11 research outputs found

    Errors and Truths from Transportation Data Aggregation: Some Implications for Research and Practice

    Get PDF
    Data aggregation, which is a process to combine information by defined groups for statistical analysis, summary, data size reduction, or other purposes, has fundamental challenges, such as loss of the original information. Improper data aggregation, such as sampling bias or incorrect calculation of average, may cause misreading of information. In first chapter, it is revealed that the harmonic mean, which is used to calculate space mean speed for fixed segment, has a sampling bias, i.e., overestimation with small samples. The several impact analyses show that the sampling bias is affected by sampling rate, time interval, segment length, and distribution type. If the data aggregation is properly used, it can help us improve analytical efficiency, encounter some of critical problems, or reveal its casualties and other relevant information. Second and third chapters utilize the aggregation of multi-source data to estimate error distributions of data sources and improve accuracy of their measurements. This is a leaping point of evaluating data sources as the proposed model does not require ground truth data. Second chapter focuses more on the methodology, i.e., a modified Approximate Bayesian Computation, incorporated to construct the error distribution with numerous simulations. In the simulated experiment, the proposed model outperformed the alternative approach, which is a conventional way of evaluating data source that is gathering error information by comparing with ground data source. Several sensitivity analyses explore that how the model performance is affected by sample size, number of data sources, and distribution types. The proposed model in chapter II is limited to one dimensional variable, and then the application is expanded to improving the position and distance measurement of connected vehicle environment. The proposed model can be used to further improve the accuracy of vehicle positioning with other existing methods, such as simultaneous localization and mapping (SLAM). The estimation process can be conducted in real-time operation, and the learning process will try to keep improving the accuracy of estimation. The results show that the proposed model noticeably improves the accuracy of position and distance measurements

    Design and implementation of an FPGA-based piecewise affine Kalman Filter for Cyber-Physical Systems

    Get PDF
    The Kalman Filter is a robust tool often employed as a process observer in Cyber-Physical Systems. However, in the general case the high computational cost, especially for large plant models or fast sample rates, makes it an impractical choice for typical low-power microcontrollers. Furthermore, although industry trends towards tighter integration are supported by powerful high-end System-on-Chip software processors, this consolidation complicates the ability for a controls engineer to verify correct behavior of the system under all conditions, which is important in safety-critical systems and systems demanding a high degree of reliability. Dedicated Field-Programmable Gate Array (FPGA) hardware can provide application speedup, design partitioning in mixed-criticality systems, and fully deterministic timing, which helps ensure a control system behaves identically to offline simulations. This dissertation presents a new design methodology which can be leveraged to yield such benefits. Although this dissertation focuses on the Kalman Filter, the method is general enough to be extended to other compute-intensive algorithms which rely on state-space modeling. For the first part, the core idea is that decomposing the Kalman Filter algorithm from a strictly linear perspective leads to a more generalized architecture with increased performance compared to approaches which focus on nonlinear filters (e.g. Extended Kalman Filter). Our contribution is a broadly-applicable hardware-software architecture for a linear Kalman Filter whose operating domain is extended through online model swapping. A supporting application-agnostic performance and resource analysis is provided. For the second part, we identify limitations of the mixed hardware-software method and demonstrate how to leverage hardware-based region identification in order to develop a strictly hardware-only Kalman Filter which maintains a large operating domain. The resulting hardware processor is partitioned from low criticality software tasks running on a supervising software processor and enables vastly simplified timing validation

    A Floating-Point Extended Kalman Filter Implementation for Autonomous Mobile Robots

    No full text

    A Floating-point Extended Kalman Filter Implementation for Autonomous Mobile Robots

    No full text
    Localization and Mapping are two of the most important capabilities for autonomous mobile robots and have been receiving considerable attention from the scientific computing community over the last 10 years. One of the most efficient methods to address these problems is based on the use of the Extended Kalman Filter (EKF). The EKF simultaneously estimates a model of the environment (map) and the position of the robot based on odometric and exteroceptive sensor information. As this algorithm demands a considerable amount of computation, it is usually executed on high end PCs coupled to the robot. In this work we present an FPGA-based architecture for the EKF algorithm that is capable of processing two-dimensional maps containing up to 1.8 k features at real time (14 Hz), a three-fold improvement over a Pentium M 1.6 GHz, and a 13-fold improvement over an ARM920T 200 MHz. The proposed architecture also consumes only 1.3% of the Pentium and 12.3% of the ARM energy per feature.CAPES[BEX2683/06-7]Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)EPSRC[EP/C549481/1]EPSRCEPSRCEPSRC[EP/C512596/1

    A scalable, portable, FPGA-based implementation of the Unscented Kalman Filter

    Get PDF
    Sustained technological progress has come to a point where robotic/autonomous systems may well soon become ubiquitous. In order for these systems to actually be useful, an increase in autonomous capability is necessary for aerospace, as well as other, applications. Greater aerospace autonomous capability means there is a need for high performance state estimation. However, the desire to reduce costs through simplified development processes and compact form factors can limit performance. A hardware-based approach, such as using a Field Programmable Gate Array (FPGA), is common when high performance is required, but hardware approaches tend to have a more complicated development process when compared to traditional software approaches; greater development complexity, in turn, results in higher costs. Leveraging the advantages of both hardware-based and software-based approaches, a hardware/software (HW/SW) codesign of the Unscented Kalman Filter (UKF), based on an FPGA, is presented. The UKF is split into an application-specific part, implemented in software to retain portability, and a non-application-specific part, implemented in hardware as a parameterisable IP core to increase performance. The codesign is split into three versions (Serial, Parallel and Pipeline) to provide flexibility when choosing the balance between resources and performance, allowing system designers to simplify the development process. Simulation results demonstrating two possible implementations of the design, a nanosatellite application and a Simultaneous Localisation and Mapping (SLAM) application, are presented. These results validate the performance of the HW/SW UKF and demonstrate its portability, particularly in small aerospace systems. Implementation (synthesis, timing, power) details for a variety of situations are presented and analysed to demonstrate how the HW/SW codesign can be scaled for any application

    Kodizajn arhitekture i algoritama za lokalizacijumobilnih robota i detekciju prepreka baziranih namodelu

    No full text
    This thesis proposes SoPC (System on a Programmable Chip) architectures for efficient embedding of vison-based localization and obstacle detection tasks in a navigational pipeline on autonomous mobile robots. The obtained results are equivalent or better in comparison to state-ofthe- art. For localization, an efficient hardware architecture that supports EKF-SLAM's local map management with seven-dimensional landmarks in real time is developed. For obstacle detection a novel method of object recognition is proposed - detection by identification framework based on single detection window scale. This framework allows adequate algorithmic precision and execution speeds on embedded hardware platforms.Ova teza bavi se dizajnom SoPC (engl. System on a Programmable Chip) arhitektura i algoritama za efikasnu implementaciju zadataka lokalizacije i detekcije prepreka baziranih na viziji u kontekstu autonomne robotske navigacije. Za lokalizaciju, razvijena je efikasna računarska arhitektura za EKF-SLAM algoritam, koja podržava skladištenje i obradu sedmodimenzionalnih orijentira lokalne mape u realnom vremenu. Za detekciju prepreka je predložena nova metoda prepoznavanja objekata u slici putem prozora detekcije fiksne dimenzije, koja omogućava veću brzinu izvršavanja algoritma detekcije na namenskim računarskim platformama

    Information Fusion Methodology for Enhancing Situation Awareness in Connected Cars Environment

    Get PDF
    This dissertation introduces novel approaches to develop a comprehensive model to address situation awareness in the Internet of Cars, called Attention Assist Framework (AAF). The proposed framework utilizes both Low-Level Data Fusion (LLDF), and High-Level Information Fusion (HLIF) to implement traffic entity, situation, and impact assessment, as well as decision making. The Internet of Cars is the convergence of the Internet of Things and Vehicular Ad-hoc Networks (VANETs). In fact, VANETs are the communication platforms that make possible the implementation of the Internet of Cars, and has become an integral part of this research field due to its major role to improve vehicle and road safety, traffic efficiency, and convenience as well as comfort to both drivers and passengers. Significant amount of VANETs research work has been focused on specific areas such as safety, routing, broadcasting, Quality of Service (QoS), and security. Among them, road safety issues are deemed one of the most challenging problems of VANETs. Specifically, lack of proper situational awareness of drivers has been shown to be the main cause of road accidents which makes it a major factor in road safety. The traffic entity assessment relies on a LLDF framework that is able to incorporate various multi-sensor data fusion approaches with means of communication links in VANETs. This is used to implement a cooperative localization approach through fusing common data fusion methods, such as Extended Kalman Filter (EKF) and Unscented Transform (UT), and vehicle-to-vehicle communication in VANETs. Furthermore, traffic situation assessment is based on a fuzzy extension to the Multi-Entity Bayesian Networks (MEBNs), which exploit the expressiveness of first-order logic for semantic relations, and the strength of the Fuzzy Bayesian Networks in handling uncertainty, while tackling the inherent vagueness in the soft data created by human entities. Finally, the impact assessment and decision making is realized through incorporating notions of game theory into Fuzzy-MEBNs, and introducing Active Fuzzy-MEBN (ATFY-MEBN), which is capable in hypothesizing future situations by assessing the impact of the current situation upon taking the actions indicated by an optimal strategy. In fact, such strategies are achieved through solving the games that are generated through a novel situation-specific normal form games generation algorithm that aims to create games based on the given context. In general, ATFY-MEBN presents the concepts of players and actions, and includes new game components, along with a 2-tier architecture, to efficiently model impact assessment and decision making. To demonstrate the capabilities of the proposed framework, a collision warning system simulator is developed, which evaluates the likelihood of a vehicle being in a near-collision situation using a wide variety of both local and global information sources available in the VANETs environment, and suggests an optimal action by assessing the impact of the current situation through generating and solving situation-specific games. Accordingly, first, the entities that highly influence the safety aspect, as well as both their casual and semantic relationships are identified. Next, an ATFY-MEBN-based model is presented, which allows for modeling these entities along with their relationships in specific contexts, assessing the current states of the situations of interest, predicting their future states, and finally suggesting optimal decision. Therefore, if the likelihood of being in a near-collision situation is determined to be high, and if the relevant situation-specific game is generated, then the impact of deciding on different combinations of actions that the game players take are calculated through a pre-fixed payoff function. Finally, the completed game is solved by finding its dominant strategy, that subsequently, results in proposing the optimal action to the driver. Our experimental results are divided into three main sections, through which we evaluate the capabilities of the traffic entity, situation, and impact assessment methods. Accordingly, the performance of the proposed cooperative localization approach is assessed by comparing its results with the ground truth solution and that of the other localization methods in various driving test cases. Moreover, two distinct single-vehicle and multi-vehicles categories of driving scenarios, as well as a novel hybrid MEBN inference, demonstrate the capabilities of the proposed traffic assessment model to efficiently achieve situation and threat assessment on the road. Finally, the impact assessment and decision making models are evaluated through two different scenarios of driving in highway and intersection that are formed with various number of player vehicles, and their actions
    corecore