does not. It is not clear that the techniques of statement 

analysis can be used to uncover these errors. In fact, it is rather 

surprising that program mutation -- a technique which is directly 

oriented toward examining the effect of a modification to a 

statement -- can be used to detect missing statements at all! 
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To see how this can be accomplished, consider the program shown 

in Figure 14. This program accepts a vector V of length N and 

returns in MPSUM the value 

V(i)+V(i+1)+...+V(N) 

where j=i-1 is the smallest index such that V(j) is strictly 

positive. In degenerate cases, MPSUM=0 is returned. 

There is a missing RETURN statement which should follow the IF 

statement. The effect of the error is to cause undefined behavior 

when the vector V is uniformly nonpositive (undefined, since DO loop 

variables are of indeterminate value after normal completion of the 

loop). 

A simple mutation of MPADD is the transformation 

DO 1 I=1,N ==> DO 1 I=1,N+1. 

This mutant fails only when the loop executes N+1 times. In this 

case all elements of V are nonpositive and the original program 

fails, so eliminating this mutant uncovers the error. But even 

after adding the return statement, MPADD will still be incorrect due 

to a missing path error. We leave it to the reader to discover the 

error by considering the mutant 

DO 1 I=1,N ==> DO 1 I=1,N-1. 
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SUBROUTINE MPADD(V,N,MPSUM) 
INTEGER V(N),N,MPSUM 
MPSUM = 0 
DO 1 I=1,N 

1 	IF(V(I).GT.0)G0 TO 2 
2 	M=I+1 

DO 3 I=M,N 
3 	MPSUM=MPSUM+V(I) 

RETURN 
END 

Figure 14. 
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Chapter  9 

Field Studies  

In spite of extensive theoretical and experimental analysis, 

systematic program testing in production programming environments is 

rare. Most published accounts of testing experience in large scale 

development efforts concentrate on ad hoc techniques which have been 

tailored to the parent project. On the other hand, published 

descriptions of systematic testing research use example programs 

which are small, theoretically interesting and easily adaptable to 

expository accounts. This leaves open the question of whether any 

systematic testing strategy can be economically applied in produc-

tion programming situations. This chapter describes several field 

experiments with production programs of varying size and complexity. 

The common thread in all of these case studies is that the 

programs being tested are not known beforehand to be "testable" by 

any technique. The programs are neither appealing nor known to be 

correct. In fact several of the programs were known to contain 

resistant errors that had escaped all of the usual debugging tech-

niques. Other programs had been thoroughly tested by other 

organizations and fielded with errors that surfaced only during sub-

sequent operation. 

The programs below were tested using Fortran and Cobol mutation 

analyzers based on the design principles presented in Chapter 4. 

The test environments varied. The Fortran analyzers were 

implemented on a large Digital Equipment System/20. The Cobol 

analyzer was implemented on PRIME Computer Corporation's 400 and 500 

series computers. The level of skill of the testers also varied. 
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In one instance, the testers were expert mutation analyzer users. 

In another, the testers were unknown, and program mutation was used 

to evaluate the results of an independent testing effort. Although 

these studies used considerable machine resources, the principle 

bottleneck in the testing process was the human tester. In only one 

instance (the testing of a 2,500 statement Cobol program) did the 

test team have to wait appreciable lengths of time to receive the 

test resultS. On the average, expert testers were able to fully 

test (i.e., develop adequate test sets, correct errors discovered, 

and retest the modified programs) production code at the rate of 

1,500 delivered source lines per tester per week. 

Mutation on Mutation 

The Fortran programs which we will discuss below are key 

routines of a Cobol mutation analyzer whose design parallels the 

organization suggested in Chapter 4. These programs were tested in 

nearly the same form as the programs which would eventually be 

integrated into the operational system. The few modifications that 

had to be made to allow testing on a Fortran analyzer were mainly to 

due to operating system dependencies that were not supported in the 

test environments. 

NXTLIV 

This program is a routine called NXTLIV. It is a key routine 

in the Cobol mutation analyzer and at the time of testing was known 

to contain an error that could not be located by the usual debugging 



Field Studies 
	 9-3 

techniques. 

NXTLIV accepts as input the identifying number of a mutant of a 

given type and returns the number of the next live mutant, as 

indicated by bit maps of the live mutants. The bit maps are, in 

general, too large to fit in an internal array so they must be paged 

from a random access disk file as needed. Similar maps of the dead 

mutants and equivalent mutants are also stored. The program is 

shown below. 

SUBROUTINE NXTLIV(MTYPE,MUTNO) 
C FIND THE NEXT LIVE MUTANT AFTER THE MUTNOth OF TYPE MTYPE 
C RETURN THIS VALUE IN MUTNO. 
C A VALUE OF ZERO RETURNED MEANS NO MUTANTS OF THAT TYPE 

REMAIN ALIVE. 
NOLIST 

iINSERT ICS057>CPMS.COMPAR>SYSTEM.PAR 
iINSERT ICS057>CPMS.COMPAR>MACHINE.SIZES.PAR 
iINSERT ICS057>CPMS.COMPAR>FILENM.COM 
iINSERT ICS057>CPMS.COMPAR>TSTDAT.COM 
iINSERT ICS057>CPMS.COMPAR>MSBUF.COM 

LIST 
INTEGER MTYPE, MUTNO 
INTEGER I,J,K,L,WORD,BIT 
LOGICAL ERR 

C 	CALL TIMER1(33) 
C ASSUME THAT THE RECORD CONTAINING THE LIVE BIT MAPS FOR 
C MUTNO IS ALREADY PRESENT, UNLESS MUTN0=0. 

K=BPW-1 
C CHECK TO SEE IF WE ARE AT THE END OF A PHYSICAL RECORD 

IF(MUTNO.E0.0)TO TO 1 
IF(MOD(MUTNO,K*MSFRS).E0.0)G0 TO 24 
GO TO 10 

1 	CALL REARAN(MSFILE,LIVBUF,MSFRS,LIVPTR,ERR) 
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36) 

CALL REARAN(MSFILE,EQUBUF,MSFRS,EQUPTR,ERR) 
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36) 
CALL REARAN(MSFILE,DEDBUF,MSFRS,DEDPTR,ERR) 
IF(ERR)CALL ABORT('(NXTLIV) ERROR IN MUTANT STATUS FILE',36) 
CHANGD=.FALSE. 
WORD=1 
BIT=2 
CO TO 20 

10 	WORD=MOD((MUTNO)/(K),MSFRS)+1. 
BIT=MOD(MUTNO,K)+2 

20 	DO 22 I=WORD,MSFRS 
L=LIVBUF(J) 
IF(L.NE.0)GO TO 23 
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An error has been detected; the correct output for MUTNO is 13 

instead of 14. This error resulted from choosing a starting point 

in the middle of a word of zero bits. NXTLIV ordinarily searches 

the bits of each word looking for the next "1", but for efficiency a 

whole word is compared to zero before the search is begun. If all 

bits are set low, MUTNO is incremented by the word length and the 

next word is accessed. A correct algorithm would increment MUTNO 

only by the number of bits left to be examined in the word. The 

only way this can make a difference in the original program is for 

NXTLIV to be called in such away as to stop at a "1" bit in the mid-

dle of the word, which is otherwise all 0's, and then by a mutant 

failure or equivalence (outside the routine) to have that bit turned 

off before NXTLIV is called again for the next mutant to be 

considered. Obviously this situation is so rare that it is bound to 

defy haphazard debugging attempts but is nonetheless common enough 

to cause irritation in a production—sized Cobol run. 

The needed fix is to replace 

MU1NMUINO+K 

by 

MUTNO=MUIN04-(K—(BIT-2)) . 

After eliminating all SAN mutants and turning on the remaining 

error operators, a total of eleven test cases killed all but 50 of 

1,514 mutants, about 96.7 percent of the total. Eventually the 
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tester's attention was directed to the mutant at line 45 

BIT=2 => 1=2. 

The test case 15 in Table 2 is an attempt to eliminate this 

mutant. The program again failed and another error was found. This 

error is also related to the test for the entire word of zeroes. By 

starting in the middle of a word of zeroes, the BIT pointer is not 

correctly set to 2 to begin searching the next word. The correction 

is to replace 

BIT=2 
22 	CONTINUE 

by 

22 	BIT=2 

An interesting note is that this "correction" is actually a 

mutation that the tester would have had to eliminate in any event, 

so in effect the error was uncovered by the coupling effect before 

it was explicitly considered. 

The complete analysis of the corrected program required the 

elimination of 1,580 mutants. The corrected algorithm has since 

been running without known failure in an operational mutation 

analyzer. 



Field Studies 
	

9-9 

MOVENW and MOVENM 

These routines were tested using a more sophisticated mutation 

analyzer than the one used to test NXTLIV. Only minor modifications 

in the source code were required to conform to the requirements of 

the test environment. 

The MOVENM and MOVENW routines were believed to be correct at 

the time of testing. The listings for MOVENW and MOVENM are shown 

below. 
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SUBROUTINE MOVENW(SOURCE,SLEN,DEST,DLEN) 
INTEGER MLEN, K, SUB2, SUB1, LOOPHI, I, MCI, IER 
INTEGER STMT(3,10), 	CODE(30), SYMTAB(10,9) 
CHAR MEMORY(425) 
INTEGER DLEN, DEST, SLEN, SOURCE 
INPUT OUTPUT IER, MEMORY 
INPUT DLEN, DEST. SLEN, SOURCE 
MLEN = DLEN 
IF (SLEN . LT. MLEN) MLEN = SLEN 
LOOPHI = (DEST + MLEN) — 1 

2 
1 
3 
4 

SUB2 = SOURCE — 1 5 
DO 20 SUB1=DEST, LOOPHI 6 
SUB2 = SUB2 + 1 7 
K = MEMORY(SUB2) 8 
IF(K .EQ. 	IER = 4 9 10 

20 11 MEMORY(SUB1) = K 
IF(IER .NE. 0) GOTO 9999 12 13 
IF(DLEN .LE. MLEN) GOTO 9999 14 15 
I = LGOPHI + 1 16 
LOOPHI = (DEST + DLEN) — 1 17 
DO 30 SUB1=I, LOOPHI 18 

30 MEMORY(SUB1) = ' 19 
9999 CONTINUE 20 

RETURN 21 
END 

SUBROUTINE MOVLNM(SOURCE,SLEN,SDEC,DEST,DLEN,DDEC,TYPPE) 
LOGICAL NEGNO 
INTEGER X(5), PTNEGD, PTNEGS, K, SUB2, SUM., LOOPHI, LEND 
INTEGER LENS, I, IHI, DDECPT, SDECPT, IER. STMT(3,10) 
INTEGER CODE(30), sYmrw10,9) 
CHAR MEMORY(425) 
INTEGER TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE 
INPUT OUTPUT IER, MEMORY 
INPUT TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE 
PTNEGS = (SOURCE + SLEN) — 1 23 
PTNEGD = (DEST + DLEN) — 1 24 
CALL UNPACK(MEMORY(PTNEGS),X,5) 25 
NEGNO = X(2) 	.EQ. 26 

X(2) 	= 	' 27 
IF(NEGNO) CALL PACK(X,MEMORY(PTNEGS),5) 28 29 
LENS = SLEN — SDEC 30 
LEND = DLEN 	DDEC 31 
SDECPT = SOURCE + LENS 32 
DDECPT = DEST + LEND 33 
SUEZ = DDECPT — 1 34 
IF(SDEC .E0. 0 	.OR. DDEC .EQ. 0) GOTO 22 35 36 
1111 = (SDEC + SDECPT) — 1 37 
IF(DDEC .LE. SDEC) IHI = (DDEC + SDECPT) — 1 38 39 
DO 20 SUB2=SDECPT, IHI 40 
SUB1 = SUSI + 1 41 
K = MEMORY(SUB2) 42 
IF(K .E0. 	1#9 IER = 4 43 44 

20 rEYORY(SUB1) = K 45 
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IF(IER .NE. 0) GOTO 50 46 47 
22 IF(DDEC .LE. SDEC) GOTO 30 48 49 

I = SUB1 + 1 50 
1HI = (DEST + DLEN) — 1 51 
DO 25 SUB1=I, IHI 52 

25 MEMORY(SUB1) = '0' 53 
30 LOOPHI = LEND 54 

IF(LENS .LE. LEND) LOOPHI = LENS 55 56 
SUB1 = DDECPT 57 
SUb2 = SDECPT 58 
IF(LEND .EQ. 0) GOTO 50 59 60 
IF(LENS .E0. 0) GOTO 41 61 62 
DO 40 I=1, LOOPHI 63 
SUB1 = SUB1 — 1 64 
SUM = SUB2 — 1 65 
K = MEMORY(SUB2) 66 
IF(K .EQ. 	'h') 	IER = 4 67 68 

40 MEMORY(SUB1) = K 69 
IF(IER .NE. 0) GOTO 50 70 71 
IF(LEND .LE. LENS) GOTO 50 72 73 

41 IHI = SUB1 — 1 74 
DO 45 I=DEST, 	flu 75 

45 MEMORY (I) = 	'0' 76 
50 X(2) 	= 77 

IF (NEGNO) CALL PACK(X,MEMORY(PTNEGS),5) 78 79 
IF(.NOT. 	(NEGNO .AND. TYPPE .EQ. 2)) RETURN 80 81 
CALL UNPACK(MEMORY(PTNEGD),X,5) 82 
X(2) 	= 83 
CALL PACK(X,MEMORY(PTNEOD),5) 84 
RETURN 85 
END 

Program mutation on each subroutine indicated that no errors 

existed and that the two subroutines were correct. A listing of 

each subroutine with its equivalent mutants and the MUTANT STATE 

information is given in Appendix C. 

Most of the equivalent mutants are the absolute value or ZPUSH 

mutants of a variable; these variables are always positive and never 

zero because they refer to the memory location and length for either 

the sending field or destination field in the Cobol MOVE statement 

and this cannot be negative or zero. 
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It is interesting to note the statement: 

IF (K .EQ. '#') IER=4 

This conditional is checking for undefined data. If the data 

is undefined, the data is moved entirely to the receiving field 

before the interpreter is halted and an error returned to the cal-

ling subroutine. The conditional statement: 

IF (IER .NE. 0) GO TO 9999 as in MOVENW 

IF (IER .NE. 0) GO TO 50 as in MOVENM 

is located after the Fortran DO loop that is moving the data; if 

this statement were moved inside the DO loop, then the error could 

cause the error return before all the data is moved. The tester 

decided that the time to evaluate the error condition every time 

through the DO loop would be more time consuming than the time 

needed to move the remaining data to the receiving field. It should 

be noted that moving the undefined data to the receiving field has 

no effect because interpretation of the program is halted. 

MOVEED 

The MOVEED, numeric edited move, subroutine was submitted for 

mutation analysis because it had not been fully tested by con-

ventional means. The program as modified is shown below. 

SUBROUTINE MOVEED(SOURCE,SLEN,SDEC,DEST,DLEN,PLEN,PDIG,PDEC, 
* PIC,IER) 

LOGICAL SUPRES, NEGNO 
INTEGER X(5), SUB2, SUB1, IHI, PLDIG, IVAR, I, SCOUNT, DESTHI 
INTEGER CHAR, PDIGLN, SDIG, SARRAY(50), PICST, DDEC 
INTEGER STMT(3,10), CODE(30), SYMTAB(10,9) 
CHAR MEMORY(310) 
INTEGER IER 
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CHAR PIC(10) 
INTEGER PDEC, PDIG, PLEN, DLEN, DEST, SPEC, SLEN, SOURCE 
INPUT OUTPUT MEMORY, IER 
INPUT PIC, PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE 
SUPRES = .TRUE. 87 
DO 5 I=1, PLEN 88 

5 SARRAY(I) = '0' 89 
PLDIG = PDIG — PDEC 90 
SDIG = SLEN — SDEC 91 
IF(SDEC .EQ. 0) GOTO 11 92 93 
SUB1 = PLDIG 94 
SUB2 = (SOURCE + SDIG) — 1 95 
DO 10 1=1, SDEC 96 
SUB1 = SUB1 + 1 97 
SUB2 = SUB2 + 1 98 
IF(MEMORY(SUB2) 	.EQ. 	'#') 	IER = 4 99 100 

10 SARRAY(SUB1) = MEMORY(SUB2) 101 
IF(IER .NE. 0) GOTO 101 102 103 

11 IF (SDIG .GE. PLDIG) IHI = PLDIG 106 
IF(SDIG .LT. PLDIG) IHI = SDIG 107 108 
SUB1 = PLDIG + 1 109 
SUB2 = SOURCE + SDIG 110 
DO 15 I=1, IHI 111 
SUB1 = SUB1 — 1 112 
SUB2 = SUB2 — 1 113 
IF(MEMORY(SUB2) 	.EQ. 	IER = 4 114 115 

15 SARRAY(SUB1) = MEMORY(SUB2) 116 
IF(IER .NE. 0) COTO 101 117 118 

16 SUB1 = (SOURCE + SLEN) — 1 119 
CALL UNPACK(MEMORY(SUB1) ,X,2) 120 
NEGNO = X(2) 	.EQ. 121 
SUB1 = DEST 122 
SCOUNT = 0 123 
DO 100 I=1, PLEN 124 
SUB1 = BEST + I 125 
IF((DEST + I) — 1 	.GT. 	(DLEN + DEST) — 1)) GOTO 126 127 
CHAR = PIC(I) 128 
IF(PIC(I) 	.EQ. 	'9') 	SUPRES = .FALSE. 129 130 
IF(SARRAY(SCOUNT + 1) 	.NE. 	'0') SUPRES = .FALSE. 131 132 
IF(CHAR .NE. 	'—') GOTO 20 133 134 
MEMORY(SUB1 — 1) = 135 
IF(I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 — 1) = 136 137 
IF(I .EQ. 1) GOTO 100 138 139 
SCOUNT = SCOUNT + 1 140 
IF(.NOT. SUPRES) GOTO 99 141 142 
IF (NEGNO) MEMORY(SUB1 — 1) = 143 144 
IF(MEMORY(SUB1 — 2) 	.EQ. 	'—') MEMORY(SUB1 — 2) = 145 146 
GOTO 100 147 

20 IF(CHAR .NE. 	'+') GOTO 30 148 149 
IF(I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 — 1) = 150 151 
IF(I .EQ. 1 .AND. .NOT. NEGNO) MEMORY(SUB1 — 1) = '+' 152 153 
IF(I .E0. 1) GOTO 100 154 155 
SCOUNT = SCOUNT + 1 156 
IF(.NOT. SUPRES) GOTO 99 157 158 
IF (NEGNO) MEMORY(SUB1 — 1) = 159 160 
IF (.NOT. NEGNO) MEMORY(SUB1 — 1) = '+' 161 162 
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IF(MEMORY(SUB1 - 2) 	.EQ. 	'+') MEMORY(SUB1 - 2) = ' 163 164 
IF(MEMORY(SUB1 - 2) 	.EQ. 	'-') MEMORY(SUB1 - 2) = ' 165 166 
GOTO 100 167 

30 IF(CHAR .NE. 'i') GOTO 40 168 169 
IF (I .EQ. 1) MEMORY(SUB1 - 1) = 't' 170 171 
IF(I .EQ. 1) GOTO 100 172 173 
SCOUNT = SCOUNT + 1 174 
IF(.NOT. SUPRES) GOTO 99 175 176 
MEM0RY(SUB1 - 1) = 177 
IF(MEMORY(SUB1 - 2) 	.EQ. 	'I') MEMORY(SUB1 - 2) = ' 178 179 
GOTO 100 180 

40 IF(CHAR .NE. 	'*') GOTO 50 181 182 
SCOUNT = SCOUNT + 1 183 
IF(.NOT. SUPRES) GOTO 99 184 185 
MEMORY(SUB1 - 1) = 186 
GOTO 100 187 

50 IF(CHAR .NE. 	'Z') 	GOTO 55 188 189 
SCOUNT = SCOUNT + 1 190 
IF(.NOT. SUPRES) GOTO 99 191 192 
MEMORY(SUB1 - 1) = ' 	' 193 
GOTO 1n0 194 

55 IF(CHAR .NE. 	'9') GOTO 60 195 196 
SCOUNT = SCOUNT 	1 197 
MEMORY(SUB1 - 1) = SARRAY(SCOUNT) 198 
GOTO 100 199 

60 IF(CHAR .NE. 	'B') GOTO 70 200 201 
MEMORY(SUB1 - 1) = 	' 	' 202 
GOTO 100 203 

70 IF(CHAR .NE. 	'/') 	GOTO 80 204 205 
MEMORY(SUB1 	1) = 	'/' 206 
GOTO 100 207 

80 IF(CHAR .NE. 	'V') GOTO 81 208 209 
GOTO 100 210 

81 IF(CHAR .NE. 	'.') GOTO 82 211 212 
MEMORY(SUB1 - 1) = 213 
GOTO 100 214 

82 IF(CHAR .NE. 	GOTO 83 215 216 
IF(.NOT. SUPRES) MEMORY(SUB1 - 1) = 217 218 
IF(SUPRES) MEMORY(SUB1 - 1) = ' 219 220 
GOTO 100 221 

83 IER = 3 222 
GOTO 101 223 

99 MEMORY(SUB1 - 1) = SARRAY(SCOUNT) 224 
100 CONTINUE 225 
101 CONTINUE 226 

RETURN 227 
END 
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The data for this subroutine consisted of the following input 

and input/output data. 

INPUT DATA 

SOURCE - INTEGER data that contains the starting location in 
memory for the sending field. 

SLEN - INTEGER data that specifies the length of the item in 
memory. 

SDEC - INTEGER specifing the number of digits in the fraction part 
of a number. 

DEST - INTEGER data that contains the starting location in memory 
for the receiving field. 

DLEN - INTEGER data that specifies the length of the receiving 
data item in memory. 

PLEN - INTEGER that specifies the length of the PICTURE 
specification. 

PDIG - INTEGER that gives the number of digits in the PICTURE 
description. 

PDEC - INTEGER specifying the number of digits in the fraction 
part of the PICTURE. 

PIC - CHARACTER array which contains the Cobol PICTURE for the 
edited move. 

INPUT/Oulrui DATA 

MEMORY - CHARACTER data that contains the programs memory. 

IER - INTEGER used as error indicator. 

The numeric edited move takes data from a source field and 

places it in a receiving field according to what may be called a 

template or instructions specified in the Cobol PICTURE. 

Two errors and redundant conditional statements were found in 

MOVEED. The first error detected involved a Fortran DO loop where 

the upperbound on the loop was zero so the DO loop was being 
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executed once when it should not be executed at all. 	The specific 

statement is: 

DO 15 I=1,IHI 

at line 111 in Figure 5 where MI has been assigned the value of 

SDIG (number of digits in the whole part of a number) or PLDIG (num-

ber of allowable digits in the whole part of the PICTURE descrip-

tion). The test data that uncovered this error is in Figure 1. 

TEST CASE NUMBER 	9 
PARAMETERS ON INPUT 
SOURCE = 294 
SLEN = 7 
SPEC = 7 
DEST = 5 
DLEN = 8 
PLEN = 8 
PDIG = 7 
PDEC = 2 
PIC = "ZZZZ9.99/#" 
IER = 0 

MEMORY = "############################## 	 00101— 	UUUUU 
*A 	ZZZZ7272ZZ 	 05 	 10— 	 235787 	 ZZZ9 
*.99 	 ++++.9 	 $iiiiV 	 $*****9.99 

	

9,999.9 	 99/99/99 	 99B99B99 	XXXXXXXX 
*XXXXXXXXXXXX 	YYYYYYYYY3040210200ABCDEELSE2IF2ELSE120301DONE############# 
*###########################UUUUUAZZZZZ=ZZ 	 000500001000-01234567## 
*#######" 
PARAMETERS ON OUTPUT 
MEMORY = 	1234.56################## 	 00101— 	UUUUU 
*A 	ZZZZZZZZZZ 	 05 	 10— 	 235787 	 ZZZ9 
*.99 	 ++++.9 	 WitIr 	 t*****9.99 

	

9,999.9 	 99/99/99 	 99B99B99 	XXXXXXXX 
*XXXXXXXXXXXX 	YYYYYYYYY3040210200ABCDEELSE2IF2ELSE120301DONE############# 
*###########################UUUMAZZZZZZZZZZ 	 000500001000-01234567## 
*#######" 
IER = 0 

Figure 1. Test Data Detecting DO Loop Error 
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The program was corrected and the effected lines for the new 

program are shown in Figure 2. 	The new line is the 	line 	with 

Fortran statement label 11. 

the 

11 IF(SDIG .EQ. 0 	.OR. 	PLDIG .EQ. 0) GOTO 16 104 105 
1RI = PLDIG 106 
IF(SDIG .LT. PLDIG) IIII = SDIG 107 108 
SUB1 = PLDIG + 1 109 
SUB2 = SOURCE + SDIG 110 
DO 15 I=1, IHI 111 
SUB1 = SUB1 - 1 112 
SUB2 = SUB2 - 1 113 
1F(MEMORY(SUB2) 	.EQ. 	'#') IER = 4 114 115 

15 SARRAY(SUB1) = MEMORY(SUB2) 116 

Figure 2. Corrected Program 

The second error that was uncovered by mutation analysis 

involved the handling of the PICTURE item 'V' which says not to out-

put a decimal point to the receiving field. 
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TEST CASE NUMBER 	1 
PARAMETERS ON INPUT 
SOURCE = 294 
SLEN = 8 
SDEC = 4 
DEST = 5 
DLEN = 7 
PLEN = 8 
PDIG = 7 
PDEC = 3 
PIC = "9999V999 " 
IER = 0 
MEMORY = "############################## 	 00101- 	UUUUU 
*A 	ZZZZZZZZZZ 	 05 	 10- 	 235787 	 ZZZ9 
*.99 	 ++++.9 	 iiitiV 	 t*****9.99 

	

9,999.9 	 99/99/99 	 99B99B99 	XXXXXXXX 
*XXXXXXXXXXXX 	YYMYYYY3040210200ABCDEELSE2IF2ELSE120 -301DONE############# 
*###########################UUUUUAZZZZZZZZZZ 	 00050000100#12345678### 
*######" 
PARAMETERS ON OUTPUT 
MEMORY = "####1234567################### 	 00101- 	UUUUU 
*A 	ZZZZZZZZZZ 	 05 	 10- 	 235787 	 ZZZ9 
*.99 	 ++4-1-.9 	 HMV 	 t*****9.99 

	

9,999.9 	 99/99/99 	 99B99B99 	XXXXXXXX 
*XXXXXXXXXXXX 	YYYYYYYYY3040210200ABCDEELSE2IF2ELSE120301DONE############# 
*###########################UUUUUAZZZZZZZZZZ 	 00050000100#12345678### 
*######" 
IER = 0 

Figure 3. Data Detecting PICTURE Clause Error 

This error was detected from the data shown in Figure 3. 	In 

statement label 80, if a V is the item in the picture, then nothing 

is done and control goes back to the top of the loop where the next 

item in the PICTURE description is retrieved. The error occurs 

because the pointer (variable SUB1) for the next available location 

in the receiving field is automatically incremented at the beginning 

of the loop; to correct this error subtract 1 from SUB1 when a V 

instruction is detected. The original method for calculating the 

next available location used the Do loop index and the absolute 

location of the destination field which disregards the statement 
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SUD1=SUB-1 executed when a 'V' is encountered. This made it man-

datory to rewrite the handling of the destination pointer. The new 

code is given in Appendix D. It has been indicated that some con-

ditional statements were redundant in the original program. These 

have been rewritten as in Appendix D. Figure 5 contains the program 

with the 'V' error and with the redundant statements. It can be 

seen from this listing that several redundant conditional statements 

have no effect on the result of the program. These redundant 

statements have been deleted. 

Specifically, a redundant conditional statement exists for 

statement 106 107 where IHI is assigned the value of PLDIG if SDIG 

is greater than or equal to PLDIG; but, the next statement 108 109 

will reassign the value of IHI to SDIG if SDIG is less than PLDIG; 

it can be seen that the first conditional statement can be changed 

to the assignment statement ERI=PLDIG because it will be reassigned 

if the following conditional statement is true. 

Another redundant conditional statement is 136 137 where the 

statement: 

IF (I .EQ. 1 .AND. NEGNO) MEMORY(SUB1 — 1) = 

does not need the compound conditional portion I .EQ. 	1 because 

statement 138 139 takes care of that portion of the conditional. 

This is rewritten as: IF (NEGNO) MEMORY(SUB1 — 1) = 1_1 which 

allows the deletion of statement 143 144. 

As in the previous conditional statement, the statements 150 

151 and 152 153 do not need the portion of the conditional I .EQ. 1 

because the statement 154 155 takes care of the condition; also 

statement 159 160 and statement 161 162 are deleted. 

The conditional statement 170 171 is changed to the assignment 
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statement which allows for the deletion of statement 177. 

The rewritten MOVEED was tested and the results indicated that 

the routine was correct. Figure 4 contains the status information 

for the testing of subroutine MOVEED. 
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MUTANT ELIMINATION PROFILE FOR MOVEED 

MUTANT TYPE 	 TOTAL 	DEAD LIVE 

9-21 

EQUIV 

CONSTANT REPLACEMENT 151 146 	96.7% 0 0.0% 5 3.3% 
SCALAR VARIABLE REPLACEME 2 43 0 2 413 	99.3% 0 0.0% 17 0.7% 
SCALAR FOR CONSTANT REP. 1121 1119 	99.8% 0 0.0% 2 0.2% 
CONSTANT FOR SCALAR REP. 694 692 	99.7% 0 0.0% 2 0.3% 
SOURCE CONSTANT REPLACEME 601 599 	99.7% 0 0.0% 2 0.3% 
ARRAY REF. FOR CONSTANT R 470 470 100.0% 0 0.0% 0 0.0% 
ARRAY REF. FOR SCALAR REP 1041 1030 	98.9% 0 0.0% 11 1.1% 
COMPARABLE 	ARRAY NAME RE 148 148 100.01 0 0.0% 0 0.0% 
CONSTANT FOR ARRAY REF RE 105 105 100.0% 0 0.0% 0 0.0% 
SCALAR FOR ARRAY REF REP. 684 680 	99.4% 0 0.096 4 0.6% 
ARRAY REF. FOR ARRAY REF. 251 246 	98.0% 0 0.0% 5 2.0% 
UNARY OPERATOR INSERTION 325 318 	97.8% 0 0.0% 7 2.2% 
ARITHMETIC OPERATOR REPLA 218 218 100.0% 0 0.0% 0 0.0% 
RELATIONAL OPERATOR REPLA 210 191 	91.0% 0 0.0% 19 9.0% 
LOGICAL CONNECTOR REPLACE 5 5 100.0% 0 0.0% 0 0.0% 
ABSOLUTE VALUE INSERTION 399 151 	37.8% 0 0.0% 248 62.2% 
STATEMENT ANALYSIS 80 80 100.0% 0 0.0% 0 0.0% 
STATEMENT DELETION 56 56 100.0% 0 0.0% 0 0.0% 
RETURN STATEMENT REPLACEM 128 128 100.0% 0 0.0% 0 0.0% 
GOTO STATEMENT REPLACEMEN 648 636 	98.1% 0 0.01 12 1.9% 
DO STATEMENT END REPLACEM 76 72 	94.7% 0 0.0% 4 5.3% 

MUTANT STATE FOR MOVEED 

FOR EXPERIMENT "MOVEED 	" THIS IS RUN 18 

NUMBER OF TEST CASES = 65 

NUMBER OF MUTANTS = 9841 
NUMBER OF DEAD MUTANTS = 9503 ( 96.6%) 
NUMBER OF LIVE MUTANTS = 0 ( 0.0%) 
NUMBER OF EQUIV MUTANTS = 338 ( 3.4%) 

NUMBER OF MUTANTS WHICH DIED BY NON STANDARD MEANS 4530 
NORMALIZED MUTANT RATIO *****% 
NUMBER OF MUTATABLE STATEMENTS = 	133 
GIVING A MUTANTS/ STATEMENT RATIO OF 	73.99 

NUMBER OF DATA REFERENCES = 	272 
NUMBER OF UNIQUE DATA REFERENCES = 	34 

ALL MUTANT TYPES HAVE BEEN ENABLED 

Figure 4 
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Testing Operational Software 

The software in these studies was contributed by the U.S. Army 

Computer Systems Command (Army Institute for Research in Management 

Information and Computer Science). Both programs are large Cobol 

modules that had been designed, coded, tested and fielded by the 

Army. The testers did not have access to the original programmers, 

but test data was supplied by the Army. The first program was a 

2500 line program which was supplied with test data but not 

documentation or other information to guid the tester. Over 650,000 

mutants were generated and run on 3,000 Army test cases. After one 

week of elapsed testing time, the tester terminated the run when it 

was determined that the Army supplied test data was of such low 

quality that less than 10% of the mutants had been eliminated. 

The second program is an editor. It consists of 1200 source 

code lines written in a standard dialect of Cobol. When supplied 

with a transaction file, the program sorts and edits the input data 

to generate an error listing with critical and non—critical errors 

indicated. After all critical errors are corrected and edited, a 

master file is updated. The updated master file is sorted and a run 

report is generated. 

Minor modifications were required to make the program conform 

to Level 1 Cobol. Since Level 1 Cobol does not allow multiple data 

records in a file description, each data record in a such a file was 

assigned its own file. Since Level 1 Cobol files are specified to 

be nonrewindable, the program was divided into four sections so that 

the output of the first section was the input of the second section 

and so on. 
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LOW and HIGH values and the current DATE were input by separate 

files since the CPMS did not supply these values. 

Since the purpose of this run was to evaluate the quality of 

test data supplied by another test organization, the mutation tester 

did not follow the level—by—level testing strategy suggested in 

Chapter 2; rather, all mutant operators were enabled (see the 

description of a Level 1 Cobol analyzer in Chapter 2 for a list of 

Cobol mutant operators). After processing 29 Army test cases, the 

analyzer returned the following status report. 

MUTANT STATUS 

TYPE TOTAL LIVE PCT EQUIV 
DECIML 69 48 30.43 0 
OCCURS 6 4 33.33 0 
INSERT 430 100 76.74 0 
FILLSZ 310 45 85.48 0 
ITEMRV 293 77 73.72 0 
FILES 464 0 100.00 0 
DELETE 545 59 89.17 0 
GO PER 45 7 84.44 0 
PER GO 20 3 85.00 0 
IF REV 75 2 97.33 0 
STOP 541 8 98.52 0 
THRU 365 29 92.05 0 
TRAP 545 6 98.90 0 
ARITH 135 17 87.41 0 
ROUND 45 0 100.00 45 
MOVE R 111 5 95.50 0 
LOGIC 681 161 76.36 0 
SUBSFS 11352 947 91.66 0 
SUBCFS 1004 167 83.37 0 
SUBCFS 13 80 115 91.67 0 
SUBSFC 4857 457 90.59 0 
C ADS 33 3 90.91 0 

TOTALS 

23306 2260 90.30 45 
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This test was augmented by 10 additional cases supplied by the 

tester and equivalent mutants were removed from the system, result-

ing in the following mutant status report 

MUTANT 

TYPE PCT EQUIV 

MARKED 

	

236 	AS EQUIVALENT 
STATUS 

	

TOTAL 	LIVE 
DECIML 69 	4 94.20 44 
OCCURS 8 	2 66.67 2 
INSERT 430 	10 97.67 90 
FILLSZ 310 	4 98.71 41 
ITEMRV 293 	26 91.13 51 
FILES 464 	0 100.00 0 
DELETE 545 	56 89.72 3 
GO PER 45 	6 86.67 1 
PER GO 20 	3 85.00 0 
IF REV 75 	2 97.33 0 
STOP 541 	7 98.71 1 
THRU 365 	29 92.05 0 
TRAP 545 	3 99.45 3 
ARITH 135 	17 87.41 0 
ROUND 45 	0 100.00 45 
MOVE R 111 	5 95.50 0 
LOGIC 681 	161 76.36 0 
:AWES 11352 	947 91.66 0 
SUBCFC 1004 	167 83.37 0 
SUBCFS 1380 	115 91.67 0 
SUBCFC 4857 	457 90.59 0 
C ADS 33 	3 90.91 0 

TOTALS 
23306 	2024 91.32 281 

During the analysis of TRAP mutants, 	a test case was construc- 

ted to kill the mutants associated with the report type and the 

transaction code. The possible values of the type of a report were 

K,I,W,L,D, and E. The possible transaction values were A,C, and D. 

The test case constructed consisted of all possible combinations of 

the report type and the transaction code. The values of other input 

variables remained the same in each combination. 
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The interpreter generated a "reference to undefined data at or 

near line [line number]" error when the program was run on the test 

case constructed. The statement marked with boldface in the follow-

ing piece of code was in error. 

0200-PRINT-ERRORS. 
IF WS-SW2 = 1 
PERFORM 0230-CHECK-FOR-A THRU 0240-EXIT. 

MOVE STATIONID -2 TO STATIONID -WS -EDIT. 
MOVE INSTALLCODE-02 TO INST-WS-EDIT. 
MOVE TRANSCODE-02 TO TRANSCODE-WS-EDIT. 

The cause of this error was that all elementary data items but 

one in paragraph 0230-CHECK-FOR-A had been assigned values. The 

following piece of code shows the paragraph under consideration. 

0230-CHECK-FOR-A. 

MOVE WS-STATIONID-WS-K TO STATIONID-WS-EDIT. 
MOVE WS-TRANSCODE-WS-K TO TRANSCODE-WS-EDIT. 

There are two ways to correct the error. One solution is to 

insert the missing statement MOVE WS-INSTALLCODE-WS-K TO INST-WS-

EDIT after the line highlighted in boldface. The other solution is 

to insert the statement MOVE SPACES TO EDITDETAIL-WS after the 

statement 0200-FRINT-ERRORS. after the statement 0200-PRINT-ERRORS. 
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Program Al 

I 	IDENTIFICATION DIVISION. 
2 	PROGRAM-ID. POCAACA. 
3 	AUTHOR. CPT R W MOREHEAD. 
4 	INSTALLATION. HQS USACSC. 
5 	DATE-WRITTEN. OCT 1973. 
6 	REMARKS. 
7 	 THIS PROGRAM PRINTS OUT A LIST OF CHANCES IN THE ETF. 
8 	 ALL ETF CHANCES WERE PROCESSED PRIOR TO THIS PROGRAM. THE 
9 	 CLD ETF AND THE NEW ETF ARE THE INPUTS. BUT THERE IS NO 
10 	 FURTHER PROCESSING OF THE ETF HERE. THE ONLY OUTPUT IS A 
11 	 LISTING OF THE ADDS, CHANCES, AND DELETES. THIS PROGRAM IS 
12 	FOR HO USE ONLY AND HAS NO APPLICATION IN THE FIELD. 
13 
:4 	 MODIFIED FCR TESTING UNDER CPMS BY ALLEN ACREE 
15 	 JULY, 1979. 
16 	ENVIRONMENT DIVISION. 
17 	CONFIGURATION SECTION. 
18 	SOURCE-COMPJTER. PRIME. 
19 	OBJECT-COMPUTER. PRIME. 
20 	INPJT-OUTPUT SECT.CN. 
21 	FILE-CONTROL. 
22 	SELECT OLD-ETF ASSIGN INPUT4. 
23 	 SELECT .E'.:-::TF ASSIGN INPUTS. 
24 	 SELECT PRNTP ASSIGN TO CUTPUT9. 
25 	DATA DIVISION. 
26 	FILE SECTION. 
27 	FD OLO-ETF 
29 	 RECORD CONTAINS PO CHARACTERS 
23 	 LABEL RECORDS ARE STANDARD 
30 	 DATA RECORD IS OLD-REC. 

01 OLD-RET. 
32 	 33 FILLER 	 PIC X. 
33 	 03 OLD-KEY 	 PIC X(12). 
34 	 03 	FILLER 	 PIC X(67). 
35 	FD NEW-ETF 
36 	RECORD CONTAINS 80 CHARACTERS 
37 	 LABEL RECORDS ARE STANDARD 
38 	 DATA RECORD IS NEW-REC. 
39 	n] NEW-REC. 
40 	03 FILER 	 PIC X. 
41 	03 NEW-KEY 	 PIC X(12). 
42 	03 FILLER 	 PIC X(67). 
43 	FD PRNTR 
44 	RECORD CONTAINS 40 CHARACTERS 
45 	LABEL RECORDS ARE OMITTED 
46 	DATA RECORD IS PRNT-LINE. 
47 	01 PRNT-LINE 	 PIC. X(40). 
40 	wORKING-STORAGE SECTION. 
49 	01 PRNT-WORK-AREA. 
50 	03 LINEI 	 PIC X(30). 
51 	03 LINE2 	 PIC X(30). 
52 	03 LINES 	 PIC X(20). 
53 	01 PRNT-OUT-OLD. 
54 	03 WS-LN-I. 
55 	 05 FILLER 	 PIC X VALUE SPACE. 
56 	 05 FILLER 	 PIC XXXX VALUE '0 
57 	 05 LN1 	 PIC X(30)• 
58 	 05 FILLER 	 PIC XXX VALUE SPACES. 
59 	 03 WS- LN - 2. 
60 	 05 FILLER 	 PIC X VALUE SPACE. 
61 	 05 FILLER 	 PIC XXXX VALUE 'L 	• 
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42 
63 
64 

05 	LN2 
05 	FILLER 

03 	WS-LN-3. 

PIC 	X(30). 
PIC XXX VALUE SPACES. 

65 05 	FILLER PIC X VALUE SPACE. 
66 05 	FILLER PIC XXXX VALUE 'D 
67 05 	LN3 PIC 	X(20). 
68 05 	FILLER PIC XXX 	VALUE SPACE. 

61 01 	PANT-NEW-OUT. 
70 03 	NEW-LN-1. 
71 05 	FILLER PIC XXXXX VALUE ' N 

05 	N-LNI PIC 	X(30). 
05 	FILLER PIC XXX VALUE SPACE. 

03 	NE•W-LN-2. 
TS 35 	FILLER PIC XXXXX VALUE ' 	E 

r,  05 	N-LN2 
05 	FILLER 

PIC 	X(30). 
PIC XXX VALUE SPACES. 

03 	NEW-LN-3. 
79 05 	FILLER. PIC XXXXX VALUE ' W 
8C 05 	N-LN3 PIC 	X(20). 
21 05 	FILLER PIC XXX VALUE SPACES. 
BO PROCEDURE 	DIVISION. 
Fl 0103-OPENS. 
84 	OPEN INPUT OLD-ET? NEW-ETF. 

OPEN OUTPUT PRNTR. 
rc 	0110-OLD-READ. 

READ OLD-ETF AT ENO GO 70 0160 -0L0- E0F. 
3120-NEW-PEA E. 

READ NEW-ETF AT END SO TO 0170-NEW-E0F. 
)130-COMPARES. 

IF 01.D-KEY ■ NEW-KEY 
93 	 NEXT SENTENCE 

ELSE GO TO 0140-CX-ADD-DEL. 
IF OLD-REC m NEW-REC 

GO TO 0110-OLD-READ. 
MOVE OLO-RE.. TO PRNT-WORK-AREA. 
PERFORM 3210-CLO-WRT THRU 0210-EXIT. 
MOVE NE' -REC TO PRNT-WORK-AREA. 

";9 	PERFORM 0200-NW-WRT THRU 0200-EXIT. 
GO TO 0110-OLD-READ. 

132 	3140-CK-ADD-DEL. 
132 

 
IF OLD-KEY > NEW-KEY 

133 	 MOVE NEW-REC TO PRNT-WORK-AREA 
174 	 PERFORM 0200-NW-WRT THRU 0200-EXIT 
175 	 GO TO 0120-NEW-READ 
106 	ELSE CO TO 0150-CK-ADD-DEL. 
107 	0150-CK-ADD-DEL. 
108 	MOVE OLD-REC TO PRNT-WORK-AREA. 
109 	PERFORM 0210-OLD-WRT THRU 0210-EXIT. 
110 	 READ Ot.D-ET? AT END 
111 	 MOVE NEW-REC TO PRNT-WORK-AREA 
112 	 PERFORM 0200-NW-WRT THRU 0200 - EXIT 
113 	 GO TO 0160-OLD-EC?. 
114 	CO TO 0130-COmPARES. 
115 	0160-OLD-E0F. 
116 	READ NEW-ETF AT END GO TO 0180-EOJ. 
117 	MOVE NEW-REC TO PRNT-WORK-AREA. 
118 	PERFORM 0200-KW-WRT THRU 0200-EXIT. 
119 	GO TO 0150-OLD-ZOF. 
120 	0170-NEW-EOF. 
121 	MOVE OL•-Rec TO PRNT-WORK-AREA. 
122 	PERFORM 0210-OLD-WRT THRU 0210-EXIT. 
123 	READ OLD-ETF AT END GO TO 0180-E0.7. 
124 	GO TO 0170-NEW-EOF. 
125 	0180-E0J. 
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126 
127 
128 

CLOSE OLD-ETF NEW-ETF 
STOP RUN. 

0200-NW-WRT. 

PRNTR. 

129 MOVE LINE1 TO N-LN1. 
130 MOVE LINE2 TO N-LN2. 
131 MOVE LINE3 TO N-LN3. 
132 WRITE PANT-LINE FROM NEd-LN-1 AFTER ADVANCING 2. 
133 WRITE PRNT-LINE FROM NEW-LN-2 AFTER ADVANCING 1. 
134 WRITE pRNT-LINE FROM NEW-LN-3 AFTER ADVANCING 1. 
135 0200-EXIT. 
136 EXIT. 
137 0210-OLD-WRT. 
138 MOVE LINE1 TO LN1. 
139 MOVE LINE2 TO LN2. 
140 MOVE LINE) TO LN3. 
141 WRITE PSNT-LINE FROM WS-LN-1 AFTER ADVANCING 2. 
142 WRITE RANT-LINE FROM WS-LN-2 AFTER ADVANCING 1. 
143 WRITE PRNT-LINE FROM wS-LN-3 AFTER ADVANCING 1. 
144 0210-EXIT. 
145 EXIT. 
146 
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Program A2 

1 	IDENTIFICATION DIVISION. 
2 	PROGRAM-ID. 
3 
	

PROG-1. 
4 
	

AUTHOR. 
5 
	

JAMES L. BINGHAM. 
6 
	

DATE-WRITTEN. 
7 
	

APRIL 14, 1979. 
8 
9 
	

ENVIRONMENT DIVISION. 
CONE:DURATION SECTION. 

11 
	

SOURCE-CCMPUTER. PRIME. 
12 
	

OBJECO-COMPUTER. PRIME. 
13 
	

INPUT-OUTPUT SECTION. 
la 
	

FILE-CONTROL. 
15 
	

SELECT IN-TRANSACTION ASSIGN TO INPUTO. 
16 
	

SELECT OUTPUT-PAYMENT ASSIGN TO OUTPUTO. 
17 
18 	DATA DIVISION. 
19 
	

FILE :7FCTION. 
20 
21 
	

FD IN-TRANSACTION 
22 
	

RECORD CONTAINS 28 CHARACTERS, 
LABEL RECORDS ARE OMITTED. 

24 
	

DATA RECORD IS TRANSACTION-RECORD. 
25 
	

21 	T:=-ANSACTION-RECORD. 
26 
	

05 ACCT-NUM 
2 7 
	

DS BILLED-Am? 
23 
	

05 PERCENTAGE 
5 ACCT-CLASS 

30 
3 • 	F2 OUTPUT-PAYMENT 
32 
	

RECORD CONTAINS 55 CHARACTERS, 
33 
	

LABEL RECORDS ARE OMITTED. 
34 	DATA RECORD IS OUTPUT-RECORD. 
35 	CI OUTPUT-RECORD 

PIC 9(8). 
PIC 9(5)V99. 
PIC V99. 
PIC X. 

PIC X(55). 

37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

woRKING-STORAGE SECTION. 

01 W-TOTALS-OUTPUT-RECORD. 
05 FILLER 
05 NAME-OF-CLASS 
05 TOTAL-CLASS-PAY 
05 FILLER 

01 W-OUTPUT-RECORD. 
05 FILLER 
05 W-ACCT-NUM 
05 FILLER 
05 W-BILLED-AMT 
05 FILLER 
05 W-PERCENTAGE 
05 FILLER 
05 W-ACCT-CLASS 
05 FILLER 
05 W-PAYMENT 

01 TEMPORARY-ITEMS. 
05 TOTAL-A-PAY 
05 TOTAL-X-PAY 
OS TOTAL-A-PAY 
05 TOTAL-T-PAY 

P/C X(4) VALUE SPACES. 
PIC X(34). 
PIC SSSSSS9.99. 
PIC X(4) VALUE SPACES. 

PIC XXX VALUE SPACES. 
PIC 9(8). 
PIC XXX VALUE SPACES. 
PIC 9(5).99. 
PIC XXX VALUE SPACES. 
PIC .99. 
PIC XXX VALUE SPACES. 
PIC X. 
PIC XXX VALUE SPACES. 
PIC SS5S$9.99. 

PIC 9(6)V99- 
PIC 9(6)V99. 
PIC 9(6)V99. 
PIC 5(6)V99. 



62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
96 
87 
88 
83 
90 
91 
92 
93 
94 
95 
4e.) 

9 7  
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
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05 TOTAL-Z-PAY 
	

PIC 9(6)V99. 
05 PAY-ANT-A 
	

PIC 9(5)V99. 
05 PAY-AMT-X 
	

PIC 9(5)V99. 
05 PAY-AMT-M 
	

PIC 9(5)V99. 
OS PAY-AMT-T 
	

PIC 9(5)V99. 
05 PAY-ANT-Z 
	

PIC 9(5)V99. 

01 ERROR-MESSAGE. 
05 INVALID-DATA-RECORD 	 PIC X(50) 
VALUE 'INVALID DATA ON THIS CARD'. 

01 FLAG-VALUE. 
05 MORE-DATA-REMAINS 	 PIC X VALUE 'Y . . 

88 NO-MORE-DATA-REMAINS 	 VALUE 'N'. 

PROCEDURE DIVISION. 
PROCESS-TRANSACTION. 

OPEN INPUT IN-TRANSACTICN 
OUTPUT OUTPUT-PAYMENT. 

MOVE ZEPOES 70 TOTAL-A-PAY, TOTAL-X-PAY, TOTAL-M-PAY. 
TOTAL-T-PAY, TOTAL-Z-PAY. 

READ IN-TRANSACTION 
AT END 	'N' TO MORE-DATA-REMAINS. 

PERFORM CHECK-DATA UNTIL MCRE-DATA-REMAINS 	'N'. 
PERFORM WRITE-OUTPUT-TOTALS. 	. 
CLOSE IN-TRANSACTION 

OUTPUT-PAYMENT. 
STOP RJN. 

CHECK-DATA. 
IF 	ACCT-NUM 	IS NUMERIC 

AND BILLED-ANT IS NUMERIC 
AND PERCENTAGE 75 NUMERIC 
AND (ACCT-CL,-.SS - 'A' OR 

ACCT-CLASS 	•x' OR 
ACCT-CLASS 	'M' OR 
ACCT-CLASS • 'T' OR 
ACCT-CLASS - 'Z') 

PERFORM PROCESS-ONE-TRANSACTION 
ELSE 

WRITE OUTPUT-RECORD FROM ERROR-MESSAGE. 
READ IN-TRANSACTION 

AT END MOVE 'N' TO MORE-DATA-REMAINS. 

PROCESS-ONE-TRANSACTION. 
MOVE ACCT-NUN 	TO W-ACCT-NUM. 
MOVE BILLED-AMT TO 14-BILLED-AMT. 
MOVE PERCENTAGE TO U- PERCENTAGE. 
MOVE ACCT-CLASS TO W-ACCT-CLASS. 

IF ACCT-CLASS m 'A' OR ACCT-CLASS - 'X' 
COMPUTE PERCENTAGE a 1.00 - PERCENTAGE 
IF ACCT-CLASS 	'A' 

MULTIPLY BILLED-AMT BY PERCENTAGE 
GIVING PAY-AMT-A ROUNDED 

ADD PAY-ANT-A TO TOTAL-A-PAY 
MOVE PAY-AMT-A TO W-PAYMENT 

ELSE 
MULTIPLY BILLED-ANT BY PERCENTAGE 

GIVING PAY-ANT-X ROUNDED 
ADD PAY-AMT-X TO TOTAL-X-PAY 
MOVE PAY-AMT-X TO U-PAYMENT. 

IF ACCT-CLASS a 1 1,1° 



Appendix A 	 A-6 

125 	 MULTIPLY BILLED—ANT BY PERCENTAGE 
127 	 GIVING PAY—AMT—M ROUNDED 
128 	 ADD PAY—AMT—M TO TOTAL—M—PAY 
129 	 MOVE PAY—AMT—M TO W—PAYMENT. 
130 
131 	IF ACCT—CLASS ■ 'T' 
132 	 MOVE BILLED—ANT TO PAY—AMT—T 
133 	 ADD PAY—AMT—T TO TOTAL—T—PAY 
134 	 MOVE PAY—At, T—T TO W—PAYMENT. 
135 
736 	IF ACCT—CLASS ■ '2' 
137 	 MOVE BILLED—AMT TO PAY—AMT—Z 
138 	 ADD PAY—ANT-2 TO TOTAL—Z—PAY 
139 	 MOVE PAY—AMT—Z TO W—PAYMENT. 
140 
141 	WRITE OUTPUT—RCCORD FROM W—OUTPUT—RECORD. 
142 
143 	WRITE—OUTPUT—TOTALS. 
144 	MOVE TOTAL—A—PAY TO TOTAL—CLASS—PAY. 
145 	MOVE ' TOTAL AMOUNT FOR CLASS A: ' TO NAME—OP—CLASS. 
146 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD. 
14' 
148 	MOVE TOTAL--X—PAY TO TOTAL—CLASS—PAY. 
149 	MOVE ' TOTAL AMOUNT FOR CLASS X: ' TO NAME—OF—CLASS. 
150 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD. 
151 
152 	MOVE TOTAL—M—PAY TO TOTAL—CLASS—PAY. 
:53 	MOVE ' TOTAL -MOUNT FOR CLASS M: ' TO NAME—OF—CLASS. 
154 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD. 
155 
1c6 	MOVE TOTAL—T—PAY TO TOTAL—CLASS—PAY. 
15' 	MOVE ' TOTAL AMOUNT FOR CLASS T: ' TO NAME—OF—CLASS. 
159 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD. 
153 
16) 	MOVE TOTAL—Z—PAY TO TOTAL—CLASS—PAY. 
1 6 : 	MOVE ' TOTAL AMOUNT FOR CLASS 2: ' TO NAME—OF—CLASS. 
162 	WRITE OUTPUT—RECORD FROM W—TOTALS—OUTPUT—RECORD. 
163 

4' • 
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Program A3 

1 	IDENTIFICATION DIVISION. 
2 	PROGRAM-ID. SAMPLE-4. 
3 	REMARKS. ADAPTED FROM YOURDAN, ET AL. 'LEARNING TO PROGRAM 
4 	 IN STRUCTURED COBOL.' 
5 	ENVIRONMENT DIVISION. 
fi 	CONFIGURATION SECTION. 
7 	SOURCE-COMPUTER. PRIME. 
8 	OBJECT-COMPUTER. PRIME. 
9 	INPUT-OUTPUT SECTION. 
10 	FILE-CONTROL. 
11 	SELECT APPLICATION-CARDS-FILE ASSIGN TO INPUTO. 
12 	SELECT PROFILE-LISTING 	ASSIGN TO OUTPUTO. 
13 
14 	DATA DIVISION. 
15 	FILE SECTION. 
16 
17 	FD APPLICATION-CARDS-FILE 
18 	RECORD CONTAINS 80 CHARACTERS 
19 	LABEL RECORDS ARE OMITTED 
20 	DATA RECORD IS NAME-ADDRESS-AND-PHONE-IN. 
21 	01 NAME-ADDRESS-AND-PHONE-IN. 
22 	05 NAME-IN 	 PIC X(20). 
23 	05 ADDRESS-IN 	 PIC X(40). 
2e 	05 PHONE-IN 	 PIC X(11).  
25 	05 FILLER 	 PIC X(3)•  
25 	05 ACCT-NUM-INI 	 PIC 9(6). 
27 
28 	FD PROFILE-LISTING 
29 	RECORD CONTAINS 132 CHARACTERS 
30 	LABEL RECORDS ARE OMITTED 
3) 	DATA RECORD IS PRINT-LINE-OUT. 
32 	01 PRINT-LINE-OUT 	 PIC X(132). 
33 
3d 	WORKING-STORAGE SECTION. 
35 	01 COMMON-WS. 
36 	05 CARDS-LEFT 	 PIC X(3). 
37 	01 CREDIT-INFORMATION-IN. 
38 	05 CARD-TYPE-IN 	 PIC X. 
39 	05 ACCT-NUM-IN2 	 PIC 9(6). 
40 	05 FILLER 	 PIC X. 
41 	CS CREDIT-INFO-IN 	 PIC X(22). 
42 	05 FILLER 	 PIC X(50). 
43 	01 APPLICATION-DATA-WS81. 
44 	05 NAME-AND-ADDRESS-WS. 
45 	 10 NAME-WS 	 PIC X(20). 
46 	 10 ADDRESS-WS. 
47 	 15 STREET-WS 	 PIC X(20).  
48 	 15 CITY-WS 	 PIC X(13). 
49 	 15 STATE-WS 	 P/C XX. 
50 	 15 ZIP-WS 	 PIC X(5). 
51 	05 PHONE-WS. 
52 	 10 AREA-CODE-WS 	 PIC 9(3).  
53 	 10 NUMBR-WS 	 PIC X(8). 
54 	05 FILLER 	 PIC X(3).  
55 	OS ACCT-NUM-WS 	 PIC 9(6).  
56 	05 CREDIT-INFO-WS. 
57 	 10 SEX-WS 	 PIC X. 
58 	 10 FILLER 	 PIC X. 
59 	 10 MARITAL-STATUS-WS PIC X. 
60 	 10 prr.LER  PIC X. 
61 	 10 NUMBER-DEPENS-WS 	 PIC X. 
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62 
63 
64 
65 
56 
67 
68 
69 
70 
71 

10 	FILLER 
10 	INCOME-HUNDREDS-WS 
10 	FILLER 
10 	YEARS-EmPLOYED-WS 
IO 	FILLER 
10 	OWN-OR-RENT-WS 
10 	FILLER 
10 	MORTGAGE-OR-RENTAL-WS 
10 	FILLER 
10 	OTHER-PAYMENTS-WS 

PIC X. 
PIC 9(3). 
PIC X. 
PIC 99. 
PIC X. 
PIC X. 
PIC X. 
PIC 9(3). 
PIC X. 
PIC 9(3). 

72 01 DISCR-INCOME-CALC-FIELCS-NSC8. 
73 05 	ANNUAL-INCOME-WS PIC 	9(5). 
, 4 05 	ANNUAL-TAX-WS PIC 	9(5). 
75 05 	TAX-RATE-WS PIC 9V99 	VALUE 0.25. 
76 05 	MONTHS-IN-YEAR PIC 99 	VALUE 12. 
77 05 	MONTHLY-NET-INCOME-WS PIC 9(4). 
78 05 	MONTHLY-PAYMENTS-WS PIC 	9(4). 
79 05 	DISCR-INCOME-WS PIC 	S9(3). 
80 
81 01 LINE-1-4SB3. 
82 05 	FILLER PIC X(5) 	VALUE SPACES. 
83 05 	NAME-L1 PIC 	X(20). 
S4 05 	FILLER P/C 	X(1I) 
85 VALUE 	' 	PHONE 	('. 
86 05 	AREA-CODE-L1 PIC 	9(3). 
87 05 	FILLER PIC XX 	VALUE 	') 
99 05 	NUMBR-L1 PIC 	X(8}. 
99 05 	FILLER PIC X(3) 	VALUE SPACES. 
90 05 	SEX-L1 PIC 	X(5). 
91 05 	FILLER PIC X(9) 	VALUE SPACES. 
92 05 	FILLER PIC 	X(14) 
93 VALUE 	'INCOME 	S' 
?4 05 	INCOME-HUNDREDS-L1 PIC 	9(3). 
95 05 	FILLER PIC 	X(28) 
96 VALUE 	'00 	PER YEAR; 	IN THIS EMPLOY '. 

05 	YEARS-EMPLOYED-L1. 
98 10 	YEARS-L1 PIC XX. 
99 10 	DESCN-L1 P/C X(16). 
100 01 LINE-2-WEB3. 
101 05 	FILLER PIC X(5) VALUE SPACES. 
102 05 	STREET-L2 PIC 	X(20). 
103 05 	FILLER P/C X(27) 	VALUE SPACES. 
104 75 	MARITAL-STATUS-L2 PIC 	X(8). 
105 05 	FILLER PIC X(7) 	VALUE SPACES. 
106 05 	OUTGO-DESCN PIC 	X(I6). 
107 05 	MORTCAGE-OR-RENTAL-L2 PIC 	9(3). 
108 05 	FILLER PIC 	X(11) 
109 VALUE 	' 	PER MTH 	'. 
110 05 	FILLER PIC X(22) 
111 VALUE 	'DISCRETIONARY INCOME 8'. 
112 05 	DISCR-INCOME-L2 PIC 9(3). 
113 05 	FILLER PIC X(9) 
114 VALUE ' 	PER MTH 	1 . 
115 01 LINE-3-WSB3. 
115 05 	FILLER PIC X(5) VALUE SPACES. 
117 05 	CITY-L3 PIC X(13). 
118 05 	FILLER PIC X VALUE SPACE. 
119 05 	STATE-L3 PIC XX. 
120 05 	FILLER PIC X VALUE SPACE. 
121 05 	ZIP-L3 P/C X(5). 
122 05 	FILLER PIC X(7) 	VALUE ' 	A/C: 
123 35 	ACCT-NUM-L3 PIC 9(6). 
124 05 	FILLER PIC X(12) 	VALUE SPACES. 
125 NUMBER-DEPTN5-L3 PIC 9. 

'. 
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126 	OS FILLER 	 PIC X(14) 
127 	 VALUE ' DEPENDENTS 
128 	05 FILLER 	 PIC X(16) 
129 	 VALUE 'OTHER PAYMENTS S'. 
130 	05 OTHER-PAYMENTS-L3 	 PIC 9(3). 
131 
132 	PROCEDURE DIVISION. 
133 	AO-MAIN-BODY. 
134 	PERFORM AI-INITIALIZATION. 
135 	PERFORM A2-PRINT-PROFILES 
136 	 UNTIL CARDS-LEFT ■ 'NO '. 
137 	PERFORM A3-END-OF-JOB. 
138 	STOP RUN. 
139 
140 	A1-INITIALIZATION. 
141 	OPEN INPUT 	APPLICATION-CARDS-FILE 
142 OUTPUT 	PROFILE-LISTING. 
143 *** USELESS INITIALIZATIONS HAVE BEEN COMMENTED OUT 
144 *** MOVE ZEROES TO ANNUAL-INCOME-WS. 
145 *** MOVE ZEROES TO ANNUAL-TAX-WS. 
146 *** MOVE ZEROES TO MONTHLY-NET-INCOME-WS. 
147 *** MOVE ZEROES TO MONTHLY-PAYMENTS-WS. 
148 * 0 * MOVE ZEROES TO DISCR-INCOME-WS. 
149 	MOVE 'YES' TO CARDS-LEFT. 
150 	READ APPLICATION-CARDS-FILE 	• 
151 	 AT END MOVE 'NO ' TO CARDS-LEFT. 
152 * THE FIRST CARD OF A PAIR IS NOW IN THE BUFFER. 
153 
154 	A2-PRINT-PROFILES. 
155 	PERFORM 01-GET-A-PAIR-OF-CARDS-INTO-WS. 
156 	PERFORM 02-CALC-DISCRETNRY-INCOME. 
157 	PERFORM 83-ASSEMBLE-PRINT-LINES. 
158 	PERFORM 64-WRITE-PROFILE. 
159 
160 	A3-END-OF-308. 
161 	CLOSE APPLICATION-CARDS-FILE 
162 	 PROFILE-LISTING. 
163 
164 	81-GET-A-PAIR-OF-CARDS-INTO-WS. 
165 	MOVE NAME-IN TO NAME-WS. 
166 	MOVE ADDRESS-IN TO ADDRESS-WS. 
167 	MOVE PHONE-IN TO PHONE-WS. 
168 	MOVE ACCT-NUM-IN1 TO ACCT-NUM-WS. 
169 	READ APPLICATION-CARDS-FILE INTO CREDIT-INFORMATION-IN 
170 *** 	AT END MOVE 'NO ' TO CARDS-LEFT. 
171 	 AT END MOVE ' 	*•* MISSING SECOND CARD OF PAIR *•* 1  
172 	 TO PRINT-LINE-OUT 
173 	 WRITE PRINT-LINE-OUT AFTER ADVANCING 2 LINES 
174 	 PERFORM A3-END-OF-JOB 
175 	 STOP RUN. 
176 • THE SECOND CARD OF THE PAIR IS NOW IN THE BUFFER. 
177 	MOVE CREDIT-INFO-IN TO CREDIT-INFO-WS 
178 	READ APPLICATION-CARDS-FILE 
179 	 AT END MOVE 'MO ' TO CARDS-LEFT. 
180 • THE FIRST CARD OF THE NEXT PAIR IS NOW IN THE BUFFER. 
181 
182 	82-CALC-DISCRETNRY-INCOME. 
183 	COMPUTE ANNUAL-INCOME-44B ■ INCOME -HUNDREDS-WS • 100. 
184 	COMPUTE ANNUAL-TAX-44S 	■ ANNUAL- INCOME-WS • TAX-RATE-WS. 
185 	COMPUTE MONTHLY-NET-INCOME-WS ROUNDED 
186 	 • (ANNUAL../NCOME-148 - ANNUAL-TAX-WS) / MONTHS-IN-YEAR. 
187 	COMPUTE MONTHLY-PAYMENTS-WS • MORTGAGE-OR-RENTAL-WS 
1A8 	 4. OTHER-PAYMENTS-WS. 
199 	COMPUTE DISCR-INCOME-WS MONTHLY-NET - INCOME-WS 
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190 	 MONTHLY-PAYMENTS-WS 

191 	 ON SIZE ERROR MOVE 999 TO DISCR-INCOME-WS. 
192 • 	DISCRETIONARY INCOMES OVER S999 PER MONTH ARE SET AT S999. 
193 
194 	B3-ASSEMBLE-PRINT-LINES. 
195 	MOVE NAME-WS TO NAME-L1. 
196 	MOVE STREET-WS TO STREET-L2. 
197 	MOVE CITY-WS TO CITY-L3. 
198 	MOVE STATE-WS TO STATE-L3. 
199 	MOVE 2IP-WS TO ZIP-L3. 
200 	MOVE AREA-CODE-WS TO AREA-CODE-LI. 
201 	MOVE NUMBR•WS TO NUM8R-L1. 
202 	MOVE ACCT-NUM-WS TO ACCT-NUM-L3. 
203 	IF SEX-WS .6 'M' MOVE 'KALE ' TO SEX-L1. 
204 	 IF SEX-WS ■ 'F' MOVE 'FEMALE' TO SEX-L1. 
2C5 	IF MARITAL-STATUS-US a 'S' MOVE 'SINGLE ' 
206 	 TO MARITAL-STATUS-L2. 
207 	IF MARITAL-STATUS-WS ■ 'M' MOVE 'MARRIED ' 
208 	 TO MARITAL-STATUS-L2. 
209 	IF MARITAL-STATUS-WS ■ '0' MOVE 'DIVORCED' 
210 	 TO MARITAL-STATUS-L2. 
211 	IF MARITAL-STATUS-WS ■ 'W' MOVE 'WIDOWED ' 
212 	 TO MARITAL-STATUS-L2. 
213 	MOVE NUMBER-DEPEW7-WS TO NUMBER-DEPENS-L3. 
214 	MOVE INCOME-HUNDREDS-WS TO INCOME-HUNDREDS-LI. 
215 	IF YEARS-EMPLOYED-WS IS EQUAL TO 0 
216 	 MOVE 'LESS THAN 1 YEAR' TO YEARS-EMPLOYED-L1 
217 	ELSE 
213 	 MOVE YEARS-EMPLOYED-WS TO YEARS-L1 
219 	 MOVE ' YEARS 	' TO DESCN-L1. 
220 	IF OWN-OR-RENT-WS . '0' MOVE 'MORTGAGE: 	S' 
221 	 TO OUTGO-DESCN. 
222 	TF OWN-OR-RENT-WS 	°R' MOVE 'RENTAL: 	 8' 
223 	 TO OUTGO-DESCN. 
224 	MOVE MORTGAGE-CR-RENTAL-WS TO MORTGAGE-OR-RENTAL-L2, 
225 	MOVE OTHER-PAYMENTS-WS TO OTHER-PAYMENTS-L3. 
226 	MOVE DI:SCR-INCOME-WS TO DISCR-INCOME-L2. 
227 
228 	94-WRITE-PROFILE. 
223 "* MOVE SPACES TO PRINT-LINE-OUT. 
230 	WRITE PRINT-LINE-OUT FROM LINE-1.44S133 
231 	 AFTER ADVANCING 4 LINES. 
232 "s MOVE SPACES TO PRINT-LINE-OUT. 
223 	WRITE PRINT-LINE-OUT FROM LINE-2-W583 
234 	 AFTER ADVANCING 1 LINES. 
235 *** MOVE SPACES TO PRINT-LINE-OUT. 
236 	WRITE PRINT-LINE-OUT Fncm LINE-3-WSB3 
237 	 AFTER ADVANCING I LINES. 
238 
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Program A4 

1 	IDENTIFICATION DIVISION. 
2 	PROGRAM-ID. SRMFREP. 
3 	AUTHOR. R A OVERSEER. 
4 	REMARKS. THIS PROGRAM IS USED TO PRODUCE THE STATUS REPORTS 
5 	 BY DEPARTMENT, FOR ALL OF THE STUDENTS RECORDED IN 
6 	 THE SRMF. 
7 

ADAPTED TO THE COBCL MUTATION SYSTEM BY ALLEN ACRES. 
9 
10 	 ERRORS DISCOVERED: 
11 
) 2 	 (1) ERRORS IN THE INPUT FILE SETUP, CHECKED FOR 
13 	 IN THE PROGRAM, CAUSE REFERENCES TO UNDEFINED 
14 	 DATA, PARTICULARLY LINE-COUNT. CORRECTED WITH 
15 	 A VALUE CLAUSE. 
16 	ENVIRONMENT DIVISION. 
17 	CONFIGURATION SECTION. 
18 	SOURCE-COMPUTER. CABS. 
19 	OBJECT-COMPUTER. CMS. 
20 	SPECIAL-NAMES. CC1 IS TOP-OF-PACE. 
21 	INPUT-OUTPUT SECTION. 
22 	FILE-CONTROL. 
23 	 SELECT MASTER ASSIGN TO INPUTO. 
24 	SELECT PRINT-FILE ASSIGN TO OUTPUTO. 
25 
26 	DATA DIVISION. 
27 	FILE SECTION. 
28 	FD MASTER 
29 	RECORD CONTAINS 141 CHARACTERS, 
30 	LABEL RECORDS ARE STANDARD, 
31 	DATA RECORD IS ITEM. 
32 	Cl ITEM. 
33 	02 SOC-SEC-TN. 
34 	 03 SOC-SEC-IN-1 	 PIC X(3). 
35 	 03 SOC-SEC-IN-2 	 PIC X(2)• 
36 	 03 SOC-SEC-IN-3 	 PIC X(4). 
37 	02 NAME-IN 	 PIC X(5). 
3d 	02 ADDR-IN-1 	 PIC X(5). 
39 	02 ADDR-IN-2 	 PIC X(5)• 
40 	02 MAJOR-IN 	 PIC X(4). 
41 	02 STATUS-IN 	 PIC X(1). 
42 	02 NO-COURSES 	 PIC 99. 
43 	02 COURSE-ENTRY OCCURS 11 TIMES. 
44 	 03 DEPT-OF? 	 PIC X(2)• 
45 	 03 COURSE-NO 	 PIC X(2). 
46 	 03 CREDITS 	 PIC 99. 
47 	 03 SEMESTER 	 PIC X(1)• 
48 	 03 YEAR 	 PIC X(2). 
49 	 03 GRADE 	 PIC X(1). 
50 	FD PRINT-FILE 
51 	RECORD CONTAINS 89 CHARACTERS 
52 	LABEL. RECORDS ARE OMITTED 
53 	DATA RECORD IS PRINT-BUFF. 
54 	01 PRINT-.801" 	 PIC X(89). 
55 
56 	WORXINGSTORACE SECTION. 
57 	77 CND-ALL 	 PIC 99. 
58 	77 MM.-MARKER 	 PIC 99. 
59 	77 I"INDEX 	 PIC 9. 
60 	77 POINTS 	 PIC 999. 
61 	77 CR-HRS 	 PIC 999. 
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62 
63 
64 
65 

77 
77 
77 
77 

INCR 
C-INDEX 
PAGE-NO 
LINE-COUNT 

PIC 
PIC 
PIC 
PIC 

99. 
99. 
999 VALUE 	IS 1. 
99 	VALUE ZERO. 

66 77 SAVE-KEY PIC X(4). 
67 77 TOT-NO-RECORDS PIC 9999999 VALUE IS O. 
68 77 SUB-TOT-NO PIC 9999999. 
69 
70 01 HEADER. 
71 02 	FILLER PIC X(14). 
72 02 	COLLEGE PIC X(30). 
73 02 	DATE-IN PIC X(8). 
74 01 TRAILER. 
75 02 	FILLER PIC X(49). 
76 02 	NO-RECORDS PIC 9999999. 
77 01 PRINT-LINE. 
78 02 	FILLER PIC X(1). 
79 02 	SOC-SEC-OUT. 
80 02 	SOC-SEC-01 PIC X(3). 
81 03 	SOC-SEC-Fl PIC X(1). 
82 03 	SOC-SEC-72 PIC X(2). 
93 03 	SOC-SEC-F2 PIC X(I). 
84 03 	SOC-SEC-03 PIC X(4). 
85 02 	FILLER PIC X(2). 
86 02 	NAME-ADDR PIC X(5). 
87 02 	FILLER PIC X(1). 
88 02 	MAJOR-O PIC X(4). 
89 02 	FILLER P/C X(1). 
0 02 	STATUS-0 PIC X(1). 
91 02 	FILLER PIC X(1). 
92 02 	GPA PIC 9.99. 
93 02 	FILLER PIC X(2). 
94 02 	COURSE-0 	OCCURS 3 TIMES. 
95 03 	C-DEPT PIC X(2). 
96 03 	FILLER PIC X(I). 
97 02 	C-NO PIC X(2). 
99 03 	FILLER P/C X(I). 
99 03 	CREDITS-0 PIC Z9. 
100 03 	FILLER PIC X(1). 
101 03 	SEMESTER-0 PIC X(1). 
102 03 	DASH-0 PIC X(I). 
103 03 	YEAR-0 PIC X(2). 
104 03 	FILLER PIC X(2). 
105 03 	GRADE-0 PIC X(1). 
106 03 	FILLER PIC X(2). 
10 7  02 	FILLER PIC X(2). 
108 01 PACE-HEADER. 
109 02 	FILLER P/C X(4) 	VALUE SPACES. 
110 02 	DATE-0 PIC X(8). 
111 02 	FILLER PIC X(17) 	VALUE SPACES. 
112 02 	COLL-O PIC X(30). 
113 02 	FILLER PIC X(17) 	VALUE SPACES. 
114 02 	FILLER PIC X(5) 	VALUE IS 	'PAGE'. 
115 02 	PAGE-0 PIC ZZ9. 
116 02 	FILLER PIC X(5) 	VALUE SPACES. 
117 01 COL-HDR-1. 
118 02 	FILLER PIC X(20) 
119 VALUE 	SOC SEC N 6 	A 	'. 
120 02 	FILLER PIC X(10) VALUE 'MAJ ST CPA'. 
121 02 	FILLER PIC X(9) VALUE SPACES. 
122 02 	FILLER PIC X(6) 	VALUE 'COURSE'. 
123 02 	FILLER PIC X(12) 	VALUE SPACES. 
124 02 	FILLER PIC X(6) 	VALUE 'COURSE'. 
125 02 	FILLER PIC X(12) 	VALUE SPACES. 



Appendix A 	
A-13 

126 	02 FILLER 	 PIC X(5) VALUE 'COURSE'. 
127 	02 FILLER 	 P/C X(8) VALUE SPACES. 
129 	01 COL-HDR-2. 
129 	02 FILLER 	 PIC X(33) VALUE SPACES. 
130 	02 FILLER 	 PIC X(18) 
131 	 VALUE ' NMBR CR S-YR GR I. 
132 	02 PILLER 	 PIC X(18) 
133 	 VALUE ' NMBR CR S-YR GR I. 
134 	02 FILLER 	 PIC X(20)  
135 	 VALUE ' NMBR CR S-YR CR 	'. 
136 	01 SUB-TOT-LINE. 
137 	02 FILLER 	 PIC X(4) VALUE SPACES. 
138 	02 FILLER 	 PIC X(8) 
139 	 VALUE IS 'TOTAL 
140 	02 SUB-TOT 	 PIC 2227229. 
141 	02 FILLER 	 PIC X(70) VALUE SPACES. 
142 	PROCEDURE DIVISION. 
143 • MAIN-PROGRAM SECTION. 
144 	START. 
145 	OPEN INPUT MASTER OUTPUT PRINT-FILE. 
146 	READ MASTER INTO HEADER AT END CO TO EOF. 
147 	IF SOC-SEC-IN IS A SPACES GO TO GOT-HEADER. 
148 	MOVE ' NC HEADER FOUND ON THE MASTER FILE ••• 1  TO PRINT-LINE. 
149 	PERFORm PRINT2-ROUTINE THRU PRINT2-EXIT. 
150 	CO TO CLOSE-FILES. 
151 	COT-HEADER. 
152 	MOVE COLLEGE TO COLL-O. 
153 	MOVE DATE-IN TO DATE-O. 
154 	READ MASTER AT END CO TO EOF. 
155 	IF SOC-SEC-IN IS NOT 	'999999999' GO TO SAVE-DEPT-NAME. 
156 	MOVE ' NC ITEM RECORDS IN MASTER FILE ••I•' TO PRINT-LINE. 
157 	 PERFORM PRINT2-ROUTINE THRU PRINT2-EXIT. 
158 	GO TO CLOSE-FILES. 
159 	SAVE-DEPT-NAME. 
167 	MOVE MAJOR-IN TO SAVE-KEY. 
161 • NAME OF DEPARTMENT IS SUBTOTAL KEY. BREAK OCCURS WHENEVER 
162 • FIELD IS DIFFERENT ON TWO CONSECUTIVE RECORDS. 
163 	MOVE 0 TO SUB-TOT-NO. 
164 	MOVE 1 TO PAGE-NO. 
1c5 • PAGE-NO IS RESET TO 1 FOR EACH DEPARTMENT REPORT. 
166 	MOVE 16 TO LINE-COUNT. 
167 	MCVE SPACES TO PRINT-LINE. 
168 
169 	ITEM-LOOP. 
170 	PERFORM ITEM-ROUTINE THRU ITEM-EXIT. 
171 	ADD 1 TO SUB-TOT-NO. 
172 	READ MASTER INTO TRAILER AT END GO TO EOF. 
173 	IF MAJOR-IN IS ■ SAVE-KEY GO TO ITEM-LOOP. 
174 
175 	DO-SUB-TOTALS. 
176 	MOVE SUB-TOT-NO TO SUB-TOT. 
177 	 WRITE PRINT-BUFF FROM SUB-TOT-LINE AFTER ADVANCING 2 LINES. 
178 	ADD SUB-TOT-NO TO TOT-NO-RECORDS. 
179 	IF SOC-SEC-IN IS NOT ■ '999999999' GO TO SAVE-DEPT-NAME. 
180 	MOVE TOT-NO-RECORDS TO SUB-TOT. 
161 	WRITE PRINT-BUFF FROM SUB-TOT-LINE 
182 	 AFTER ADVANCING TOP-OF-PACE. 
183 	IF NO-RECORDS IS • TOT-NO-RECORDS GO TO CLOSE-FILES. 
184 	MOVE ' *•• MASTER TRAILER VERIFICATION RAS FAILED • 104" 
185 	 TO PRINT-LINE. 
136 	PERFORM pRINT2-ROUTINE TSRU PRINT2-EXIT. 
187 	CLOSE-FILES. 
188 	CLOSE MASTER PRINT-FILE. 
189 	STOP RUN. 
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190 	EOF. 
191 	MOVE ' EOF CN MASTER FILE •••• 1  TO PRINT-LINE. 

192 	PERFORM PRINT2-ROUTINE TNRU PRINT2-EXIT. 
193 	GO TO CLOSE-FILES. 
194 
195 • SUB-ROUTINE SECTION. 
195 
197 	PRINT1-ROUTINE. 
198 	IF LINE-COUNT IS < 16 GO TO NORMAL-PRINT. 
199 	PERFORM HEADER-ROUTINE THRU HEADER-EXIT. 
200 	WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING 2 LINES. 
2C1 	ADD 2 TO LINE -COUNT. 
202 	CO TO COMMON-POINT. 
203 	NORMAL - PRINT. 
204 	WRITE PRINT-BUFF FROM PRINT- LINE AFTER ADVANCING 1 LINES. 
205 	ADD 1 TO LINE-COUNT. 
205 	COMMON-POINT. 
207 	MOVE SPACES TO PRINT-LINE. 
208 	PRINT1-EXIT. EXIT. 
209 
210 	PRINT2-ROUTINE. 
211 	IF LINE-COUNT IS > 14 
212 	 PERFC ,'=M HEADER-ROUTINE THRU HEADER-EXIT. 
213 	WRITE PRINT-BUFF FROM PRINT-LINE AFTER ADVANCING 2 LINES. 
214 	ADD 2 TO EIN:1-COUN - . 
215 	MOVE SPACES TO PRINT-LINE. 
215 	PRINT2-EXIT. 	EXIT. 
21 7  
218 	HEADER-ROUTINE. 
219 	MOVE PAGE-NO TO PACE-0. 
220 	WRITE PR:NT-BUFF FROM FACE-HEADER 
221 	 AFTER, ADVANCING TOP-CF-PACE. 
222 	ADD 1 TO PAGE-NO. 
223 	WRITE PRNT-BUFF FROM CDL-HDR-1 AFTER ADVANCING 2 LINES. 
224 	WRITE PRINT-DUFF FROM COL-HDR-2 AFTER ADVANCING 1 LINES. 
225 	MOVE 0 TO LINE-COUNT. 
225 	HEADER-EXIT. EXIT. 
227 
228 	ITEM-ROUTINE. 
229 	MOVE SOO-SEC-IN-1 TO SOC-SEC-01. 
230 	MOVE SOC-SEC-IN -2 TO SOC-SEC-02. 
231 	MOVE SOO-SEC-IN-3 TO SOC-SEC-03. 
232 	MOVE '-' TO SOC-SEC-Fl. 
233 	MOVE '-' TO SOC-SEC-F2. 
234 	MOVE NAME-IN TO NAME-ACDR. 
235 	MOVE MAJOR-1N 70 MAJOR-O. 
236 	MOVE STATUS-IN TO STATUS-0 
237 • CALCULATE THE GPA. 
238 	MOVE 0 TO POINTS. 
239 	MOVE 0 _3 OR-HRS. 
240 	 PERFORM GPA- ACCUM THRU GPA-EXIT VARYING C-INDEX 
241 	 FROM 1 BY 1 UNTIL C-INDEX IS > NO-COURSES. 
242 	IF CR-HRS IS *. 0 GO TO NO-GPA. 
243 	DIVIDE POINTS BY CR-HRS GIVING OPA ROUNDED. 
244 • 	IN THE FOLLOWING THESE INDICES ARE USED: 
245 • 	END-ALL: THE INDEX OP THE FIRST UNUSED COURSE 
244 • 	 ENTRY! THIS MARKS THE END OP THE COURSES 
247 • 	 TO PRINT; 
248 • 	 CND-MARKER: WHEN FILL-LINE IS CALLED END-MARKER 
249 • 	 POINTS AT THE FIRST COURSE ENTRY PAST THE 
250 • 	 LAST MIRY TO BE PUT INTO THE LINE1 
251 • 	C - INDEX: WHEN FILL-LINE IS CALLED C-INDEX POINTS 
252 • 	 AT THE FIRST COURSE ENTRY WHICH GETS 
253 • 	 PUT INTO THE PRINT-LINE: THUS. IF C-INDEX 
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254 • 	 IS EQUAL TO END-MARKER, NO COURSE ENTRIES 
255 • 	 GET PUT INTO THE PRINT LINE; 
256 • 	 P-INDEX: INDEXES THE SPOT IN THE PRINT-LINE 
257 • 	 WHERE THE ENTRY POINTED TO BY C-INDEX 
258 • 	 IS TO BE MOVED; THUS, ITS RANGE IS 1 TO 3. 
269 
260 	NO-GPA. 
261 	MOVE 1 TO C.-INDEX. 
262 	ADD 1 NO-COURSES GIVING END-ALL. 
263 	MOVE 4 TO END-MARKER. 
264 	IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER. 
265 	PERFORM FILL-LINE THRU FILL-EXIT. 
266 	PERFORM PRINT?-ROUTINE THRU PRINT2-EXIT. 
267 	MOVE ADDR-IN-1 TO NAME-ADDR. 
268 	MOVE 7 TO END-MARKER. 
269 	 IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER. 
270 	PERFORM PILL-LINE THRU FILL-EXIT. 
271 	 PERFORM PRINT1-ROUTINE THRU PRINT1-EXIT. 
272 	MOVE ADDR-IN-2 TO NAME-ADDR. 
273 	MOVE 10 TO END-MARKER. 
274 	COURSE-LOOP. 
275 	IF END-ALL IS < END-MARKER MOVE END-ALL TO END-MARKER. 
276 	 PERFORM FILL--LINE THRU FILL-EXIT. 
277 	PERFORM PRINT1-ROUTINE THRU PRINTI-EXIT. 
278 	 IF C-INDEX 	END-ALL GO TO ITEM-EXIT. 
279 	 ADD 3 C-INDEX GIVING END-MARKER. 
290 	GO TO COURSE-LOOP. 
281 	ITEM-EXIT. EXIT. 
2 1 2 	FILL-LINE. 
283 	MOVE 1 TO P-INDEX. 
284 	CHECK-END. 
285 	IF C-INDEX IS 	END-MARKER GO TO FILL-EXIT. 
286 	MOVE DEPT-OFF (C-INDEX) TO C-DEPT (P-INDEX). 
297 	MOVE COURSE-NO (C-INDEX) TO C-NO (P-INDEX). 
288 	MOVE CREDITS (C-INDEX) TO CREDITS-0 (P-INDEX). 
289 	MOVE SEMESTER (C-INDEX) TO SEMESTER-0 (P-INDEX). 
290 	MOVE 	TO DASH-0 (P-INDEX). 
291 	MOVE YEAR (O-INDEX) TO YEAR-0 (P.-INDEX). 
292 	MOVE GRADE (C-INDEX) TO GRADE-0 (P-INDEX). 
293 	ADD 1 TO C-INDEX. 
294 	ADD 1 TO P-INDEX. 
295 	GO TO CHECK-END. 
295 	FILL-EXIT. EXIT. 
297 
298 	GPA-ACCUM. 
299 	IF GRADE (C-INDEX) IS NOT • 'A' GO TO NOTA. 
300 	MULTIPLY CREDITS (C-INDEX) BY 4 GIVING INCR. 
301 	GO TO COMMON-ADD. 
302 	NOTA. 
303 	IF GRADE (C-INDEX). IS NOT 	'8' GO TO NOTE. 
304 	MULTIPLY CREDITS (C-INDEX) BY 3 GIVING INCR. 
305 	 GO TO COmMON-ADD. 
306 MOM 
307 	IT GRADE (C-INDEX) IS NOT • 'C' GO TO NOTC. 
308 	MULTIPLY CREDITS (C-INDEX) BY 2 GIVING INCR. 
309 	GO TO COMMON-ADD. 
310 	NOTC. 
311 	IF GRADE (C-INDEX) IS NOT • '0' GO TO NOTD. 
312 	MULTIPLY CREDITS (C-INDEX) BY 1 GIVING INCR. 
313 	GO TO COMMON-ADD. 
314 	NOTD. 
315 	IF GRADE (C-INDEX) IS NOT .1. 'F' GO TO GPA-EXIT. 
316 	MOVE 0 TO INCR. 
317 COMMON-ADD. 
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318 
?19 
320 
321 

ADD INCA TO POINTS. 
ADD CREDITS (C-INDEX) TO CR-HRS. 

CPA-EXIT. EXIT. 

f • 
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Program AS 

1 	IDENTIFICATION DIVISION. 
2 	• 
3 	• 	REPORT CONTAINS THE INPUT DATA ALONG WITH THE 
4 	• 	CURRENT COMMISSION FOR EACH SALESMAN. AT THE 
5 	• 	END OF THIS SINGLE SPACED REPORT THE FOLLOWING 
6 	• 	TOTALS ARE PRINTED: YEAR TO DATE SALES, CUR- 
7 	• 	RENT SALES, CURRENT COMMISSION. 
8 
9 	• 	CURRENT COMMISSION IS CALCULATED AS FOLLOWS: 
10 	 CURRENT-COMMISSION • CURRENT-SALES ° 
11 	• 	 ( COMMISSION-RATE + VOLUME-BONUS + DEPARTMENT-BONUS ) 
12 	• 

13 	• 	WITH DEPARTMENT BONUS DETERMINED AS FOLLOWS: 
14 	• 	DEPT 	BONUS 
15 	• 	 01 	0.1% 
16 	• 	 02 	0.1% 
17 	• 	 04 	0.7% 
18 	• 	 05 	0.6% 
19 	• 	 06 	0.4% 
20 	• 	 07 	0.6% 
21 	• 	 09 	0.4% 
22 	 OTHER 	0.0% 
23 
24 	• 	WITH VOLUME BONUS DETERMINED AS FOLLOWS: 
25 	• 	AVERAGE MONTHLY SALES 	BONUS 
26 	• 	 UNOER SSC') 	 0.0% 
2 7 	 S500 TO 5919.99 	 0.3% 
28 	• 	 $1000 TO 51999.99 	 0.4% 
29 	* 	 OVER 82000 	 0.6% 
30 	• 
31 	• 	WITH AVERAGE MONTHS SALES DETERMINED AS FOLLOWS: 
32 	• 	AVERAGE-MONTHLY-SALES • 
33 	• 	( YEAR-TO-DATE-SALES + CURRENT-SALES ) / MONTHS-EMPLOYED 
34 
35 	PROGRAM-ID. COMMISSION-REPORT. 
36 
37 	AUTHOR. 
38 	DANIEL CASTAGNO,ICS 3400,STUDENT NUMBER 654,PROGRAM 
39 
40 	REMARKS. SLIGHTLY MODIFIED FOR CMS.1 BY A.ACREE. 
41 	 MUTATION TESTING UNCOVERED THE FOLLOWING ERRORS AND 
42 	 INEFFICIENCIES: 
43 	 (1) REPORT HEADER WITH PAGE ADVANCE WAS NOT PRINTED 
44 	 AFTER FULL-PAGE CONDITION RAISED BY INVALID DATA RECORD 
45 	 EXTRA PERFORM INSERTED. 
46 	 (2) DATA ITEMS DEFINED AND NEVER USED -- DELETED. 
47 	 (3) MOVE STATEMENT REPEATED -- SECOND VERSION DELETED. 
48 	 (4) TWO USELESS INITIALIZATIONS DELETED. 
49 
50 
51 	ENVIRONMENT DIVISION. 
52 
53 	CONFIGURATION SECTION. 
54 	SOURCE-COMPUTER. 
55 	CYBER-74. 
56 	OBJECT-COMPUTER. 
57 	CYBER-74. 
58 	SPECIAL-NAMES. 
59 	COl IS TO-TOP-OF-PAGE. 
60 
61 	INPUT-OUTPUT SECTION. 
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FILE—CONTROL. 
SELECT CARD—FILE ASSIGN TO INPUTO. 
SELECT PRINT—FILE ASSIGN TO OUTPUTO. 

62 
63 
64 
65 
66 
	

DATA DIVISION. 
67 
68 
	

FILE SECTION. 
69 
70 
71 
72 
73 
7 4 
75 
	

01 CARD—RECORD. 
32 I—CARD—DATA. 

77 
	

03 I—STORE—NUMBER 
78 
	

03 I—DEPARTMENT 
79 
	

03 I—SALESMAN—NUMBER 
80 
	

03 I—SALESMAN—NAME 
81 
	

03 I—YEAR—TO—DATE—SALES 
32 
	

03 I—CURRENT—SALES 
53 
	

03 I—COMMISSION—RATE 
84 
	

02 I—MONTHS—EMPLOY:0 
85 
	

02 FILLER 
36 
a•-• 
	

FD PRINT—FILE 
88 
	

RECORD CONTAINS 132 CHARACTERS, 
39 
	

LABEL RECORDS ARE OMITTED, 
90 
	

DATA RECORD IS LINE—RECORD. 
31 
92 
	

01 LINE—RECORD 
93 
94 
95 
	

WORKING—STORAGE SECTION. 
95 
97 
	

77 W —DEPARTMENT — BONUS 
98 
	

7 7 w—VOLUME —BONUS 
99 
	

77 w—DEPARTMENT 
100 
	

77 w—STORE—NUMBER 
101 
	

77 w—SALESMAN—NUMBER 
102 
	

77 W—YEAR—TO—DATE—SALES 
103 
	

77 14—CURRENT—SALES 
104 
	

77 W—COMMISSION—RATE 
105 
	

77 W—MONTHS—EMPLOYED 
106 
	

77 W—CURRENT—COMMISSION 
107 
	

77 W—TOTAL—YEAR—TO—DATE—SALES 
108 
	

VALUE 0. 
109 
	

77 W—TOTAL—CURRENT—SALES 
110 
	

VALUE O. 
111 
	

77 W—TOTAL—CURRENT—COMMISSION 
112 
	

VALUE O. 
113 
	

77 W—AVERAGE—MONTHLY—SALES 
114 
	

VALUE O. 
115 
116 
117 6 01 KEY—TO—RECORDS. 
118 
	

02 SALESMAN—NUM 
119 
120 	01 FLAGS. 
121 
	

02 VALID—DATA—FLAG 
122 
	

VALUE 'YES'. 
123 
	

02 MORE—DATA—REMAINS—FLAG 
124 
	

VALUE 'YES'. 
125 

PIC 99. 
PIC XX. 
PIC 999. 
PIC X(20). 
PIC 9(5)V99. 
PIC 9(5)V99. 
PIC V99. 
PIC 99. 
PIC X(35) . 

PIC X(132). 

PIC V999. 
PIC V999. 
PIC XX. 
PIC 99. 
PIC 999. 
PIC 9(5)V99. 
PIC 9(5)V99. 
PIC V99. 
PIC 99. 
PIC 9(4)V99. 
PIC 9(9)V99 

PIC 9(8)V99 

PIC 917)V99 

PIC 9(7)V99 

P/C 999. 

PIC XXX 

PIC XXX 

FD CARD—FILE 
RECORD CONTAINS 80 CHARACTERS, 
LABEL RECORDS ARE OMITTED, 
DATA RECORD IS CARD—RECORD. 
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126 
127 

01 CONSTANTS. 
02 	DEPT. 

128 03 	DEPT-1-0R-2 PIC V999 
129 VALUE 0.001. 
130 03 	DEPT-6-0R-9 PIC V999 
131 VALUE 	0.004. 
132 03 	DEPT-5-0R-7 PIC V999 
133 VALUE 	0.006. 
134 03 	DEPT-4 PIC V999 
135 VALUE 	0.007. 
136 03 	DEPT-OTHER PIC V999 
137 VALUE 	0.000. 
138 02 VOLUMN. 
239 03 	LEVEL-1 PIC V999 
140 VALUE C. 
141 03 	LEVEL-2 PIC V999 
142 VALUE 0.003. 
143 03 	LEVEL-3 PIC V999 
144 VALUE 	0.004. 
145 03 	LEVEL-4 PIC V999 
146 VALUE 	0.006. 
147 
148 01 COUNTERS. 
149 07 	LINE-COUNT PIC 99 
150 VALUE O. 
151 
152 01 FINAL-TOTAL-LINE. 
153 02 	FILLER PIC 	X(10) 
154 VALUE 	' 	TOTAL'. 
155 02 	FILLER PIC 	X(51) 
156 VALUE SPACES. 
157 02 	0-TOTAL-YEAR-TO-DATE-SALES PIC 	Z(9).99. 
152 02 	FILLER P/C XXX 
159 VALUE SPACES. 
160 02 	0-TOTAL-CURRENT-SALES PIC 	Z(8).99. 
161 02 	FILLER PIC 	X(15) 
152 VALUE SPACES. 
153 02 	0-TOTAL-CURRENT-COMMISSION P/C 	Z(7).99. 
164 02 	FILLER PIC X(20) 
165 VALUE SPACES. 
166 
167 01 REPORT-LINE-1. 
168 02 	FILLER PIC 	X(61) 
169 VALUE SPACES. 
170 02 	FILLER PIC X(10) 
171 VALUE , conmissIow. 
172 02 	FILLER PIC X(S0) 
173 VALUE SPACES. 
174 02 	FILLER P/C X(6) 
175 VALUE 	'PACE 	'. 
176 02 	0-PACE-NUMBER ' PIC 999 
177 VALUE O. 
178 02 	FILLER PIC XX 
179 VALUE SPACES. 
180 
181 01 REPORT-LINE-2. 
182 02 	FILLER PIC X(63) 
183 VALUE SPACES. 
184 02 	TILLER PIC X(6) 
185 VALUE 'REPORT'. 
196 02 	PILLER PIC X(63) 
187 VALUE SPACES. 
188 
189 01 HEADING-LINE-1. 
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190 02 	FILLER PIC X(4) 
191 VALUE SPACES. 
192 02 	FILLER PIC X(5) 
193 VALUE 	'STORE'. 
194 02 	FILLER PIC X(4) 
195 VALUE SPACES. 
19; 02 	FILLER PIC X(10) 
197 VALUE 	'7.3EpARTMENT'. 
198 02 	FILLER PIC X(4) 
199 VALUE SPACES. 
200 02 	FILLER PIC X(9) 
201 VALUE 	'SALESMAN'. 
202 02 	FILLER PIC X(9) 
203 VALUE SPACES. 
204 02 	FILLER PIC X(8) 
205 VALUE 	'SALESMAN'. 
206 02 	FILLER P/C X(10) 
207 VALUE SPACES. 
208 02 	FILLER PIC X(12) 
279 VALUE 	'YEAR TO DATE'. 
210 02 	FILLER PIC X(5) 
211 VALUE SPACES. 
212 02 	FILLER PIC X(7) 
213 VALUE 	'CURRENT'. 
214 02 	FILLER PIC X(4) 
215 VALUE SPACES. 
216 02 	FILLER PIC X(10) 
217 VALUE 	'COmmISSION'. 
229 02 	FILLER PIC X(5) 
219 VALUE SPACES. 
220 02 	FILLER PIC X(7) 
221 VALUE 	'CURRENT'. 
222 02 	FILLER PIC X{6) 
227 VALUE SPACES. 
224 02 	FILLER PIC X(6) 
225 VALUE 	'MONTHS'. 
22g 02 	FILLER PIC X(8) 
227 VALUE SPACES. 
28 

229 01 HEADING-LINE-2. 
230 02 	FILLER PIC X(4) 
231 VALUE SPACES. 
232 02 	FILLER PIC X(6) 
233 VALUE 	' NUMBER'. 
234 02 	FILLER PIC X(18) 
235 VALUE SPACES. 
236 02 	FILLER PIC X(6) 
23/ VALUE 'NUMBER' 
238 02 	FILLER PIC X(12) 
239 VALUE SPACES. 
240 02 	FILLER PIC X(4) 
241 VALUE 'NAME'. 
242 02 	FILLER PIC X(16) 
243 VALUE SPACES. 
244 02 	FILLER PIC X(5) 
245 VALUE 	'SALES'. 
246 02 	FILLER PIC X(9) 
247 VALUE SPACES. 
248 02 	FILLER PIC X(5) 
249 VALUE. 	'SALES'. 
250 02 	FILLER PIC X(0) 
251 VALUE SPACES. 
252 02 	FILLER PIC X(4) 
253 VALUE 'RATE'. 
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254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 

02 FILLER 
VALUE SPACES. 

02 FILLER 
VALUE 'COMMISSION'. 

02 FILLER 
VALUE SPACES. 

02 FILLER 
VALUE 'EMPLOYED'. 

02 FILLER 
VALUE SPACES. 

01 VALID-DATA-LINE. 
02 FILLER 

VALUE SPACES. 
02 0-STORE-NUMBER 
02 FILLER 

VALUE SPACES. 
02 0-DEPARTMENT 
02 FILLER 

VALUE SPACES. 
02 0-SALESMAN-NUMBER 
02 FILLER 

VALUE SPACES. 
02 0-SALESMAN-NAME 
02 FILLER 

VALUE SPACES. 
02 0-YEAR-TO-DATE-SALES 
02 FILLER 

VALUE SPACES. 
02 0-CURRENT-SALES 
02 FILLER 

VALUE SPACES. 
C2 0-COMMISSION-RATE 
02 FILLER 

VALUE SPACES. 
02 0-CURRENT-COMMISSION 
02 FILLER 

VALUE SPACES. 
02 0-MCNTBS-EMPLOYED 
02 FILLER 

VALUE SPACES. 

01 INVALID-DATA-LINE. 
02 0-BAD-DATA 	 P/C X(45). 
02 FILLER 	 PIC X(30) 

VALUE ' 	INVALID DATA ON THIS CARD'. 
02 FILLER 	 PIC X(57) 

VALUE SPACES. 

PROCEDURE DIVISION. 

PREPARE-PAYMENT-REPORT. 
OPEN INPUT CARD-PILE 

OUTPUT PRINT-FILE. 
READ CARD-FILE 

AT END MOVE 'NO' TO MORE-DATA-REMAINS-FLAG. 

IF MORE-DATA-REMAINS-FLAG • 'YES' 
PERFORM REPORT-HEADER-OUTPUT 
PERFORM HEADING-OUTPUT 

PIC X(7) 

PIC X(I0) 

PIC X(3) 

PIC X(8) 

PIC X(7) 

PIC X(6) 

• 	
PIC Z9. 
PIC X(9) 

PIC XX. 
PIC X(10) 

PIC ZZ9. 
PIC X(6) 

PIC X(20). 
PIC X(6} 

PIC Z(6).99. 
PIC X(5) 

PIC Z(6).99. 
P/C X( 7 ) 

PIC .99. 
PIC X(7) 

PIC Z(5).99. 
PIC X(8) 

PIC 29. 
P/C X(10) 
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3I8 	 PERFORM COMMISSION-CALCULATION 
1 19 	 UNTIL MOR•-DATA-REMAINS-FLAG + 'NO '. 
320 
321 	PERFORM CALCULATED-TOTALS-OUTPUT. 
322 	CLOSE CARD-FILE 
323 	 PRINT-FILE. 
324 	STOP RUN. 
325 
326 
327 • CHECK VARIABLES TO SEE IF THEY CONTAIN VALID INFORMATION 
328 
729 	VALIDATION. 
330 	IF I-STORE-NUMBR IS NUMERIC 
331 	 AND I-SALESMAN-NUMBER IS NUMERIC 
332 	 AND I-YEAR-TO-DATE-SALES IS NUMERIC 
733 	 AND I-CURRENT-SALES IS NUMERIC 
334 	 AND I-COMMISSION-RATE IS NUMERIC 
335 	 AND I-MONTHS-EMPLOYED IS NUMERIC 
336 	 MOVE 'YES' TO VALID-DATA-FLAG 
337 	ELSE 
338 	 MOVE 'NO' TO VALID-DATA-FLAG. 
339 
340 
341 • MOVE INPUT INFORMATION TO WORKING STORAGE 
342 • VARIABLES 
343 
344 	DATA-MOVE. 
345 	MOVE I-STORE-NUMBER TO W-STORE-NUMBER. 
346 	MOVE I-DEPARTMENT TO W-DEPARTMENT. 
347 	MOVE I-SALESMAN-NUMBER TO W-SALESMAN-NUMBER. 
348 	MOVE I-YEAR-TO-DATE-SALES TO W-YEAR-TO-DATE-SALES. 
749 	MOVE /-CURRENT-SALES TO W-CURRENT-SALES. 
350 	MOVE I-COMMISSION-RATE TO W-COMMISSION-RATE. 
?SI 	MOVE I-MONTHS-EMPLOYED TO W-MONTHS-EMPLOYED. 
352 
353 	CALCULATE-DEPARTMENT-BONUS. 
354 	 IF W-DEPARTMENT - '01' OR 
355 	 W-DEPARTMENT + ' 02' 
356 	 MOVE DEPT-2-0R-2 TO W-DEPARTMENT-BONUS 
357 	ELSE IF W-DEPARTMENT + '06' OR 
358 	 W-DEPARTMENT + '09' 
359 	 MOVE DEPT-6-011-9 TO W-DEPARTMENT-BONUS 
360 	ELSE IF W-DEPAFTMENT ■ '05' OR 
361 	 W-DEPARTMENT + '07' 
362 	 MOVE DEPT-5-OR-7 TO W-DEPARTMENT-BONUS 
363 	ELSE IF W- DEPARTMENT + '04' 
364 	 MOVE DEPT - 4 TO W-DEPARTMENT-BONUS 
365 	ELSE 
366 	 MOVE DEPT-OTRER TO W-DEPARTMENT-BONUS. 
367 
368 	CALCULATE-VOLUME-BONUS. 
369 	COMPUTE W-AVERAGE-MONTHLY-SALES ROUNDED ■ 

370 	 ( W-YEAR-T0-DATE-SALES + W-CURRENT-SALES ) 
371 	 / W-MONTHS-EMPLOYED. 
372 	IF W-AVERAGE-MONTHLY-SALES < SOO 
373 	 MOVE LEVEL-1 TO W-VOLUME-BONUS 
374 	 ELSE IF W-AVERAGE-MONTHLY-SALES < 999.99 
375 	 MOVE LEVEL-2 TO W-VOLUME-BONUS 
376 	ELSE IF W-AVERAGE-MONTHLY-SALES < 1999.99 
377 	 MOVE LEVEL-3 TO W-VOLUME-BONUS 
378 	ELSE 
379 	 MOVE LEVEL-4 TO W-VOLUME-BONUS. 
390 
381 	COMMISSION-CALCULATION. 

A-22 
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382 
	

PERFORM VALIDATION. 
383 
384 
	

IF VALID—DATA—FLAG r  'YES' 
385 
	

PERFORM DATA—MOVE 
386 
	

PERFORM CALCULATE—DEPARTMENT—BONUS 
387 
	

PERFORM CALCULATE—VOLUME—BONUS 
388 
	

COMPUTE W—CURRENT—COMMISSION ROUNDED si W—CURRENT—SALES • 
389 
	

W—COMMISSION—RATE + W— VOLUME—BONUS + 
390 
	

W—DEPARTMENT—BONUS } 
391 
	

ADD W—YEAR—TO—DATE—SALES TO W—TOTAL—YEAR—TO—DATE—SALES 
392 
	

ADD W—CURRENT—SALES TO W—TOTAL—CURRENT—SALES 
393 
	

ADD W—CURRENT—COMMISSION TO W—TOTAL—CURRENT—COMMISSION 
394 
	

PERFORM VALID—DATA—OUTPUT 
395 
	

ELSE 
396 
	

PERFORM INVALID—DATA—OUTPUT. 
397 
398 
	

READ CARD—FILE 
399 
	

AT END MOVE 'NO' TO MORE—DATA—REMAINS—FLAG. 
400 
401 
	

VALID—DATA—OUTPUT. 
402 
	

MOVE W—STORE—NUMBER TO 0—STORE—NUMBER. 
403 
	

MOVE W—DEPARTMENT TO 0—DEPARTMENT. 
404 
	

MOVE W—SALESMAN—NUMBER TO 0—SALESMAN—NUMBER. 
425 
	

MOVE I—SALESMAN—NAME TO 0—SALESMAN—NAME. 
4C6 
	

MOVE W—YEAR—TO—CATS—SALES TO 0—YEAR—TO—DATE—SALES. 
407 
	

MOVE W—CURRENT—SALES TO 0—CURRENT—SALES. 
408 
	

MOVE W—COMMISSION—RATE TO 0—COMMISSION—RATE. 
403 
	

MOVE W—CURRENT—COMMISSION TO 0—CURRENT—COMMISSION. 
410 
	

MOVE W—MONTHS—EMPLOYED TO O—MONTHS—EMPLOYED. 
411 • 	MOVE I—SALESMAN—NAME TO 0—SALESMAN—NAME. 
412 
	

MOVE VALID—DATA—LINE TO LINE—RECORD. 
413 
	

WRITE LINE—RECORD AFTER ADVANCING 1 LINES. 
414 
	

ADO 1 TO LINE —COUNT. 
415 
	

IF LINE—COUNT IS GREATER THAN 10 
415 
	

MOVE 0 TO LINE—COUNT 
417 
	

PERFORM REPORT—HEADER—OUTPUT 
419 
	

PERFORM HEADING—OUTPUT. 
419 
420 
	

INVALID—DATA—OUTPUT. 
421 
	

MOVE I—CARD—DATA TO 0—BAD—DATA. 
422 
	

MOVE INVALID—DATA—LINE TO LINE—RECORD. 
423 
	

WRITE LINE—RECORD AFTER ADVANCING 1 LINES. 
424 
	

ADD 1 TO LINE—COUNT. 
425 
	

IF LINE—COUNT IS GREATER THAN 10 
426 • 	MOVE 0 TO LINE—COUNT 
427 
	

PERFORM REPORT—HEADER—OUTPUT 
428 
	

PERFORM HEADING—OUTPUT. 
429 
430 
	

HEADING—OUTPUT. 
431 
	

MOVE HEAD/NG—LINE-1 TO LINE—RECORD. 
432 
	

WRITE LINE—RECORD AFTER ADVANCING 1 LINES. 
433 
	

MOVE HEADING—LINE-2 TO LINE—RECORD. 
434 
	

WRITE LINE—RECORD AFTER ADVANCING 1 LINES. 
435 
	

MOVE SPACES TO LINE—RECORD. 
436 
	

WRITE LINE—RECORD AFTER ADVANCING 2 LINES. 
437 
	

ADD 4 TO LINE—COUNT. 
438 
439 CALCULATED—TOTALS—OUTPUT. 
440 
	

MOVE W—TOTAL—YEAR—TO—DATE—SALES TO 0—TOTAL...YEAR—TO—DATE—SALES 
441 
	

MOVE W—TOTAL—CURRENT—SALES TO 0—TOTAL-CURRENT—SALES. 
442 
	

MOVE W—TOTAL—CURRENT—COMMISSION TO 0—TOTAL...CURRENT...COMMISSION 
443 
	

MOVE FINAL—TOTAL—LINE TO LINE—RECORD. 
444 
	

WRITE LINE-RECORD AFTER ADVANCING 2 LINES. 
445 
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446 REPORT-8EADER-OUTPUT. 
447 
	

ADD 1 TO 0-PAGE-NUMMI. 
448 
	

KovE REPORT-LINE-1 TO LINE-RECORD. 
449 
	

WRITE LINE-RECORD AFTER ADVANCING TO-TOP-OF-PAGE. 
450 
	

MOVE REPORT-LINE-2 TO LINE-RECORD. 
451 
	

WRITE LINE-RECORD AFTER ADVANCING 1 LINES. 
452 
	

MOVE SPACES TO LINE-RECORD. 
453 
	

WRITE LINE-RECORD AFTER ADVANCING 3 LINES. 
454 
	

MOVE 4 TO LINE-COUNT. 
455 
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Program A6 

IDENTIFICATION DIVISION. 
2 	PROGRAM-ID. MAINTmES. 
3 	REMARKS. THIS PROGRAM IS ADAPTED FROM YOURDAN'S ° LEARNING 
4 	 TO PROGRAM IN STRUCTURED COBOL° . 
5 	 (1) 	THE PROGRAM AS PUBLISHED DID NOT WORK. THE LAST 
6 	 PAIR CF APPLICATION CARDS WAS IGNORED. IF THERE 
7 	 WAS NO LAST PAIR (EMPTY FILE) THE PROGRAM BOMBED. 
8 	 THIS ERROR WAS FIXED BY ADDING ANOTHER FILE-CONTROL 
9 	 FLAG AND ADDING LOGIC IN "BI-GET-A-PAIR...' 
10 	 (2) 	THE NOTE ABOUT CHECKING PAIR VALIDITY 
11 	 IN PARAGRAPH 'A2-UPDATE MASTER° SHOULD BE REPEATED 
12 	 IN THE ANALOGOUS PARAGRAPH °A4-ADD-REMAINING-CARDS'. 
13 	 (3) 	IF THE FIRST CARD IS INVALID, ITS LOG ENTRY 
14 	 WOULD HAVE BEEN WRITTEN BEFORE THE LOG FILE HEADER. 
15 	 (4) 	THE PUBLISHED PROGRAM CONTAINED MUCH EXTRANEOUS 
16 	 CODE. THE REASON FOR SOME OF THIS WAS THE FREE USE OF 
17 	 THE 'COPY' VERB. THESE PRODUCED MANY UNNECESSARY 
18 	 MUTANTS, AND HAVE BEEN COMMENTED OUT WITH 	

• 19 	 (5) 	THE PROGRAM DID NOT DO ANYTHING SENSIBLE WHEN 
20 	 THE END-OF-FILE WAS ENCOUNTERED AFTER THE FIRST OF A 
21 	 PAIR OF CARDS. 
22 
23 	ENVIRONMENT DIVISION. 
24 	CONFIGURATION SECTION. 
25 	SOURCE-COMPUTER. PRIME. 
26 	OBJECT-COMPUTER. PRIME. 
2' 	INPUT-OUTPUT SECTION. 
28 	FILE-CONTROL. 
29 	SELECT APPLICATION-CARDS-FILE 	ASSIGN TO rspuTi. 
30 	SELECT UPDATE-LISTING 	 ASSIGN TO OUTPUTI. 
11 	SELECT CREDIT-MASTER-OLD-FILE 	ASSIGN TO INPUT2. 
32 	SELECT CREDIT-MATER-NEW-FILE 	ASSIGN TO OUTPUT2. 
33 
34 	DATA 0/VISION. 
35 	FILE SECTION. 
36 
37 	FD APPLICATION-CARDS-FILE 
38 	RECORD CONTAINS 80 CHARACTERS 
39 	LABEL RECORDS ARE OMITTED 
40 	DATA RECORD IS NAME-ADDRESS- AND-PHONE-IN. 
41 	01 NAME-ADDRESS-AND-PHONE-IN. 
42 	05 NAME-AND-ADDRESS-IN. 
43 	 10 NAME-IN 	 PIC X(20). 
44 	*** 	10 ADDRESS-IN. 
45 	*** 	 15 STREET-IN 	 PIC X(20). 
4F 	*** 	 15 CITY-IN 	 PIC X(13)• 
47 	*** 	 15 STATE-1N 	 PIC XX. 
48 	*** 	 15 ZIP-IN 	 PIC X(5). 
49 	 10 ADDRESS-IN 	 P/C X(40). 
50 	05 PHONE-IN 	 PIC X(11). 
51 	05 FILLER 	 PIC X. 
52 	05 CHANGE-CODE-IN 	 P/C XX. 
53 	05 ACCT-NUM-I$1 	 PIC 9(6). 
54 
55 	FD UPDATE-LISTING 
56 	RECORD CONTAINS 132 CHARACTERS 
57 	LABEL RECORDS ARE OMITTED 
58 	 DATA RECORD IS PRINT-LINE-OUT. 
59 	01 PRINT-LINE-OUT 	 PIC X(132). 
60 
61 	PD CREDIT-MASTER-OLD-FILE 

• 



62 
63 
64 
65 
66 
67 
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RECORD CONTAINS 127 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS CREDIT-MASTER-RECORD. 

01 	CREDIT-MASTER-OLD-RECORD. 
05 	ACCT-NUN-AAS•OLD 	 PIC 9 (6) . 

ma• THE SUBFIELDS ARE NEVER REFERRRED TO IN THE PROGRAM 
Ag USE FILLER 	INSTEAD 
60 a" 05 	NAME-AND-ADDRESS-MAS-OLD. 
70 *** 1C 	NAME-MAS-OLD PIC X(20). 
71 *•* 10 	STREET-MAS-OLD PIC X(20). 
72 *** 10 	CITY-MAS-OLD P/C X(13). 
73 *** 10 	STATE-MAS-OLD PIC XX. 

*** 10 	ZIP-MAS-OLD PIC 9(5). 
75 '1 " 05 	PHONE-MAS-OLD. 
76 •** 10 	AREA-COCE-MAS-OLD P/C 9(3). 
77 *•* 10 	NUMBER-MAS-OLD PIC 9(7). 
78 
79 05 	FILLER PIC X(70). 
80 •• THE SUBFIELDS ARE NEVER REFERRED TO IN THE PROGRAM. 
81 0•• 05 	CREDIT-INFO-MAS-OLD. 
82 000 10 	SEX-MAS-OLD PIC X. 
83 000 10 	MARITAL-STATUS-MAS-OLD PIC X. 
84 000 10 	NUMBER-DEPENS-MAS-OLD PIC 99. 
95 • O• 10 	INCOME-HUNOREDS-MAS-OLD PIC 9(3). 
90 ••0 10 	YEARS-EMPLOYED-MAS-OLD PIC 99. 
87 • 0• 10 	OWN-OR-PENT-MAS-OLD PIC X. 
88 • V 10 	MORCAGE-OR-RENTAL-MAS-OLD PIC 9(3). 
39 fo•• 10 	OTHER-PA'IMENTS-MAS-OLD PIC 9(3). 
90 05 	CREDIT-INFO-mAS-Or.D PIC X(16) 
91 35 	ACCOUNT-INFO-MAS-OLD. 
92 *•• 10 	DISCR-INCCM::-MAS-OLD P/C S9(3). 
93 *.* 10 	CREDIT-LIMIT-OLD PIC 9(4)- 
94 10 	FILLER PIC S9(3). 
95 10 	FILLER PIC 9(4). 
96 10 	CURRENT-BALAHCE-OWING-OLD PIC S9(6)V99. 
97 05 	SPARE-CHARACTERS-OLD PIC X(20). 
98 
99 FO CREDIT-MASTER-NEW-FILE 
120 RECORD CONTAINS 12/ CHARACTERS 
101 LABEL RECORDS ARE STANDARD 
102 DATA RECORD IS CREDIT-MASTER-RECORD. 
103 01 CREDIT-MASTER-NEW-RECORD. 
104 OS 	ACCT-NUM-MAS-NEW PIC 9(6). 
105 •0 ° 05 	NAME-AND-ADDRESS-MAS-NEW. 
1)6 000 10 	NAME-MAS-NEW PIC X(20). 
107 0•0 10 	STREET-MAS-NEW PIC X(20). 
108 000 10 	C1TY-MAE., -NEW PIC X(13). 
109 0•• 10 	STATE-MAS-NEW PIC XX. 
111 ••* 10 	ZIP-MAS-NEW PIC 9(5). 
111 05 	NAME-AND-ADDRESS-MAS-NEW PIC X(60). 
112 35 	PHONE-MAS-N214. 
113 10 	AREA-CODE-MAS-NW PIC 9(3). 
114 
115 

10 	Numsn-mxs-mrw 
05 	CREDIT-INFO-mAs-NOW. 

PIC 9(7). 

116 10 	SEX-MAS-NEW PIC X. 
117 10 	MARITALSTATUG•MAS.WEW PIC X. 
118 10 	NUMBER-DEPENS-MAS•NEW P/C 99. 
119 
120 

10 	INCOME-HUNDREDS-MAS-NEW 
10 	YEARS-enpLcIED-mAs-NEW 

PIC 
PIC 

9(3). 
99. 

121 10 	OWN-OR-RENT-MAS-NEW PIC X. 
122 10 	MORGAGE-OR-RENTAL•MASWEW PIC 9(3). 
123 10 	OTHER-PAYMENTS-MAS-NEW PIC 9(3). 
124 05 	ACCOUNT-INFO-MAS-.MEW. 
125 10 	DISC?;-INCOME-MAS-NOW PIC S9(3). 

A-26 
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126 
127 
128 
129 
130 
131 

10 	CREDIT-LIMIT-MAS-NEW 
10 	CURRENT-BALANCE-OWING-NEW 

05 	SPARE-CHARACTERS-NEW 

WORKING-STORAGE SECTION. 

PIC 	9(4). 
PIC S9(6)V99. 
PIC X(20). 

132 01 CREDIT-INFORMATION-IN. 
133 05 	CARD-TYPE-IN PIC X. 
134 05 	ACCT-NUM-IN2 PIC 9(6). 
135 05 	FILLER PIC X. 
136 05 	CREDIT-INFO-IN PIC 	X(22). 
137 05 	FILLER PIC 	x(so). 
138 
139 01 C&.MON-WS. 
140 05 	CARDS-LEFT PIC 	X(3). 
141 05 	NEXT-CARD-THERE P/C 	X(3). 
142 05 	OLD-MASTER-RECORDS-LEFT PIC 	X(3). 
143 05 	NEW-MASTER-RECORDS-LEFT PIC 	X(3). 
144 05 	FIRST-CARD PIC X(4). 
145 05 	SECOND-CARD PIC 	X(4). 
146 05 	ACCT-NUM-MATCH PIC 	X(4). 
147 05 	PAIR-VALIDITY PIC 	X(4). 
148 
149 31 LOG-HEADER-w5A1. 
150 05 	FILLER PIC X(47) 	VALUE SPACES. 
151 05 	FILLER PIC 	X(38) 
152 VALUE 	'LOG OF ADDITIONS DELETIONS AND CHANGES'. 
153 05 	FILLER PIC X(47) 	VALUE SPACES. 
154 
155 '6-1 '01 HEADER-wSA5. 
156 •*. 05 	FILLER PIC X(51) 	VALUE SPACES 
157 05 	TITLE PIC 	X(30) 
158 VALUE 'CONTENTS OF CREDIT MASTER FILE'. 
159 • *• 05 	FILLER PIC X(5I) 	VALUE SPACES 
160 OI APPLICATION-DATA-WSB2. 
161 05 	NAmE-AND-ADDRESS-WS. 
162 10 	NAME-WS PIC X(20). 
163 •** 10 	ADDRESS-WS. 
164 15 	STREET-WS PIC X(20). 
165 •• 15 	CITY-WS P/C 	X(13). 
166 ••* 15 	STATE-WS PIC XX. 
167 * 0 * 15 	ZIP-WS inc X(5). 
168 10 	ADDRESS-wS PIC 	X(40). 
169 05 	PHONE-WS 	. 
170 10 	AREA--CODE-WS PIC 9(3). 
171 10 	NUMBR-WS PIC X(8). 
172 05 	FILLER PIC X 	VALUE SPACE. 
173 05 	CHANGE-CODE-WS PIC XX. 
174 05 	ACCT-NUM-WS PIC 9(6). 
175 05 	CREDIT-INFO-WS. 
176 10 	SEX-WS PIC X. 
177 4P• 88 	MALE 	VALUE 	'N'. 
178 •• 88 	FEMALE 	VALUE 'P'. 
179 10 	PILLER PIC X. 
180 10 	MARITAL-STATUS-WS PIC X. 
181 0 • 88 	SINGLE 	VALUE 'S'. 
182 88 	MARRIED 	VALUE 'M'. 
183 6,  88 	DIVORCED 	VALUE 'D'. 
184 s. 88 	WIDOWED 	VALUE 'W'. 
185 10 	PILLER PIC X. 
186 10 	NUMBER-DEPENS-WS PIC 9. 
187 10 	FILLER PIC X. 
188 10 	INCOME-HUNDREDS-WS PIC 8(3). 
189 10 	PILLER PIC X. 
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190 
191 
192 
193 
194 
195 
196 
197 
198 
199 

*I. 

•• 

10 	YEARS-EMPLOYED-WS 
10 	FILLER 
10 	OWN-OR-RENT-WS 

88 	OWNED 	VALUE 
88 	RENTED 	VALUE 

10 	FILLER 
10 	MORGAGE-OR-RENTAL-WS 
10 	FILLER 
10 	OTHER-PAYMENTS-WS 

PIC 99. 
PIC X. 
PIC X. 

'0'. 
'R'. 

PIC 	X. 
PIC 	9(3). 
PIC 
C C )9(3). 

200 01 UPDATE-MESSAGE-AREA-W532. 
021 05 	UPDATE-MESSAGE-AREA PIC X(15). 
2C2 
203 01 CREDIT-MASTER-PRINT-LINE. 
204 05 	FILLER P/C X(4) 	VALUE SPACES. 
205 05 	CREDIT-MASTER-OUT PIC X(128). 
206 
207 01 UPDATE-RECORD-PRINT-LINE. 
208 05 	FILLER PIC X(4) 	VALUE SPACES. 
209 05 	APPLICATION-DATA-OUT PIC X(102). 
210 35 	FILLER PIC X(4) 	VALUE SPACES. 
211 D5 	MESSAGE-APEA-OUT P/C X(15). 
212 
213 01 DISCR-INCOME-CALC-FIELDS-WSC3. 
214 05 	ANNUAL-INCOME-WS P/C 9(5). 
215 05 	ANNUAL-TAX-WS PIC 9(5). 
215 05 	TAX-PATE-WS P:C 9V99 	VALUE 0.25. 
217 05 	MONTHS-IN-YEAR PIC 99 	VALUE 12. 
2:6 05 	MDNTHLY-NET-INCOME-WS PIC 9(4). 
219 05 	MONTHLY-PAYMENTS-WS PIC 9(4). 
220 05 	OISCR-INCOME-W5 P/C 59(3). 
221 
222 01 CREDIT-LIMIT-CALC-FIELDS-WSC9. 
223 05 	CREDIT-FACTOR PIC 9. 
224 05 	FACTOR1 PIC 9 	VALUE 1. 
225 U 5 	FACTCR2 PIC 9 	VALUE 2. 
229 05 	FACTDR3 PIC 9 	VALUE 3. 
227 05 	FACTDR4 PIC 9 	VALUE 4. 
228 CS 	FACTORS PIC 9 	VALUE 5. 
229 05 	CREDIT-LIMIT-WS PIC 9(4). 
230 05 	UPPER-LIMIT-WS PIC 9(4) 	VALUE 2500. 
231 •*• NEVER USED 
232 "• 05 	POTAL-CREDIT-GIVEN-WS PIC 9( 7 ). 
233 
234 01 ASSEMBLE-TEL-NUM-WSD1. 
235 05 	TEL-NUMBR-WITH-HYPHEN 
236 10 	EXCHANGE-IN PIC 9(3). 
237 10 	FILLER PIC X. 
238 10 	FOUR-DICIT-NUMBR-IN PIC 9(4). 
239 05 	TEL-NUMBR-WITHOUT-HYPHEN. 
240 10 	EXCHANGE PIC 9(3). 
241 10 	FOUR-DIGIT-NUMBR PIC 9(4). 
242 
243 01 CARD-ERROR-LINE1-445. 
244 05 	PILLER PIC X(5) 	VALUE SPACES. 
245 05 	FILLER PIC X(12) 
246 VALUE 'FIRST CARD 	' 
247 05 	PIRST-CARD-ERR1 PIC X(4). 
248 05 	FILLER PIC XX 	VALUE SPACES. 
249 05 	NAME-ERR1 P/C X(20). 
250 05 	ADDRESS-ERR1 PIC X(40). 
251 05 	PHONE-ERR1 PIC X(11). 
252 05 	FILLER PIC X(3) 	VALUE SPACES. 
253 05 	ACCT-NUM-ERR1 PIC 9(5). 
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254 
255 	01 CARD-ERROR-LINE2-VS. 
256 	05 FILLER 	 PIC X(5) VALUE SPACES. 
257 	05 FILLER 	 PIC X(12) 
258 	 VALUE 'SECOND CARD '. 
259 	05 SECOND-CARD-ERR2 	 P/C X(4). 
260 	05 FILLER 	 PIC X(2) 	VALUE SPACES. 
261 	05 CREDIT-INFO-ERR2 	 PIC X(80). 
262 	05 MESSAGE-ERR-LINE-2 	 PIC X(29) 	VALUE SPACES. 
263 
264 	PROCEDURE DIVISION. 
265 
256 	AO-MAIN-BODY. 
267 	PERFCRM Al-INITIALIZE. 
269 	PERFORM A2-UPDATE-MASTER 
269 	 UNTIL OLD-MASTER-RECORDS-LEFT • 'NO ' 
270 	 CR CARDS-LEFT • 'NO '. 
271 	IF CARDS-LEFT - 'NO ' 
272 • 	 THERE ARE MORE OLD MASTER REC 
273 	 PERFORM A3-COPY-REMAINING-OLD-MASTER 
274 	 UNTIL OLD-MASTER-RECORDS-LEFT - °NO ' 
275 	ELSE 
276 • 	 THERE ARE NO MORE CARDS, SO 
277 	 PERFORM A4-ADD-REMAINING-CARDS 
278 	 UNTIL CARDS-LEFT - ' NO I . . 
279 
280 * 	CODE TO LIST THE CONTENTS OF THE NEW MASTER HAS BEEN OMITTED. 
281 • 	IT WOULD HAVE REQUIRED CLOSING THE NEW MASTER AND REOPENING 
292 • 	IT FOR INPUT. THIS IS BEYOND THE ABILITIES OF CMS.1 
283 • 	THE DELETION AMOUNTS TO ABOUT 20 LINES OF CODE. 
284 
285 	PERFORM A7-END-CF-JOD. 
286 	STOP RUN. 
287 
288 	A1-INITIALIZE. 
229 	OPEN INPUT 	APPLICATION-CARDS-FILE 
290 	 CREDIT-MASTER-OLD-FILE 
291 	 OUTPUT 	CREDIT-MASTER-NEW-FILE 
292 	 UPDATE-LISTING. 
293 *" USELESS INITIALIZATIONS RAVE BEEN COMMENTED OUT 
294 •*• MOVE SPACES TC FIRST-CARD. 
295 •*• MOVE SPACES TO SECOND-CARD. 
296 •** MOVE SPACES TO ACCT-NUM-MATCH. 
297 ••* MOVE SPACES TO PAIR-VALIDITY. 
298 *** MOVE ZEROES TO ANNUAL-INCOME-WS. 
299 •" MOVE ZEROES TO ANNUAL-TAX-WS. 
300 *•• MOVE ZEROES TO MONTHLY-NET-INCOME-WS. 
301 ••• MOVE ZEROES TO MONTHLY-PAYMENTS-WS. 
302 •*• MOVE ZEROES TO DISCR-INCOME-WS. 
303 ••• MOVE ZEROES TO CREDIT-FACTOR. 
304 ••* MOVE ZEROES TO CREDIT-LIMIT-WS. 
305 *•* MOVE ZEROES TO TOTAL-CREDIT-GIVEN-WS. 
306 	MOVE 'YES' TO CARDS-LEFT. 
307 	MOVE 'YES' TO NEXT-CARD-THERE. 
308 	MOVE 'YES° TO OLD-MASTER-RECORDS-LEFT. 
309 •* THE POLLOWINO STATEMENT WAS MOVED HERE FROM THE END OF THE 
310 " PARAGRAPH, SO THAT THE HEADER WOULD BE WRITTEN BEFORE THE 
311 ** FIRST LOG RECORD, IF THE FIRST CARD PAIR IS INVALID. 
312 	WRITE PRINT-LINE-OUT FROM LOG-HEADER.JWSA1 
313 	 AFTER ADVANCING 3 LINES. 
314 	READ APPLICATION-CARDS-FILE 
315 	 AT END MOVE 'NO TO NEXT-CARD-THERE. 
316 	PERFORM B1-GET-A-PAIR-OF-CARDS-INTO-WS THRU B1 -EXIT. 
317 • FIRST PAIR OF CARDS IN WS: FIRST CARD OF SECOND PAIR IN BUFFER 



Appendix A 	 A-30 

318 	READ CREDIT-MASTER-OLD-FILE 
319 	 AT END MOVE 'NO ' TO OLD-MASTER-RECORDS-LEFT. 
320 • FIRST OLD MASTER RECORD IS IN BUFFER 
321 
322 	A2-UPDATE-MASTER. 
323 • BEFORE COMPARING THE UPDATE WITH THE MASTER, WE MUST CHECK 
324 • THAT WE HAVE A VALID PAIR OF CARDS - IF YOUR PROGRAM DOES 
325 • NOT MAKE THIS TEST, IT WILL ONLY WORK WITH VALID PAIRS OF 
326 • CARDS. 
327 	IF PAIR-VALIDITY • 'BAD ' 
328 	 PERFORM 81-GET-A-PAIR-OF-CARDS-INTO-WS THRU 81 -EXIT 
329 	ELSE IF ACCT-NUM-WS IS GREATER THAN ACCT-NUM-MAS-OLD 
330 • 	 ACCT-NUM-WS IS CARD ACCOUNT NUMBER 
331 	 MOVE CREDIT-MASTER-OLD-RECORD TO 
332 	 CREDIT-MASTER-NEW-RECORD 
333 	 WRITE CREDIT-MASTER-NEW-RECORD 
334 	 READ CREDIT-MASTER-OLD-FILE 
335 	 AT END MOVE 'NO ' TO OLD-MASTER-RECORDS-LEFT 
336 	ELSE IF ACCT-NUM-WS • ACCT-NUM-MAS-OLD 
337 	 PERFORM 82-CHANCE-OR-DELETE-MASTER 
338 	 PERFORM 81-GET-A-PAIR-OF-CARDS-INTO-WS THRU 81-EXIT 
339 	 READ CREDIT-MASTER•OLD-FILE 
340 	 AT END MOVE 'NO ' TO OLD-MASTER-RECORDS-LEFT 
341 	ELSE 
342 	 ACCT-NUM-WS IS LESS THAN 
343 • 	 ACCT.-NUM-MAS-OLD 
344 	 PERFORM 83-ADD-NEW-MASTER 
345 	 PERFORM 81-GET-A-PAIR-OF-CARDS-INTO-WS THRU BI-EXIT. 
346 
347 	A3-COPY-REMAINING-OLD-MASTER. 
345 	MOVE CREDIT-MASTER-OLD-RECORD TO 
349 	 CREDIT-MASTER-NEW-RECORD 
350 	WRITE CREDIT-MASTER-NEW-RECORD. 
351 	READ CREDIT-MASTER-OLD-FILE 
352 	 AT END MOVE 'NC ' TO OLD-MASTER-RECORDS-LEFT. 
353 
354 	Ad-ADD-REMAINING-CARDS. 
355 	 IF PAIR-VALIDITY • 'BAD ' NEXT SENTENCE 
356 	ELSE PERFORM D3-ADD-NEW-MASTER. 
357 	PERFORM 91-GET-A-PAIR-OF-CARDS-INTO-WS THRU 81-EXIT. 
358 
359 	A7-END-OF-308. 
360 	CLOSE APPLICATION-CARDS-FILE 
361 	 CREDIT-MASTER-OLD-FILE 
362 	 CREDIT-MASTER-NEW-FILE 
363 	 UPDATE-LISTING. 
364 
365 	81-GET-A-PAIR-OF-CARDS-INTO-WS. 
366 	IF NEXT-CARD-THERE 	'NO ' 
367 	 MOVE 'NO ' TO CARDS-LEFT 
368 	 GO TO 81-EXIT. 
369 	PERFORM Cl-EDIT-FIRST-CARD. 
370 	PERFORM C2-MOVE-FIRST-CARD-TO-WS. 
371 	READ APPLICATION-CARDS-FILE INTO CREDIT- INFORMATION- IN 
372 	 AT END MOVE 'NO ' TO CARDS-LEFT, 
373 	 MOVE SPACES TO CREDIT-INFORMATION-IN 
374 	 ACCT-NUM-MATCH 
375 	 MOVE 'NONE' TO SECOND-CARD 
376 	 PERFORM C4-FLUSH-CARDS-TO-ERROR-LINES 
377 	 GO TO 81-EXIT. 
378 	PERFORM C3-EDIT-SECOND-CARD. 
379 	IF (FIRST-CARD • 'GOOD') 
380 	 AND (SECOND-CARD ■ 'GOOD') 
381 	 AND (ACCT-NUM-MATCH ■ 'GOOD') 
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382 	 MOVE 'GOOD' TO PAIR-VALIDITY 
383 	 MOVE CREDIT-INFO-IN TO CREDIT...WO-WS 
384 	ELSE 
385 	 MOVE 'BAD ' TO PAIR-VALIDITY 
386 	 PERFORM C4-FLUSH-CARDS-TO-ERROR-LINES. 
387 	READ APPLICATION-CARDS-FILE 
388 	 AT END MOVE 'NO ' TO NEXT-CARD-THERE. 
389 
390 	B1-EXIT. EXIT. 
391 
392 	B2-CHANGE-OR-DELETE-MASTER. 
393 	IF CHANGE-CODE-WS ■ 'CH' 
394 	 PERFORM C5-MERGE-UPDATE-WITH-OLD-MAST 
395 	 MOVE 'RECORD CHANGED' TO UPDATE-AESSAGE-AREA 
396 	 PERFORM C5-LOG-ACTION 
?97 	 WRITE CREDIT-MASTER-NEW-RECORD 
398 	ELSE IF CHANGE-CODE-WS • 'DE' 
399 • 	 CHECK IF DELETE IS VALID 
400 	 IF CREDIT-INFO-WS IS EQUAL TO SPACES 
401 	 MOVE 'RECORD DELETED' TO UPDATE-MESSAGE-AREA 
402 	 PERFORM C6-LOG-ACTION 
403 	 ELSE 
404 	 MOVE 'REC NOT DELETED' TO UPDATE-MESSAGE-AREA 
405 	 MOVE CREDIT-MASTER-OLD-RECORD TO 
406 	 CREDIT-MASTER-NEW-RECORD 
407 	 PERFORM CS-LOG-ACTION 
08 	 WRITE CREDIT-MASTER-NEW-RECORD 

409 	ELSE 
410 	 MOVE 'BAD CHANGE CODE' TO UPDATE-MESSAGE-AREA 
411 	 MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-NEW-RECORD 
412 	 PERFORM C6-LOG-ACTION 
413 	 WRITE CREDIT-MASTER-NEW-RECORD. 
414 
415 	83-ADD-NEW-MASTER. 
416 	PERFORM C8-CALC-DISCRETNRY-INCOME. 
417 	PERFORM C9-CALC-CREDIT-LIMIT. 
428 	PERFORM CIO-ASSEMBLE-NEW-MASTER-RECORD. 
419 	MOVE 'RECORD ADDED ' TO UPDATE-MESSAGE-AREA. 
420 	PERFORM C6-LOG-ACTION. 
421 	WRITE CREDIT-MASTER-NEW-RECORD. 
422 
423 	Cl-EDIT-FIRST-CARD. 
424 	MOVE 'GOOD' TO FIRST-CARD. 
425 	IF NAME-IN IS EQUAL TO SPACES 
426 	 MOVE "" NAME MISSING " 40 ' TO NAME-IN 
427 	 MOVE 'BAD ' TO FIRST-CARD, 
428 	IF ADDRESS-IN IS EQUAL TO SPACES 
429 	 MOVE "1 " ADDRESS MISSING *I"' TO ADDRESS-IN 
430 	 MOVE 'BAD ' TO FIRST-CARD. 
431 	IF PHONE-IN IS EQUAL TO SPACES 
432 	 MOVE 'NO PHONE' "0 ' TO PHONE-IN 
433 	 MOVE 'BAD ' TO FIRST-CARD. 
434 
435 C2-MOVE-FIRST-CARD-TO-WS. 
436 	MOVE NAME-IN TO NAME-MS. 
437 	MOVE ADDRESS-IN TO ADDRESS-WS. 
438 	MOVE PHONE-IN TO PHONE-MIS. 
439 	MOVE CHANGE-CODE-IN TO CHANGE-CODE-WS. 
440 	MOVE ACCT-NUM-IND TO ACCT-NUM-WS. 
441 
442 	C3-EDIT-SECOND-CARD. 
443 	MOVE 'GOOD' TO SECOND-CARD. 
444 	MOVE 'GOOD' TO ACCT-NUM-MATCH. 
445 	IC CARD-TYPE-IN IS NOT EQUAL TO 'C' 

• 
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446 	 MOVE 'BAD • TO SECOND-CARD. 
44/ 	IF ACCT-NUM-IN2 IS NOT EQUAL TO ACCT-NUM-WS 
448 	 MOVE 'BAD ' TO ACCT-NUM-MATCH. 
449 
450 	C4-FLUSH-CARDS-TO-ERROR-LINES. 
451 	MOVE FIRST-CARD TO FIRST-CARD-ERR1. 
452 	MOVE NAME-WS TO NAME-ERR1. 
453 	MOVE ADDRESS-WS TO ADDRESS-ERR1. 
454 	MOVE PHONE-WS TO PHONE-ERR1. 
455 	MOVE ACCT-NUM-WS TO ACCT-NUM-ERR1. 
456 	 MOVE SECOND-CARD TO SECOND-CARD-ERR2. 
45 - 	 MOVE CREDIT-INFO-WS TO CREDIT-INFO-ERR2. 
458 	THE PREVIOUS LINE WAS IN ERROR (BY A SINGLE MUTATION) IN THE 
459 	PUBLISHED PROGRAM. THE CORRECT STATEMENT IS: 
460 	MOVE CREDIT-INFO-IN TO CREDIT-INFO-ERR2. 
461 	IF ACCT-NUM-MATCH ■ 'BAD ' 
462 	 MOVE 'ACCOUNT NUMBERS DO NOT MATCH' 
463 	 TO MESSAGE-ERR-LINE-2 
464 	ELSE 
4 4 5 	 MOVE SPACES TO MESSAGE-ERR-LINE-2.  

••* MOVE SPACES TO PRINT-LINE-OUT. 
467 	WRITE PRINT-LINE-OUT FROM CARD-ERROR-L/NE1-WS 
459 	 AFTER ADVANCING 3 LINES. 
469 **• MOVE SPACES TO PRINT-LINE-OUT. 
4 7 0 	WRITE PRINT-LINE-OUT FROM CARD-ERROR-L/NE2-WS 
471 	 AFTER ADVANCING 1 LINES. 
4 7 2 
4'3 
4'4 	CS-MERGE-UPDATE-WITH-OLD-MAST. 
475 	MOVE ACCT-NUM-MAS-OLD TO ACCT-NUM-MAS-NEW. 
4'6 	MOVE NAME-AND-ADDRESS-WS TO NAME-AND-ADDRESS-MAS-NEW. 
477 	 MOVE AREA-CODE-WS TO AREA-CODE-HAS-NEW. 
4 - 3 	PERFORM Di-REMOVE-HYPHEN-PROM-TEL-NUM. 
479 • THE SECOND INPUT CARD HAS OREDTT DATA, IF THIS HAS TO BE 
420 ' UPDATED THEN THE DISCRETIONARY INCOME CALC HAS TO BE RUN 
451 IF CREDIT- INFO-WS IS EQUAL TO SPACES 
492 	 MOVE CREDIT-INFO-MAS-OLD TO CREDIT-INFO-MAS-NEW 
492 	 MOVE ACCOUNT-INFO-MAS-OLD TO ACCOUNT-INFO-HAS-NEW 
484 	ELSE 
465 	 PERFORM c8-CALC-orscReTNRy-INCOME 
496 	 PERFORM C9-CALC-CREDIT-LIMIT 
487 	 MOVE SEX-WS 	 TO SEX-MAS-NEW 
488 	 MOVE MARITAL-STATUS-WS 	TO MARITAL-STATUS-MAS-NEW 
489 	 MOVE NUMBER-DEPENS-WS 	TO NUMBER-DEPENS-MAS-NEW 
490 	 MOVE INCOME-HUNDREDS-WS 	TO INCOME-HUNDREDS-MAS-NEW 
491 	 MOVE YEARS-EMPLOYED-WS 	TO YEARS-EMPLOYED-MAS-NEW 
492 	 MOVE OWN-CR-RENT-WS 	 TO OWN-OR-RENT-MAS-NEW 
493 	 MOVE MORGAGE-OR-RENTAL-WS 	TO MORGAGE.-0R-RENTAL-MAS-NEW 
494 	 MOVE OTHER-PAYMENTS-WS 	TO OTHER-PAYMENTS-MAS-NEW 
495 	 MOVE DISCR-INCOME.-WS 	 TO CISCR-INCOME-MAS-NEW 
496 	 MOVE CREDIT-LIMIT-WS 	 TO CREDIT-LIMIT-HAS-NEW. 
497 	MOVE CURRENT-BALANCE-OWING-OLD TO CURRENT-BALANCE-OWING-NEW. 
498 	MOVE SPARE—CHARACTERS—OLD TO SPARE—CHARACTERS—NEW. 
499 
500 	C6 — LOG—ACTION. 
501 	IF CHANGE—CODE—WS o  'CH' 
502 • 	 WRITE OLD TAPE RECORD 
503 • 	 WRITE CARD CONTENTS 4, MESSAGE 
504 • 	 WRITE NEW TAPE RECORD 
505 "a 	MOVE SPACES TO CREDIT—MASTER-.PRINT—LINE 
506 	 MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-OUT 
507 	 WRITE PRINT-LINE-OUT FROM CREDIT—MASTER—PRINT—LINE 
508 	 AFTER ADVANCING 3 LINES 
509 ••• 	MOVE SPACES TO UPDATE-RECORD-PRINT-LINE 



Appendix A 	

A-33 

510 	 MOVE APPLICATION-DATA-WS82 TO APPLICATION-DATA-OUT 
511 	 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT 
512 	 WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE 
513 	 AFTER ADVANCING 1 LINES 
514 •*• 	MOVE SPACES TO CREDIT-MASTER-PRINT-LINE 
515 	 MOVE CREDIT-MASTER-MEW-RECORD TO CREDIT-MASTER-OUT 
516 	 WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LINE 
517 	 AFTER ADVANCING 1 LINES 
518 	ELSE IF CHANGE-CODE-WS ■ 'DE' 
519 • 	 WRITE OLD TAPE RECORD 
520 • 	 WRITE CARD CONTENTS F. MESSAGE 
521 	 MOVE SPACES TO CREDIT-MASTER-PRINT-LINE 
522 	 MOVE CREDIT-MASTER-OLD-RECORD TO CREDIT-MASTER-OUT 
523 	 WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LINE 
524 	 AFTER ADVANCING 3 LINES 
525 •*• 	MOVE SPACES TO UPDATE-RECORD-PRINT-LINE 
526 	 MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT 
527 	 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT 
528 	 WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE 
529 	 AFTER ADVANCING 1 LINES 
530 	ELSE IF CHANCE-CODE-WS 	° 
531 • 	 WRITE CARDS FOR ADDITION 
532 	 WRITE NEW TAPE RECORD 
533 	 HOVE SPACES TO UPDATE-RECORD-PRINT-LINE 
534 	 MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT 
535 	 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT 
536 	 WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE 
537 	 AFTER ADVANCING 3 LINES 
538 	 MOVE SPACES TO CREDIT-MASTER-PRINT-LINE 
539 	 MOVE CREDIT-MASTER-NEW-RECORD TO CREDIT-MASTER-OUT 
540 	 WRITE PRINT-LINE-OUT FROM CREDIT-MASTER-PRINT-LINE 
541 	 AFTER ADVANCING 1 LINES 
542 
543 	 ELSE 
544 	 WRITE CARD CONTENTS F. MESSAGE 
545 	 MOVE APPLICATION-DATA-WSB2 TO APPLICATION-DATA-OUT 
546 	 MOVE UPDATE-MESSAGE-AREA TO MESSAGE-AREA-OUT 
547 	 WRITE PRINT-LINE-OUT FROM UPDATE-RECORD-PRINT-LINE 
548 	 AFTER ADVANCING 3 LINES. 
549 
550 	C8-CALC-DISCRETNRY-INCOME. 
551 	COMPUTE ANNUAL-INCOME-WS • INCOME-HUNDREDS-WS • 100. 
552 	COMPUTE ANNUAL-TAX-WS 	• ANNUAL-INCOME-WS * TAX-RATE-WS. 
553 	COMPUTE MONTHLY-NET-INCOME-WS ROUNDED 
554 	 • (ANNUAL-INCOME-WS - ANNUAL-TAX-WS) / MONTHS-IN-YEAR. 
555 	COMPUTE MONTHLY-PAYMENTS-WS • MORGAGE-OR-RENTAL-WS 
556 	 .4 OTHER-PAYMENTS-WS. 
557 	COMPUTE DISCR-INCOME-WS 	MONTHLY-NET-INCOME-WS 
558 	 - MONTHLY-PAYMENTS-WS 
559 	 ON SIZE ERROR MOVE 999 TO DISCR-INCOME-WS. 
560 • 	DISCRETIONARY INCOMES OVER $999 PER MONTH ARE SET AT S999. 
561 
562 	C9-CALC-CREDIT-LIMIT. 
563 • 	MARRIED? 	 Y Y Y Y N N N N 	THIS DECISION TABLE 	• 
564 • 	OWNED? 	 Y Y N N Y Y N N 	SETS OUT COMPANY POLICY • 
565 • 	2 OR MORE YEARS? Y N Y N Y N Y N 	FOR DETERMINING CREDIT * 
566 • 	 LIMIT FROM DISCRETIONARY• 
567 • 	CREDIT 	FACTORI 	 X X 	INCOME. FACTORI ETC ARE • 
568 • 	LIMIT 	 2 	X 	X 	SET UP IN WSC9. 	 • 
569 • 	MULTIPLE 	3 	 X 	 • 
570 • 	OP DISCR. 	4 	X X 	 • 
571 • 	INCOME 	 5 X 
572 	IF MARITAL-STATUS-WS a 'M' 
573 	 IF OWN-OR-RENT-WS - '0' 
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5 7 4 
	

IF YEARS-EMPLOYED-WS IS NOT LESS THAN 02 
575 
	

MOVE FACTORS TO CREDIT-FACTOR 
576 
	

ELSE 
577 
	

MOVE FACTOR4 TO CREDIT-FACTOR 
578 
	

ELSE 
579 
	

IF YEARS-EMPLOYED-WS IS NOT LESS THAN 02 
580 
	

MOVE FACTCR4 TO CREDIT-FACTOR 
581 
	

ELSE 
592 
	

MOVE FACTOR2 TO CREDIT- FACTCR 
5E1 3 
	

ELSE 
584 
	

IF OWN-OR- -/ENT-WS ■ 'O m  
585 
	

IF YEARS-EMPLOYED-WS IS NOT LESS THAN 02 
586 
	

MOVE FACTORS TO CREDIT-FACTOR 
58' 	 ELSE 
588 
	

MOVE FACTCR2 TO CREDIT-FACTOR 
589 
	

ELSE 
590 
	

MOVE FACTORI TO CREDIT-FACTOR. 
591 
	

COMPUTE CREDIT - LIMIT-WS ■ DISCR-INCOME-14S a CREDIT-FACTOR. 
592 
	

IF CREDIT-LIMIT-'S IS G - EATER THAN UPPER-LIMIT-WS 
593 
	

MOVE UPPER-LIMIT-WS TO CREDIT-LIMIT-WS. 
594 ••*, ADO CREDIT-LIMIT-w5 TO TOTAL,CREDIT-GIVEN-wS. 
595 
536 
	

C1 ASSEMBLE-NEW-MASTER-RECORD . 

59' 
	

MOVE ACCT-NUM-'WS TO ACCT-NUM-MAS-NEW. 
598 
	

MOVE NAME-AND-ADDRESS-'WS TO NAME-AND-ADDRESS-MAS-NEW. 
599 
	

MOVE AREA-CODE-WS TO AREA-OODE-MAS-NEW. 
60 
	

PERFORM DI-REMOVE-HYPHEN-FROM-TEL-NUM. 
MOVE SEX-WS 	 TO SEX-MAS-NEW 

€0O 
	

MOVE MARITAL-STATUS-WS 	TO MARITAL-STATUS-MAS-NEW 
6.03 
	

MOVE NUMBER-DEPENS-W'S 	TO NUMBER-DEPENS-mAS-NEW 
1).1 
	

MOVE INCOME-HUNDREDS-WS 	TO INCOME-HUNCREDS-mAS-NEW 
505 
	

MOVE YEARS-EMPLOYED-4S 	TO YEARS-EMPLOYED-MAs-NEW 
50c, 	MOVE OWN-OR-RENT-4S 	 TO '.OWN-OR-RENT-mAS-NEW 
•SO7 
	

MOVE mORGAGE-OR-RENTAL-WS 	TO MORGAGE-OR-RENTAL-mAS-NEw 
608 
	

MOVE OTHER- PAYMENTS-WS 	TO OTHER-PAYMENTS-MAS-NEW. 
609 
	

HOVE OISCR-/NComE-WS TO DISCR-INCOME-mAS-NEW. 
5:0 
	

HOVE CREDIT-LIMIT-WS TO CREDIT-LIMIT-MAS-NEW. 
611 
	

MOVE ZEROES TO CURRENT-BALANCE-OWING-NEW. 
612 
	

MOVE SPACES TO SPARE-CHARACTERS-NEW. 
613 
614 
	

DI-REMOVE-HYPHEN-FROM-TEL-NUM. 
615 
	

MOVE NUMBR-WS TO TEL-NUMBR-WITH-HYPHEN 
616 
	

MOVE EXCW,NCE-IN TO EXCHANGE 
617 
	

MOVE FOUR-DIGIT-NUMBR-IN TO FOUR-DIGIT-NUMBR 
618 
	

MOVE TEL 	TO NUMBR-mAS-NEW. 
619 



Appendix B 
	

B-1 

Appendix B 

Program B1: 

The first program is written in an Algol dialect and initially 

appeared in a paper by Henderson and Snowden [Henderson, 1972]. Its 

intent is to read and process a string of characters that represent 

a sequence of telegrams, where a telegram is any string terminated 

by the keywords "ZZZZ ZZZZ." The program scans for words longer than 

a fixed limit and isolates and prints each telegram along with a 

count of the number of words it contains, plus an indication of the 

presence or absence of over—length words. The program has also been 

studied in Ledgard [Ledgard, 1973] and Gerhart and Yelowitz [Ger-

hart, 1976]. The program contains the following loop, which is 

intended to insure that blank characters are skipped and that fol-

lowing the loop the variable LETTER contains a non—blank character. 

WHILE input # emptystring AND FIRST(input) = 
DO input := REST(input); 

IF input = emptystring THEN input = READ + "; 
LETTER = FIRST(input); 

The WHILE loop terminates either on an empty string or on a non—

blank character. If it terminates on an empty string and the first 

character in the buffer loaded by the READ instruction is blank, 

LETTER can contain a blank character. 

When this program is translated into Fortran and executed, the 

error is not necessarily caught. The reason for this failure is not 

so much a failure of mutation testing as it is of Fortran. Algol 

treats strings as a basic type, whereas in Fortran they are 

simulated by arrays of integers. The fact that strings are basic to 
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Algol means that if we were constructing a mutation system for Algol 

instead of Fortran we would have to consider a different set of 

mutant operators. A natural operator one would consider can be 

explained by noting that blanks play a role in string processing 

programs analogous to that played by zero in numbers. Hence we 

might hypothesize a "blank push" operator similar to ZPUSH. If we 

had such an operator, an attempt to force the expression FIRST(in-

put) to blank would certainly reveal the error. 

Program B2: 

The second program appears in a paper by Wirth describing the 

language PL-360 [Wirth, 1968]. It is intended to take a vector of N 

numbers and sort them into decreasing order. It was also studied by 

Gerhart and Yelowitz [Gerhart, 1976]. As the outer loop is 

incremented over the list of elements, the inner loop is designed to 

find the maximum of the remaining elements and set register R3 to 

the index of this maximum. If the position set in the outer loop is 

indeed the maximum, then R3 will have an incorrect value and the 

three assignment statements ending the loop will give erroneous 

results. 

Sort(R4) 
For RI = 0 by 4 to N begin 

RO := a(R1) 
for •2 = R1 + 4 by 4 to N begin 

if a(R2) > RO then begin 
RO := a(R2) 
R3 := R2 

end 
end 
R2 := a(R1) 
a(R1) := RO 
a(R3) := R2 
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There are three mutants that cannot be eliminated without discover-

ing this error. The first two change the statement RO := A(R1) into 

RO := A(R1)-1 and RO := -ABS(A(R1)). The third mutant changes the 

statement into A(R1) := A(R3). We leave it as an exercise to verify 

that none of these mutants can be eliminated without discovering the 

error. 

Program B3: 

The third program is written in Fortran and computes the total. 

average, minimum, maximum, and standard deviation for each variable 

in an observation matrix. 	The program is adapted from the IBM 

scientific subroutines package [IBM, 19661. 	It was analyzed and 

three artificial errors were inserted in a study by Gould and 

Drongowski [Gould, 19741]. As in the study by Rowden [Bowden, 1978] 

we considered only one of these errors. It occurs in a loop that 

computes standard deviations. The program has the statement 

SD(I) = SQRT(ABSUSD(I) - (TOTAL(I)*TOTAL(I))/SCNT)/SCNT - 1 

A pair of parentheses has been left off the final SCNT - 1 expres-

sion. Let x stand for the quantity 

ABS(SD(I) - (TOTAL(I)*TOTAL(I))/SCNT) 

The correct standard deviation is SQRT(X/(SCNT-1)). 	The only way 

this can be made zero is for X to be zero. But the program contain-

ing the error computes the standard deviation as SQRT(1-X/SCNT). If 

X is zero this quantity is 1; hence the standard deviation is wrong. 
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Or if the incorrect expression is forced to be zero, then the 

correct standard deviation should be greater than one. Hence by 

forcing the standard deviation in this line to be zero the error is 

easily revealed. 

Program B4: 

The fourth program appeared in an article by Geller in the 

Communications of the ACM [Geller, 1978]. The program contains a 

 

predicate that decides whether a year is a leap year. In the paper 

this predicate is given as 

((YEAR REM 4 = 0) OR 
(YEAR REM 100 = 0 AND YEAR REM 400 = 0)) 

when the correct predicate is 

((YEAR REM 4 = 0 AND YEAR REM 100 # 0) OR 
(YEAR REM 400 = 0)) 

If YEAR is divisible by 400 then it must also be divisible by 100. 

In the incorrect predicate, therefore, the second part of the OR 

clause is true if and only if YEAR REM 400 is true. If a branch 

analysis method attempts to follow all the "hidden paths" [DeMillo, 

1978a], the error will be discovered when an attempt is made to make 

YEAR REM 400 true and YEAR REM 100 false. With mutation analysis 

the error is discovered when we replace YEAR REM 100 with TRUE. 

Program BS: 



Appendix B 	 B-5 

The fifth program computes the Euclidean greatest common 

divisor of a vector of integers. It appeared in an article by Brad-

ley in the Communications of the ACM [Bradley, 1970]. The program 

contains the following four errors: (1) If the last input number is 

the only non—zero number and it is negative, then the greatest com-

mon divisor returned is negative. (2) If the greatest common 

divisor is not 1, then a loop index is used after the loop has com-

pleted normally, which is an error according to the Fortran stan-

dard. (3,4) There arc two DO loops for which it is possible to 

construct data so that the upper limit is less than the lower limit, 

which causes the program to produce incorrect results since Fortran 

DO loops always execute at least once. None of the errors is caught 

using branch analysis. All are caught with mutation analysis. 

The next three programs are adapted from the IBM Scientific 

Subroutines Package [IBM. 1966]. In each program three errors were 

artificially inserted in a study conducted by Gould and Drongowski 

[Gould, 1974]. 

Program B6: 

The first program computes the first four moments of a vector 

of observations. One of the errors would be detected using branch 

analysis, the other two can be overlooked. All three errors would 

be discovered using mutation analysis. 

Program B7: 
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The second program computes statistics from an observation 

table. Again, one error would be discovered using branch analysis 

but all three errors are discovered with mutation analysis. 

Program B8: 

The third program computes correlation coefficients. 	Two of 

the errors are detected with branch analysis; all three are detected 

with mutation analysis. 

Program B9: 

The next program takes three sides of a triangle and decides 

whether it is isosceles, scalene, or equilateral. It first appeared 

in a paper by Brown and Lipow [Brown, 1975]. Lipton and Sayward 

[Lipton, 1978] describe a bug where two occurrences of the constant 

2 are replaced with the variable k. This bug is very subtle, but it 

can be detected with the test case 6,3,3. Neither branch analysis 

nor mutation analysis would force the discovery of this error. 

Program B10: 

The tenth program is the FIND program from an article by C.A.R. 

Hoare [Hoare, 1961]. The bug has been studied by the group develop-

ing the SELECT symbolic execution system [Boyer, 1975]. The bug is 

very subtle and neither branch analysis nor mutation analysis would 

guarantee its discovery. This bug was, however, easily discovered 

by mutation analysis (in the normal debugging situation) during some 

early experiments on the coupling effect [Benno, 1978a]. 
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Program B11: 

This program, also written in Algol, appeared in a paper by 

Naur [Nauer, 19691 and has also been studied widely [Foster, 1978], 

[Gerhart, 1976], [Goodenough, 1975]. The program is intended to 

read a string of characters consisting of words separated by blanks 

or newline characters or both, and to output as many words as pos-

sible with a blank between every pair of words. There is a fixed 

limit on the size of each output line, and no word can be broken 

between two lines. The version studied here is that of Gerhart and 

Yelowitz [Gerhart, 1976], containing five errors. Three of these 

(1, 3, and 4 in the numbering of [Gerhart, 1976]) are caught by 

mutation analysis. 

Program B12: 

This program maintains a stack. The user can select to enter 

data on the stack (PUSH), remove information from the stack (POP), 

examine the topmost stack element (TOP), or initialize the stack 

(CLEAR). 
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Appendix C 

LISTING THE PROGRAM UNIT "MOVENW 	" WITH SPECIFIED EQUIV MUTANTS 

SUBROUTINE MOVENW(SOURCE,SLEN,DEST,DLEN) 
INTEGER MLEN, K, SUB2, SULU, LOOPHI, I, IHI, IER 
INTEGER STMT(3,10), CODE(30), SYMTAB(10,9) 
CHAR MEMORY(425) 
INTEGER DLEN, DEST, SLEN, SOURCE 
INPUT OUTPUT IER, MEMORY 
INPUT DLEN, DEST, SLEN, SOURCE 
MLEN = DLEN 
	

1 

t7551 MLEN = ABS DLEN 
1757$ MLEN = ZPUSH DLEN 

IF(SLEN .LT. MLEN) MLEN = SLEN 	 2 3 

t43t IF(SLEN .LT. DLEN) MLEN = SLEN 
1630t IF(-- SLEN .LT. MLEN) MLEN = SLEN 
i632t IF(SLEN .LT. ++ MLEN) MLEN = SLEN 
t727t IF(SLEN .LE. MLEN) MLEN = SLEN 
0581 IF(ABS SLEN .LT. MLEN) MLEN = SLEN 
t7601 IF(ZPUSH SLEN .LT. MLEN) MLEN = SLEN 
t761t IF(SLEN .LT. ABS MLEN) MLEN = SLEN 
t763t IF(SLEN .LT. ZPUSH MLEN) MLEN = SLEN 
1764t IF(SLEN .LT. MLEN) MLEN = ABS SLEN 
$7661 IF(SLEN .LT. MLEN) MLEN = ZPUSH SLEN 

LOOPHI = (DEST + MLEN) - 1 

t7671 LOOPHI = (ABS DEST + MLEN) - 1 
t769t LOOPHI = (ZPUSH DEST + MLEN) - 1 
$770 LOOPHI = (DEST + ABS MLEN) - 1 
t772t LOOPHI = (DEST + ZPUSH MLEN) - 1 
*773t LOOPHI = ABS (DEST + MLEN) - 1 
*775t LOOPHI = ZPUSH (DEST + MLEN) - 1 
t776t LOOPHI = ABS ((DEST + MLEN) - 1) 
i778i LOOPHI = ZPUSH ((DEST + }LEN) - 1) 

SUB2 = SOURCE - 1 	 5 

t7791 SUB2 = ABS SOURCE - 1 
$781t SUB2 = ZPUSH SOURCE - 1 
t782t SUB2 = ABS (SOURCE - 1) 
$784$ SUB2 = ZPUSH (SOURCE - 1) 

DO 20 SUB1=DEST, LOOPHI 	 6 

1785t DO 20 SUB1=ABS DEST, LOOPHI 
t787$ DO 20 SUB1=ZPUSH DEST, LOOPHI 
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t788t DO 20 SUB1=DEST, ABS LOOPHI 
t790t DO 20 SUB1=DEST, ZPUSH LOOPHI 
t892t FOR 20 SUB1=DEST, LOOPHI 

SUB2 = SUB2 + 1 	 7 

t791t SUB2 = ABS SUB2 + 1 
t793t SUB2 = ZPUSH SUB2 + 1 
t794t SUB2 = ABS (SUB2 + 1) 
$796t SUB2 = ZPUSH (SUB2 + 1) 

K = MEMORY(SUB2) 	 8 

t797t K = MEMORY(ABS SUB2) 
i799t K = MEMORY(ZPUSH SUB2) 

IF(K .EQ. '#') IER = 4 	 9 10 

i554t IF(MEMORY(SUB2) .EQ. '#') IER = 4 
$800t IF(ABS K .EQ. '#') IER = 4 
t802t IF(ZPUSH K .EQ. '#') IER = 4 

20 	MEMORY(SUB1) = K 	 11 

i559t MEMORY(SUB1) = MEMORI(SUB2) 
$803t MEMORY(ABS SUB1) = K 
i805t MEMORY(ZPUSH SUB1) = K 
t808t MEMORY(SUB1) = ZPUSH K 

IF(IER .NE. 0) COTO 9999 	 12 13 

t7451. IF(IER .GT. 0) GOTO 9999 
$876$ IF(IER .NE. 0) RETURN 

IF(DLEN .LE. MLEN) GOTO 9999 	 14 15 

t254t IF(DLEN .LE. SLEN) GOTO 9999 
t749t IF(DLEN .EQ. MEN) GOTO 9999 
t80921 IF(ABS DLEN .LE. MLEN) GOTO 9999 
t811t IF(ZPUSII DLEN .LE. MLEN) GOTO 9999 
t812t IF(DLEN .LE. ABS MLEN) GOTO 9999 
$814$ IF(DLEN .LE. ZPUSH MLEN) GOTO 9999 
t878t IF(DLEN .LE. MLEN) RETURN 

I = LOOPIII + 1 	 16 

t8154 I = ABS LOOPHI + 1 
t817t I = ZPUSH LOOPIII + 1 
t818i I = ABS (LOOPHI + 1) 
$820t I = ZPUSH (LOOPHI + 1) 

LOOPHI = (DEST + DLEN) - 1 	 17 

t821t LOOPHI = (ABS DEST + DLEN) - 1 
t823$ LOOPHI = ( ZPUSH DEST + DLEN) - 1 
t824t LOOPHI = (DEST + ABS DLEN) - 1 
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i826i LOOPHI = (DEST + ZPUSH DLEN) - 1 
*827* LOOPHI = ABS (DEST + DLEN) - 1 
i829i LOOPHI = ZPUSH (DEST + DLEN) - 1 
*830* LOOPHI = ABS ((DEST + DLEN) - 1) 
i832i LOOPHI = ZPUSH ((DEST + DLEN) - 1) 

DO 30 SUB1=I, LOOPHI 	 18 

i833i DO 30 SUB1=ABS I, LOOPHI 
*835* DO 30 SUB1=ZPUSH I, LOOPHI 
*836* DO 30 SUB1=I, ABS LOOPHI 
i838i DO 30 SUB1=I, ZPUSH LOOPHI 
*891* DO 9999 SUB1=I, LOOPHI 
*893* FOR 30 SUB1=I, LOOPHI 

30 	MEMORY(SUB1) = ' 	 19 

*8391 MEMORY(ABS SUB1) = " 
*841* MEMORY(ZPUSH SUB1) = ' 

9999 CONTINUE 	 20 

i883i RETURN 

RETURN 
	

21 
END 

MUTANT STATE FOR MOVENW 

FOR EXPERIMENT "MOVENW 	" THIS IS RUN 	7 

NUMBER OF TEST CASES = 11 

NUMBER OF MUTANTS = 	893 
NUMBER OF DEAD MUTANTS = 

	
821 ( 91.9%) 

NUMBER OF LIVE MUTANTS = 	0 ( 0.0%) 
NUMBER OF EQUIV MUTANTS = 	72 ( 8.1%) 

NUMBER OF MUTANTS WHICH DIED BY NON STANDARD MEANS 313 
NORMALIZED MUTANT RATIO 821.0% 
NUMBER OF MUTATABLE STATEMENTS = 	21 
GIVING A MUTANTS/STATEMENT RATIO OF 	42.52 

NUMBER OF DATA REFERENCES = 	48 
NUMBER OF UNIQUE DATA REFERENCES = 	16 

ALL MUTANT TYPES HAVE BEEN ENABLED 

LISTING THE PROGRAM UNIT "MOVENM 	" WITH SPECIFIED EQUIV MUTANTS 

SUBROUTINE MOVENM(SOURCE,SLEN,SDEC,DEST,DLEN,DDEC,TYPPE) 
LOGICAL NEGNO 
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INTEGER X(5), PTNEGD, PTNEGS, K, SUB2, SUB1, LOOPHI, LEND 
INTEGER LENS, I, IHI, DDECPT, SDECPT, IER, STMT(3,10) 
INTEGER CODE(30), SYMTAB(10,9) 
CHAR MEMORY(425) 
INTEGER TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE 
INPUT OUTPUT IER, MEMORY 
INPUT TYPPE, DDEC, DLEN, DEST, SDEC, SLEN, SOURCE 
PTNEGS = (SOURCE + SLEN) - 1 
	

23 

14650t PTNEGS = (ABS SOURCE + SLEN) - 1 
t4652t PTNEGS = (ZPUSH SOURCE + SLEN) - 1 
t4653t PTNEGS = (SOURCE + ABS SLEN) - 1 
t4655t PTNEGS = (SOURCE + ZPUSH SLEN) - 1 
14656$ PTNEGS = ABS (SOURCE + SLEN) - 1 
t4658t PTNEGS = ZPUSH (SOURCE + SLEN) - 1 
$4659t PTNEGS = ABS ((SOURCE + SLEN) - 1) 
t4661t PTNEGS = ZPUSH ((SOURCE + SLEN) - 1) 

PTNEGD = (DEST + DLEN) - 1 	 24 

t46621 PTNEGD = (ABS DEST + DLEN) - 1 
$4664$ PTNEGD = (ZPUSH DEST + DLEN) - 1 
t4665t PTNEGD = (DEST + ABS DLEN) - 1 
t4667t PTNEGD = (DEST + ZPUSH DLEN) - 1 
t4668t PTNEGD = ABS (DEST + DLEN) - 1 
$4670t PTNEGD = ZPUSH (DEST + DLEN) - 1 
t4671i PTNEGD = ABS ((DEST + DLEN) - 1) 
t4673t PTNEGD = ZPUSH ((DEST + DLEN) - 1) 

CALL UNPACK(MEMORY(PTNEGS),X,5) 25 

t46741 CALL UNPACK(MEMORY(ABS PTNEGS),X,5) 
t4676t CALL UNPACK(MEMORY(ZPUSH PTNEGS),X,5) 

NEGNO = X(2) 	.EQ. 26 

t4545 ►  NEGNO = X(2) 	.GE. 
t4677t NEGNO = ABS X(2) 	.EQ. 
$4679t NEGNO = ZPUSH X(2) 	.EQ. 

X(2) = " 27 
IF(NEGNO) CALL PACK(X,MEMORY(PTNEGS),5) 28 29 

t4680$ IF(NEGNO) CALL PACK(X,MEMORY(ABS PTNEGS),5) 
t4682t IF(NEGNO) CALL PACK(X,MEMORY(ZPUSH PTNEGS),5) 

LENS = SLEN - SDEC 30 

t4683t LENS = ABS SLEN - SDEC 
$4685t LENS = ZPUSH SLEN - SDEC 
t46861 LENS = SLEN - ABS SDEC 
$4689t LENS = ABS (SLEN - SDEC) 

LEND = DLEN - DDEC 31 

t4692t LEND = ABS DLEN - DDEC 
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146941 	LEND = ZPUSII DLEN - DDEC 
146951 	LEND = DLEN - ABS DDEC 
146981 	LEND = ABS (DLEN - DDEC) 

SDECPT = SOURCE + LENS 

147011 	SDECPT = ABS SOURCE + LENS 
147031 	SDECPT = ZPUSH SOURCE + LENS 
147041 	SDECPT = SOURCE + ABS LENS 
147071 	SDECPT = ABS (SOURCE + LENS) 

C-5 

32 

147091 SDECPT = ZPUSH (SOURCE + LENS) 

DDECPT = DEST + LEND 33 

147101 DDECPT = ABS DEST + LEND 
147121 DDECPT = ZPUSH DEST + LEND 
147131 DDECPT = DEST + ABS LEND 
147161 DDECPT = ABS (DEST + LEND) 
$47181 DDECPT = ZPUSH (DEST + LEND) 

SUB1 = DDECPT - 1 34 

147191 SUB1 = ABS DDECPT - 1 
147211 SUB1 = ZPUSH DDECPT - 1 
147221 SUB1 = ABS (DDECPT - 1) 
147241 SUB1 = ZPUSH (DDECPT - 1) 

IF(SDEC .EQ. 0 	.OR. DDEC .EQ. 0) GOTO 22 35 36 

145501 IF(SDEC .LE. 0 .OR. DDEC .EQ. 0) GOTO 22 
145571 IF(SDEC .EQ. 0 .OR. DDEC .LE. 0) GOTO 22 

IHI = (SDEC + SDECPT) - 1 37 

147251 IHI = (ABS SDEC + SDECPT) - 1 
147271 IHI = (ZPUSH SDEC + SDECPT) - 1 
147281 IHI = (SDEC + ABS SDECPT) - 1 
147301 IHI = (SDEC + ZPUSH SDECPT) - 1 
147311 IEI = ABS (SDEC + SDECPT) - 1 
147331 IHI = ZPUSH (SDEC + SDECPT) - 1 
147341 IHI = ABS ((SDEC + SDECPT) - 1) 
147361 IHI = ZPUSII ((SPEC + SDECPT) - 1) 

IF(DDEC .LE. SDEC) IHI = (DDEC + SDECPT) - 1 38 39 

143001 IF(++ DDEC .LE. SPEC) IHI = (DDEC + SDECPT) - 1 
145631 IF(DDEC .LT. SDEC) IHI = (DDEC + SDECPT) - 1 
147371 IF(ABS DDEC .LE. SDEC) EBI = (DDEC + SDECPT) - 1 
147391 IF(ZPUSH DDEC .LE. SDEC) IHI = (DDEC + SDECPT) - 1 
147401 IF(DDEC .LE. ABS SPEC) IHI = (DDEC + SDECPT) - 1 
147421 IF(DDEC .LE. ZPUSH SDEC) IHI = (DDEC + SDECPT) - 1 
147431 IF(DDEC .LE. SDEC) IHI = (ABS DDEC + SDECPT) - 1 
147451 IF(DDEC .LE. SDEC) IHI = (ZPUSH DDEC + SDECPT) - 1 
147461 IF(DDEC .LE. SDEC) PHI = (DDEC + ABS SDECPT) - 1 
$47481 IF(DDEC .LE. SDEC) IHI = (DDEC + ZPUSH SDECPT) - 1 

*4 MORE* 
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$4755$ 
$4757i 

C C-6 

40 DO 20 SUB2=SDECPT, IHI 

DO 20 SUB2=ABS SDECPT, IHI 
DO 20 SUB2=ZPUSH SDECPT, IHI 

$4758i DO 20 SUB2=SDECPT, ABS IHI 
$4760$ DO 20 SUB2=SDECPT, ZPUSH IHI 
$5092$ FOR 20 SUB2=SDECPT, IHI 

SUB1 = SUB1 + 1 41 

$4761$ SUB1 = ABS SUB1 + 1 
$4763$ SUB1 = ZPUSH SUB1 + 1 
$4764$ SUB1 = ABS (SUB1 + 1) 
$4766$ SUB1 = ZPUSH (SUB1 + 1) 

K = MEMORY(SUB2) 42 

$47671 K = MEMORY(ABS SUB2) 
$4769$ K = MEMORY(ZPUSH SUB2) 

IF(K .EQ. 	'#') 	IER = 4 43 44 

$2242t IF(K .EQ. 	'#') IER = DLEN 
$2244$ IF(K .EQ. 	'#') 	IER = LENS 
$2245t IF(K .EQ. 	'#') 	IER = SDEC 
$2247$ IF(K *EQ. 	'#') 	IER = DDEC 
$3467$ IF(MEMORY(SUB2) 	.EQ. 	'#') 	IER = 4 
$4770$ IF(ABS K .EQ. 	'#') 	IER = 4 
t4772t IF(ZPUSH K .EQ. 	'#') 	IER = 4 

20 	MEMORY(SUB1) = K 	 45 

$3484$ MEMORY(SUB1) = MEMORY(SUB2) 
$4773$ MEMORY(ABS SUB1) = K 
$4775$ MEMORY(ZPUSH SUB1) = K 
$4776$ MEMORY(SUB1) = ABS K 
$4778t MEMORY(SUB1) = ZPUSH K 

IF(IER .NE. 0) GOTO 50 	 46 47 

$4581$ IF(IER .GT. 0) GOTO 50 
$5026$ IF(IER .NE. 0) GOTO 40 

22 	IF(DDEC .LE. SDEC) GOTO 30 	 48 49 

$4779t IF(ABS DDEC .LE. SDEC) GOTO 30 
$4782$ IF(DDEC .LE. ABS SDEC) GOTO 30 

I = SUB1 + 1 	 50 

$4785i I = ABS SUB1 + 1 
$4787$ I = ZPUSH SUB1 + 1 
$4788$ I = ABS (SUB1 + 1) 
$4790$ I = ZPUSH (SUB1 + 1) 
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IHI = (DEST + DLEN) — 1 

147911 IRI = (ABS DEST + DLEN) — 1 
t4793t IHI = (ZPUSH DEST + DLEN) - 1 
$47941 IHI = (DEST + ABS DLEN) - 1 
147964 IHI = ( DEST + ZPUSH DLEN) — 1 
t4797t IHI = ABS (DEST + DLEN) — 1 
t4799t IHI = ZPUSH (DEST + DLEN) — 1 
14800t IHI = ABS ((DEST + DLEN) — 1) 
$48021 IHI = ZPUSH ((DEST + DLEN) — 1) 

DO 25 SUB1=I, IHI 

111681 DO 25 SUB1=I, PTNEGD 
t4803t DO 25 SUB1=ABS I, IHI 
t4805t DO 25 SUB1=ZPUSH I, EHI 
$4806$ DO 25 SUB1=I, ABS LEI 
t4808t DO 25 SUB1=I, ZPUSH IHI 
t5073t DO 30 SUB1=I, IHI 
t50931 FOR 25 SUB1=I, IHI 

25 	MEMORY(SUB1) = '0' 

t4809t MEMORY(ABS SUB1) = '0' 
148111 MEMORY(ZPUSH SUB1) = '0' 

30 	LOOPHI = LEND 

148121 LOOPHI = ABS LEND 

IF(LENS .LE. LEND) LOOPHI = LENS 

51 

52 

53 

54 

55 56 

112831 
t4359t 
145911 
t4R15$ 
$48181 
$4821t 

IF(LENS .LE. 
IF(++ LENS . 
IF(LENS .LT. 
IF(ABS LENS 
IF(LENS .LE. 
IF(LENS .LE. 

LOOPHI) LOOPHI = LENS 
LE. LEND) LOOPHI = LENS 
LEND) LOOPHI = LENS 
.LE. LEND) LOOPHI = LENS 
ABS LEND) LOOPHI = LENS 
LEND) LOOPHI = ABS LENS 

SUB1 = DDECPT 

$48241 SUB1 = ABS DDECPT 
t4 826$ SUB1 = ZPUSH DDECPT 

SUB2 = SDECPT 

t4827$ SUB2 = ABS SDECPT 
$48291 SUB2 = ZPUSH SDECPT 

IF(LEND .EQ. 0) GOTO 50 

t2338t IF(LEND .EQ. IER) GOTO 50 
145991 IF(LEND .LE. 0) GOTO 50 

57 

58 

59 60 

IF(LENS .EQ. 0) GOTO 41 	 61 62 
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114431 IF(LOOPHI .EQ. 0) GOTO 41 
146061 IF(LENS .LE. 0) GOTO 41 

DO 40 1=1, LOOPHI 	 63 

114461 DO 40 SOURCE=1, LOOPHI 
114471 DO 40 SLEN=1, LOOPHI 
114501 DO 40 DLEN=1, LOOPHI 
114531 DO 40 SDEC=1, LOOPHI 
114551 DO 40 DDEC=1, LOOPHI 
$1456t DO 40 SDECPT=1, LOOPHI 
114571 DO 40 DDECPT=1, LOOPHI 
114591 DO 40 E1I=1, LOOPHI 
114611 DO 40 K=1, LOOPHI 
$14631 DO 40 LOOPIII=1, LOOPHI 

*4 MORE 

SUB1 = SUB1 - 1 	 64 

t48331 SUB1 = ABS SUB1 - 1 
148351 SUB1 = ZPUSH SUB1 - 1 
t48361 SUB1 = ABS (SUB1 - 1) 
148381 SUB1 = ZPUSH (SUB1 - 1) 

SUB2 = SUB2 - 1 	 65 

148391 SUB2 = ABS SUB2 - 1 
148411 SUB2 = ZPUSH SUB2 - 1 
148421 SUB2 = ABS (SUB2 - 1) 
t48441 SUB2 = ZPUSH (SUB2 - 1) 

K = MEMORY(SUB2) 	 66 

148451 K = MEMORY(ABS SUB2) 
148471 K = MEMORY(ZPUSH SUB2) 

IF(K .E0. '#') IER = 4 	 67 68 

136701 IF(MEMORY(SUB2) .EQ. '#') IER = 4 
148481 IF(ABS K .EQ. '#') IER = 4 
148501 IF(ZPUSH K .EQ. 	IER = 4 

40 	MEMORY(SUB1) = K 	 69 

136881 MEMORY(SUB1) = MEMORY(SUB2) 
$4851/ MEMORY(ABS SUB1) = K 
$48531 MEMORY(ZPUSH SUB1) = K 
148561 MEMORY(SUB1) = ZPUSH K 

IF(IER .NE. 0) GOTO 50 	 70 71 

146231 IF(IER .GT. 0) GOTO 50 
150501 IF(IER .NE. 0) GOTO 20 

IF(LEND .LE. LENS) GOTO 50 	 72 73 
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i1743t IF(LEND .LE. LOOPHI) GOTO 50 
$4 857$ IF(ABS LEND .LE. LENS) GOTO 50 
$4859t IF(ZPUSH LEND .LE. LENS) GOTO 50 
t4860t IF(LEND .LE. ABS LENS) GOTO 50 
t4862$ IF(LEND .LE. ZPUSH LENS) GOTO 50 

41 	IHI = SUB1 - 1 	 74 

t4863$ IHI = ABS SUB1 - 1 
t4865t IHI = ZPUSH SUB1 - 1 
$4866t IHI = ABS (SUB1 - 1) 
t4868t IHI = ZPUSH (SUB1 - 1) 

DO 45 I=DEST, IHI 	 75 

t4869t DO 45 I=ABS DEST, IHI 
t4871$ DO 45 I=ZPUSH DEST, IHI 
t4872t DO 45 I=DEST, ABS IHI 
$4874t DO 45 I=DEST, ZPUSH IHI 
t5091i DO 50 I=DEST, IIII 
t5095t FOR 45 I=DEST, IHI 

45 	MEMORY(I) = '0' 	 76 

t4875t MEMORY(ABS I) = '0' 
$4877t MEMORY(ZPUSII I) = '0' 

50 	X(2) = '-' 	 77 
IF(NEGNO) CALL PACK(X,MEMORY(PTNEGS),5) 	 78 79 

t4878t IF(NEGNO) CALL PACK(X,MEMORY(ABS PTNEGS),5) 
t4880t IF(NEGNO) CALL PACK(X,MEMORY(ZPUSH PTNEGS),5) 

IF(.NOT. (NEGNO .AND. TYPPE .E0. 2)) RETURN 	 80 81 

$4881t IF(.NOT. (NEGNO .AND. ABS TYPPE .EQ. 2)) RETURN 
$4883$ IF(.NOT. (NEGNO .AND. ZPUSH TYPPE .EQ. 2)) RETURN 

CALL UNPACK(MEMORY(PTNEGD),X,5) 	 82 

i57$ CALL UNPACK(MEMORY(PTNEGD),X,4) 
t2560t CALL UNPACK(MEMORY(PTNEGD),X,SDEC) 
t2572$ CALL UNPACK(MMORY(PTNEGD),X,TYPPE) 
t3015t CALL UNPACK(MEMORY(PTNEGD),X,1) 
t3016t CALL UNPACK(MEMORY(PTNEGD),X,2) 
t48841 CALL UNPACK(MEMORY(ABS PTNEGD),X,5) 
t4886$ CALL UNPACK(MMORY(ZPUSH PTNEGD),X,5) 

X(2) = 	 83 

t2593$ X(TYPPE) = ' 

CALL PACK(X,MEMORY(PTNEGD),5) 
	

84 

t4887t CALL PACK(X,MEMORY(ABS PTNEGD),5) 
t4889$ CALL PACK(X,MEMORY(ZPUSH PTNEGD),5) 
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RETURN 
END 

MUTANT ELIMINATION PROFILE FOR MOVENM 

MUTANT TYPE 	 TOTAL DEAD LIVE EQUIV 

85 

CONSTANT REPLACEMENT 64 63 	98.4% 0 0.0% 1 1.6% 
SCALAR VARIABLE REPLACEME 1920 1906 	99.3% 0 0.0% 14 0.7% 
SCALAR FOR CONSTANT REP. 630 622 	98.7% 0 0.0% 8 1.3% 
CONSTANT FOR SCALAR REP. 331 331 100.0% 0 0.0% 0 0.0% 
SOURCE CONSTANT REPLACEME 102 100 	98.0% 0 0.0% 2 2.0% 
ARRAY REF. FOR CONSTANT R 179 179 100.0% 0 0.0% 0 0.0% 
ARRAY REF. FOR SCALAR REP 547 543 	99.3% 0 0.0% 4 0.7% 
COMPARABLE 	ARRAY NAME RE 40 40 100.0% 0 0.0% 0 0.0% 
CONSTANT FOR ARRAY REF RE 40 40 100.0% 0 0.0% 0 0.0% 
SCALAR FOR ARRAY REF REP. 315 315 100.0% 0 0.0% 0 0.0% 
ARRAY REF. FOR ARRAY REF. 75 75 100.0% 0 0.0% 0 0.0% 
UNARY OPERATOR INSERTION 191 189 	99.0% 0 0.0% 2 1.0% 
ARITHMETIC OPERATOR REPLA 107 107 100.0% 0 0.0% 0 0.0% 
RELATIONAL OPERATOR REPLA 98 89 	90.8% 0 0.0% 9 9.2% 
LOGICAL CONNECTOR REPLACE 10 10 100.0% 0 0.0% 0 0.0% 
ABSOLUTE VALUE INSERTION 240 93 	38.8% 0 0.0% 147 61.3% 
STATEMENT ANALYSIS 29 29 100.0% 0 0.0% 0 0.0% 
STATEMENT DELETION 35 35 100.0% 0 0.0% 0 0.0% 
RETURN STATEMENT REPLACEM 61 61 100.0% 0 0.0% 0 0.0% 
GOTO STATEMENT REPLACEMEN 49 47 	95.9% 0 0.0% 2 4.1% 
DO STATEMENT END REPLACEM 32 25 	78.1% 0 0.0% 7 21.9% 

MUTANT STATE FOR MOVENM 

FOR EXPERIMENT "MOVENM 	" THIS IS RUN 22 

NUMBER OF TEST CASES = 41 

NUMBER OF MUTANTS = 5095 
NUMBER OF DEAD MUTANTS = 4899 ( 96.2%) 
NUMBER OF LIVE MUTANTS = 0 ( 0.0%) 
NUMBER OF EQUIV MUTANTS = 196 ( 3.8%) 

NUMBER OF MUTANTS WHICH DIED BY NON STANDARD MEANS 2206 
NORMALIZED MUTANT RATIO *****% 
NUMBER OF MUTATABLE STATEMENTS = 	63 
GIVING A MUTANTS/STATEMENT RATIO OF 	80.87 

NUMBER OF DATA REFERENCES = 	158 
NUMBER OF UNIQUE DATA REFERENCES = 	32 

ALL MUTANT TYPES HAVE BEEN ENABLED 
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LISTING THE PROGRAM UNIT "MOVEED 

SUBROUTINE MOVEED(SOURCE,SLEN,SDEC,DEST,DLEN,PLFN,PDIG,PDEC, 
* PIC,IER) 

LOGICAL SUPRES, NEGNO 
INTEGER X(5), SUB2, SUB1, IHI, PLDIG, IVAR, I, SCOUNT, DESTHI 
INTEGER CHAR, PDIGLN, SDIG, SARRAY(50), PICST, DDEC 
INTEGER STMT(3,10), CODE(30), SYMTAB(10,9) 
CHAR MEMORY(310) 

5 

INTEGER IER 
CHAR PIC(10) 
INTEGER PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE 
INPUT OUTPUT MEMORY, IER 
INPUT PIC, PDEC, PDIG, PLEN, DLEN, DEST, SDEC, SLEN, SOURCE 
SUPRES = .TRUE. 
DO 5 I=1, PLEN 
SARRAY(I) = '0' 

87 
88 
89 

PLDIG = PDIG - PDEC 90 
SDIG = SLEN - SDEC 91 
IF(SDEC .EQ. 0) GOTO 11 92 93 
SUB1 = PLDIG 94 
SUB2 = (SOURCE + SDIG) - 1 95 
DO 10 I=1, SDEC 96 
SUB1 = SUB1 + 1 97 
SUB2 = SUB2 + 1 98 
IF(MEMORY(SUB2) 	.EQ. 	'#') 	IER = 4 99 100 

10 SAREAY(SUB1) = MEMORY(SUB2) 101 
IF(IER .NE. 0) GOTO 101 102 103 

11 IF(SDIG .E0. 0 .OR. PLDIG .EQ. 0) GOTO 16 104 105 
IHI = PLDIG 106 
IF(SDIG .LT. PLDIG) IHI = SDIG 107 108 
SUB1 = PLDIG + 1 109 
SUB2 = SOURCE + SDIG 110 
DO 15 I=1, IHI 111 
SUB1 = SUB1 - 1 112 
SUB2 = SUB2 - 1 113 
IF(MEMORY(SUB2) 	.EQ. 	'#') 	IER = 4 114 115 

15 SARRAY(SUD1) = MEMORY(SUB2) 116 
IF(IER .NE. 0) GOTO 101 117 118 

16 SUB1 = (SOURCE + SLEN) - 1 119 
CALL UNPACK(MEMORY(SUB1),X,2) 120 
NEGNO = X(2) 	.EQ. 121 
SUB1 = DEST 122 
SCOUNT = 0 123 
DO 100 I=1, PLEN 124 
SUB1 = SUB1 + 1 125 
IF(SUB1 .GT. DLEN + DEST) GOTO 101 126 127 
CHAR = PIC(I) 128 
IF(PIC(I) 	.EQ. 	'9') 	SUPRES = .FALSE. 129 130 
IF(SARRAY(SCOUNT + 1) 	.NE. 	'0') SUPRES = .FALSE. 131 132 
IF(CHAR .NE. 	'-') GOTO 20 133 134 
LEMORY(SUD1 - 1) = ' 135 
IF(NEGNO) MEMORY(SUB1 - 1) = 136 137 
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IF(I .EQ. 1) GOTO 100 
SCOUNT = SCOUNT + 1 
IF(.NOT. SUPRES) GOTO 99 
IF(MEMORY(SUB1 — 2) 	.EQ. 	'—') MEMORY(SUB1 — 2) 
GOTO 100 

D-2 

= 

138 139 
140 

141 142 
143 144 

145 
20 IF(CIIAR .NE. 	'+') GOTO 30 146 147 

IF(NEGNO) MEMORY(SUB1 — 1) = 148 149 
IF(.NOT. NEGNO) MEMORY(SUB1 — 1) = '+' 150 151 
IF(I .EQ. 1) GOTO 100 152 153 
SCOUNT = SCOUNT + 1 154 
IF(.NOT. SUPRES) GOTO 99 155 156 
IF(MEMORY(SUB1 — 2) 	.EQ. 	'+') MEMORY(SUB1 — 2) = 157 158 
IF(MEMORY(SUB1 — 2) 	.EQ. 	MEMORY(SUB1 — 2) - 159 160 
GOTO 100 161 

30 IF(CHAR .NE. 	'i') GOTO 40 162 163 
MEMORY(SUB1 — 1) = ' i t  164 
IF(I .EQ. 1) GOTO 100 165 166 
SCOUNT = SCOUNT + 1 167 
IF(.NOT. SUPRES) GOTO 99 168 169 
IF(MEMORY(SUB1 — 2) 	.EQ. 	i t s ) MEMORY(SUB1 — 2) = 170 171 
GOTO 100 172 

40 IF(CHAR .NE. 	's') GOTO 50 173 174 
SCOUNT = SCOUNT + 1 175 
IF(.NOT. SUPRES) GOTO 99 176 177 
MEMORY(SUB1 — 1) = "0 ' 178 
GOTO 100 179 

50 IF(CHAR .NE. 	'Z') GOTO 55 180 181 
SCOUNT = SCOUNT + 1 182 
IF(.NOT. SUPRES) GOTO 99 183 184 
MEMORY(SUB1 — 1) = ' 185 
GOTO 100 186 

55 IF(CHAR .NE. 	'9') 	GOTO 60 187 188 
SCOUNT = SCOUNT + 1 189 
MEMORY(SUB1 — 1) = SARRAY(SCOUNT) 190 
GOTO 100 191 

60 IF(CIIAR .NE. 	'B') 	GOTO 70 192 193 
MEMORY(SUB1 — 1) = ' 194 
GOTO 100 195 

70 IF(CHAR .NE. 	'/') GOTO 80 196 197 
MEMORY(SUB1 — 1) = '/' 198 
GOTO 100 199 

80 IF(CHAR .NE. 	'V') GOTO 81 200 201 
SUB1 = SUB1 — 1 202 
GOTO 100 203 

81 IF(CHAR .NE. 	'.') GOTO 82 204 205 
MEMORY(SUB1 — 1) = 206 
GOTO 100 207 

82 IF(CHAR .NE. 	1 ,9 GOTO 83 208 209 
IF(.NOT. 	SUPRES) MEMORY(SUB1 — 1) = 1 . 1  210 211 
IF(SUPRES) MEMORY(SUB1 — 1) = 	' 212 213 
GOTO 100 214 

83 TER = 3 215 
GOTO 101 216 

99 MEMORY(SUB1 — 1) = SARRAY(SCOUNT) 217 
100 CONTINUE 218 
101 RETURN 219 
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