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1. Introduction

Embedded systems that have timing constraints are classified as real-time systems. In these
systems, not only the logical results of computations are important, but also the time instant
in which they are obtained. Hard real-time systems are those whose the respective timing
constraints must be met at all cost, since violation might be catastrophic. Hence, time pre-
dictability is an essential issue (Barreto & Lima (2004)). In addition, the widespread expansion
of mobile devices market has forced embedded systems companies to deal with several new
challenges in order to provide complex systems in this market niche. In this context, energy
consumption deserves special attention, since portable devices generally rely on constrained
energy sources (e.g. battery) . As consequence, early estimation of the energy consumption
can provide important insights to the designer about the battery lifetime as well as parts of
the application that need optimization (Tavares et al. (2007)).
Nowadays, UML (UML (2005)) is the most adopted modeling language for system design in
the software engineering organizations and industry. The main reasons are: (i) its friendly
and intuitive notations, (ii) availability of commercial and open source tools that support the
UML notations and (iii) autonomy of particular programming languages and development
processes. However, UML does not provide support for quantitative notations. Quantita-
tive notations are especially important when modeling Embedded Real-Time Systems (ERTS).
Hence, we consider UML in combination with MARTE (UML Profile for Modeling and Anal-
ysis of Real-Time and Embedded systems) as specification language for the design of ERTS.
MARTE foster the construction of models that may be used to make quantitative predictions
regarding real-time and embedded features of systems taking into account both hardware and
software characteristics (MARTE (2005)).
UML 2.0 is composed of several diagram types (e.g. activity, sequence, use case, class, tim-
ing and many others). Interaction Overview Diagram (IO) (UML (2005)) is adopted in this
work due to its suitable characteristics for modeling requirements when dealing with ERTS,
since UML-IO combine elements of activity diagrams with sequence diagrams to represent
the embedded system behavior.
Without loss of generalization, this work aims to depict the mapping process of UML-IO into
a Time Petri Net with Energy constraints (ETPN) in order to estimate the energy consumption
and execution time of ERTS. These estimates are performed in the early stages of the embed-
ded system life cycle, serving as one instrument for design decision-making process. First, the
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execution time and energy consumption constraints are represented as MARTE profile anno-
tations. After that, the ETPN model is generated by a mapping process, and finally the model
is evaluated in order to find the Best Case Execution Time (BCET) and Worst Case Execution
Time (WCET), the respective energy consumption, and also, adopted for qualitative analysis
and verifications. Furthermore, the estimates obtained (time and energy consumption) from
the model were compared with the measures obtained from the real hardware platform.
The remainder of the paper is organized as follows: Section 2 presents the adopted method-
ology. Section 3 introduces basic concepts regarding UML-IO, MARTE, ETPN and measuring
activities. Section 4 presents the related work. Section 5 describes the mapping from UML-IO
to an ETPN. Section 6 presents a case study and results. Section 7 concludes the paper and
briefly discusses further work.

2. Methodology

This section introduces the set of activities related to the proposed design methodology. Fig-
ure 1 depicts the core activities of MEMBROS methodology, which organizes the activities
in three groups: (i) requirement analysis; (ii) energy consumption and performance evalua-
tion; and (iii) software synthesis. As follows, an overview of entire methodology is provided.
However, this paper focuses on the activities regarding requirement analysis.

Requirement
Specification

Creation of 
SysML  

Diagrams

Assigning 
Information of

Energy Consum-
ption and

Execution Time
to the Diagrams
using MARTE

Analysis and
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behaviour]

Mapping IO into 
      an ETPN

Fig. 1. MEMBROS methodology.

Initially, the activities regarding requirements specifications are performed. After created the
requirement specification, then the system requirements are modeled using a set of UML-
IOs, which represent the dynamic parts of the embedded software to be developed. Since
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timing and energy constraints are of utmost importance in the systems of interest, the UML-
IOs are annotated with timing and energy consumption information (e.g. initial estimates)
using MARTE. Next, the annotated UML-IOs are automatically mapped into ETPN models in
order to lay down a mathematical basis for analysis and verification of properties (e.g. absence
of deadlock conditions between requirements). This activity also concerns to obtain best and
worst case execution times and the respective energy consumptions, in such a way that the
requirements are also evaluated in order to ensure that the timing and energy constraints can
be met. As the UML-IOs are constructed by the designer, negative results in the evaluation
activity may be not only related to inconsistent requirements, but also to inconsistent UML-
IOs.
Afterwards, the embedded software is implemented taking into account the results obtained
in previous activities. Once the source code implementation is concluded, the designer an-
alyzes the code in order to assign probability values to conditional and iterative structures.
The probability annotations allow the compiled code be evaluated in the context of time and
energy consumption, in such a way that these costs may be estimated before running the
code on the hardware platform. Next, the compiled code is automatically translated into a
coloured Petri net (CPN) model in order to provide a basis for the stochastic simulation of
the embedded software. Although not depicted in Figure 1, an architecture characterization
activity is also considered to permit the construction of a library of CPN basic building blocks,
which provide the foundation for the automatic generation of CPN stochastic models. From
the CPN model (generated by the composition of basic blocks), a stochastic simulation of the
compiled code is carried out considering the characteristics of the target platform. If the sim-
ulation results are in agreement with the requirements, the software synthesis is performed.
More information about the activity of Performance Evaluation can be found in Callou et al.
(2008).
Software synthesis activities are concerned with the stringent constraints (e.g. time and en-
ergy), and, in the general sense, it is composed of two subgroups of activities: (i) tasks’ han-
dling; and (ii) code generation. Tasks’ handling is responsible for tasks’ scheduling, resource
management, and inter-task communication, whereas code generation deals with the static
generation of the final source code, which includes a customized runtime support, namely,
dispatcher. It is important to state that the concept of task is similar to process, in the sense
that it is a concurrent unit activated during system runtime. For the following activities, it
is assumed that the embedded software has been implemented as a set of concurrent hard
real-time tasks.
Initially, a measurement activity is performed to obtain the tasks’ timing information as well as
the information regarding the hardware energy consumption. Next, the designer defines the
specification of system stringent constraints, which consists of a set of concurrent tasks with
their respective constraints, behavioral descriptions, information related to the hardware plat-
form (e.g. voltage/frequency levels and energy consumption) as well as the energy constraint.
Afterward, the specification is translated into an internal model able to represent concurrent
activities, timing information, inter-task relations, such as precedence and mutual exclusion,
as well as energy constraints. The adopted internal model is a time Petri net extension (TPNE),
labeled with energy consumption values and code annotations. After generating the internal
model (TPNE), the designer may firstly choose to perform property analysis/verification or
carry out the scheduling activity. This work adopts a pre-runtime scheduling approach in
order to find out a feasible schedule that satisfies timing, inter-task and energy constraints.
Next, the feasible schedule is adopted as an input to the automatic code generation mecha-
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nism, such that a tailored code is obtained with the respective runtime control, namely, dis-
patcher. Finally, the application is validated on a DVS (Dynamic Voltage Scaling) platform
in order to check system behaviour as well as the respective constraints. Once the system is
validated, it can be deployed to the real environment. More information about the activity of
Software Synthesis can be found in Tavares et al. (2007).

3. Background

This section presents fundamental concepts for a better understanding of the rest of the paper.

3.1 UML

The Unified Modeling Language (UML) is a standard widely adopted graphical graphical lan-
guage for visualizing, specifying, constructing, and documenting the artifacts of a software
system, as well as for business modeling and other non-software systems. The UML repre-
sents a collection of best engineering practices that have proven successful in the modeling of
large and complex systems.
The main goals of UML are:

• provide users with a ready-to-use, expressive visual modeling language so they can
develop and exchange meaningful models;

• provide extensibility and specialization mechanisms to extend the core concepts;

• be independent of particular programming languages and development processes;

• provide a formal basis for understanding the modeling language;

• integrate best practices.

UML is composed by 13 types of diagrams, which can be divided into three parts: behav-
ior, interaction and structural diagrams. The behavioral diagrams specify the dynamic parts
used in the system being modeled. The interaction diagrams represents a subset of behavior
diagrams, that emphasize the control and data flows among the things (sub-systems, compo-
nents and agents) in the system being modeled. Lastly, structural diagrams define the static
and structural elements used in the system being modeled.
Behavioral diagrams are composed by the following diagrams: use case (provides a high-
level description of the system functionality), activity (represents the flow of data and con-
trol between activities), sequence (represents the interaction between collaborating parts of a
system), state machine (describes the state transitions and actions that a system or its parts
performs in response to events), communication (shows an interaction among a set of partic-
ipants over the course of time), interaction overview (combine elements of activity diagrams
with sequence diagrams to show the flow of program execution) and timing (shows the be-
haviors of elements throughout a given period of time) (UML (2005)). It is important to stress
that this paper presents the mapping process of UML-IO into an ETPN.

3.1.1 Interaction Overview Diagram

An interaction overview diagram is an activity diagram in which the nodes represent in-
teraction diagrams. Interaction diagrams can include sequence, communication, interaction
overview and timing diagrams. Most of the notation for interaction overview diagrams is the
same for activity diagrams. For example, initial, final, decision, merge, fork and join nodes
are all the same. However, interaction overview diagrams introduce two new elements: inter-
action occurrences and interaction elements.
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Interaction occurrences are references to existing interaction diagrams. An interaction occur-
rence is shown as a reference frame (Figure 2 (a)). On the other hand, interaction elements
display a representation of existing interaction diagrams within a rectangular frame. They
differ in that they display the contents of the references diagram inline (Figure 2 (b)).

Fig. 2. New Elements: (a) interaction occurrence and (b) interaction element.

3.2 Marte

MARTE is a new UML profile standardized by the OMG. MARTE is used to define founda-
tions for model-based description of real-time and embedded systems. These core concepts
are then refined concerning: (i) modeling and (ii) analysis. The modeling part provides sup-
port required from specification to detailed design of real-time and embedded systems. On
the other hand, the analysis part does not intend to define new techniques for analyzing sys-
tems, but to support them. Hence, MARTE aims providing facilities to annotate models with
information required to perform specific analysis (MARTE (2005)).
Figure 3 illustrates an example of an activity diagram with time and energy constraints speci-
fied by MARTE. For this example the stereotype (ResourceUsage) and tagged values (execTime
and energy) were used. The stereotype describes an action. Tagged values consist of a property
name and an assigned value. In this example, the ResourceUsage stereotype describe, respec-
tively, the delay and the energy consumption of the activity A, in this case, 10 seconds and 20
joules. The tagged values are {execTime = (10,′ s′)} and {energy = (20,′ j′)}. More informa-
tion about all stereotypes and tagged values supported by MARTE can be found in MARTE
(2005).

Fig. 3. Activity diagram and MARTE.

3.3 Computation Model

Time Petri Net. A Time Petri Net (TPN) (Merlin & Faber (1976)) is a bipartite directed graph
represented by a tuple �= (P, T, F, W, m0, I), where P (set of places) and T (set of transitions)
are non-empty disjoint sets of nodes. The edges are represented by F, where F ⊆ A = (P ×

www.intechopen.com



��������%������	��������(

T) ∪ (T × P). W : A → N represents the weight of the edges, such that W( f ) = {(i) x ∈ N,

if ( f ∈ F), or (ii) 0, if ( f /∈ F)}. A TPN marking mi is a vector (mi ∈ N
∣P∣), and m0 is the initial

marking. I : T → N × N represents the timing constraints, where I(t) = [EFT(t), LFT(t)] ∀t ∈ T,
EFT(t) ≤ LFT(t). EFT(t) is the Earliest Firing Time, and LFT(t) is the Latest Firing Time.
Considering the previous definition, places (P) represent local states and transitions (T) denote
local actions. The set of arcs F represents the relationships between places and transitions, in
such a way that arcs connect places to transitions and vice-versa. Function W assigns to each
arc a natural number, which may be interpreted as the amount of parallel arcs. A marking
vector mi associates to each place a natural number, which represents the number of tokens
in the respective place. Graphically, places are represented by circles, transitions are depicted
as bars or rectangles, arcs are represented by directed arrows labeled with the weight, and
tokens (the marking) are generally represented by filled small circles. Fig. 4 depicts a Petri net
model.

Fig. 4. Petri Net example

Time Petri Net with Energy Consumption - ETPN �ℰ . An extended TPN with energy
consumption values is represented by �ℰ = (� , ℰ). � is the underlying TPN, and ℰ :T →
R+ ∪ {0} is a function that assigns transitions to energy consumption values.
Enabled Transitions. A set of enabled transitions, at marking mi, is denoted by: ET(mi) =
{t ∈ T ∣ mi(pj) ≥ W(pj, t), ∀pj ∈ P}
A transition t ∈ T is enabled, if each input place p ∈ P contains at least W(p, t) tokens.
The time elapsed, since the respective transition enabling, is denoted by a clock vector

c ∈ (N ∪ {#})∣T∣, where # represents the undefined value for not enabled transitions. As
an example, the clock vector for the net in Fig. 4(a) contains one element: c(t1) = 0. At this
point, the difference between static and dynamic firing intervals associated with transitions
is required. The dynamic firing interval of transition t, ID(t) = [DLB(t), DUB(t)], is dynam-
ically modified whenever the respective clock variable c(t) is incremented, and t does not
fire. DLB(t) is the Dynamic Lower Bound, and DUB(t) is the Dynamic Upper Bound. The
dynamic firing interval is computed in the following way: ID(t) = [DLB(t), DUB(t)], where
DLB(t) = max(0, EFT(t)− c(t)), DUB(t) = LFT(t)− c(t). Whenever DLB(t) = 0, t can fire,
and, when DUB(t) = 0, t must fire, since strong firing mode is adopted.

States. Let �ℰ be a time Petri net extended with energy consumption values, M ⊆ N
∣P∣ be

the set of reachable markings (e.g. all possible markings) of �ℰ , C ⊆ (N ∪ {#})∣T∣ be the set
of clock vectors, and E ⊆ R+ ∪ {0} be the set of accumulated energy consumptions. The set
of states S of �ℰ is given by S ⊆ (M × C × E), that is, a state is defined by a marking, the
respective clock vector, and the accumulated energy consumption from the initial state up to
this state.
Considering the Petri net model in Fig. 4(a), the initial state is s0 = (m0 = [1, 0], c0 = [0], e0 =
0).
Firing Domain. The firing domain for a transition t at state s, is defined by the interval: FDs(t)
= [DLB(t), min (DUB(tk))], ∀tk ∈ ET(m).
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Without loss of generality, enabled transitions are only related to the marking, and firable
transitions take into account the marking, and their respective clock values (the time elapsed
of each enabled transition). Considering firing domain, a firable transition t at state s can only
fire in the interval denoted by FDs(t). In Fig. 4(a), at the initial state s0 = (m0 = [1, 0], c0 =
[0], e0 = 0), t1 is firable when c0(t1) = 1 and must fire when c0(t1) = 3 (FDs0 (t1) = [1, 3]), if it
neither has been fired nor disabled.

3.4 Measurement

This section briefly describes the measurement process and also the software that automates
the measuring on the target plataform. In order to obtain the energy consumption and execu-
tion time values of a microcontroller instruction set, it may be necessary to adopt some mea-
surement techniques in case such values cannot be obtained from manuals and datasheets.
The measurement scheme is presented in Figure 5, in which a hardware platform with the
LPC2106 microcontroller, an oscilloscope and a desktop computer (PC) are connected. The
AMALGHMA tool (Tavares & Maciel (2006)) - Advanced Measurement Algorithms for Hard-
ware Architectures - has been implemented for automating the measuring activities. AMAL-
GHMA adopts a set of statistical methods, such as bootstrap and parametric methods, which
are important in the measurement process due to several factors, for instance: (i) oscilloscope
resolution; and (ii) resistor error. Besides, this tool has been validated considering LPC2106
datasheet as well as ARM7TDMI-S reference manual.

Fig. 5. Measurement Scheme.

4. Related Works

Many works are available in the literature reporting mappings of semi-formal representations
to formal models. The majority of these works focus on qualitative analysis. Some of them are
devoted to performance modeling, but, to the best of our present knowledge, none of them
focus on both energy consumption and time evaluation of systems, besides of the papers
published by our research team. It is also important to highlight that none work proposes the
mapping of UML-IO into a formal model.
Merseguer et al. (2002) presented a systematic derivation of the UML-SM in fragments of a
labeled Generalized Stochastic Petri Net (GSPN) that are composed into a single model that
represents the behavior of the entire diagram. This work focused on the software performance
evaluation in which all delays are represented by exponential distributions.
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Trowitzsch & Zimmermann (2005) aimed at the transformation of UML-SM into a Stochas-
tic Petri Nets (SPNs) for the performance evaluation of real-time systems. This approach
proposed the decomposition of an UML-SM into basic elements, like states and transitions.
These elements are translated into the corresponding SPN representations. The UML Profile
for Schedulability Performance and Time (SPT) was used as a specification language for rep-
resenting the restrictions imposed on the real-time systems. Amorim et al. (2005) proposed
an approach to map Live Sequence Chart (LSC) language to an equivalent Coloured Petri Net
(CPN) for analysis and verification of embedded systems’ properties.
Another approach Lee et al. (2000) aimed to verify scenarios with Time Petri Net. This ap-
proach proposed a mechanism to check the acquired scenarios by indication any missing
information or wrong information hidden in these scenarios. In Elkoutbi et al. (2002), the
authors presented a requirement engineering process for real-time systems that aims a for-
mal specification of the system using Timed Petri Net. In this approach, the first activity is
the elaboration of the use case. Next, a corresponding scenario in form of sequence diagram
is created for each use case. Afterwards, the scenario specification is derived into a Timed
Petri Net. Finally, the partial TPNs are merged to obtain an integrated TPN, and then some
verifications are performed.

5. Mapping UML-IO into an ETPN

This section describes how to derive the elements of UML-IO including time and energy
constraints into an ETPN. The method consists of the deriving UML-IO basic elements and
MARTE annotations into an ETPN. After that, all ETPN representation are composed into a
single model that represents the behavior of the entire diagram. This section, firstly, presents
the mapping of the elements used in this work that compose the nodes, that is, the interaction
diagrams (activity and sequence). Lastly, an example illustrates the mapping of an UML-IO.
Due lack of space, this paper focuses on the formalism and annotations needed to understand
the case study.

5.1 Activity Diagrams

The Activity Diagrams (AD) are used to model the dynamic system aspects.

5.1.1 Mapping Activities

The activities are represented by a rectangle with rounded edges (see Figure 6 (a)). They depict
the invocation of an operation that may be physical or electronic. Additionally, an action
represents a single step within an activity. In the ETPN model generated by the mapping
process, the activities are represented by two PN-transitions. These PN-transitions may have
assigned a time interval in which the activity must be executed, that is, the maximum and
minimum time bounds. One PN-transition is used to represents the execution time for the
worst case, and the other PN-transition for the best case of the activity. Energy constraints can
be also assigned to these PN-transitions.
Figure 6 (a) depicts the mapping of an activity into an ETPN. The t_ex_W_A and t_ex_B_A
PN-transitions model the worst case and best case, respectively. The time interval for these
transitions are [45,45] and [5,5] , that is, the maximum and minimum times spent by activ-
ity A. Likewise, the energy consumption for the worst and best cases assigned to these PN-
transitions are [70,70] and [18,18], respectively.
Additionally, the t_in_W_A and t_in_B_A PN-transitions are used due to semantics of TPN
(Strong Firing Semantics) (Merlin & Faber (1976)) in order to allow PN-transitions with longer
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delay to be able to fire, hence the time interval equal to [0,0] is assigned to these PN-transitions.
However, if the constraints (execution time and energy consumption) are omitted from activ-
ity A, then they will be mapped into a PN-transition whose maximum and minimum times
are zero (Figure 6 (b)). Furthermore, the t_ex_W_A and t_ex_B_A PN-transitions (see Figure
6 (a)) are assigned with a thin interval (interval in which the upper and lower bound values
are the same (David (2005))), because the state space is considerably smaller than if only one
PN-transition with the interval equal to [5,45] was adopted. Hence, this model allows a faster
reachability graph path search. The in_A place represents the activity A entry as well as the
choice point between the worst and best related to the execution time and energy consump-
tion of the activity A. The others places (W_A, B_A and out_A) represent, respectively, the
worst case state, best case state and activity A exit.

Fig. 6. Mapping activities.

5.1.2 Mapping Transitions

In UML-AD, transitions represent cause/effect activity relations. Figure 7 (a) illustrates the
mapping of an AD-transition with time and energy constraints. The AD-transition (t1) from
A to B is mapped in two PN-transitions (t_ex_W_t1 and t_ex_B_t1), in which a time period of
[25, 25] and [15, 15] seconds are assigned. These PN-transitions represent the execution time
for the worst and best case, respectively. Figure 7 (a) also has energy constraints assigned to
these PN-transitions.
AD-transitions that do not spend time and energy are mapped into PN-transitions whose
maximum and minimum times are zero (Figure 7 (b)). The PN-transition generated is con-
nected to the out_A and in_B places. These places represent, respectively, the activity A exit as
well as the choice point between the worst and best related to the execution time and energy
consumption of the t1 AD-transition and the activity B entry.

5.1.3 Mapping Initial and Final States

An initial state represents the start point of a UML-AD. This initial state is mapped into a
place in ETPN model, where the staIni_A place gets the initial marking of one token. Tokens
are used in these models to simulate the dynamic behavior of systems. Furthermore, the
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Fig. 7. Mapping transitions.

t_in_A PN-transition is used to represent the AD-transition between the initial state and the
activity A. Figure 8 (a) illustrates a mapping of an initial state.
A final state represents the respective final state in UML-AD. This final state is mapped into
a place in ETPN model (Figure 8 (b)), such that the presence of a token in the endSta_A place
represents the end of the UML-AD. Moreover, the t_end_A PN-transition is used to represent
the AD-transition between the activity A and the final state.

Fig. 8. Mapping initial and final states.

5.1.4 Synchronization Bar

Synchronization bars are used to split processing (fork), or to resume processing when mul-
tiple activities have been completed (join). The synchronization bars are modeled as solid
rectangles, with multiple transitions going in and/or out.
Figure 9 presents an example, in which the activity A is split into 2 activities (B and C). In
the mapping process, the t_fork_A_B PN-transition represents the split processing and the
brc_B and brc_C places represent the starting points for the branches (see Figure 9). On the
other hand, Figure 11 depicts the synchronization process (join), that is, the synchronization
between the activities A and B. In the mapping process, the t_join_A_B PN-transition is used to
represent the synchronization process and the join_A_B place represents the synchronization
point. In this case, the PN-transition only can be fired if both out_A and out_B places contain
a token.
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Fig. 9. Mapping fork.

Fig. 10. Mapping join.

5.1.5 Decision

In UML-AD, decision is represented by a diamond with one flow entering and several leaving.
The flows leaving include conditions although some modelers may not indicate the conditions
if it is obvious. In the mapping process, the t_in_deci PN-transition represents the entry on the
decision and the places brc_B represents the decision point.

5.2 Sequence Diagram

Sequence Diagrams (SD) are commonly used UML diagram for representing element’s collab-
oration over time.

5.2.1 Mapping Lifeline and Message

A lifeline represents the involvement of a given participant in a particular interaction. The
white rectangles on a lifeline (vertical dashed lines) are called activations (see Figure 12) and
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Fig. 11. Mapping decision.

indicate a participant response to a message. The communication between lifelines is per-
formed by messages or calls, in the same order in which the events occur. Furthermore, the
message specifies not only the communication type, but also the sender and the receiver. The
return messages are an optional part of an UML-SD. In this paper, only asynchronous mes-
sages are considered. Figure 12 depicts an example, in which two participants (A and B) are
communicating by two messages. The first message has time and energy constraints assigned.
These constraints are specified by MARTE profile. The other message has neither time nor en-
ergy constraint assigned.

Fig. 12. UML-SD example.

Figure 13 presents the mapping of the UML-SD depicted in Figure 12 into an ETPN. The places
(start_A, D_1 and end_A) and the PN-transitions (t_s_M1 and t_s_M2) represent the participant
A lifetime. In this model, each place represents one state of that participant at a particular time
instant, and the PN-transitions represent a state transition. The start_A place represents the
start point on the lifeline A, and this place gets the initial marking of one token. The place D_1
is a dummy place that interfaces the PN-transitions and the place end_A represents the lifeline
end. Finally, t_s_M1 and t_s_M2 represent the message transmissions. In a similar manner,
the participant B was mapped. The difference, in this case, is that the PN-transitions (t_r_M1
and t_r_M2) represent the message receptions.
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Fig. 13. Mapping UML-SD example.

Figure 13 also shows the mapping of messages. For example, Message 1 represents the thin
intervals of the execution time for the worst and best case, respectively, [35,35] and [20,20]
assigned to the t_ex_W_M1 and t_ex_B_M1 PN-transitions. In a similar manner, the energy
consumption constraints are considered. The energy consumption for the worst and best cases
assigned are [100,100] and [50,50], respectively. The C_B_W_M1 place represents the choice
point between the worst and best case related to the execution time and energy consumption
of the Message 1 as well as the Message 1 entry. The W_M1, B_M1 and out_M1 places represent,
respectively, the worst case state, the best case state and the Message 1 out.
However, if time and energy constraints are omitted from the messages as the Message 2 shows
(see Figure 12), then the mappings is performed as depicted in Figure 13, in which the place
D_2 is used as a dummy place for bridging the t_s_M2 and t_r_M2 PN-transitions.

5.2.2 Mapping self message

Figure 14 presents an example of self message, that is, the participant sends a message to
himself.

Fig. 14. Self a message example.
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Figure 15 illustrates the mapping of a self message. The rules for mapping the self message
are similar to the others mentioned above, the difference, in this case, is that the ETPN model
backs to the same participant.

Fig. 15. Mapping self message.

5.2.3 Combined Fragments

A combined fragment is used to group sets of messages together in order to represent the SD
conditional flows.

5.2.4 Mapping Alternatives

Alternatives are used to designate a mutually exclusive choice between two or more message
sequences. The interaction operator alt (see Figure 16) shows that at least one of the operands
will be executed.

Fig. 16. Alternative combined fragment example.

Figure 17 depicts the mapping of alternatives presented in the Figure 16 into an ETPN. The
rules for mapping this example are similar to the others mentioned before. However, this
mapping adopts one place (alt_M1_M2) and two transitions (t_in_M1 and t_in_M2). The place
represents the choice point between the operands IF and ELSE as well as the alt entry. One
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transition is used to represent the Message 1 entry (IF). The other is used to represents the
Message 2 entry (ELSE).

Fig. 17. Mapping alternative combined fragment example.

5.2.5 Mapping Parallel

The interaction operator par is used to define two or more processes that are concurrently
executed. Figure 18 presents an example, in which the Message 1 and Message 2 are performed
simultaneously.

Fig. 18. Parallel combined fragment example.

Figure 19 depicts the mapping of parallel activities presented in the Figure 18 into an ETPN.
The t_in_par and t_syn_par transitions represent the beginning and synchronization of concur-
rent activity execution, respectively. Each of these regions contains a distinct message and is
mapped according to the rules mentioned before.

5.3 Mapping Interaction Overview Diagram

This section presents the mapping of an UML-IO example. Figure 20 (a) depicts this example
in which two different interaction diagrams (activity and sequence) are connected by the t1
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Fig. 19. Mapping parallel combined fragment.

IO-transition. The rules for mapping this example are similar to the others mentioned before.
However, in the ETPN model (see Figure 20 (b)) the output arc of the in_SD place connects
the t_s_M1 PN-transition, and the output arc of the t_r_M1 PN-transition connects the out_sd
place. In this example, for sake of simplicity, the mapping of the initial and final states of
UML-AD were omitted.

Fig. 20. Mapping UML-IO diagram.
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6. A Case Study

In order to show the practical usability of the proposed mapping process, a pulse-oximeter
specification (Júnior (1998)) was considered as a case study. This electronic equipment is
responsible for measuring the blood oxygen saturation through a non-invasive method. A
pulse-oximeter may be employed when a patient is sedated during surgical procedures. It
checks the oxygen saturation to guarantee an acceptable level of blood oxygenation. This
device is widely used in health care centers.
The pulse-oximeter is composed by three processes: (i) excitation, (ii) acquisition-control and
(iii) management. The excitation process (see Figure 21) is responsible to dispatch pulse
streams to the LEDs in order to generate radiation pulses. In this paper, only the excitation
process was considered. Figure 21 depicts the excitation process according to Júnior (1998).
Due to the restrictions of space, the ETPN model of the excitation process was omitted.
Figure 21 shows the UML-IO describing the excitation process. This process has requirement
constraints (execution time and energy consumption). These constraints are deeply related
to the hardware platform (Philips LPC2106 processor, an 32-bit microcontroler with ARM7
core). In addition, we consider the same values obtained from the pulse-oximeter specifica-
tions present in Júnior (1998) for modeling. As can be observed, the nodes represent interac-
tion diagrams, in this case, we use the activity and sequence diagrams.
Initially the excitation process is started with the reception of an interruption in the the ac-
tivity Timer T1. The timers are used to determine which process will be executed first. In
the subsequent steps, the activities Led Infrastructure, Set Led Guada and Set Led Red are carry
out. These activities are responsible for dispatching non-simultaneous pulse currents to the
LEDs that cross the finger of a patient. In such cases, all activities have constraints of time
and energy. For instance, the activity Set Led Infra has constraints of time and energy, and it is
modeled with an <<ResourceUsage>> of: execTime = [(14,69,µs, max), (14,11,µs,min)] and
energy = [(835,99, nJ, max ), (795,21, nJ, min)].
After all activities responsible for dispatching pulse currents to the LEDs were performed, the
activity of the next node takes place. This node is responsible for controlling the dispatch of
pulse currents to the LEDs. As can be observed, an alternative combination fragment element
is used to designate a mutually exclusive choice between two calls (CalibrationNotRun() and
CalibrationRun()). These calls are responsible, respectively, to modify the intensity of the pulse
currents or not. The calls (CalibrationNotRun() and CalibrationRun()) have constraints of time
and energy. For instance, the call CalibrationRun() is modeled with an <<ResourceUsage>>

of: execTime = [(1,87,µs, max), (1,79,µs,min)] and energy =[(180,01, nJ, max ), (175,45, nJ, min)].
After the calibration of the attributes related to the LEDs, the excitation process returns to the
node of the activity Timer 1, and waits for a new interruption to restart the process.
The following procedure is adopted to obtain the correspondent ETPN model that represents
the activity diagrams present in the nodes of Figure 21. Each activity in the UML-AD is rep-
resented, basically, by two places and two PN-transitions. One place is used to represents the
activity entry. The other place represents the activity exit, and the PN-transitions are used to
represent the constraints assigned to activity. Additionally, two PN-transitions are adopted
in the ETPN model due to semantics of TPN (Strong Firing Semantics). Besides, dummy
places are used for bridging the PN-transitions. The beginning of UML-AD is depicted by
initial state. The correspondent ETPN for initial state is a place with one token. Tokens are
used in these ETPNs to simulate the dynamic behavior of systems. After all individual mod-
els have been built, the AD-transitions are mapped into PN-transitions in the ETPN model.
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Furthermore, time and energy constraints are taken into account and included into ETPN
PN-transitions.
Likewise, the following procedure is adopted to obtain the ETPN model that represents the
sequence diagram presents in the node of Figure 21. Each participant is represented by at
least two places and one transition in the ETPN model. One place with one token is used
to represents the beginning of the involvement of a given participant. The other place rep-
resents the end of the involvement of a given participant, and the transition represents the
send/receive of a message/call. After all individual ETPN models, that represent the partic-
ipants, have been built, the messages/calls are mapped into transitions in the ETPN model.
Messages/calls that do not have either time or energy constraints, will be mapped in one
place, that is used as a dummy place for bridging the transitions. Furthermore, time and
energy constraints are taken into account and included into ETPN transition.

Fig. 21. UML-IO diagram of excitation process with time and energy constraints.

The analysis of the obtained ETPN model generated by the mapping process of the excitation
process is safe, pure, homogeneous, conservative and bounded (David (2005)). The BCET
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calculated of the excitation process was 37,46 ms and the WCET was 39,07 ms. Moreover,
the respective energy consumption of the excitation process was also computed. The results
obtained were 2182,39 µJ and 2300,4 µJ, respectively. The INA Tool (Starke & Roch (1999)) is
adopted to compute the best and the worst path of the execution time. Once the worst and
best path were found, then the energy consumption values are computed. In this paper, for the
shortest and worst execution path time, respectively, the best and worst energy consumptions
are computed.
The values measured on the hardware platform (execution time and energy consumption)
were 38,88 µs and 2251,84 nJ, respectively. The analysis results show that the execution time
and energy consumption, when considered the best and the worst paths, computed errors
were smaller than 5% in related to the measurements conducted on hardware platform. The
experimental results show that the values computed from the models are quite similar to the
real measurement on the pulse-oximeter system.
UML is a user-friendly specification language that supports the specification, analysis, design,
verification and validation of a broad range of complex systems. So, if the advantages of UML
are allied to the power of formal models, some misinterpretations can be avoided, allowing
both: reducing the risks of faults propagations from early specification to final code, and
system properties analysis and verification. Hence, it can be used to reduce the risks as well
as the amount of money or effort that can be spend building embedded projects.

7. Conclusions

Requirement analysis is a critical task in any embedded real-time system project. Normally,
these systems have stringent timing constraints that must be satisfied for the correct function-
ing, since violation might be catastrophic, such as loss of human lives. In addition, there are
systems where energy is another constraint that must also be satisfied. Hence, early detection
of potential problems may reduce risks of faults propagations from early specification to the
final code.
This work brings an approach based on ETPN for estimating embedded software execution
time, energy consumption and verification of properties in early phases of the development
life-cycle. The proposed method consists on a decomposition of a UML-IO into basic elements
like activities, transitions and lifeline. These elements are translated into the corresponding
ETPN representations. Quantitative annotations from MARTE profile, such as time and en-
ergy data, are taken into account and included into the ETPN. The obtained model is evaluated
in order to check a set of qualitative properties as well as time and energy consumption re-
quirements. That method has been applied into a practical system, namely, a pulse-oximeter,
showing that this is a promising approach for modeling, analysis, and verification of real-
world case scenarios.
Future research will explore the automatic generation of ETPNs from UML-IO with MARTE
annotations. This work is also being extended to cover other significant UML diagrams like
sequence and state machine diagrams. Another future work is related to stressing simulation
and analysis capabilities to get as much significant information as possible from the Time Petri
Net models.
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