19,463 research outputs found

    Static analysis of energy consumption for LLVM IR programs

    Get PDF
    Energy models can be constructed by characterizing the energy consumed by executing each instruction in a processor's instruction set. This can be used to determine how much energy is required to execute a sequence of assembly instructions, without the need to instrument or measure hardware. However, statically analyzing low-level program structures is hard, and the gap between the high-level program structure and the low-level energy models needs to be bridged. We have developed techniques for performing a static analysis on the intermediate compiler representations of a program. Specifically, we target LLVM IR, a representation used by modern compilers, including Clang. Using these techniques we can automatically infer an estimate of the energy consumed when running a function under different platforms, using different compilers. One of the challenges in doing so is that of determining an energy cost of executing LLVM IR program segments, for which we have developed two different approaches. When this information is used in conjunction with our analysis, we are able to infer energy formulae that characterize the energy consumption for a particular program. This approach can be applied to any languages targeting the LLVM toolchain, including C and XC or architectures such as ARM Cortex-M or XMOS xCORE, with a focus towards embedded platforms. Our techniques are validated on these platforms by comparing the static analysis results to the physical measurements taken from the hardware. Static energy consumption estimation enables energy-aware software development, without requiring hardware knowledge

    Towards Multidimensional Verification: Where Functional Meets Non-Functional

    Full text link
    Trends in advanced electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends towards the multidimensional verification concept. The concept is motivated by an example for the functional and power verification dimensions.Comment: 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC

    A Power Consumption Estimation Approach for Embedded Software Design using Trace Analysis

    Get PDF
    International audienceWith the explosion of advanced power control knobs such as dynamic voltage frequency scaling, mastering energy constraints in embedded systems is becoming challenging for software developers. Several power estimation techniques have been proposed over the past years, from electrical level to more abstract models such as SystemC/TLM. They offer various trade-offs between performance and accuracy, but suffer from a number of shortcomings. They are expensive and time-consuming, requiring intricate models of the architecture and finally, fail to be applied from the software developer perspective. In this paper, we propose a lightweight and cost-effective approach suitable for software developers. It relies on trace analysis and high-level modeling of architectures to perform quick and efficient power consumption estimations without loosing accuracy. This approach is fully supported by a tool and is validated using a simple thermal mitigation case study and checked against physical measurements. We show that, for our case study, the relative error between our tool and real values is 8% in average

    Energy Transparency for Deeply Embedded Programs

    Get PDF
    Energy transparency is a concept that makes a program's energy consumption visible, from hardware up to software, through the different system layers. Such transparency can enable energy optimizations at each layer and between layers, and help both programmers and operating systems make energy-aware decisions. In this paper, we focus on deeply embedded devices, typically used for Internet of Things (IoT) applications, and demonstrate how to enable energy transparency through existing Static Resource Analysis (SRA) techniques and a new target-agnostic profiling technique, without hardware energy measurements. Our novel mapping technique enables software energy consumption estimations at a higher level than the Instruction Set Architecture (ISA), namely the LLVM Intermediate Representation (IR) level, and therefore introduces energy transparency directly to the LLVM optimizer. We apply our energy estimation techniques to a comprehensive set of benchmarks, including single- and also multi-threaded embedded programs from two commonly used concurrency patterns, task farms and pipelines. Using SRA, our LLVM IR results demonstrate a high accuracy with a deviation in the range of 1% from the ISA SRA. Our profiling technique captures the actual energy consumption at the LLVM IR level with an average error of 3%.Comment: 33 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1510.0709
    • …
    corecore