5 research outputs found

    Multi-touch Detection and Semantic Response on Non-parametric Rear-projection Surfaces

    Get PDF
    The ability of human beings to physically touch our surroundings has had a profound impact on our daily lives. Young children learn to explore their world by touch; likewise, many simulation and training applications benefit from natural touch interactivity. As a result, modern interfaces supporting touch input are ubiquitous. Typically, such interfaces are implemented on integrated touch-display surfaces with simple geometry that can be mathematically parameterized, such as planar surfaces and spheres; for more complicated non-parametric surfaces, such parameterizations are not available. In this dissertation, we introduce a method for generalizable optical multi-touch detection and semantic response on uninstrumented non-parametric rear-projection surfaces using an infrared-light-based multi-camera multi-projector platform. In this paradigm, touch input allows users to manipulate complex virtual 3D content that is registered to and displayed on a physical 3D object. Detected touches trigger responses with specific semantic meaning in the context of the virtual content, such as animations or audio responses. The broad problem of touch detection and response can be decomposed into three major components: determining if a touch has occurred, determining where a detected touch has occurred, and determining how to respond to a detected touch. Our fundamental contribution is the design and implementation of a relational lookup table architecture that addresses these challenges through the encoding of coordinate relationships among the cameras, the projectors, the physical surface, and the virtual content. Detecting the presence of touch input primarily involves distinguishing between touches (actual contact events) and hovers (near-contact proximity events). We present and evaluate two algorithms for touch detection and localization utilizing the lookup table architecture. One of the algorithms, a bounded plane sweep, is additionally able to estimate hover-surface distances, which we explore for interactions above surfaces. The proposed method is designed to operate with low latency and to be generalizable. We demonstrate touch-based interactions on several physical parametric and non-parametric surfaces, and we evaluate both system accuracy and the accuracy of typical users in touching desired targets on these surfaces. In a formative human-subject study, we examine how touch interactions are used in the context of healthcare and present an exploratory application of this method in patient simulation. A second study highlights the advantages of touch input on content-matched physical surfaces achieved by the proposed approach, such as decreases in induced cognitive load, increases in system usability, and increases in user touch performance. In this experiment, novice users were nearly as accurate when touching targets on a 3D head-shaped surface as when touching targets on a flat surface, and their self-perception of their accuracy was higher

    Computed fingertip touch for the instrumental control of musical sound with an excursion on the computed retinal afterimage

    Get PDF
    In this thesis, we present an articulated, empirical view on what human music making is, and on how this fundamentally relates to computation. The experimental evidence which we obtained seems to indicate that this view can be used as a tool, to systematically generate models, hypotheses and new technologies that enable an ever more complete answer to the fundamental question as to what forms of instrumental control of musical sound are possible to implement. This also entails the development of two novel transducer technologies for computed fingertip touch: The cyclotactor (CT) system, which provides fingerpad-orthogonal force output while tracking surface-orthogonal fingertip movement; and the kinetic surface friction transducer (KSFT) system, which provides fingerpad-parallel force output while tracking surface-parallel fingertip movement. In addition to the main research, the thesis also contains two research excursions, which are due to the nature of the Ph.D. position. The first excursion shows how repeated and varying pressing movements on the already held-down key of a computer keyboard can be used both to simplify existing user interactions and to implement new ones, that allow the rapid yet detailed navigation of multiple possible interaction outcomes. The second excursion shows that automated computational techniques can display shape specifically in the retinal afterimage, a well-known effect in the human visual system.Computer Systems, Imagery and Medi

    Live electronics in live performance : a performance practice emerging from the piano+ used in free improvisation

    Get PDF
    This thesis explores a performance practice within free improvisation. This is not a theory based improvisation – performances do not require specific preparation and the music refrains from repetition of musical structures. It engages in investigative and experimental approaches emerging from holistic considerations of acoustics, interaction and instrument, and also philosophy, psychology, sociopolitics and technology. The performance practice explores modes and approaches to working with the given potentiality of an electronically augmented acoustic instrument and involves the development of a suitably flexible computerised performance system, the piano+, combining extended techniques and real-time electroacoustic processes, which has the acoustic piano at its core. Contingencies of acoustic events and performance gestures – captured by audio analysis and sensors and combined to control the parameter space of computer processes – manipulate the fundamental properties of sound, timbre and time. Spherical abstractions, developed under consideration of Agamben’s potentiality and Sloterdijk’s philosophical theory of spheres, allow a shared metaphor for technical, instrumental, personal, and interpersonal concerns. This facilitates a theoretical approach for heuristic and investigative improvisation where performance is considered ‘Ereignis’ (an event) for sociopolitically aware activities that draw on the situational potentiality and present themselves in fragile and context dependent forms. Ever new relationships can be found and developed, but can equally be lost. Sloterdijk supplied the concept of knowledge resulting from equipping our ‘inner space’, an image suiting non-linearity of thought that transpires from Kuhl’s psychological PSI-theory to explain human motivation and behaviour. The role of technology – diversion and subversion of sound and activity – creates a space between performer and instrument that retains a fundamental pianism but defies expectation and anticipation. Responsibility for one’s actions is required to deal with the unexpected without resorting to preliminary strategies restricting potential discourses, particularly within ensemble situations. This type of performance embraces the ‘Ereignis’.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Live Electronics in Live Performance: A Performance Practice Emerging from the piano+ used in Free Improvisation.

    Get PDF
    This thesis explores a performance practice within free improvisation. This is not a theory based improvisation – performances do not require specific preparation and the music refrains from repetition of musical structures. It engages in investigative and experimental approaches emerging from holistic considerations of acoustics, interaction and instrument, and also philosophy, psychology, sociopolitics and technology. The performance practice explores modes and approaches to working with the given potentiality of an electronically augmented acoustic instrument and involves the development of a suitably flexible computerised performance system, the piano+, combining extended techniques and real-time electroacoustic processes, which has the acoustic piano at its core. Contingencies of acoustic events and performance gestures – captured by audio analysis and sensors and combined to control the parameter space of computer processes – manipulate the fundamental properties of sound, timbre and time. Spherical abstractions, developed under consideration of Agamben’s potentiality and Sloterdijk’s philosophical theory of spheres, allow a shared metaphor for technical, instrumental, personal, and interpersonal concerns. This facilitates a theoretical approach for heuristic and investigative improvisation where performance is considered ‘Ereignis’ (an event) for sociopolitically aware activities that draw on the situational potentiality and present themselves in fragile and context dependent forms. Ever new relationships can be found and developed, but can equally be lost. Sloterdijk supplied the concept of knowledge resulting from equipping our ‘inner space’, an image suiting non-linearity of thought that transpires from Kuhl’s psychological PSI-theory to explain human motivation and behaviour. The role of technology – diversion and subversion of sound and activity – creates a space between performer and instrument that retains a fundamental pianism but defies expectation and anticipation. Responsibility for one’s actions is required to deal with the unexpected without resorting to preliminary strategies restricting potential discourses, particularly within ensemble situations. This type of performance embraces the ‘Ereignis’
    corecore