
A scalable, portable, FPGA-based

implementation of the Unscented

Kalman Filter

Jeremy Soh BE (Hons 1)

A thesis submitted in ful�llment of the requirements of the degree of

Doctor of Philosophy

School of Aerospace, Mechanical and Mechatronic Engineering

Faculty of Engineering & Information Technologies

The University of Sydney

Submitted February 2017; revised October 2017

Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of the University or other institute of higher

learning, except where due acknowledgement has been made in the text.

Jeremy Soh

17 October 2017

i

Abstract

Sustained technological progress has come to a point where robotic/autonomous sys-
tems may well soon become ubiquitous. In order for these systems to actually be
useful, an increase in autonomous capability is necessary for aerospace, as well as
other, applications. Greater aerospace autonomous capability means there is a need
for high performance state estimation. However, the desire to reduce costs through
simpli�ed development processes and compact form factors can limit performance.

A hardware-based approach, such as using a Field Programmable Gate Array (FPGA),
is common when high performance is required, but hardware approaches tend to have
a more complicated development process when compared to traditional software ap-
proaches; greater development complexity, in turn, results in higher costs.

Leveraging the advantages of both hardware-based and software-based approaches,
a hardware/software (HW/SW) codesign of the Unscented Kalman Filter (UKF),
based on an FPGA, is presented. The UKF is split into an application-speci�c part,
implemented in software to retain portability, and a non-application-speci�c part,
implemented in hardware as a parameterisable IP core to increase performance. The
codesign is split into three versions (Serial, Parallel and Pipeline) to provide �exibil-
ity when choosing the balance between resources and performance, allowing system
designers to simplify the development process.

Simulation results demonstrating two possible implementations of the design, a nanosatel-
lite application and a Simultaneous Localisation and Mapping (SLAM) application,
are presented. These results validate the performance of the HW/SW UKF and
demonstrate its portability, particularly in small aerospace systems. Implementation
(synthesis, timing, power) details for a variety of situations are presented and analysed
to demonstrate how the HW/SW codesign can be scaled for any application.

ii

Acknowledgements

I would like to thank my supervisor, Dr. Xiaofeng Wu, for his guidance and countless
insights over the course of this research.

I would also like to thank my friends and family for all their love and support in
allowing me to continue studying for so long. I would like to thank, in particular, my
sister Steph, for helping me with proofreading in the �nal hours.

iii

Table of Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures viii

List of Tables xi

Abbreviations & Non-standard Terms xiii

Nomenclature xv

1 Introduction 1

1.1 Thesis motivations . 5

1.2 Thesis overview . 7

1.3 Summary of publications . 9

2 Background 10

2.1 Field Programmable Gate Arrays . 10

2.1.1 FPGA technologies . 14

2.2 FPGA development . 15

2.2.1 Number Representation . 18

iv

Table of Contents

2.3 Applications of FPGAs . 20

2.3.1 Space Applications . 24

2.4 System-on-Chip . 26

2.4.1 Intra-chip communication . 28

2.4.2 Partial Runtime Recon�guration 29

2.4.3 Hardware/Software Codesign 30

2.5 State Estimation . 31

2.5.1 Extended Kalman Filter . 32

2.5.2 Unscented Kalman Filter . 35

2.5.2.1 Spherical simplex sigma points 39

2.5.3 Hardware Kalman Filters . 40

2.6 Summary . 43

3 HW/SW Codesign of the UKF 45

3.1 Design overview . 45

3.1.1 Header generation . 49

3.2 Serial design . 51

3.2.1 State machine . 54

3.2.2 Predict step . 55

3.2.2.1 Triangular linear equations solver 57

3.2.2.2 Matrix multiply-add 64

3.2.2.3 Calculated mean/covariance 65

3.2.3 Update step . 67

3.3 Parallel design . 69

3.3.1 State machine . 74

3.3.2 Sigma points generation . 75

3.3.2.1 Triangular linear equations solver 76

3.3.2.2 Matrix multiply-add 78

3.3.3 Predict step . 79

v

Table of Contents

3.3.3.1 Calculation of mean/covariance 80

3.3.4 Update step . 82

3.4 Pipeline design . 84

3.4.1 Sigma points generation . 88

3.4.2 Predict step . 89

3.4.3 Update step . 90

3.5 Summary . 91

4 Testing and Validation of the HW/SW Codesign 93

4.1 Nanosatellites . 94

4.1.1 System Model . 97

4.1.2 Sensor Model . 97

4.1.3 Predict Model . 98

4.1.4 Update Model . 98

4.1.5 Simulation Model . 99

4.1.6 Results . 100

4.2 Simultaneous Localisation And Mapping 105

4.2.1 System Model . 107

4.2.2 Sensor Model . 108

4.2.3 Predict Model . 109

4.2.4 Update Model . 109

4.2.5 Simulation Model . 111

4.2.6 Results . 111

4.3 Summary . 118

5 Implementation Analysis of the HW/SW Codesign 120

5.1 Analysis overview . 120

5.2 Example application: Nanosatellites 122

5.2.1 Synthesis results . 122

vi

Table of Contents

5.2.2 Power consumption . 125

5.2.3 Timing analysis . 126

5.3 Example application: Large number of observation variables 128

5.3.1 Synthesis results . 129

5.3.2 Power consumption . 129

5.3.3 Timing analysis . 131

5.4 Example application: Varied PEs . 132

5.5 Latency: UKF steps . 135

5.5.1 Sigma points generation . 136

5.5.2 Predict step . 137

5.5.3 Update step . 138

5.6 Latency: Augmented state variables 139

5.7 Summary . 143

6 Conclusion 145

6.1 Summary . 145

6.2 Main contributions . 147

6.3 Future work . 150

References 152

vii

List of Figures

1.1 Performance Vs. Development Complexity 6

2.1 Structure of an FPGA device . 11

2.2 Programmable logic technologies . 14

2.3 C software development process . 16

2.4 FPGA HDL development process . 17

2.5 Binary �xed point representation of numbers (32-bit example) 18

2.6 Binary �oating point representation of numbers (32-bit example) . . . 19

2.7 Common coupling schemes for FPGAs 24

2.8 Example of a typical System-on-Chip 27

2.9 An example of a target architecture for early hardware/software code-
sign implementations . 31

3.1 The hardware/software partition on the FPGA 48

3.2 Generation of header �les . 50

3.3 Top-level block diagram of the Serial design 53

3.4 Top-level state diagram for the Serial design 55

3.5 Block diagram of the predict step for the Serial design 56

3.6 State diagram of the predict step for the Serial design 58

3.7 Triangular linear equations solver (trisolve) for the Serial design . . 62

3.8 Matrix multiply-add operation for the Serial design 64

3.9 Calculate mean/covariance operation for the Serial design. 67

3.10 Block diagram of the update step for the Serial design 68

viii

List of Figures

3.11 State diagram of the update step for the Serial design 69

3.12 Memory structures in the Parallel design 72

3.13 Top-level block diagram of the Parallel design 72

3.14 Memory map for the Parallel design 73

3.15 Top-level state diagram for the Parallel design 75

3.16 Block diagram of the sig_gen step for the Parallel design 76

3.17 State diagram of the sig_gen step for the Parallel design 77

3.18 Triangular linear equations solver for the Parallel design 77

3.19 Matrix multiply-add operation for the Parallel design 79

3.20 Block diagram of the predict step for the Parallel design 80

3.21 State diagram of the predict step for the Parallel design 81

3.22 Calculate mean/covariance operation for the Parallel design. 81

3.23 Block diagram of the update step for the Parallel design 82

3.24 State diagram of the update step for the Parallel design 83

3.25 Top-level block diagram of the Pipeline design 84

3.26 Memory map for the Pipeline design. 85

3.27 Stages of the �ve-stage UKF pipeline 87

3.28 Block diagram of the sig_gen step for the Pipeline design 89

3.29 Block diagram of the predict step for the Pipeline design 90

3.30 Block diagram of the update step for the Pipeline design 91

4.1 Zedboard development board used for two of the UKF implementations 96

4.2 Simulated `truth' roll for all �ve nanosatellites 101

4.3 Sample of the simulated gyroscopic sensor data for all �ve nanosatellites.102

4.4 Absolute attitude error . 103

4.5 Absolute attitude error for the full simulation 104

4.6 The initial UAV and landmark position estimates for the SLAM sim-
ulation. 112

4.7 The �nal UAV and landmark position estimates for the SLAM simulation.113

ix

List of Figures

4.8 The path �own by the UAV for the SLAM simulation. 114

4.9 The UAV position error for the SLAM simulation 115

5.1 Timing of the pipeline for the 2 PE case 128

5.2 Latency vs. processing elements for the sig_gen step 136

5.3 Latency vs. processing elements for the predict step 137

5.4 Latency vs. processing elements for the update step 138

5.5 Latency vs. augmented state variables for the Serial design 139

5.6 Latency vs. augmented state variables for the Parallel design (5 PE) . 140

5.7 Latency vs. augmented state variables for the Parallel design (10 PE) 141

5.8 Latency vs. augmented state variables for the Parallel design (10 PE)
(Large) . 142

5.9 Latency vs. augmented state variables for the Parallel design (20 PE) 143

x

List of Tables

1.1 Classi�cation of satellite types . 3

2.1 Floating point representation as de�ned by IEEE 754-2008 19

2.2 Dynamic range and precision of selected data representations 20

3.1 Summary of the hardware/software partitioning of the UKF. 48

3.2 Basic arithmetic modules and their latencies 53

3.3 Control lines for the Serial design. 54

3.4 Control register for the Parallel design. 74

3.5 Control register for the Pipeline design. 86

4.1 Summary of the di�erent UKF implementations for the nanosatellite
example application . 95

4.2 Modelled motions for each of the nanosatellites. 100

4.3 Overall latency for the single nanosatellite 103

4.4 Overall latency for the nanosatellite constellation 104

4.5 Overall latency for the SLAM application. 116

5.1 Resource utilisation (% Total) for the Serial and Parallel designs on
the XC7Z045 . 123

5.2 Resource utilisation (% Total) for the Serial and Parallel designs on
the XC7Z020 . 123

5.3 Resource utilisation (% Total) for the Pipeline design 125

5.4 Power consumption of the Serial and Parallel designs 126

5.5 Power consumption of the Pipeline design 126

xi

List of Tables

5.6 Latency of each stage for the Serial and Parallel designs 127

5.7 Latency of each stage for the Pipeline design 127

5.8 Resource utilisation (% Total) for the Serial and Parallel designs. . . 129

5.9 Resource utilisation (% Total) for the Pipeline design. 130

5.10 Power consumption for the Serial and Parallel designs. 130

5.11 Power consumption for the Pipeline design. 131

5.12 Latency of each step for the Serial and Parallel designs. 131

5.13 Latency of each stage for the Pipeline design. 132

5.14 Possible schemes where the number of processing elements varies be-
tween modules. 132

5.15 Resource utilisation (% Total) the IP core when the number of pro-
cessing elements is varied between modules. 133

5.16 Power consumption of the IP core when the number of processing ele-
ments is varied between modules. 133

5.17 Latency of the IP core when the number of processing elements is varied.133

xii

Abbreviations & Non-standard
Terms

µC Microcontroller
AC Alternating Current
ADC Analog-to-Digital Converter
ADCS Attitude Determination & Con-

trol System
AES Advanced Encryption Standard
ALU Algorithmic Logic Unit
ANN Arti�cial Neural Network
ASIC Application Speci�c Integrated

Circuit
AXI4 Advanced eXtensible Interface 4
BRAM Block RAM
BRIEF Binary Robust Independent Ele-

mentary Features
COTS Commercial-o�-the-shelf
CRC Cyclic Redundancy Check
DAC Digital-to-Analog Converter
DMA Direct Memory Access
DSP Digital Signal Processor
DSP48 Xilinx DSP Primitive
EEG Electroencephalogram
EKF Extended Kalman Filter
FF Flip-�op
FIFO First-In/First-Out
FPGA Field Programmable Gate Array
GPIO General Purpose Input Output
GPS Global Positioning System
GPU Graphics Processing Unit

GSL GNU Scienti�c Library
hard-core Design implemented with

specialised hardware
HDL Hardware Description Lan-

guage
HPC High Performance Comput-

ing
HW/SW Hardware/software
I/O Input/Output
IC Integrated Circuit
IoT Internet of Things
IMU Inertial Measurement Unit
IP core A single, modular HDL de-

sign unit
LUT Lookup Table
many-core A system with multiple or

many processor cores
MEMS Microelectromechanical Sys-

tem
MPPT Maximum Power Point

Tracking
NoC Network-on-Chip
OBC Onboard Computer
PCB Printed Circuit Board
PE Processing Element
PL Programmable Logic
PMU Performance Monitoring Unit
PS Processor System

xiii

Abbreviations & Non-standard Terms

radhard Radiation Hardened
RAM Random Access Memory
RF Radio Frequency
ROM Read-Only Memory
RTL Register Transfer Level
SDR Software De�ned Radio
SEE Single Event E�ect
SEL Single Event Latch-up
SET Single Event Transient
SEU Single Event Upset
SIFT Scale-Invariant Feature Trans-

form
SLAM Simultaneous Localisation And

Mapping
Slice Fundamental logic block (on

the FPGA)
SoC System-on-Chip
soft-core Design speci�ed as IP and

implemented on programmable
logic

SoPC System-on-Programmable-
Chip

SRAM Static Random Access Memory
SVD Singular Value Decomposition
TMR Triple Modular Redundancy
UART Universal Asynchronous Re-

ceiver Transmitter
UAV Unmanned Aerial Vehicle
USB Universal Serial Bus
UT Unscented Transform
UKF Unscented Kalman Filter
VLSI Very Large Scale Integration

xiv

Nomenclature

k Discrete time step
xk State estimate vector
zk Observation estimate vector
f Process or predict system model
h Observation or update system

model
uk−1 Control input
wk−1 Process or control noise
vk−1 Observation or measurement noise
Qk Process noise covariance
Rk Observation noise covariance
x̂−k|k−1 a priori state estimate

P−k|k−1 a priori state covariance

Fk Process model Jacobian
ẑk|k−1 Predicted observation
Sk|k−1 Observation covariance
Hk Observation model Jacobian
Kk Kalman gain
z̃k Observation
I Identity matrix
x̂k Current state estimate
Pk State covariance
xak Augmented state vector
Pa
k Augmented covariance

x̂ak Current augmented state estimate
M Number of augmented state vari-

ables
Mstate Number of state variables
Mobs Number of observation variables
X k Sigma points
N Number of sigma points
W0 Sigma point centre weighting coef-

�cient

W1 Sigma point spread weighting co-
e�cient

X x
k State sigma points

Xw
k Process noise sigma points

X v
k Observation noise sigma points

X x
k|k−1 Process model transformed

sigma points
Zk|k−1 Observation model transformed

sigma points
Pxz,k|k−1 Cross covariance
σ Spherical simplex sigma points

weighting coe�cient matrix
NPE Number of processing elements
\ Matrix `left' divide
/ Matrix `right' divide
L1 Cholesky decomposition product
L2 LDL decomposition product
D LDL diagonal product
m, n, p Matrix sizes

X̃ k State sigma point residuals

X̃ k Observation sigma point residu-
als

F Intermediate LDL decomposi-
tion product

P Depth of the memory bu�er
q Unit quaternion
q Vector part of unit quaternion
q× Skew-symmetric matrix of q
zg Gyroscope measurement
ωT True angular velocity
β Gyroscopic bias
ηg Gyroscopic noise

xv

Nomenclature

ηd Gyroscopic bias drift
za Accelerometer measurement
aT True acceleration vector
ηa Accelerometer noise
zm Magnetometer measurement
mT True magnetic vector
ηm Magnetometer noise
dt Simulation time step
Aq(q) Rotation matrix between the

body frame and local frame
v Velocity in the world frame
vR Velocity in the UAV frame
uxyz Linear control inputs
uψθφ Angular control inputs
ηu,xyz Linear control input noise
ηu,ψθφ Angular control input noise
Li Landmark representation
xi, yi, zi Co-ordinates of the UAV when

the landmark was �rst seen
α Azimuth to the landmark
β Elevation to the landmark
ρ Inverse depth to the landmark
zc Pinhole camera measurement
fu, fv Distance from the centre of

aperture of the camera to the
centre of the image plane

xP , yP , zP Co-ordinates of a point in the
UAV frame

ηc Camera measurement noise
p Position of the UAV
xL, yL, zL Co-ordinates of the landmark

in the world frame
lx, ly, lz Co-ordinates of the new land-

mark in the world frame
n Number of landmarks

xvi

Chapter 1

Introduction

Throughout human history technological progress has, fundamentally, always been

about e�ciency. Overall human endeavour may have been about how to best shape

the world and everything in it as we desire, but each singular advancement, from the

simplest tool to the most complex of machines, has been about how to e�ect the same

or greater outcome with the same or lesser human e�ort.

The last few centuries, starting with the Industrial Revolution, have been particularly

fruitful as we have seen productivity gains unlike any time period before. The ultimate

goal, of course, being systems or machines which require minimal or no human e�ort

to operate yet still yield productivity gains, quality of life or other outcomes which

we may enjoy; the logical conclusion of this vein of technological progress is the

completely autonomous system, with some arti�cial intelligence, that does work for

our bene�t. Indeed now, in this Information Age, humanity sits on the cusp of a

`robotics revolution' where increasingly intelligent robotics and other autonomous

systems may well soon become ubiquitous.

The push for greater autonomy is not without its challenges, however. Just as an

individual must know their own capabilities in order to understand how best to a�ect

their surrounding environment, a truly independent robotic or autonomous system

must know itself. The system must be capable of internal or external (or preferably

both) sensing such that the system may infer relevant information about itself in

1

Introduction

relation to its environment. External or environmental sensors may, for example,

take the form of accelerometers to detect the orientation of the system with respect

to local gravity. Internal or system sensors may take the form of, for example, an

angular position sensor to detect the orientation of a robotic limb with respect to

the system's main body. In general, however, the system must make use of some

set of one or more sensors (internal or external) and combine the information from

each together to produce a singular estimate of the system's state. This process is

important not only for autonomous guidance or navigation purposes, but may also be

relevant to the application itself; for example, a �xed-position camera on a satellite

may not be able to produce meaningful data unless it is known which way a certain

face on the satellite is pointing.

However, there is another trend that further complicates matters, particularly in the

aerospace �eld. For aerospace applications where size and weight are at a premium

and overall costs are much higher than similar ground applications, the push is not

only for increased autonomy but also increased miniaturisation. In these applications,

both space (astronautic) and aeronautical, the primary concern is fuel e�ciency as

fuel is one of the major costs involved; smaller and lighter air-/space-craft means

less fuel is needed thus reducing overall costs. For space applications, the costs are

predominantly related to the fuel needed by the launch vehicle to insert the satellite

into orbit; whereas, for aeronautical applications, the costs are mostly for the fuel

necessary to stay airborne for the desired length of time.

In the case of space applications, miniaturising the satellite may mean that the launch

costs are no longer prohibitively expensive and so the barrier to space access is re-

duced. In particular, nanosatellites (a categorisation of satellite sizes can be seen

in Table 1.1) have gained popularity in recent years and have seen many successful

missions; though many are still for educational or technology-demonstration purposes

rather than speci�c scienti�c objectives, partially due to the limitation in attitude de-

termination and control capabilities (Bouwmeester and Guo, 2010). The aggressive

miniaturisation of the spacecraft structure and subsystems, however, not to mention

the trend towards commercial-o�-the-shelf (COTS) components, has meant cheaper,

2

Introduction

less precise sensors have had to be used and complex algorithms that could poten-

tially compensate for them tend to be infeasible due to limited computing power.

Using multiple small satellites in some formation or constellation is one proposal to

boost the competitiveness of small satellites, especially if the satellites can be mass

produced � insofar as a satellite can be mass produced � which would keep overall

costs down.

Satellite size Mass (kg)
Large > 1000
Medium 500 -1000
Mini 100 - 500
Micro 10 -100
Nano 1 - 10
Pico < 1

Table 1.1: Classi�cation of satellite types (Vladimirova and Wu, 2007).

In a similar manner for aeronautical applications, the explosion in the mass produc-

tion of Unmanned Aerial Vehicles (UAVs) have made them extremely attractive in a

number of consumer and research applications. Aggressive miniaturisation of these

systems also drastically reduces costs compared to manned aircraft for certain appli-

cations as well as opening up new applications which may have been prohibitively

expensive if using manned aircraft. This mass production of UAVs has lowered the

cost to a point where UAVs acting in some formation or constellation could be at-

tractive in, for example, surveying or mapping applications. Many UAV systems are

still controlled remotely, however, requiring skilled pilots to remain close by `in-the-

loop'. For UAVs to continue to appeal in existing applications as well as generate new

applications, a greater amount of autonomy is required which, of course, means bet-

ter attitude determination and control despite restricted electrical power, computing

power and physical space.

One approach to alleviate this computing issue has been to translate all the necessary

functionality into hardware and use a hardware-based rather than software-based solu-

tion. Specialised hardware implemented as an Application Speci�c Integrated Circuit

3

Introduction

(ASIC) has the potential to be much faster, more power e�cient and save on physical

space when compared to software on a general-purpose microprocessor or microcon-

troller. The downside is the obvious portability issues between applications which

often translates into di�cult, complex and, perhaps more importantly, expensive,

development processes.

Specialised hardware can also be implemented on a Field Programmable Gate Array

(FPGA) device. FPGAs, or rather FPGA-based implementations, tend to exhibit

the bene�ts of a full ASIC implementation but the recon�gurable nature of these

devices help with portability and simplify development somewhat. In particular, FP-

GAs are becoming increasingly popular in space applications mainly for two reasons:

they allow the implementation of computationally intensive algorithms, and their

recon�gurability allows them to recover from faults due to radiation or update the

algorithms based on changing mission objectives. Hardware-based solutions, either

ASIC or FPGA, also allow multiple functions to be implemented on a single chip,

in a so-called System-on-Chip (SoC), which frees up valuable real estate within the

autonomous system normally required by multiple processors. An extreme case of

this is where all of the system's computing is implemented on one or more SoC de-

vices; however, there are few examples of an actual aerospace implementation in this

manner.

Thus implementing functionality as specialised hardware o�ers large performance

gains over software implementations in terms of speed and power but also tends to

greatly increase the length and complexity of development as well as limits reusabil-

ity. While FPGAs certainly reduce the impact of these issues somewhat compared

to ASICs, even FPGAs have longer and more complex development times when com-

pared to the traditional software approaches.

When it comes to state estimation in particular, algorithms will generally contain

a model to represent the speci�c autonomous system it has been implemented on.

This means if these algorithms are implemented solely in hardware, the hardware

will be application or system speci�c. This can restrict the reuse of designs between

systems or applications as the algorithm's hardware may be di�cult to adapt if certain

4

1.1 Thesis motivations

parameters change (e.g. the set of sensors or actuators); software implementations,

however, can easily deal with such a change. While FPGA-based implementations

are usually slightly more portable over ASIC designs, they still do not compare to

the generality of software that features proper hardware abstraction.

This lack of portability is usually not a problem with large, expensive, satellites/aircraft

which may only be produced in low numbers, but with the trend towards mass pro-

duction and entirely COTS systems, a more portable approach to state estimation

that attempts to leverage the performance gains of hardware but retain the portability

and low development e�ort of software is needed.

1.1 Thesis motivations

Small (micro-, nano-, pico-) satellites and micro-UAVs are emerging technologies that

have the potential to be of great academic and commercial use, but only if a balance

can be found between two diametrically opposed forces that act on their design:

the desire, and need, for high performance and the desire to reduce costs. High

performance, especially in state estimation, is necessary for these technologies to be

advantageous over traditional aerospace systems in relevant applications.

The desire to reduce the costs of these technologies has led to their miniaturisation

and heavy use of COTS components so that some level of economy-of-scale may be

achieved. Though both component and development costs can be reduced in this

way, this approach, in turn, leads to a reduction in the resources available (e.g. elec-

trical power, computing power and physical space) aboard those systems, impacting

performance.

Specialised hardware, e.g. ASIC/FPGA-based systems, can achieve high perfor-

mance, even for severely resource-constrained systems, but tends to increase the

development complexity of these systems; in this way, using specialised hardware

may reduce component costs and meet performance and miniaturisation requirements

while development costs are typically increased. This issue is illustrated in Figure 1.1

5

1.1 Thesis motivations

which depicts the balance between development complexity and performance for dif-

ferent embedded systems; greater complexity during the development process means

a greater investment in resources, personnel and time becomes necessary which leads

to higher development costs.

FPGAs

ASICs

Micro-

processor

?

Development Complexity

Performance

Figure 1.1: The performance versus development complexity trade-o� for di�erent
types of embedded systems.

Software approaches, e.g. microprocessor-based systems, generally have lower perfor-

mance compared to specialised hardware but have much simpler, and thus cheaper,

development processes. It is, however, possible to draw upon aspects of both hard-

ware and software approaches and combine them into a hardware/software codesign.

This codesign could deliver the high performance of specialised hardware but, by

using software techniques, e.g. modularity or abstraction, could also alleviate some

of the high development costs associated with such hardware. If this codesign ap-

proach is applied to a proli�c state estimation algorithm then the performance and

miniaturisation requirements could be met while keeping development costs low.

6

1.2 Thesis overview

1.2 Thesis overview

In this thesis, a library containing a scalable, portable, hardware/software (HW/SW)

codesign of the Unscented Kalman Filter (UKF), based on an FPGA, is presented.

One way software approaches keep development costs low is to create software li-

braries that can be reused between applications regardless of hardware changes; this

thesis will outline an attempt to do the same: creating a generic, FPGA-based state

estimation library that can be easily applied to any application.

In order to be as generic as possible, the algorithm implemented in this library must be

widely applicable, and none are more widely used in state estimation than the Kalman

Filter family of algorithms; the UKF, in particular, has recently gained popularity

in many applications. Despite the popularity, very few examples of hardware UKFs

exist and, as far as the author is aware, no examples of a device-independent HW/SW

codesign of the UKF.

The codesign implements the application-speci�c parts of the UKF as software, which

allows the library to be rapidly adapted to new applications thus incorporating the

portability and ease of development of software approaches. The codesign then imple-

ments the non-application-speci�c parts of the UKF as hardware, accelerating many

parts of the UKF algorithm, thus incorporating the greater performance of hardware

approaches.

The codesign is implemented as a fully parameterisable, self-contained `black-box'

(IP core) which aims to minimise the necessary input from system designers when

applying the codesign to a new application, such that overall development complexity

is reduced. The library contains, and this thesis will describe, three separate designs

each of which are useful in di�erent situations providing maximum �exibility to system

designers. The rest of this thesis is organised as follows:

Chapter 2 gives a brief background of the relevant �elds. A short introduction to FP-

GAs and their development processes is given, followed by a broad set of examples of

�elds/applications where FPGAs are currently commonly used. The System-on-Chip

concept is introduced then, for this context, the hardware/software codesign approach

7

1.2 Thesis overview

is described. Finally, a short introduction to state estimation and, in particular, the

Kalman Filter family of estimation algorithms is given; existing work on hardware

implementations of Kalman �lters is also described.

Chapter 3 describes the proposed hardware/software codesign of the UKF. The over-

all design methodology is outlined before three di�erent variants of the codesign are

introduced. First is the Serial design which deliberately does not embrace the main

advantage of FPGAs, wide parallelism, in order to reduce resource usage to a bare

minimum; the Serial design is intended for use in severely resource-constrained ap-

plications or incorporation into a SoC. The second variant, the Parallel design, does

adopt the main advantage of FPGAs, wide parallelism, in the primary datapaths in

order to increase performance; the Parallel design is intended for use as a coproces-

sor. Finally, the Pipeline design takes the parallelism even further by splitting the

UKF into a �ve-stage pipeline for additional performance over the Parallel design;

the Pipeline variant is intended for use as a standalone system.

Chapter 4 presents implementations of the HW/SW codesign in two example ap-

plications: attitude determination for nanosatellites and the state estimation part

of a Simultaneous Localisation and Mapping (SLAM) system for a micro-UAV. The

nanosatellite application is further segmented into two: attitude determination of

a single nanosatellite and attitude determination for a small (5) constellation of

nanosatellites. These example applications demonstrate the proof-of-concept for each

of the three codesign variants.

Chapter 5 presents implementation details for a variety of example applications to

demonstrate the �exibility of the library as a whole. The implementation details cover

resource usage, power consumption and execution time of all three codesign variants

which have been parameterised for those example applications. An analysis of how

latency is impacted by various parameters is also given to demonstrate the scalability

of the codesign.

Chapter 6 concludes this thesis by summarising the work presented in each chapter

as well as the main contributions of this thesis, then discussing potential future work.

8

1.3 Summary of publications

1.3 Summary of publications

Soh, J., & Wu, X. (2017a). A Five-Stage Pipeline Architecture of the Unscented

Kalman Filter for System-on-Chip Applications. IEEE Transactions on Industrial

Electronics. PP(99): 1-1. doi: 10.1109/TIE.2017.2740844

Soh, J., &Wu, X. (2017b). An FPGA-Based Unscented Kalman Filter for System-On-

Chip Applications. IEEE Transactions on Circuits and Systems II: Express Briefs,

64 (4):447-451. doi: 10.1109/TCSII.2016.2565730

Soh, J., & Wu, X. (2014). A Modular FPGA-based implementation of the Unscented

Kalman Filter. In Adaptive Hardware and Systems (AHS), 2014 NASA/ESA Con-

ference on, pages 127-134. doi: 10.1109/AHS.2014.6880168

Soh, J., & Wu, X. (2012). A FPGA-based approach to attitude determination for

nanosatellites. In Industrial Electronics and Applications (ICIEA), 2012 7th IEEE

Conference on, pages 1700-1704. doi: 10.1109/ICIEA.2012.6360999

9

Chapter 2

Background

This chapter presents background information and literature on relevant topics. An

overview of Field Programmable Gate Arrays (FPGA) and its applications is given

to demonstrate the FPGA's e�ectiveness as a development platform for increasing

system performance. An overview of System-on-Chip (SoC) techniques, including

hardware/software (HW/SW) codesign, is given to elaborate their advantages as a

design methodology for reducing development complexity. A brief overview of state

estimation and the Kalman Filter family of algorithms is given to establish the suit-

ability of the Unscented Kalman Filter (UKF) for use in a generic state estimation

library. Finally, a summary of the background information is given, justifying the

proposed HW/SW codesign of the UKF.

2.1 Field Programmable Gate Arrays

An FPGA is an integrated circuit containing an array of programmable digital logic

components, sometimes called logic cells or elements, and a hierarchy of interconnec-

tions, or programmable switches, that allow the components to be connected together

in some fashion; a conceptual diagram of the FPGA structure is shown in Figure 2.1.

Each of the logic cells, contain basic circuit elements which can be used to implement

the desired function. The exact composition of these cells, in general, di�er depending

10

2.1 Field Programmable Gate Arrays

Figure 2.1: Structure of an FPGA device (Chu, 2008)

on the vendor, or even between device families by the same vendor, and can be

loosely grouped as �ne-grained or coarse-grained (Todman et al., 2005). Fine-grained

components tend to include �ip-�ops (FFs) and/or n-input lookup tables (LUTs),

while coarse-grained components tend to include Arithmetic Logic Units (ALUs) or

function generators; additional possible elements for either include memory blocks,

multipliers, carry logic or multiplexers among others.

FPGAs were originally used as prototype devices for Application Speci�c Integrated

Circuits (ASIC), but increased sophistication in manufacturing techniques led to an

increase in transistor, and thus resource, density; furthermore, an increase in the

volume of production led to a reduction in cost which allowed the FPGA to replace

ASICs in many applications. FPGAs can also be partially or completely recon�gured

post-manufacture, unlike ASICs, hence the moniker `�eld programmable'. The con-

�gurations available range from simple logic gates such as AND or XOR operations,

to full blown processor units and their associated peripherals.

11

2.1 Field Programmable Gate Arrays

Functionally, digital logic is made up of combinational and sequential logic. Com-

binational logic is a circuit where the output is a function of the present input(s)

only; as such, combinational logic may sometimes be considered as time-independent.

Sequential logic is a circuit where the output is a function of the present input as

well as past inputs; sequential logic can be considered to be combinational logic with

memory. Furthermore, sequential logic can be divided into synchronous and asyn-

chronous logic. Synchronous sequential logic synchronises changes in the output to a

regular clock signal and all logic elements change their output at the same time. Asyn-

chronous sequential logic changes their output directly whenever the inputs change;

thus, ensuring the stability of the system can be much trickier with asynchronous

logic, especially when input signals may arrive `out of order' or in an unexpected

order. For the purposes of this thesis, only synchronous sequential logic is considered

and any reference to sequential logic should be regarded as synchronous.

Each logic cell in an FPGA contains some combination of basic circuit elements that

may be divided into active and passive components; the main passive component is

the LUT and the main active component is the FF. Combinational logic is mostly

implemented using passive components and sequential logic is mostly implemented

using active components. Passive components such as LUTs do not draw power unless

a signal is being propagated through them. This means designs that predominantly

utilise passive components tend to draw very little power (beyond the power necessary

to maintain the block's con�guration). Active components such as FFs constantly

generate and propagate new signals and so are always drawing power; elements like

FFs also require clock signals to be distributed to them which in itself draws power.

Designs that contain a large amount of active components will tend to use a large

amount of power. Some active components may have additional control inputs to

enable or disable the component; this can help save power when the component isn't

being used. In general, designs will contain a mix of both types of logic elements,

but in applications where it is desired to minimise the power consumption, a designer

may prefer to use more passive components than active.

The maximum speed that a design can be run is a function of the propagation delay:

12

2.1 Field Programmable Gate Arrays

the time it takes for a signal to be propagated through the design. In the case of a

purely combinational logic design, this is the time it takes for a signal at the input

of the design to travel through the logic to the output. In the case of a design

with synchronous sequential logic elements, this is either the time between the input

and any sequential element, the time between any two sequential elements or the

time between a sequential element and the output, whichever is longest. For designs

using synchronous sequential elements, the propagation delay must be shorter than

the time between clock pulses in order to guarantee stability of the design. If the

propagation delay is longer than the time between pulses, elements in the design

may become `metastable' where an element cannot settle on a de�nitive state; the

design behaves unpredictably at this point and usually fails. Increasing performance

of a design is about shortening the propagation delay as much as possible, which

also allows a potential increase in clock frequency. In order to do so, a designer may

want to simplify any combinational logic so that the path through it is shorter, or

if that is not feasible, insert additional sequential elements into the logic to break

up long paths; thus, applications where high performance is desired may end up

using proportionally more sequential elements like FFs. The potential downside to

using additional sequential elements is that it increases the latency of the circuit.

For a purely combinational design, the latency is just the propagation delay of the

circuit. Because sequential elements are synchronised to the clock signal, successive

sequential elements are `delayed' with respect to preceding sequential elements when

generating the desired output. For designs including sequential elements, the latency

is the delay in clock cycles between the input and the output of the circuit. Each

additional sequential element placed in succession adds an additional clock cycle to

the latency. Although adding to the latency of the circuit means it takes longer to

`run', the reduction in the propagation delay may allow an increase in clock frequency

which makes up for the additional latency.

13

2.1 Field Programmable Gate Arrays

2.1.1 FPGA technologies

There are three main technologies used to actually implement the programmable

logic cells on FPGAs, all with their advantages and disadvantages: Static Random

Access Memory (SRAM), Flash memory, and antifuses. Figure 2.2 depicts common

implementations of SRAM and Flash cells. SRAM- and Flash-based FPGAs are im-

plemented in the same way as SRAM and Flash memories. Antifuses are simply

the opposites of fuses - rather than start at low resistance and then break (`blow')

the connection with increasing current, antifuses start at high resistance and create

(`burn-in') a connection with increasing current. Subsequently, antifuse devices can-

not be recon�gured, a major draw point of FPGAs, but are obviously non-volatile

and have a greater radiation tolerance than SRAM FPGAs.

(a) SRAM (b) Flash

Figure 2.2: Programmable logic technologies (Kuon et al., 2008)

SRAM-based FPGAs are the most popular type of FPGAi for multiple reasons.

SRAM memories are an extremely common type of memory with widespread use,

from ordinary computers to embedded systems, meaning the manufacturing tech-

niques used are extremely mature; this leads to SRAM FPGAs enjoying high re-

source densities. As with their traditional use as memories, SRAM logic cells can be

reprogrammed an inde�nite number of times - a property obviously very useful for

FPGAs. The main disadvantage of SRAM is their volatility - only while powered does

the FPGA hold its con�guration. This also means that additional circuitry and/or

ihttp://www.grandviewresearch.com/industry-analysis/fpga-market

14

2.2 FPGA development

memory is required to hold the con�guration while the FPGA is unpowered, then

load the con�guration once it is powered; in some cases, load time may be non-trivial

and can have an e�ect on the design of the system as a whole.

Antifuse FPGAs are actually now somewhat more popular than Flash-based FPGAs,

particularly in telecommunications and automotive applications. This is largely due

to their replacement of traditional ASICs in those applications. Flash-based FPGAs,

as with Flash memories, are non-volatile. This means once programmed, Flash FP-

GAs can be instantly started up as is, without the need of some sort of external

con�guration circuitry. Compared to SRAM technologies, Flash technologies aren't

as mature and tend to lag by several `generations', meaning lower resource densi-

ties; this means Flash FPGAs cannot implement designs as complex as an SRAM

FPGA of similar cost could. Another drawback is that Flash FPGAs cannot be re-

programmed inde�nitely. One of the latest Flash FPGAs, the Actel ProASIC3 (Actel,

2012), for example, can be recon�gured a maximum of 500 times; however, for many

applications this is su�cient.

2.2 FPGA development

FPGA development has a number of di�erences compared to software development.

A typical software toolchain � for example, C � involves writing an application then

compiling it down to assembly that is speci�c to the target processor. The assembly

contains individual low-level instructions that the processor executes in a sequential

sequence. The assembler translates the assembly into raw binary and a linker links to-

gether multiple source �les or libraries to create one large binary �le containing the en-

tire application; a diagram of the C compilation process can be seen in Figure 2.3. The

software development process involves largely thinking about how sequential instruc-

tions can produce the desired output and only at the end of the sequence is the output

produced. For scienti�c computing, software development is relatively straightforward

since mathematical algorithms tend to be sequential and recursive; this translates well

to the von Neumann (or rather, the more modern Harvard/modi�ed-Harvard) archi-

15

2.2 FPGA development

tecture of traditional microprocessors where instructions are executed sequentially.

Preprocessor Compiler Assembler Linker
Source File

Libraries

Executable

Figure 2.3: C software development process

FPGA development usually involves using a Hardware Description Language (HDL)

to specify the design (Todman et al., 2005); although specifying the design as a set of

schematics is also possible. More modern FPGA design tools have high-level synthesis

(HLS) capabilities (e.g. Xilinx Vivado HLSii) where the design may be speci�ed in

a high-level programming language, such as C++, and that high-level language is

translated into hardware by the toolchain; the traditional approach, however, is to

use an HDL.

In comparison to a set number of instructions that execute sequentially, hardware

designs implement a series of low-level digital logic that is arbitrarily combined to

produce the desired output. The process begins by detailing the design in an HDL

(or schematic) then behaviourally/functionally simulating the design to ensure it pro-

duces the desired output. A functional design may then be synthesised by a synthe-

siser to produce a netlist of the digital logic components that function as originally

described. The netlist is then translated and mapped onto the speci�c components

featured by the target device. Finally, the design is placed onto the actual loca-

tions of the components in the target device and the routes between the components

connected up. The con�guration, including both the components and the routes,

is stored as a bitstream which is downloaded into the con�guration memory of the

target device. Translation, mapping, placing and routing is commonly referred to

as the implementation step; the full development process can be seen in Figure 2.4.

Additional simulations, usually to determine timing performance, can be conducted

post-synthesis as well as post-implementation.

iihttps://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html, previously
AutoPilot

16

2.2 FPGA development

Simulate Synthesise Implement

HDL Source

Schematic Source
Bitstream

ConstraintsTestbench

Figure 2.4: FPGA HDL development process

A HDL provides some abstraction from the low-level digital logic, but `programming'

an FPGA is more accurately described as designing a hardware architecture than

programming. This is in contrast to software development where programs can be

described at a high, functional level and advanced toolchains handle the precise im-

plementation in the background (Bacon et al., 2013). High-level synthesis tools may

be able to provide the same capabilities in the future but currently still lag behind

software tools in maturity; a survey of HLS tools is given by Daoud et al. (2014).

Another di�erence from software programs is that hardware `executes' all at once, i.e.

di�erent logic blocks all execute concurrently. Though there are some ways to produce

a delay in time, in general, a hardware design is always `on', producing some output.

This parallelism is one of the greatest bene�ts of hardware designs (e.g. García et al.,

2014; Lacey et al., 2016) but can also make it di�cult to maintain data coherence if

future outputs of a particular algorithm depend strongly on past outputs.

Optimised hardware designs also tend to be application-speci�c. While the FPGA

device itself can be recon�gured for di�erent applications, even modular HDL designs

may have limited reusability; this is often an issue for designers, not only when

considering new applications but also when considering new FPGA devices. However,

the loss in �exibility is often o�set by the boost in performance, whether that be in

speed (e.g. Herbordt et al., 2007; Kumar, Joshi, et al., 2010; Brzoza-Woch and

Nawrocki, 2016) or in reduced power consumption (e.g. Kestur et al., 2010; Hamada

and Shibata, 2013).

The lack of portability, the low level of abstraction and concurrent execution leads to

17

2.2 FPGA development

signi�cant design challenges even for experienced designers, let alone beginners that

are considering whether to use an FPGA or a microprocessor for their next applica-

tion. This design complexity is the reason why, despite FPGAs gaining popularity

amongst some designers in many applications, they are still not as widely used as

traditional general-purpose microprocessors (Jones et al., 2010; Bacon et al., 2013).

2.2.1 Number Representation

When working at the hardware level, it becomes necessary to consider how numerical

values will be represented. Larger representations (in terms of total bits) increase the

complexity and resource usage of the system, not only due to more complex arithmetic

and memory, but also because communication channels (e.g. bus widths) have to be

extended. The representation chosen will a�ect the dynamic range (the ratio of the

largest and smallest possible values that can be represented) and the precision of

variables (the smallest number that can be added to another and still be represented)

used which will in turn a�ect the operation of the system, particularly arithmetic

operations.

Digital logic operates in binary for which there are two main representations: �xed-

point and �oating-point. As the name suggests, �xed point representation uses a �xed

number of bits to represent the fractional component of the number (see Figure 2.5);

for a given word length, this then implies a �xed number of bits used to represent the

integer part as well.

Figure 2.5: Binary �xed point representation of numbers (32-bit example)

Floating point representation instead breaks the number into two parts, the mantissa

and exponent. The mantissa is a value between -1.0 and 1.0 which is then multiplied

by two to the power of the exponent to give the desired value (see Figure 2.6). In

18

2.2 FPGA development

general, the size of the mantissa and exponent can vary with application or as the

designer requires; however, the IEEE Standard for Floating Point Arithmetic (IEEE

754-2008) de�nes strict size limits for each. This standard is what will be adopted

here and further discussion will assume mantissa and exponent sizes as summarised

in Table 2.1.

Figure 2.6: Binary �oating point representation of numbers (32-bit example)

Total size (bits) Name Mantissa (bits) Exponent (bits)
16 Half precision 10 5
32 Single precision 23 8
64 Double precision 53 11

Table 2.1: Floating point representation as de�ned by IEEE 754-2008

Floating point arithmetic is far more complex than �xed point arithmetic making it

far slower and more expensive to implement (in terms of size/area of circuitry and

overall complexity of circuitry) for a given word size. Fixed point representation,

while easier and faster to implement, lacks the dynamic range and precision that

�oating point representations can o�er. A summary of the dynamic range and most

precise values that can be represented by either scheme is given in Table 2.2. The

smallest value, or how precise a number can be, is of particular importance as it will

have the most impact on system operations depending on the data type chosen.

Low precision variables set a limit on how small a change the system can make

and still be registered which limits the overall algorithmic precision of the system.

Low precision variables may also introduce rounding/truncation errors which then

compound to limit the overall accuracy of the system.

19

2.3 Applications of FPGAs

Dynamic Range (dB) Precision
Bits Fixed point Floating point Fixed point Floating point
16 48 175 3.9 ×10−3 9.8 ×10−4
32 96 1523 1.5 ×10−5 1.2 ×10−7
64 193 12312 2.3 ×10−10 2.2 ×10−16

Table 2.2: Dynamic range and most precise values �xed and �oating point data
types can represent, for a given word length. Fixed point representation assumes
half the word size is used to represent the fractional component. For �oating point
representation, the precision varies depending on the size of the numbers, so listed
here is the smallest number that can be added to 1 and still be represented.

2.3 Applications of FPGAs

FPGAs were originally used as prototyping devices for ASIC designs due to their

recon�gurability and it is this bene�t that the early uses of an FPGA as a standalone

device sought to exploit. One of the earliest applications was arti�cial neural networks

(ANNs) (Zhu and Sutton, 2003) where the dynamic recon�gurability allowed for rapid

prototyping of ANN designs but, perhaps more importantly, also allowed for adaptive

topologies which, in turn, allowed the ANN to `evolve'; early implementations had

limited practicality due to the inherent complexity of ANNs and size constraints of

FPGAs at the time, but work continues on more recent, higher density devices with

greater success (e.g. Gomperts et al., 2011; Qiu et al., 2016).

Another early application making use of this feature was using FPGAs to implement

recon�gurable softcore processors (e.g. Davidson, 1993; Wittig and Chow, 1996;

Zheng et al., 2001); `soft' or `softcore' here simply refers to the fact that the pro-

cessors are implemented on (recon�gurable) FPGA fabric as opposed to `hard' or

`hardcore' processors which refers to processors that are implemented as their own

specialised/customised hardware in an IC i.e. traditional ASIC designs. These soft-

core processors functioned similar, if not identically, to traditional hardcore micro-

processors but while the processor core was usually left unchanged, the peripherals

(I/O such as UART, variable GPIO, interrupt controllers, ALUs etc.) could be re-

con�gured at will depending on changing environment or changing device/mission

objectives.

20

2.3 Applications of FPGAs

In addition to more �exible embedded systems, softcore processors allow for easier de-

velopment since development can continue in software and potentially reuse modules

from previous/related hardcore processor implementations of the system. These days

even FPGA vendors o�er softcore processors for inclusion on their devices if desired

(optimised for their FPGAs of course, e.g. Xilinx's Microblaze coreiii), though other

vendors providing more general softcore processors do exist as well (e.g. Aero�ex

Gaisler's LEON seriesiv).

The rise in resource densities and more e�cient routing, which increased timing per-

formance, led to the use of FPGAs in some applications, not so much for their re-

con�gurability, but for their ability to outperform (in terms of speed and/or power)

traditional microprocessor implementations. This was due to the fact that hardware

approaches allowed for massive parallelism that was bene�cial to some algorithms.

Parallelism meant that, although FPGAs have had to use clock frequencies an order

of magnitude or more slower than what microprocessors use, the overall throughput,

in some cases, was still higher. An application that took early advantage of this prop-

erty, and still does, was that of control (e.g. Jung et al., 1999; Krach et al., 2003;

Kim, 2000; Monmasson and Cirstea, 2007; Rossi et al., 2011; Chekired et al., 2014;

Hartley et al., 2014). FPGAs were of particular use to control systems thanks to the

ability, by virtue of being hardware, to perform computations in a set period of time

that did not change which is extremely important for reliable control; development

was simpli�ed somewhat as well since specialised real-time operating systems used on

microprocessor systems were no longer necessary.

Similar motivations made FPGAs popular for cryptography; at least the part in-

volving the actual process of encryption/decryption. The bene�ts of rapid encryp-

tion/decryption for communication are obvious and the release of the Advanced En-

cryption Standard (AES) saw a �urry of activity in FPGA development (e.g. Hodjat

and Verbauwhede, 2004; Chodowiec and Gaj, 2003; Saggese et al., 2003); development

of optimised designs for even greater performance still continues today (e.g. Dyken

iiihttp://www.xilinx.com/tools/microblaze.htm
ivhttp://www.gaisler.com/index.php/products/processors

21

http://www.xilinx.com/tools/microblaze.htm
http://www.gaisler.com/index.php/products/processors

2.3 Applications of FPGAs

and Delgado-Frias, 2010; Hoang and Nguyen, 2012) as well as on other cryptography

techniques (e.g. Aysu et al., 2013; Azarderakhsh and Reyhani-Masoleh, 2015).

Parallelism and an increasing amount of specialised signal processing slices made FP-

GAs attractive for high speed digital communication systems, particularly for modu-

lation/demodulation. This �eld was, perhaps, one of the �rst to truly combine both

the FPGA's strengths - performance and recon�gurability - with its use of FPGAs

for Software De�ned Radio (SDR) (e.g. Cummings and Haruyama, 1999; Zhigang

et al., 2003; Ye et al., 2007; Amiri et al., 2011; Wu et al., 2017; Maheshwarappa

et al., 2017). The explosion in wireless communication schemes spanning wide fre-

quency bands and many modulation/encoding schemes led to issues with generality:

the hardware (both analog and digital) used in receivers would usually only work

with a single frequency or a small band of frequencies around some centre as well

as one or a small number of related modulation methods; if another frequency or

modulation scheme was desired, new hardware was needed at potentially great cost.

SDR techniques moved modulation and many other receiver functions to software,

thereby reducing the hardware needed for the RF frontend as much as possible. FP-

GAs made it possible to have high-speed signal processing (largely due to parallelised

and heavily optimised arithmetic datapaths) necessary for high data rates, but still

had the ability to recon�gure the processing `hardware' to suit another frequency or

modulation scheme allowing greater use in a variety of applications.

More recently, FPGAs have seen use in the �eld of High Performance Computing

(HPC). HPC refers to using extremely large computing clusters to perform large-

scale calculations or simulations of some kind; a common application is weather mod-

elling. Here, FPGAs are used to implement particularly time intensive parts of the

algorithms or models they are running, thus gaining signi�cant speed-ups over pure

microprocessor implementations (e.g. El-Ghazawi et al., 2008; Dimond et al., 2011).

FPGAs are also being used as part of heterogeneous `many-core' processors that use

di�erent types of hardware � e.g. microprocessors, graphics processing units (GPU),

ASICs, FPGAs, DSPs etc. � all together to implement extremely complex and/or

large-scale algorithms (e.g. Stratikopoulos et al., 2014; Chen and Prasanna, 2016).

22

2.3 Applications of FPGAs

The algorithm is broken into parts and implemented on the type of hardware that

would bene�t that part most; an introduction on how these algorithms are mapped

onto many-core systems is given by Singh et al. (2013).

In some cases, moving the entire algorithm to the FPGA for processing, rather than

just parts of it, is bene�cial due to overhead incurred in moving data on and o�

the FPGA; this is mainly for highly repetitive algorithms or algorithms that require

storing a lot of intermediate states. This approach is also bene�cial for embedded

systems that require using complex algorithms that would otherwise be unable to

be implemented on traditional microprocessors. Some examples include: solving the

least squares problem (Yang, Peterson, et al., 2009); Singular Value Decomposition

(SVD) for, among other things, SDR (Wang, Cunningham, et al., 2010; Ledesma-

Carrillo et al., 2011); image processing in vision-based control systems (Honegger et

al., 2014); signal processing for a human sensing radar application (Wang, Liu, et al.,

2013).

FPGAs have also played a role in advancing the emerging �eld of evolvable hardware;

in this �eld, the FPGA is used to implement an algorithm that can self-update and

then self-recon�gure (Lambert et al., 2009). There are numerous problems to be

solved before true self-recon�guring hardware can be developed (Haddow and Tyrrell,

2011), but more recent work in the �eld is encouraging (e.g. Salvador et al., 2013;

López et al., 2014).

Nowadays, usage of FPGAs can be to instantiate customised, direct hardware im-

plementations (IP cores) of the section of the algorithm they are tasked to run or

instantiate softcore processors including a set of standard peripherals, custom pe-

ripherals or custom hardware as the application requires; part, or all, of the FPGA

can be recon�gured at will. For some applications, the FPGA can be used as a co-

processor, supplementing a traditional microprocessor instead. These various levels

of coupling between a hardcore processor and an FPGA are illustrated in Figure 2.7.

23

2.3 Applications of FPGAs

Figure 2.7: Common coupling schemes for FPGAs (Shaded grey boxes) (Compton
and Hauck, 2002)

2.3.1 Space Applications

FPGAs have not seen nearly as much use in space (astronautic) applications as in

terrestrial applications, mostly because of the development complexity, but recently,

interest has been increasing for much the same reasons as their popularity in select

terrestrial uses: performance and recon�gurability. For space applications, a major

limiting factor for all electronics in operation is the e�ects of radiation. Though

radiation-hardened (radhard) devices do exist, for both FPGAs and traditional mi-

croprocessors, these are typically more expensive and can be an entire generation or

more behind non-radhard devices, which limits their performance.

FPGAs have been, and still are, useful in payload data processing due to their ability

to accelerate calculation of complex algorithms and potentially reduce power con-

sumption. This is important because, as higher �delity instruments/sensors are

launched and the associated data volume increases, online processing or compres-

sion reduces the information that needs to be sent back to Earth; power, fault tol-

erance and orbital constraints are severe limiting factors in how much data can be

transferred.

FPGA recon�gurability allows mission objectives to be more �exible based on chang-

ing conditions than when using traditional microprocessors, especially given the in-

herent di�culty with accessing the satellite after it has been launched. The recon�g-

24

2.3 Applications of FPGAs

urability can also be used as a fault tolerance technique to simply `refresh' parts of, or

the whole, FPGA to deal with radiation faults. Although space is an extremely harsh

environment, the savings in area, mass and power (i.e. performance gains) garnered

by FPGAs as well as the desire to create true adaptive/autonomous systems continues

to make them an extremely attractive research area (Fossati and Ilstad, 2011).

In line with these motivations, one of the �rst FPGAs to be used in a satellite was a

payload data processing module (HPC-I) onboard the Australian FedSat (Fraser et al.,

2000). Although not the �rst FPGA �own in space, the HPC-I module represented the

�rst intentional application of an FPGA as a proper recon�gurable computing system

(Bergsman, 2003). Apart from a technology demonstration of the recon�gurability

aspects, the HPC-I was designed to implement a series of image processing (�ltering,

compression etc.) algorithms for online payload data processing that could be changed

as necessary (Dawood et al., 2002; Williams et al., 2002; Visser et al., 2002).

To study the e�ects of radiation further, FPGAs themselves have �own, albeit radhard

versions, in order to characterise the faults caused; one example is the CFESat (Caf-

frey et al., 2009). In addition to the radiation study, the CFESat's FPGAs were also

used for the usual data processing purposes, transforming data from high-throughput

sensors to more manageable packets of information for transmission back to Earth.

There is scant literature on the use of an FPGA as the main onboard computer

(OBC); although it has been proposed before in principle (Zheng et al., 2001). One

of the only, if not the only, planned missions actually using this method is the Flying

Laptop (Grillmayer et al., 2005; Huber et al., 2007; Kuwahara et al., 2009; Fritz et al.,

2015), which is yet to launch as of 2017. The Flying Laptop will use four redundant

FPGAs, implementing identical hardware to perform all necessary computing with a

Flash voter/command FPGA for fault mitigation. Other current research for planned

or `theoretical' missions has mainly focused on data processing (e.g. Sharma, Kulkarn,

et al., 2010; Fiethe et al., 2012; Hopson et al., 2012) or fault mitigation (e.g. Iturbe

et al., 2011; Dumitriu et al., 2012; Siozios and Soudris, 2012).

25

2.4 System-on-Chip

2.4 System-on-Chip

The term System-on-Chip (SoC) comes from the �eld of Very Large Scale Integration

(VLSI) where individual hardware units or `black boxes' (IP cores) that perform some

dedicated function are arranged and connected together on a single ASIC chip. Typi-

cal SoCs may include a microcontroller or microprocessor core, DSPs, memories such

as RAMs or ROMs, peripherals such as timers/counters, communication interfaces

such as USB/UART, analog interfaces such as ADCs/DACs or other analog, digi-

tal, mixed-signal or RF hardware. Previously, each of these components may have

had their own ASIC and were connected together on a PCB but, in accordance with

Moore's Law, resource densities of silicon chips have massively increased over time so

now these components are able to be integrated together on a single chip; an example

SoC can be seen in Figure 2.8.

As SoC usually refers to VLSI structures, the same approach used on an FPGA is

sometimes also referred to as System-on-Programmable-Chip (SoPC) to avoid confu-

sion; here, SoC will be used in reference to the methodology of integrating multiple

subsystems together on a single piece of hardware, regardless of the type of hardware.

Indeed the SoC methodology extends even to other non-electronic types of hardware:

recently, biological chambers have been added alongside sensing electronics for use in

the �elds of microbiology (e.g. Ghallab and Ismail, 2014 gives a survey of `lab-on-a-

chip' systems) and medicine � e.g. a bio-sensor by Yang, Xie, et al., 2014 for Internet

of Things (IoT) enabled healthcare; photonic circuits have also been incorporated

into electronic systems, largely for optical communications (e.g. see a survey by Kish

et al., 2018).

SoC designs for FPGAs have become more popular recently as the increase in resource

densities allowed more complex logic to be implemented. The push towards SoCs on

FPGAs is driven by the desire for greater autonomy in a variety of systems; the most

obvious example is �eld robotics, but autonomous systems such as `smart' rooms and

satellites also have a need for small form factor and high performance computing

solutions that the FPGA is well placed to deliver.

26

2.4 System-on-Chip

CPU
Core

Data
Cache

Instr.
Cache

Co-
Processor

Bus IF

Memory

DMA

ADC

Bridge

UART RTC Timers

Peripherals

IP Core

IP Core

Bus IF

Figure 2.8: Example of a typical System-on-Chip

Computer vision is a growing area of research that exempli�es this need. Image

processing algorithms are among the more computationally intensive algorithms but

many applications of computer vision (e.g. mobile robotics, �eld surveillance, assem-

bly line inspection etc.) require the computer system to be small and unobtrusive. It

is unsurprising then that computer vision researchers are among the more prominent

users of FPGA SoCs; examples include: standard encoding (Lehtoranta et al., 2005),

compression (Tumeo et al., 2007), facial recognition (He et al., 2009; Al-Mahmood

and Agyeman, 2017), plain object recognition (`Object Recognition on a Chip' by

Schaeferling and Kiefer, 2011), object recognition and tracking (Kowalczyk and Kry-

27

2.4 System-on-Chip

jak, 2017 include pan-tilt actuation of the camera as well) or feature detection and

matching (e.g. a SIFT & BRIEF implementation by Wang, Zhong, et al., 2014). In

many of these examples, the FPGA is actually used as a coprocessor to provide hard-

ware acceleration, outputting the data to a processor or communication interface;

because the designs are speci�ed as IP cores, however, integration into an even larger

scale SoC is possible in the future.

Apart from computer vision, FPGA-based SoCs have �ourished in many of the same

areas that FPGAs originally were valuable, for example: ANNs (Biradar et al., 2015),

HPC (e.g. Baklouti et al., 2015 propose a general single-instruction-multiple-data

(SIMD) many-core processor with potential application in video processing), cryp-

tography (Bossuet et al., 2013 gives a review and explains how crypto-engines need

�exibility/recon�gurability to handle new types of attacks but also need to be fast

and unobtrusive to their parent application), RF processing (e.g. Pang et al., 2014),

control systems (e.g. Zhong et al., 2016; Guo, Pan, et al., 2017) or high-performance

signal processing (e.g. Flesch et al., 2017 uses a hardware/software codesign SoC for

Earth and planetary spectrography).

2.4.1 Intra-chip communication

Communication between modules in a SoC is a huge area of research on its own,

especially as SoC designs integrate more and more functionality; with greater func-

tionality, e�ciently moving data around to where it is needed becomes harder too.

Communication may be facilitated via a simple bus if there aren't many modules,

especially if it's unlikely all modules will need to communicate with each other - e.g.

in a single master situation, only the main computer will need to communicate with

the other modules. A common bus used in SoC designs is the AXI4 interface speci�ed

by ARM (ARM, 2013); however, this speci�cation is proprietary. An example of an

open-source, free (as in `free' software), bus speci�cation is the Wishbone interface

(Sharma and Kumar, 2012). Bus techniques begin to su�er performance issues in

designs where there are many peripherals that each need to be accessed in a timely

28

2.4 System-on-Chip

manner and when multiple master devices want to use the bus; since bus control is

locked to a single bus master at a time, arbitration between masters is required, which

is non-trivial for larger numbers of masters.

There are also methods that borrow techniques from the �eld of computer networking

such as circuit-switching (e.g. Wiklund and Liu, 2003) or network-on-chip (NoC) (e.g.

Kumar, Jantsch, et al., 2002; Prasad et al., 2016) techniques. Circuit-switched SoCs

are analogous in functionality to the old telephone system switchboards with a cen-

tralised switch to facilitate communication between peripherals being used. Though

circuit-switched networks may sometimes outperform bus networks, they su�er many

of the same drawbacks: when there are a large number of peripherals that need to

be connected and/or multiple master devices, the `switchboard' can become unwieldy

and slow. NoCs are analogous in functionality to packet-switched computer networks

(like the Internet) and so have the same advantages and disadvantages. NoCs allow

many peripherals to communicate at once and easily scale with larger numbers of

peripherals, but, in general, do not guarantee arrival of packets and the routers that

facilitate tra�c are quite complex themselves (which, of course, can a�ect perfor-

mance of the SoCs `actual' functionality).

2.4.2 Partial Runtime Recon�guration

SRAM FPGAs have an additional capability not present in Flash FPGAs: the ability

to recon�gure one section, or partition, at a time without a�ecting the operation of

the rest of the FPGA. Here, the FPGA must be divided into a single static region,

that obviously does not change, and one or more recon�gurable regions, which may

be recon�gured at will. This capability expands the �exibility of the FPGA even

further but also adds a number of design challenges.

Communication between regions is di�cult because wires can no longer be routed eas-

ily between them and must be facilitated by carefully designed slices (Huebner et al.,

2004), though if care is taken, ordinary communication schemes can be implemented

- e.g. bus-based interconnect with the bus residing in the static region (Oetken et al.,

29

2.4 System-on-Chip

2010). However, the advantage is that subsystems may be time-multiplexed in the

dynamic regions (Becker et al., 2007), allowing the SoC to achieve more than would

otherwise be possible. This can also be used in fault recovery schemes to recon�gure

only the partition that has detected faults, rather than the whole FPGA.

2.4.3 Hardware/Software Codesign

As VLSI technology matured, designers began to see that the increase in development

complexity for hardware or ASIC designs was impacting their ability to bring products

to market quickly. The associated increase in the complexity of microprocessors

led many designers to realise that these microprocessor units could be included into

system designs and some of the functionality shifted to software to reduce their time-

to-market. Microprocessors can be considered a SoC on their own but they can also be

included in much larger SoC designs and this is where the idea of hardware/software

codesign �rst began; reviews of the �eld by Michell and Gupta (1997), Wolf (2003)

and Teich (2012) give a comprehensive history of hardware/software codesign.

Early research/work in codesign explored how best to partition functionality, with

the software part residing on some microprocessor, the hardware part in an ASIC

with shared memory or bu�ers, and having some communication bus between the

two (see Figure 2.9). In this case, the target architecture is �xed but as work in this

�eld progressed, much more elaborate architectures began to rise with multiple ASICs

and even multiple microprocessors integrated together into a single SoC. Heavy reuse

of hardware blocks, IP cores, as well as software meant that, despite the complexity,

development time could be reduced but superior quality products could be achieved.

The accelerating scale of these SoCs integrating more and more functionality � i.e.

systems within systems � as transistor densities swelled led to huge demand for simi-

larly powerful design tools. With hardware and software being designed concurrently,

design tools with a higher level of abstraction were required not only for design itself

but also for simulation and validation. Higher abstraction simulators and streamlined

development toolchains in turn allowed the hardware/software codesign approach to

30

2.5 State Estimation

CPU

ASIC

Memory

Figure 2.9: An example of a target architecture for early hardware/software codesign
implementations

both cut development times further and handle the addition of even greater function-

ality. Thus hardware/software codesign often refers to not only the separation of the

design but also to the design tools and methodology that support such separation

and allow the overall development cycle to be shortened, if not necessarily simpli-

�ed. More current work in this area is aimed at introducing �exibility and runtime

adaptability to systems (Teich, 2012); i.e. systems which can change or recon�gure

in real-time in response to faults or some other event.

2.5 State Estimation

A system's state can be any, or all, information relevant to the operation of that

system. This can be anything from the position and orientation of a spacecraft

to the electrical current being supplied to an electric motor or the concentration of

reactants in a chemical reaction. Knowing the current state of a system is necessary to

understand how that system is operating or to alter its operation in order to produce

some more desirable state. In general, not all information regarding a system is

observable, however, and must be inferred via other means. To this end, the system

is represented by a series of system models which model the evolution of the system

based on the previous known state and/or system inputs and/or observations of the

31

2.5 State Estimation

system. State estimation is then the process of using these models to assess the

operation of the system based on what information is available.

Consider the general system described for discrete time, k:

xk = f (xk−1,uk−1,wk−1) (2.1a)

zk = h (xk,vk) (2.1b)

where f and h are the system's process and observation models respectively; x and

z are the state and observation vector respectively; u is the control input and w and

v are respectively the process/control and measurement/observation noise which are

assumed to be zero-mean Gaussian white noise terms with covariances Q and R.

Perhaps the most famous method used for state estimation of systems in this form,

from its inception to the current day, is the Kalman Filter and its associated variants.

The original and seminal Kalman Filter proposed by Rudolph Kalman was shown to

be optimal for linear system models and the assumption that any noise in the system

could be modelled via zero-mean Gaussians (Kalman, 1960). Despite its popularity, a

�aw in the original Kalman Filter becomes immediately apparent: many `real-world'

systems are not linear and, certainly in aerospace applications, system models tend to

be highly non-linear. For these non-linear systems, a variant of the original Kalman

Filter was quickly adapted: the Extended Kalman Filter (EKF).

2.5.1 Extended Kalman Filter

The Extended Kalman Filter is a method of state estimation for non-linear systems

where the noise is still assumed to be zero-mean Gaussians. The EKF handles non-

linear system models by �rst taking a Taylor Series expansion of the system models

truncated at the �rst order term. These Jacobians are evaluated at each time step

for the discrete system and used within the Kalman Filter equations. This alteration

essentially linearises the non-linear system models around the current state estimate.

32

2.5 State Estimation

The system models, in this case, must obviously be di�erentiable in order to use an-

alytical solutions. More realistically, discrete approximations which are recalculated

at each time step are used instead.

For the discrete system given by (2.1) where f and h are now non-linear, the formal-

isation of the EKF contains two parts: the predict step and the update step. The

predict step is given by:

x̂−k|k−1 = f
(
xk−1|k−1, uk−1

)
(2.2)

P−k|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (2.3)

where x̂−k|k−1 and P−k|k−1 are the predicted/a priori state and covariance respectively

based on the previous state and covariance and:

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1, uk−1

(2.4)

is the process model Jacobian. The update step starts with the predicted observation

and covariance, ẑk|k−1 and Sk|k−1 respectively, based on the previous state estimate:

ẑk|k−1 = h
(
x̂−k|k−1

)
(2.5)

Sk|k−1 = HkPk|k−1H
T
k +Rk (2.6)

where:

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

(2.7)

is the observation model Jacobian. Next, the Kalman gain is calculated:

Kk = Pk|k−1H
T
kS
−1
k (2.8)

Finally, the updated state estimate and covariance, x̂k and Pk respectively, is calcu-

33

2.5 State Estimation

lated:

x̂k = x̂k|k−1 +Kk

(
z̃k − ẑk|k−1

)
(2.9)

Pk = (I−KkHk)P
−
k|k−1 (2.10)

where z̃k are the current set of observations.

The EKF is, and has been, the most widespread method for non-linear state estima-

tion (Gelb, 1974). It has also become the de facto standard by which other meth-

ods are compared when analysing their performance. Various surveys of the �eld

have noted that the EKF is: `unquestionably dominant' (Nørgaard et al., 2000), `the

workhorse' of state estimation (Simon, 2006; Crassidis, Markley, and Cheng, 2007)

and the `most common' non-linear �lter (Patwardhan et al., 2012). Despite some

shortcomings, the relative ease of implementation and still-remarkable accuracy have

propelled the EKF's popularity. However, the EKF does have its �aws; due to the

linearisation of the system models, the EKF is no longer, in general, an optimal �lter

unlike the original Kalman Filter. The calculations of the Jacobians themselves can

be extremely computationally demanding, depending on just how far from linearity

the system models are. Truncation at the �rst order term in the Taylor expansion

necessarily means the EKF can only be accurate to the �rst order. Additionally,

as the system models become `highly' non-linear, performance of the EKF su�ers

dramatically.

The EKF's inadequacies become more and more apparent as autonomous systems

with greater and greater amounts of autonomy and precision are desired. Truncating

the Taylor expansion at higher order terms is certainly possible for greater accuracy,

but calculating the Hessian of a system model or any other higher order derivatives

simply compounds the issues already mentioned. It was noted by Nørgaard et al.

(2000) that the problem is in the linearisation via Taylor expansion itself; as long as

this approach to handling the non-linearity is used, these issues will remain. Nørgaard

et al. go on the propose a class of derivative-less �lters to handle non-linear systems

via statistical linearisation instead of analytical linearisation. A special case of this

34

2.5 State Estimation

class of �lters is the Unscented Kalman Filter (UKF).

2.5.2 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) (Julier and Uhlmann, 1997; Wan and Van Der

Merwe, 2000) takes a very di�erent approach to deal with non-linearities in the system

models. While the EKF attempts to deal with non-linearities by using the Jacobian to

linearise the system model, the UKF instead models the current state as a probability

distribution with some mean and covariance. Following this, a deterministic sampling

technique known as the Unscented Transform (UT) is applied. A set of points called

`sigma' points, are drawn from the probability distribution and each of them propa-

gated through the non-linear system models. The new mean and covariance of the

transformed sigma points are then recovered to inform the new state estimate. The

crucial aspect of the UT is that the sigma points are drawn deterministically, un-

like random sampling methods like Monte Carlo algorithms, drastically reducing the

number of points necessary to recover the `transformed' mean and covariance.

Using this approach, the UKF has been shown to perform much better than the EKF

when the system models are `highly' non-linear (Nørgaard et al., 2000; Simon, 2006;

Crassidis, Markley, and Cheng, 2007; Kandepu et al., 2008; Patwardhan et al., 2012);

and this is true for a variety of di�erent applications such as physics (Sitz et al., 2002),

aerospace (Crassidis and Markley, 2003; Van Dyke et al., 2004; Giannitrapani et al.,

2011) and industrial applications (Xiong et al., 2007; Zhou et al., 2011; Jafarzadeh

et al., 2012). This approach to non-linear models is far superior and when validated

using Taylor expansion or Monte Carlo methods, this approach can be shown to be

accurate to the third order in the case of Gaussian noise or, at least, second order for

non-Gaussian noise, depending on the selection of certain parameters in the algorithm

(Julier and Uhlmann, 2004). That said, the UKF is not completely infallible: Perea

et al. (2007), for example, found that it is still possible for the UKF to diverge or

converge to an incorrect state estimate when attempting to fuse data using non-linear

observation models of multiple independent sensors that have contrasting accuracies.

35

2.5 State Estimation

The issue is no worse than the EKF, however, meaning the UKF is still viable in

plenty of circumstances.

The formalisation of the UKF for the discrete system (2.1) where again, f and h are

non-linear is as follows. De�ne an augmented state vector, xa, with length M that

concatenates the process/control noise and measurement noise terms with the state

variables as:

xak =

xk

wk

vk

 (2.11)

The augmented state vector and associated augmented state covariance, Pa, are ini-

tialised with:

x̂a0 = E [xa0] =

x̂0

0

0

Pa
k = E

[
(xa0 − x̂a0)(x

a
0 − x̂a0)

T
]
=

Pk 0 0

0 Qk 0

0 0 Rk

(2.12)

where x̂0 is the expected value of the initial (regular) state and Pk is the (regular)

state covariance. The current augmented state and covariance are used to generate

the set of sigma points, X , using:

X 0,k = x̂ak

X i,k = x̂ak +

(√
(M + λ)Pa

k

)
i

i = 1, . . . ,M

X i,k = x̂ak −
(√

(M + λ)Pa
k

)
i−M

i =M + 1, . . . , 2M

(2.13)

where i refers to the i-th column of the matrix `square-root'; λ = α2(M +κ)−M is a

scaling parameters; α determines the spread of sigma points about the mean (usually

set to some small positive value e.g. 10−3); and κ is a secondary scaling parameter

36

2.5 State Estimation

that is usually set to zero. Each sigma point has an associated weight given by:

W
(m)
0 =

λ

(M + λ)

W
(c)
0 =

λ

(M + λ)
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

1

2(M + λ)
i = 1, . . . , 2M

(2.14)

where (m) and (c) denote whether the weight is used for a mean calculation or a

covariance calculation, and β is used to incorporate prior knowledge of the distribution

around the mean (β = 2 is optimal for Gaussian distributions). The number of

generated sigma points is N = 2M + 1 and they can be segmented and associated

with their respective state and noise terms via:

X i,k =

X x

i,k

Xw
i,k

X v
i,k

 (2.15)

The predict step begins with the sigma points being propagated through the system

model:

X x
i,k|k−1 = f

(
X x

i,k−1|k−1,uk−1|k−1,Xw
i,k−1|k−1

)
(2.16)

The state and covariance are then predicted as:

x̂−k =
N−1∑
i=0

W
(m)
i X x

i,k|k−1 (2.17)

P−k =
N−1∑
i=0

W
(c)
i

[
X x

i,k|k−1 − x̂−k
] [

X x
i,k|k−1 − x̂−k

]T
(2.18)

For the update step, the sigma points that were updated in the predict step are

propagated through the observation model:

37

2.5 State Estimation

Z i,k|k−1 = h
(
X x

i,k|k−1,X v
i,k−1|k−1

)
(2.19)

The mean and covariance of the observation-transformed sigma points are calculated:

ẑk|k−1 =
N−1∑
i=0

W
(m)
i Z i,k|k−1 (2.20)

Sk|k−1 =
N−1∑
i=0

W
(c)
i

[
Z i,k|k−1 − ẑk|k−1

] [
Z i,k|k−1 − ẑk|k−1

]T
(2.21)

followed by the cross-covariance:

Pxz,k|k−1 =
N−1∑
i=0

W
(c)
i

[
X x

i,k|k−1 − x̂−k|k−1

] [
Z i,k|k−1 − ẑk|k−1

]T
(2.22)

and the Kalman gain:

K = Pxz,k|k−1S
−1
k|k−1 (2.23)

Finally, the current system state is estimated by:

x̂k = x̂−k|k−1 +K
(
z̃k − ẑk|k−1

)
(2.24)

where z̃ is the current set of observations and the current covariance is updated with:

Pk = P−k|k−1 −KSk|k−1K
T (2.25a)

= P−k|k−1 −Pxz,k|k−1K
T (2.25b)

where the expression for the Kalman gain, (2.23), is substituted.

Other bene�ts of the UKF include no longer having to calculate and evaluate poten-

tially complex Jacobians at every time step. This bene�t may be countered by the

38

2.5 State Estimation

fact that, in practice, the UKF execution time is much higher. St-Pierre and Gin-

gras (2004), for example, compared the EKF and UKF for an integrated navigation

system, for a car, where odometer, IMU and GPS data were fused, but found an

order of magnitude increase in computation time for the UKF despite the increase

in positional accuracy. Holmes et al. (2009) experimented with using the UKF for

monocular SLAM while Kurt-Yavuz and Yavuz (2012) compared all the major SLAM

solutions, including the UKF, and both found similar problems with the UKF com-

putation time despite greater accuracy. This issue may be, at least in part, because

multiple calculations of the system models must now occur, speci�cally, one instance

for each sigma point. Though this may be an issue for complex models using the

traditional processor approach, it is here where hardware designed for an FPGA has

the potential to bene�t, by reducing execution times back down to feasible levels.

2.5.2.1 Spherical simplex sigma points

There exists various other sigma point selection strategies and, in order to minimise

computational e�ort, a selection strategy involving a minimal set of samples is highly

desired. The spherical simplex set of points (Julier, 2003; Julier and Uhlmann, 2004)

can be shown to o�er similar performance to the original UKF with the smallest

number of sigma points required (M + 2). Using this sigma point selection strategy

keeps the size of certain matrices down and so reduces the computational demand of

the UKF compared to other sigma point selection strategies. The sigma point weights

and a coe�cient matrix is generated by choosing 0 ≤ W0 ≤ 1, then calculating W1:

W1 = Wi =
(1−W0)

(M + 1)
i = 1, . . . ,M + 1 (2.26)

The vector sequence is initialised as:

σ1
0 = [0] , σ1

1 = −
[

1√
2W1

]
σ1

2 =
[

1√
2W1

]
(2.27)

39

2.5 State Estimation

Then the vector sequence is expanded for j = 2, . . . , M via:

σji =

 σj−10

0

 i = 0 σj−1i

− 1√
j(j+1)W1

 i = 1, . . . , j 0j−1
j√

j(j+1)W1

 i = j + 1

(2.28)

Here W
(c)
i = W

(m)
i , i = 0, . . . ,M + 1 and the actual sigma points are drawn from:

X i,k = x̂ak +
(√

Pa
kσ
)
i

(2.29)

which replaces the original sigma point selection strategy given by (2.13).

2.5.3 Hardware Kalman Filters

Implementing complex algorithms like the Kalman Filter can be a di�cult task even

in software. Given the additional complexities of hardware designs, there are not

many examples of hardware, hardware/software or FPGA-based Kalman Filters (of

any variant), although they do exist.

Quinchia and Ferrer (2011) implemented the (linear) Kalman Filter entirely as a

hardware IP core and attached it to a softcore processor as a peripheral device;

this improved the performance of their algorithm, however the implementation is

completely application speci�c. Cruz et al. (2013) implemented just the update step

of the EKF into an IP core for a localisation subsystem in a wheeled robot; the work

is continued by Contreras et al. (2015a) to implement the predict step as another

IP core as well. In both cases, the IP cores are connected to a softcore processor

over a communication bus as a peripheral device. Similarly, Idkhajine et al. (2012)

implemented an EKF IP core which connected to a processor over a communication

bus for a synchronous AC drive current controller.

40

2.5 State Estimation

There are some examples of hardware/software codesigns of the EKF as well. In fact,

Bahri et al. (2013) simply extends the work done by Idkhajine et al. (2012) to a code-

sign in order to better balance `control performance, controller complexity and design

�exibility'. Similarly, Contreras et al. (2015b) presents an alternative implementation

to Contreras et al. (2015a) where the EKF predict step is implemented in software

on the processor for much the same reasons. Aung et al. (2013) implements most of

the EKF in hardware but leaves calculation of the models in software to take advan-

tage of existing standardised software for motor control in automotive applications,

thus reducing their time-to-market. Tertei et al. (2014), in developing a visual SLAM

system, implemented the matrix multiplier of an EKF in hardware and attached it

to the processor as an IP core to behave like a coprocessor.

Another approach to the hardware/software codesign, other than partitioning func-

tionality, is to take advantage of the softcore processor speci�cation and modify it to

include custom instructions. Bonato, Peron, et al. (2007) used such an approach with

the EKF for the localisation system and controller of a wheeled robot. Guo, Chen,

et al. (2012) used this method to develop an EKF velocity estimator for automotive

vehicles; Guo, Chen, et al. also used an additional IP core of a matrix multiplier.

This approach means that although the implementation can be easily used between

applications, it is now restricted to a particular device (or device family).

Bonato, Marques, et al. (2009) continue their work (Bonato, Peron, et al., 2007) by

implementing application-speci�c aspects of the EKF � the system models � into

software on a softcore processor while implementing non-application-speci�c parts of

the EKF into a hardware IP core attached to the processor. They take advantage

of certain features of their application � the SLAM problem for mobile robotics �

to restrict the sizes of the state and observation vectors, allowing the IP core to be

agnostic with respect to the sensors used. With known state and observation vector

sizes, Bonato, Marques, et al. use 4 processing elements (PEs) to balance on-chip

memory requirements with o�-chip memory bandwidth requirements. Though their

implementation is an application-speci�c EKF, it is not restricted to any particular

FPGA device or (SLAM) system hardware.

41

2.5 State Estimation

There are only a small number of examples of UKF implementations as well. Previous

work by the author (Soh and Wu, 2012) attempted an application-speci�c hardware

implementation of the UKF as a standalone IP core that would interface directly with

the sensors and actuators of a nanosatellite; however, this design lacked performance

optimisation and generality.

A patent by姬红兵 et al. (2013) describes a method of implementing a UKF entirely

in hardware on an FPGA. An example embodiment is given involving tracking a

single moving object in a 2-D plane with three passive sensors in a �xed location.

The position, velocity and acceleration of the object is tracked with state vector of

size 6. The sensors measure the distance to the object in both dimensions as well

as the angle to the object with respect to the horizontal axis; the observation vector

is size 3. Computation times for up to 6 PEs are disclosed. The matrix inversion

(see (2.23)) is handled by using Singular Value Decomposition (SVD) to calculate

the pseudoinverse matrix (i.e. for target square matrix, A, with SVD, A = USV,

where U and V are unitary and S is diagonal, the pseudoinverse can be computed

via: A−1 = US−1V).

This patent discloses an application-speci�c implementation of the UKF and does

not mention how higher dimensionality variants of the example embodiment (e.g. a

3D variation) may be handled nor how the design can be translated to handle other,

completely di�erent, applications. The patent further discloses an implementation

onto, speci�cally, a Xilinx XC4VFX140 FPGA (Xilinx, 2010) and it is unclear whether

the design can be implemented on other devices. Though a parallelisation scheme is

described (up to 6 PEs), it is not clear whether an arbitrary number of PEs can be

used.

Entirely hardware, application-speci�c implementations of the UKF are also proposed

by Ramchandani et al. (2012) and Yang, Deng, et al. (2017). Ramchandani et al. pro-

pose using the UKF as part of a Maximum Power Point Tracking (MPPT) system for

photovoltaic cells. Their design does not appear to contain a parallelisation scheme

and while algorithm performance is reported, hardware performance is not. Yang,

Deng, et al. propose using the UKF to estimate dynamic characteristics of thalamo-

42

2.6 Summary

cortical cells in the study of Parkinson's disease. Their design uses parallel calculation

blocks in the propagation of the sigma points through the system models and most

of the matrix calculations, but does not appear to be arbitrarily parameterisable.

Algorithm performance, but not hardware performance, is reported.

One HW/SW codesign approach is a patent by 刘仙 et al. (2014) which describes a

method of implementing the UKF, along with a neural dynamics model, to remove

interference from electroencephalogram (EEG) signals. The invention uses a soft-

core processor with custom instructions to implement the UKF on a Altera Cyclone

IV EP4CE15F17C8 (Altera, 2016) device; this makes the implementation not only

application-speci�c, but also device-, or device family-, speci�c.

2.6 Summary

This chapter gave background information and reviewed relevant literature on FP-

GAs, FPGA development processes, FPGA applications, System-on-Chip techniques

and state estimation. A short introduction to FPGAs and FPGA development was

�rst given. The SoC methodology of integrating multiple `black boxes' (IP cores)

into a single device was then described; hardware/software codesign techniques for

SoCs were also introduced. A short synopsis of the most popular state estimation

method, the Kalman Filter family of algorithms, was presented; existing attempts at

implementing hardware or HW/SW Kalman Filters and its variants were also given.

FPGAs are capable of increasing the performance of complex algorithms but the de-

velopment process � translating these algorithms to hardware � is more di�cult and

expensive when compared to software development. Creating reusable IP cores for

SoC systems does not necessarily reduce development costs for the initial application

but helps reduce development costs of subsequent applications that use that IP core.

Using a HW/SW codesign can help reduce development costs further since, not only

is software easier to develop for initial applications, it is also easier to adapt for sub-

sequent applications. Although the EKF has been the most popular state estimation

algorithm for non-linear systems, it su�ers linearisation problems which can reduce

43

2.6 Summary

the algorithm's performance in highly non-linear systems. The UKF is a newer vari-

ant that has shown superior algorithm performance over the EKF but at the cost of

slightly higher computational requirements. There are very few examples of hard-

ware or HW/SW Kalman Filters, of any variant, and those that exist are largely

application- or device-speci�c; these approaches are unlikely to reduce development

costs of subsequent applications.

Small aerospace systems need to retain high performance state estimation to have any

advantage over larger systems but miniaturisation e�orts put considerable pressure on

the available resources (e.g. computing power, physical space). Using an FPGA for

computation can help deliver the performance necessary but increases development

costs. Using SoC techniques can help save physical space as multiple functions are

integrated onto a single chip; using a HW/SW codesign as well may mitigate the in-

crease in development costs brought on by using an FPGA. The UKF is a popular and

widely applicable state estimation algorithm and its increased computational require-

ments can be relieved by the greater performance of an FPGA. Hence, a HW/SW

codesign of the UKF is an excellent approach to creating a generic state estimation

library which may be highly bene�cial in the development of small aerospace systems.

44

Chapter 3

Hardware/Software Codesign of

the Unscented Kalman Filter

In this chapter, the proposed hardware/software (HW/SW) codesign of the UKF

is described. The overall design methodology is outlined starting with the hard-

ware/software partitioning strategy and how the hardware and software parts are

intended to interact; generation of header �les to ensure the coherence of relevant

parameters between the hardware and software parts is then detailed. The main con-

tributions of this thesis � three variants of a HW/SW UKF � are described before,

�nally, a summary of the advantages and disadvantages of each variant is given.

3.1 Design overview

The �rst exercise in the hardware/software codesign is to divide the UKF algorithm

into two parts. For maximum performance, it is desirable for as much of the algorithm

as possible to be implemented in hardware. However, to maintain portability, any part

of the algorithm that is application-speci�c would be better implemented in software.

This is so that the application-speci�c parts can make use of the faster and simpler

development processes that using software entails. Reviewing the UKF algorithm,

only the two system models, the predict and updatemodels, are application-speci�c.

45

3.1 Design overview

The predict model, (2.16), models the evolution of the system's state between time

steps. This model, also known as the process model, usually encapsulates the be-

haviour of the system subject to control actions or external forces; for example, con-

sider a 3D rigid-body dynamics model of a multi-rotor micro-UAV which accounts

for gravity and air resistance. Changing to a di�erent system (e.g. from a multi-rotor

UAV to a �xed-wing UAV) would require the predict model be updated to re�ect

the new system. Di�erent applications usually require di�erent systems, and so the

predict model is highly application-speci�c; keeping the predict model in software

allows rapid re-development if the system or application changes.

The update model, (2.19) models the measurement of the state of the system at the

current time step. Measurements of the system's state are carried out by sensors

incorporated into the system; for example, a multi-rotor UAV may use an IMU to

determine its attitude and a GPS receiver to determine its position and speed. If the

set of sensors carried by the system change (e.g. using a camera instead of an IMU

for attitude), then the update model would need to be updated to re�ect the new

sensors, even if the base system does not change. The appropriate sensor set depends

strongly on the type of base system used and what it is being used for. So as with

the predict model, the update model is highly application-speci�c.

Apart from the two system models, the rest of the UKF can be viewed as, essentially,

a series of matrix manipulations. The only changes to the rest of the UKF when

either of the system models change is the size of the vectors and matrices used in the

UKF calculations. The sizes of these vectors and matrices are �xed for a particular

formulation of the UKF and so they can be treated as parameters that are set at

synthesis. Fixing the parameters at synthesis means that only the bare minimum of

hardware resources are needed but the hardware can still be easily used for di�er-

ent applications with di�erent vector/matrix sizes; rather than needing to redesign

any functionality, the hardware can simply be synthesised with di�erent parameters.

Thus, the rest of the UKF can be designed and then used as a parameterisable, mod-

ular `black-box' (IP core) and implementing it for any given application only requires

the appropriate selection of parameters.

46

3.1 Design overview

When it comes to designing hardware, there are three main considerations: the per-

formance of the hardware (which may include data throughput, maximum clock fre-

quency etc.), the logic area (on-chip resources) used and the power consumption of

the hardware. During development these considerations are usually at odds with each

other - speci�cally performance is usually opposed by logic area and power consump-

tion. In order to increase the performance of the design, additional resources often

have to be used which, in turn, may increase the power consumption; these increases in

resource/power cost may make the implementation infeasible for a given application.

Due to these considerations, there are a number of di�erent strategies that can be

applied to hardware design; which strategy is preferable depends on the requirements

of the application. Possible design strategies include: minimising resource usage,

minimising power consumption, maximising performance, or maintaining a balance

of all three.

As each di�erent design strategy is appropriate depending on the situation, no single

strategy is suitable for the codesign if it is to be as widely applicable as possible.

With the stated goal of creating a generic library that can be easily applied to any

application, rather than introduce just one design, three di�erent designs are pre-

sented, each with advantages and disadvantages. Each of the designs is developed

with di�erent applications in mind but is otherwise easily swapped with the others,

allowing the greatest �exibility to system designers.

The �rst design, which will be referred to as Serial, is the most basic and is intended

to �t within a greater SoC or to be used as a coprocessor to a standard microproces-

sor. The second design, referred to as Parallel, exploits the hardware advantage of

parallelism in order to accelerate the computation of low-level arithmetic; this design

is intended for use as a coprocessor. The third design, referred to as Pipeline, further

exploits parallelism to allow multiple instances of the algorithm to be calculated at

once; this design is intended, along with a dedicated microprocessor, for use as a

standalone subsystem.

Although three di�erent designs are presented, the variation in design only applies to

the hardware part (the IP core). The same partitioning method is used for all three

47

3.1 Design overview

design variants and the software part is still developed as per the requirements of the

application. The hardware/software partition strategy is summarised in Table 3.1.

Hardware
Non-application-speci�c

Software
Application-speci�c

X i,k−1 (2.29)
x̂−k (2.17)
P−k (2.18)
ẑk|k−1 (2.20)
Sk|k−1 (2.21)
Pxz,k|k−1 (2.22)
K (2.23)
x̂k (2.24)
Pk (2.25a)

X x
i,k|k−1 (2.16)

Z i,k|k−1 (2.19)

Table 3.1: Summary of the hardware/software partitioning of the UKF. See Section
2.5.2 for details of the UKF algorithm. All three variants use this partitioning method.

The actual physical implementation of the hardware/software UKF on an FPGA

can be seen in Figure 3.1. The hardware part is implemented as a standalone IP

core and the software part is implemented on a general-purpose microprocessor. The

processor acts as the main controller which, in addition to implementing the system

model software, controls the hardware IP core. The precise method of controlling the

IP core is dependent on the design variation and is elaborated on in the following

sections.

Processor
(SW)

IP Core
(HW)

Communication
Interface

Figure 3.1: The hardware/software partition on the FPGA

The processor communicates with the IP core over some communication interface.

Any intra-chip communication method would be su�cient and would be driven mostly

by the requirements of the application; viable interfaces include point-to-point, bus

or NoC interfaces. The IP core contains memory bu�ers at the interface in order to

48

3.1 Design overview

receive data from the processor as well as to temporarily store data that needs to be

read by the processor. The communication interface is the same between all three

variants but the speci�cs of the memory bu�ers are not.

In this thesis, the communication interface between the two parts is an AXI4 bus. All

variants are implemented using single precision arithmetic (IEEE-754); this gives a

decent balance of dynamic range and resource usage which should be su�cient for the

majority of applications. All hardware in the codesign is developed using the Verilog

HDL and all software in the codesign is developed using C. Although C is used here,

in general, any type of software (i.e. programming language) may be used as long as

it contains the ability to interact with the communication interface connecting the

hardware and software parts.

3.1.1 Header generation

There are a number of parameters chosen during the design of the UKF algorithm

that need to be recorded so that data is correctly interpreted during the operation of

the codesign. These parameters are application-speci�c as they depend on the design

of the predict and update models. The parameters are:

• Length of the augmented state vector (2.11)

• Number of sigma points (2.29)

• Number of state variables (2.1a)

• Number of observation variables (2.1b)

• Sigma weighting coe�cients W0/W1 (2.26)

These parameters set the expected structure of data read from or written to the

memory bu�er by both the hardware and software parts. The hardware part also

uses these parameters to instantiate memory blocks of the correct size, initialise state

machines and initialise the control loops that handle the various vectors/matrices.

49

3.1 Design overview

The software part uses these parameters to initialise the control loops that handle

the sigma points propagation process.

To ensure that the recorded parameters are consistent between the hardware and

software parts, the parameters are �rst stored in a plain-text parameter �le. This

parameter �le is then used by a con�guration script to generate the appropriate

headers for inclusion into the source �les of both the hardware and software parts

(see Figure 3.2). In order to move to a new application, a designer updates the

parameter �le depending on the requirements of the application and the design of

the UKF for that application; the con�guration script is then run to regenerate the

header �les for the new application. This is a simple process that can easily occur

alongside the software development of an application.

.v

.h

Parameter File Configuration Script

C Header

Verilog Header

Figure 3.2: Generation of header �les

A number of additional hardware-only parameters are also recorded by the parameter

�le:

• Latency of the �oating-point arithmetic (e.g. Table 3.2):

� Multiply

� Accumulate

� Fused multiply-add

� Subtract

50

3.2 Serial design

� Square-root

� Divide

• Number of processing elements

• Sigma weighting coe�cient matrix

• Depth of the memory bu�er

In this case, additional �les for the hardware part only are generated. The sigma

weighting coe�cient matrix (see Section 2.5.2) is stored by the hardware part as a

ROM. The ROM needs to be initialised with the desired values at synthesis time so,

the con�guration script generates the matrix as per (2.28) and exports the values to

an initialisation �le. The script then adds the current path to the HDL header so

that the matrix values can be fetched during synthesis.

For this thesis, the header generation scripts were written in Matlab to help maintain

consistency with simulation models; for a standalone library, however, a freer scripting

language with suitable text manipulation tools may be more appropriate.

3.2 Serial design

In this section, the Serial variant of the HW/SW UKF is introduced. This section

is based on, and the Serial design was �rst presented in, Soh and Wu (2014). The

division of the UKF algorithm and how the di�erent parts are calculated is outlined.

The three major datapaths, associated secondary arithmetic and memory blocks that

compose the IP core and its control scheme for the Serial design are also described.

The Serial design design strategy is to minimise the area and power consumption

as much as possible with the intent to include the design into a greater SoC. As

such, the design forgoes one of the main bene�ts of hardware implementations: wide

parallelism. The performance of this design will su�er but the low resource cost

51

3.2 Serial design

will allow it to be used in severely resource-constrained applications; for example, on

board a nanosatellite or micro-UAV.

The UKF algorithm can be logically divided into two parts: the predict step (for

the Serial design, we consider sigma points generation as part of the predict step)

and the update step. The algorithm must �rst be initialised with an augmented

state estimate and covariance before any calculations can begin. After the algorithm

is initialised, the predict and update steps can be calculated as necessary. The

predict step can be calculated independently, but the update step must always be

preceded by a predict step.

Though the algorithm can be logically divided into two parts, the hardware imple-

mentation attempts to reuse as much of the resources as possible and so only separates

the low-level functions into modules at an HDL level. The Serial design contains the

following modules and memories which are controlled via a large state machine:

• Modules

� Triangular linear equations solver (trisolve)

� Matrix multiply-add

� Calculate mean/covariance

� Calculate sigma point residuals (Subtract)

� Floating-point arithmetic

• Memory

� Augmented state

� Augmented covariance

� Sigma weighting matrix

� Cholesky decomposition

� State/Observation sigma point residuals

� Observation residual

52

3.2 Serial design

� Observation covariance

� Cross covariance

� Kalman gain

All non-arithmetic modules are instantiated only once and the �oating-point arith-

metic is shared between these modules. Each of the �oating-point arithmetic modules

are deeply pipelined in order to maintain a reasonable synthesisable clock frequency.

The �oating-point arithmetic modules and their clock cycle latencies are listed in

Table 3.2. A state machine ensures there are no data collisions and that only one

module at a time can feed data into the �oating-point arithmetic pipelines.

Module Latency (cycles)
Multiply 8
Accumulate 22
Fused multiply-add 11
Subtract 11
Square-root 28
Divide 28

Table 3.2: Basic arithmetic modules and their latencies

Processor UKFBuffer

GPIO

/
16

Bus
IP Core

Figure 3.3: Top-level block diagram of the Serial design

The IP core for the Serial design consists of the UKF hardware and a memory bu�er

which is attached to a communication (AXI4) bus. The interface between the hard-

ware and software parts also features a set of 16 control lines which are used by

53

3.2 Serial design

the processor to control the IP core; a top-level block diagram of the Serial design

illustrating the structure can be seen in Figure 3.3.

The 16 control lines are simply digital signals that can be attached to either a General

Purpose Input/Output (GPIO) module or an interrupt controller. These control lines

allow the processor to initiate the IP core calculations, to know where the IP core

calculations are up to and to know when the processor needs to deliver model data.

The complete list of control lines can be seen in Table 3.3. The memory bu�er itself

is a simple FIFO in either direction. Both the processor and IP core make use of

the control signals to know how to interpret the data that is in the bu�er at any one

time.

No. I/O Function
0 I Reset
1 I Enable
2 I Initialise state
3 O State initialised
4 I Initialise covariance
5 O Covariance initialised
6 I Start predict step
7 O predict step complete
8 O Request predict model
9 I predict model complete
10 I Start update step
11 O update step complete
12 O Request update model
13 I update model complete
14 O Not Connected
15 O Not Connected

Table 3.3: Control lines for the Serial design. I/O is with respect to the IP core; so
I: PS → IP core and O: PS ← IP core.

3.2.1 State machine

The Serial design IP core has �ve top-level states: an idle state, two initialisation

states and one state each for the two parts of the UKF (predict and update); the

54

3.2 Serial design

top-level state diagram can be seen in Figure 3.4. The IP core remains in the idle

state until given a signal by the processor to perform an initialisation, the predict

step or the update step; these steps can be performed independently as required, or

as the available sensor data will allow. Once any of the steps are completed, the

IP core returns to an idle state. The state machine only enables hardware that is

necessary for the current state; hardware that is not being used by the current state

is kept disabled to conserve power.

INIT
STATE

IDLE

PREDICT

UPDATE

RST

INIT
COV

Figure 3.4: Top level state diagram for the Serial design. Transition conditions are
omitted for clarity, but are all tied to the appropriate control signals from Table 3.3.

The initialisation process (i.e. the two init states) involves the processor copying the

initial augmented state estimate and covariance into the memory bu�er where it is

copied again into a local memory block. The local memory block for the augmented

state estimate and covariance is used by the IP core to keep track of the current

estimate in expectation of the next iteration of the algorithm.

3.2.2 Predict step

The predict step for the Serial design generates the new set of sigma points and cal-

culates the a priori state estimate. A block diagram of the predict step architecture,

55

3.2 Serial design

showing the data �ow between hardware modules, can be seen in Figure 3.5.

Augmented
Covariance

Augmented
State

trisolve Matrix
Multiply-Add

Memory
Buffer

Calculate
Mean Subtract

Calculate
Covariance

Figure 3.5: Block diagram of the predict step for the Serial design

The predict step begins by using the current augmented state vector and covariance,

stored in a local memory block, to calculate the new sigma points via (2.29). To

calculate the new set of sigma points, �rst the matrix `square-root' of the current

augmented covariance must be calculated. For some matrix A, matrix B is the

square root of A if:

A = BB (3.1)

A number of methods to calculate B for any given A exists; for example, via direct

diagonalisation, Schur's algorithm or Denman-Beavers iteration to name a few. How-

ever, if A is positive de�nite � which the covariance matrices in the UKF necessarily

are � the Cholesky Decomposition (Golub and Van Loan, 1996) can be used. The

Cholesky Decomposition is somewhat simpler than other methods but is still sta-

ble and accurate and, especially in aerospace applications, is favoured for the UKF

(Rhudy et al., 2012). The Cholesky Decomposition is implemented via a triangular

linear equations solver (i.e. trisolve in Figure 3.5) which is described in Section

3.2.2.1.

The `square-root' of the augmented covariance is then multiplied by the sigma coe�-

cients weighting matrix and the current augmented state vector added column-wise;

this is implemented by the matrix multiply-add module described in Section 3.2.2.2.

The new sigma points are placed in the memory bu�er (to the processor) and the

appropriate control lines are set. Once the processor has propagated the sigma points

56

3.2 Serial design

through the predict model, it places the transformed sigma points back into the

memory bu�er and signals the IP core to proceed via the appropriate control line.

The mean of the transformed sigma points is calculated which is also the a priori

state estimate (2.17). The transformed sigma points and the mean are then used

to calculate the `sigma point residuals' via a subtract operation. From the `sigma

point residuals', the covariance of the set of transformed sigma points is calculated

which is also the a priori covariance (2.18). Calculation of the mean and covariance is

implemented by the calculate mean/covariance module described in Section 3.2.2.3;

this section also describes the details of the `sigma point residuals'. Once the calcu-

lations are complete, the IP core writes the a priori state and covariance to the local

augmented state and covariance memory blocks as well as the memory bu�er so that

both the processor and IP core has the current state estimate.

Since each of the hardware modules are only instantiated once and reused between

the di�erent calculations, a state machine is necessary to control the hardware and

prevent data collisions; this is also necessary because the �oating-point arithmetic is

shared between the major modules. A state diagram of the predict step can be seen

in Figure 3.6. This state machine occurs entirely within the predict state in Figure

3.4. Each state allows the calculations for its eponymous module to complete before

transitioning. The wait state is for when the new set of sigma points are placed into

the memory bu�er and the IP core requests the processor to propagate them through

the predict model; once the processor signals it has done so, the IP core transitions

to the next state.

3.2.2.1 Triangular linear equations solver

In addition to the matrix `square-root', the Choleksy Decomposition is also used in

the Kalman gain calculation which involves a matrix inversion (see 2.23). Directly

computing a matrix inversion is extremely computationally demanding so, rather

than directly inverting the matrix, an algorithm called the matrix `right divide' is

used here. The matrix `divide' de�nes operators \ and / which denote the matrix

57

3.2 Serial design

trisolve
Matrix
Multiply-
add

Wait

Calculate
Mean

Calculate
Residuals

Calculate
Cov.

RDY

IDLE

Start
predict

RDYRDYpredict
complete

Request
predict
model

predict
model
complete

Figure 3.6: State diagram of the predict step for the Serial design

`left divide' and matrix `right divide' respectively, such that for n× n square matrix

A and n× 1 vector b:

A\b ≡ A−1b (3.2a)

b/A ≡ bA−1 (3.2b)

This is a computational algorithm which, for the system Ax = b:

1. If A is triangular, performs back substitution or forward elimination to solve

for x directly

2. If the matrix is positive de�nite, performs the Cholesky decomposition on A,

then performs step 1

3. Otherwise performs an LU decomposition with partial pivoting, then performs

step 1

The Cholesky and LU decomposition reduces the matrix A into its upper and lower

triangular components, such that:

A = LU (LU)

A = LLT (Cholesky)
(3.3)

58

3.2 Serial design

where L is a lower triangular,U is the upper triangular matrix and LT is the transpose

of L, thus this algorithm solves for x via:

Ax = b (3.4)

LUx = b (3.5)

x = U\L\b (3.6)

Note that the number of operations the Cholesky decomposition requires is roughly

half the LU decomposition as it doesn't have to calculate a second triangular matrix.

To calculate the Cholesky Decomposition, set L11 =
√
A11 and L21 = A21/L11, then

the rest of the matrix can be calculated element-wise via:

Lij =
1

Ljj

(
Aij −

j−1∑
k=1

LikLjk

)
for i > j (3.7a)

Ljj =

√√√√Ajj −
j−1∑
k=1

L2
jk (3.7b)

The calculation may proceed either by row or by column. Here, the multiply-

accumulation dominates the calculation in both instances so the time complexity

for the decomposition is roughly O(n3) operations where n is the size of the target

matrixi. The main problem, however, is the need to perform a (scalar) square-root

and a divide operation in each iteration (i.e. the calculation of a given row/column).

There are multiple multiplication and accumulation operations per iteration so they

can both be easily pipelined, but the square-root and divide makes the datapath in-

e�cient. This is because square-root and divide operations are much more complex

than multiplication and accumulation and so their calculations usually have a much

longer latency (e.g. see Table 3.2); furthermore, only one division per element or

square-root operation per row/column is necessary making their pipelines ine�cient.

Since a divide operation is in every non-diagonal calculation, successive elements in

iIn fact, in can be shown that it requires n3/3 �oating point operations (Golub and Van Loan,
1996)

59

3.2 Serial design

a row/column must wait for this long latency divide operation to complete before

proceeding; similarly, a square-root operation for every diagonal element means the

calculation for the next row/column must wait on this long latency operation.

Given these ine�ciencies, instead of the original decomposition:

A = L1L
T
1 (3.8)

where L1 is lower triangular, an alternative version of the decomposition is used:

A = L2DLT2 (3.9)

where L2 is lower triangular and its diagonal terms are unit elements, D is diagonal

and the two versions are related by:

L1 = L2

√
Dii (3.10)

This alternate version of the Cholesky Decomposition is sometimes referred to as the

LDL Decomposition and to calculate it, �rst set L11 = 1, D1 = A11 and L21 = A21,

then the element-wise calculation is:

Lij =
1

Dj

(
Aij −

j−1∑
k=1

LikLjkDk

)
for i > j (3.11a)

Dj = Ajj −
j−1∑
k=1

L2
jkDk (3.11b)

At �rst glance, this alternative version looks worse with additional terms in the Lij

iiRecalling (3.1), the matrix square-root of a diagonal matrix is simply the (scalar) square-root
of its elements

60

3.2 Serial design

calculation, however let:

Fij = LijDj i > j (3.12a)

Fjk = LjkDk, k = 1, . . . , j − 1 (3.12b)

and rewrite the element-wise calculation as:

Fij =

(
Aij −

j−1∑
k=1

LikFjk

)
for i > j (3.13a)

Dj = Ajj −
j−1∑
k=1

F 2
jk

Dk

(3.13b)

In this form, the divide operation is moved from the Fij calculation to the Dj calcu-

lation. If we calculate the Decomposition by row, then the Dj calculation only needs

to be calculated once per row and can be performed in parallel, meaning the long

latency divide operation has little to no e�ect on the main datapath. Furthermore

the square-root operation is eliminated completely unless it is desired to recombine

the LDL products in order to recover the original Cholesky Decomposition (i.e. L1)

product; the recombination process can occur in parallel as well. Calculating by row

also means the expression for Fij can now be considered as simply solving a series of

triangular linear equations, i.e. solving for y in the system:

Fi−1y
T
i = aTi (3.14)

where yi is the next row in the LDL Decomposition, ai is the i -th row of A and Fi−1

is the LDL Decomposition triangular matrix product already calculated so far with

the elements given by (3.13a). Considering the matrix `divide' and the system given

by (3.4) now, if we use the LDL Decomposition on A:

L2DLT2 x = b (3.15)

61

3.2 Serial design

then this system can be similarly reduced to a triangular linear form:

L2c = b (3.16a)

De = c (3.16b)

LT2 x = e (3.16c)

This means the Cholesky Decomposition as well as the forward elimination and back

substitution can all be treated as solving a series of triangular linear equations (Yang,

Peterson, et al., 2009), meaning the same hardware can be reused for each operation;

Figure 3.7 depicts the full trisolve datapath for the Serial design, including the

division and the recombination process to recover L1.

Fused
Multiply-Add

FIFO

Divider

MultiplyFIFO Accumulator

Square
Root

MultiplyFIFO

L
2

L
1

D

b
L
2

Figure 3.7: Triangular linear equations solver (trisolve) for the Serial design

The two inputs to the trisolve datapath feed into the fused multiply-add module

and are denoted by L2 and b. When performing the matrix `right divide', these two

inputs refer to the LDL Decomposition product and the dividend vector in (3.15),

respectively. When performing the Cholesky Decomposition, L2 is the LDL Decom-

position product calculated so far and b is actually a row of the target matrix A in

(3.9).

Although in terms of the algorithm, the Decomposition proceeds by row, in terms of

the hardware, all elements in a column are calculated at once in order to make full

62

3.2 Serial design

use of the fused multiply-add pipeline. Consider the expanded form of (3.14):

y1 = a1

y2 = a2 − F21y1

y3 = a3 − F31y1 − F32y2

...

yn = an −
n−1∑
k=1

Fnkyk

(3.17)

For an n×n target matrix, the �rst iteration through the fused multiply-add pipeline

calculates n− 1 elements of the �rst column (i.e. ak−Fk1y1, k = 2, . . . , n); the result

is fed back through a FIFO to be used in the calculation for subsequent columns. The

next iteration calculates the n − 2 elements of the second column (i.e. Fk2y2, k =

3, . . . , n) which is added to the previous results and so on for the whole Decomposition.

This means the fused multiply-add pipeline eventually becomes ine�cient as the

number of calculations necessary decreases by one every iteration.

The results of the fused multiply-add, Fij (3.13a), are passed to the divider and a FIFO

for two other calculations: the next row in the LDL Decomposition product L2 (3.11a)

and the next element in the LDL diagonal product Dj (3.13b). Crucially, these two

calculations occur in parallel with the calculation of Fij, resulting in minimal delay in

starting the calculation of the next row. The LDL diagonal product is calculated by

multiplying the result of the divider with Fij and accumulating it with the previous

elements in the row as per (3.13b). After the LDL diagonal product is calculated, it

and the LDL Decomposition product are used to recover the next row in the original

Cholesky Decomposition product L1 via (3.10). This is necessary because of the

subsequent matrix multiply-add between the augmented covariance square-root and

the sigma weighting coe�cient matrix (see (2.29)).

63

3.2 Serial design

3.2.2.2 Matrix multiply-add

The matrix multiply-add datapath is a standard `naive' element-wise multiplication

and accumulation; in the `naive' approach, for the expression:

Rm×p = Am×nBn×p +Cm×p (3.18)

the element-wise calculation is given by:

Rij =
n∑
k=1

AikBkj + Cij (3.19)

The elements of the matrix to be added, C, can simply be injected into the accu-

mulation directly, instead of performing an additional matrix addition after a matrix

multiplication. A diagram of the datapath can be seen in Figure 3.8. The inputs

are elements from the three matrices and the multiplexer handles the insertion of

elements of C into the accumulation.

Multiply

Accumulator

C

B

A

R

Figure 3.8: Matrix multiply-add operation for the Serial design

In order to calculate the whole matrix, a series of counter loops to fetch the appro-

priate elements in memory is used:

for i = 1 : m do

for j = 1 : p do

Rij = 0

for k = 1 : n do

Rij = Rij + AikBkj

64

3.2 Serial design

end for

Rij = Rij + Cij

end for

end for

Because the Serial design aims to minimise resource use, these loops are NOT unrolled

and so the datapath processes only one element of the result matrix, R, at a time. The

multiplication and accumulation dominate the calculation, so the time complexity of

this `naive' approach is O(mnp) operations. In order to maximise re-usability, a

number of small tweaks to the datapath are made to handle other operations. The

full list of supported operations is:

r = Ab+ c (3.20a)

r = AB+C (3.20b)

R = c−Ab (3.20c)

R = C−AB (3.20d)

whereR, A, B, C are matrices and r, b, c are vectors. Multiplying and accumulating

a matrix with vectors is really just the special case where p = 1. Subtracting the

matrix multiplication result from the third matrix, C, instead of accumulating it,

simply involves negating the sign bit of the element-wise calculation, Rij, using an

xor operation.

3.2.2.3 Calculated mean/covariance

Calculating the mean and covariance of the transformed sigma points are both very

similar, meaning both can be calculated by the same datapath. Consider the calcu-

lation for the mean of the predict step transformed sigma points:

65

3.2 Serial design

x̂−k =
N∑
i=1

WiX x
i (3.21)

This is a simple column-wise multiply-accumulation. Consider the calculation of the

covariance:

P−k =
N∑
i=1

Wi

[
X x

i − x̂−
] [
X x

i − x̂−
]T

(3.22)

The subtraction looks like it will cause ine�ciencies in the datapath, similar to the

division operation in the original Cholesky Decomposition. However, let X̃ i = X x
i −

x̂− be the i -th column of X̃ , then the covariance calculation reduces to:

P−k =
N∑
i=1

WiX̃ iX̃
T

i (3.23)

This `sigma point residuals' matrix X̃ is of sizeMstate×N whereMstate is the number

of state variables and N is the number of sigma points as before. The element-wise

calculation is then:

P−ij =
N∑
k=1

W1X̃ikX̃jk (3.24)

This expression involves two multiplications followed by an accumulation; if these

`sigma point residuals' are calculated �rst with a subtract operation, then both

the mean and covariance calculations simply involve a series of multiplications and

accumulation. A diagram of this datapath for the Serial design can be seen in Figure

3.9.

The input to the datapath is either the transformed sigma points to calculate the

mean, or the residuals to calculate the covariance. The FIFO is used to skip the

�rst multiplication when calculating the mean; the multiplexer selects which value is

calculated. To calculate the whole covariance matrix, the memory fetches are:

for i = 1 :Mstate do

66

3.2 Serial design

Multiply

Multiply Accumulator

W

FIFO

Figure 3.9: Calculate mean/covariance operation for the Serial design. W refers to
the sigma points weights W0,W1 which are parameters (see Section 3.1.1).

for j = 1 :Mstate do

P−ij = 0

for k = 1 : N do

P−ij = P−ij +W1X̃ikX̃jk
end for

end for

end for

with a time complexity of O(M2
stateN). This module is also used to calculate the

observation mean (2.20) and covariance (2.21) as well as the cross covariance (2.22)

which are necessary in the update step. For the observation `sigma point residuals',

let Z̃ i = Z i− ẑ be the i -th column of the Z̃ which is of size Mobs×N where Mobs is

the number of observation variables. The observation covariance calculation proceeds

in the same manner as the state covariance but with complexity O(M2
obsN) while the

cross covariance has complexity O(MstateMobsN).

3.2.3 Update step

The update step corrects the a priori state estimate with a set of observations to

generate the new state estimate. Many of the calculations in the update step are

very similar to the predict step; a block diagram of the update step architecture

showing the data �ow between hardware modules can be seen in Figure 3.10. The

individual modules are reused from the predict step and the datapaths operate as

67

3.2 Serial design

described in the previous sections (Sections 3.2.2.1, 3.2.2.2 and 3.2.2.3).

Memory
Buffer

Calculate
Mean Subtract Calculate

Covariance

Calculate
Covariance

trisolve

Augmented
Covariance

Matrix
Multiply-Add

Augmented
State

Matrix
Multiply-AddSubtract

From predict subtract

Figure 3.10: Block diagram of the update step for the Serial design

The update step starts with the copying of the current sensor observations, z̃ (2.24),

from the memory bu�er into a local memory block; the IP core then requests the

update transformed sigma points from the processor. Once the processor has placed

the transformed sigma points in the memory bu�er, the IP core is signalled to proceed

and the transformed sigma points are used to calculate the observation mean (2.20).

Similar to the predict step, the observation mean is used to calculate the update

`sigma point residuals' (subtract) before the covariances are calculated. The obser-

vation covariance (2.21) is calculated with the update `sigma point residuals' and the

cross covariance (2.22) is calculated with both the predict and update `sigma points

residuals'. The observation residual, z̃ − ẑ (2.24), is calculated with a subtract

operation. Then the Kalman gain (2.23) is calculated by the matrix `right divide'

(trisolve). Finally, the new state estimate and covariance are calculated with the

matrix multiply-add module as per (2.24) and (2.25b).

After the current state estimate and covariance are calculated, they are, like the

predict step, written back to the processor memory bu�er as well as, respectively,

the augmented state and covariance local memory blocks. In this way, the predict

and update steps can be performed asynchronously depending on the available sensor

data and the processor is always up-to-date with the latest state estimate.

68

3.3 Parallel design

The process described in this section is summarised by a state diagram of the update

step which can be seen in Figure 3.11. This state machine executes entirely within

the update state in Figure 3.4. As with the predict step, the wait state is for when

the processor is propagating the sigma points through the update model.

IDLE Copy
Obs. Wait Calculate

Mean
Calculate
Residuals

Calculate
Cov.

Calculate
Cov.

Obs.
Res.

trisolve

Matrix
Multiply-
Add

Matrix
Multiply-
Add

RDY

Request
update
model

update
model
complete

RDY

RDYRDYRDY

RDY

RDY

Start
update

update
complete

Figure 3.11: State diagram of the update step for the Serial design

3.3 Parallel design

In this section, the Parallel variant of the HW/SW UKF is introduced; the work in

this section was �rst presented in Soh and Wu (2017b). The division of the UKF algo-

rithm, which is slightly di�erent to the Serial design, is outlined. The Parallel design

also tweaks, rather than redesigns, aspects of the three major datapaths, secondary

arithmetic, memory blocks and the control scheme that compose the IP core.

The Parallel design reintroduces the main bene�t of hardware implementations: wide

parallelism. This design strategy will use much more resources than the Serial design,

but also increases performance. The design does so by encapsulating certain parts of

69

3.3 Parallel design

the major datapaths into a sub-module called a processing element (PE), then uses

multiple instances of these PEs in parallel, allowing multiple elements of an algorithm

to be calculated at once. The increase in resources used is not only for the extra pro-

cessing elements, but also in the additional overhead needed to deal with the parallel

memory structure that is also necessary to feed to the parallel processing elements.

This overhead also means that the special case where the number of processing ele-

ments is 1, does not quite reduce to the Serial design; if a system designer wanted

absolutely minimum resources used, it would still be better to use the Serial design.

Nonetheless, the number of PEs used in the design is parameterisable, allowing for

some trade-o�s by the system designer between resources used and performance.

The Parallel design logically separates the UKF into three parts instead of the two

that the Serial design uses. This is because, with the added parameter controlling the

number of processing elements, slightly �ner grained modules may become desirable

to a designer. As with the Serial design, though the algorithm is logically divided into

parts, the hardware implementation attempts to reuse as much of the resources as

possible and so, at the HDL level, only separates the low-level functions into modules.

The Parallel design contains the following modules and memories which are controlled

via a large state machine:

• Modules

� Memory prefetch

� Triangular linear equations solver

� Matrix multiply-add

� Calculate mean/covariance

� Calculate sigma point residuals (Subtract)

� Memory serialiser

• Memory

� Augmented state vector (Serial)

70

3.3 Parallel design

� Augmented covariance (Serial)

� Sigma weighting matrix (Serial)

� Cholesky decomposition (Parallel)

� State/Observation sigma point residuals (Parallel)

� State/Observation sigma point residuals (Serial)

� State mean/covariance (Parallel)

� Observation mean (Serial)

� Observation mean (Parallel)

� Observation residual (Serial)

� Observation covariance (Serial)

� Cross covariance (Serial)

� Cross covariance (Parallel)

� Kalman gain (Parallel)

� Kalman gain transposed (Serial)

Since there are additional processing elements per module now, the �oating-point

arithmetic modules can no longer be shared between functions as in the Serial design.

Each of the modules instantiates their own �oating-point arithmetic modules which

means that, again, even in the special case where there is only one processing element,

the Parallel design still uses more resources than the Serial design. Regardless of the

number of processing elements, the �oating-point arithmetic modules are still deeply

pipelined with latencies described by Table 3.2 as in the Serial design.

There is now also some di�erences in the structure of the memory blocks in the Parallel

design. A diagram of the di�erent memory schemes can be seen in Figure 3.12. `Serial'

memory uses a single memory block; the `Serial' designator here is in reference to the

fact that only a single value of the stored matrix/vector can be accessed at one time.

The memory instantiated in the Serial design is only structured in this way. The

`Parallel' memories use multiple memory blocks in parallel, controlled by the number

71

3.3 Parallel design

a
11

a
12

a
13

…
a

21
a

22
a

23
…

a31
a32

a33
...

a
41

 a
42

 a
43

 …
a

51
 a

52
 a

53
 ...

(a) Serial

a
11

a
12

a
13

... a
41

 a
42

 a
43

 ...

a
21

a
22

a
23

... a
51

 a
52

 a
53

 ...

a31
a32

a33
...

(b) Parallel

Figure 3.12: Memory structures in the Parallel design

of PEs parameter. The matrix/vector is spread out over these memory blocks such

that multiple values of the matrix/vector may be accessed at once.

It is necessary in many cases to be able to convert between the two memory schemes

so two new modules are introduced: a memory `prefetch', which fetches data from

a serial memory block and places it into parallel memory blocks, and a memory

`serialiser', which collects data from calculations in a parallel scheme and outputs it

in a sequential fashion for storage in a serial memory block. The main need for this

is the interaction between the memory bu�er and the IP core. The memory bu�er

is necessarily a serial memory block as the processor handles memory access in a

sequential manner but multiple values need to be fed to the additional processing

elements in each module for them in order for them to be useful.

Processor UKFBuffer

Interrupt Bus
IP Core

Figure 3.13: Top-level block diagram of the Parallel design

The top-level block diagram of the Parallel design can be seen in Figure 3.13. The

72

3.3 Parallel design

top-level design is very similar to the Serial design but here, the control scheme

has changed: instead of having digital control lines, the control register has been

incorporated into the memory map of the memory bu�er; a single interrupt line

remains. Instead of a simple FIFO, the memory bu�er for the Parallel design has a

proper internal memory map to ensure the control information and data is coherent

between the processor and the IP core; the full memory map can be seen in Figure

3.14. Similar to the control lines in the Serial design, the control register allows the

processor to reset or enable the IP core as a whole as well as start one of the core's

functional steps via a state machine. The control register also records the current

state of the IP core. Data required by the IP core (e.g. transformed sigma points)

must be placed in the memory bu�er at the appropriate address by the processor

before signalling the IP core to begin its calculations.

Control Register

predict/update State Estimate

predict/update Covariance

Sigma Points

Augmented State

Augmented Covariance

Transformed Sigma Points

Observations

0

1

M + 1

M(M+1) + 1

M(M+N+1) + 1

Out In

Figure 3.14: Memory map for the Parallel design. The exact addresses (left) are
dependant on the selection of certain parameters (see Section 3.1.1). As in Section
2.5.2, M is the length of the augmented state vector and N is the number of sigma
points. In/Out is with respect to the IP core; so In: PS → IP core and Out: PS ←
IP core

The control register may be polled by the processor to control the IP core; alterna-

tively, the core may also be con�gured with an optional interrupt line that may be

73

3.3 Parallel design

attached to the processor's interrupt controller or external interrupt lines. Values in

the control register can be seen in Table 3.4.

No. I/O Function
0 O NC
1 O Idle
2 O Interrupt �ag
3 O UKF initialised
4 O sig_gen step complete
5 O predict step complete
6 O update step complete
7 O NC
8 I Reset
9 I Enable
10 I Interrupt clear
11 I Initialise UKF
12 I Start sig_gen step
13 I Start predict step
14 I Start update step
15 I NC

Table 3.4: Control register for the Parallel design. I/O is with respect to the IP core;
so I: PS → IP core and O: PS ← IP core. NC = Not connected.

3.3.1 State machine

The IP core is controlled by a state machine which has �ve states: idle, init,

sig_gen, predict and update; see Figure 3.15. The IP core waits in the idle state

for instructions from the processor before beginning one of the UKF steps. The

processor sets the relevant bit in the control register to transition to a new state and

once the UKF step is done, the relevant bit in the control register is set before the

IP core transitions back to idle.

During the init state, the processor initialises the internal memory of the IP core

with initial values for the augmented state and covariance; this is the same process

as in the Serial design. The sig_gen state handles the calculation of the latest set of

sigma points. After the new sigma points have been propagated through the predict

74

3.3 Parallel design

Figure 3.15: Top-level state diagram for the Parallel design

model, the predict state uses the transformed sigma points to calculate the a priori

state and covariance. Similarly, the update state uses the update transformed sigma

points to calculate the current state and covariance.

The init state may be performed in conjunction with the sig_gen step to either

initialise new, or reset old, state estimates. Otherwise the sig_gen step utilises

previously calculated values for the augmented state and covariance (which are stored

in the internal memory). Similarly, the predict and update steps may be performed

together if valid observations are available, or independently as required.

3.3.2 Sigma points generation

The functionality of the sig_gen is the same as the �rst half of the predict step from

the Serial design (i.e. before the processor is signalled to propagate the sigma points):

taking the matrix `square-root' of the augmented covariance, then multiplying the

result by a weighting matrix, before adding the augmented state column-wise. After

the sigma points are calculated they are written to the memory bu�er, a control bit

75

3.3 Parallel design

is set to signify completion to the processor and, if the interrupt line is included, an

interrupt generated. A block diagram of this step can be seen in Figure 3.16 showing

the data �ow between modules.

Memory
Buffer

Augmented
Covariance

Augmented
State

trisolve Matrix
Multiply-Add

Memory
Serialiser

Prefetch

Figure 3.16: Block diagram of the sig_gen step for the Parallel design

The main di�erence from the Serial design (cf. Figure 3.5) is the need to introduce a

memory prefetch as well as a memory serialiser module which adds a small amount

of overhead to the sig_gen step; these two modules are necessary due to the ma-

trix multiply-add now featuring a parallelised datapath. The trisolve and matrix

multiply-add modules are functionally the same as the Serial design but have small

tweaks, described in the next two sections, to implement the parallelisation.

A state diagram summarising the process for the sig_gen step can be seen in Figure

3.17; like in the Serial design, the state machine is necessary so that the hardware

for the trisolve and matrix multiply-add module can be reused later. This state

machine executes entirely within the sig_gen state in Figure 3.15.

3.3.2.1 Triangular linear equations solver

The triangular linear equations solver for the Parallel design is functionally the same

as the trisolve module in the Serial design, implementing the alternate LDL De-

composition. However, for the Parallel design, the fused multiply-add module and

feedback FIFO has been encapsulated to form a processing element which can be

instantiated multiple times in parallel; the trisolve datapath for the Parallel design

can be seen in Figure 3.18. The PEs now output to a demultiplexer which ensures

76

3.3 Parallel design

IDLE

trisolve

Matrix
Multiply-
Add

Start
sig_gen

RDY

sig_gen
complete

Figure 3.17: State diagram of the sig_gen step for the Parallel design

values are passed to the subsequent calculations in the correct order. The three latter

calculations, the LDL Decomposition product (3.11a), the diagonal product (3.13b)

and the original Decomposition product (3.7a), are not parallelised because these cal-

culations require much fewer operations and so parallelisation is not necessary; the

second `half' of the datapath dealing with these three calculations operates in exactly

the same way as the Serial design.

L
2

L
1

D
b

Fused
Multiply-Add

FIFO

Divider

MultiplyFIFO Accumulator

Square
Root

MultiplyFIFOPE

PE

/

PE
.
.
.

/

L
2

Figure 3.18: Triangular linear equations solver for the Parallel design

Recalling the expanded triangular system given by (3.17), the additional processing

elements in this design calculate elements of the current column in parallel. For

example, in the 2 PE case, F21y1 and F31y1 are calculated in parallel. As noted

in the Serial design, the processing element pipeline quickly becomes ine�cient as

one less calculation is necessary each iteration; this problem is exacerbated in the

77

3.3 Parallel design

Parallel design as more elements are calculated per iteration. Also noted in the Serial

design is that the calculation of any given row of the Cholesky Decomposition requires

the values of the all rows before it. Due to this data dependency, row calculations

cannot be calculated independently and thus the Cholesky Decomposition cannot be

parallelised e�ectively. However, this is not an issue with forward elimination or back

substitution when solving a linear triangular system. Solving the system given by

(3.16) results in a vector so, if the dividend of the matrix `right' divide is also a matrix

(of sizem×n, e.g. see (2.23)), thenm forward eliminations and back substitutions are

required. Crucially these operations are independent, so the trisolve datapath can

be properly pipelined and the back substitution and forward elimination e�ectively

parallelised. The issue with the Cholesky Decomposition is su�cient that additional

processing elements in this datapath may not be as useful as expected; despite the

reshu�e of operations and multiple PEs, the trisolve module still has the potential

to limit performance of the IP core.

3.3.2.2 Matrix multiply-add

The matrix multiply-add module only has a minor tweak compared to the Serial

design: the entire datapath from the Serial design (cf. Figure 3.8) has been enclosed

as one processing element and additional PEs are added to handle calculations in

parallel; the matrix multiply-add datapath for the Parallel design can be seen in

Figure 3.19. Each PE is responsible for calculating at least one row of the result

matrix.

The following loops account for the whole matrix:

for i = 1 : NPE : m do

for j = 1 : p do

Rij = 0

. . .

Rxj = 0

for k = 1 : n do

Rij = Rij + AikBkj

78

3.3 Parallel design

C
B
A

RFused
Multiply-Add Accumulator

0 PE

PE/

PE/

.

.

.

Figure 3.19: Matrix multiply-add operation for the Parallel design

. . .

Rxj = Rxj + AxkBkj

end for

Rij = Rij + Cij

. . .

Rxj = Rxj + Cxj

end for

end for

where NPE is the number of processing elements and x = i + NPE − 1. This par-

allelisation reduces the complexity of the module to O(mnp/NPE) and, in the case

where NPE ≥ m, the complexity is reduced to just O(np). The supported operations

by this module are the same as in the Serial design.

3.3.3 Predict step

The predict step for the Parallel design encompasses the second half of the predict

step from the Serial design (i.e. after the new sigma points have been propagated

through the predict model); the architecture for the predict step can be seen in

79

3.3 Parallel design

Figure 3.20 showing how data �ows between each module.

Memory
Buffer Prefetch Calculate

Mean Subtract Calculate
Covariance

Augmented
Covariance

Augmented
State

Memory
Serialiser

Memory
Serialiser

Figure 3.20: Block diagram of the predict step for the Parallel design

The processor may initiate a predict step once it has placed valid transformed sigma

points into the memory bu�er. The prefetch module fetches the transformed sigma

points from the memory bu�er and places them into a parallel memory structure.

As with the Serial design, the mean of the transformed sigma points is written back

to both the augmented state vector memory and the memory bu�er as the a priori

state estimate. The sigma point residuals are once again calculated �rst before the

covariance calculation. The new covariance is written back to the augmented covari-

ance memory and the memory bu�er as the a priori covariance. Memory serialisers

are necessary after the mean and covariance calculation as the memory bu�er is a

serial memory (see Figure 3.12). As with the sig_gen step, once the predict step

is completed a control bit is set to notify the processor and, if included, an interrupt

generated.

A state diagram of the Parallel predict step can be seen in Figure 3.21. This state

machine includes an additional state for the prefetch operation and occurs within the

predict state in Figure 3.15.

3.3.3.1 Calculation of mean/covariance

Similar to the matrix multiply-add operation, the module for calculating the mean

and covariance in the Parallel design merely encapsulates the datapath from the Serial

design (cf. Figure 3.9) into one processing element then adds additional PEs to the

80

3.3 Parallel design

IDLE

Calculate
Mean

Calculate
Residuals

Calculate
Cov.

Start
predict

RDY

RDY

predict
complete

Prefetch
RDY

Figure 3.21: State diagram of the predict step for the Parallel design

datapath in order to calculate additional rows in parallel; the datapath for the Parallel

design can be seen in Figure 3.22.

Multiply

Multiply Accumulator

W
FIFO

PE

PE/

PE/

.

.

.

Figure 3.22: Calculate mean/covariance operation for the Parallel design. W refers
the sigma points weights W0,W1 which are parameters (see Section 3.1.1).

The memory fetch loop for the state covariance is:

for i = 1 : NPE :Mstate do

for j = 1 :Mstate do

P−ij = 0

81

3.3 Parallel design

. . .

P−xj = 0

for k = 1 : N do

P−ij = P−ij +W1X̃ikX̃jk
. . .

P−xj = P−xj +W1X̃xkX̃jk
end for

end for

end for

where x = i + NPE − 1. The time complexity of this operation is O(M2
stateN/NPE)

which further reduces to O(MstateN) if NPE ≥ Mstate. A similar process occurs for

the observation covariance and cross covariance.

3.3.4 Update step

The update step for the Parallel design is very similar to the update step in the

Serial design (cf. Figure 3.10) but has some small tweaks to accommodate the parallel

memory structures; the architecture for the update step can be seen in Figure 3.23

showing the data �ow between modules.

Memory
Buffer

Calculate
Mean Subtract Calculate

Covariance

Calculate
Covariance

trisolve

Augmented
Covariance

Matrix
Multiply-Add

Augmented
State

Matrix
Multiply-AddSubtract

From predict subtract

Prefetch Memory
Serialiser

Memory
Serialiser

Figure 3.23: Block diagram of the update step for the Parallel design

As with the predict step, the processor must �rst place the valid transformed sigma

82

3.3 Parallel design

points into the memory bu�er before signalling the IP core to begin. First, the

prefetch module converts the transformed sigma points into a parallel memory struc-

ture. The mean and `sigma point residuals' are calculated, then used to calculate the

observation covariance. The update `sigma point residuals' are also combined with

the predict `sigma point residuals', which were calculated during the predict step,

to calculate the cross covariance between the two system models. The observation

residual, z̃− ẑ (2.24), is calculated with the current set of observations in the memory

bu�er. The observation and cross covariance are used to calculate the Kalman gain

before the matrix multiply-add modules use the Kalman gain and the a priori state

estimate and covariance to calculate the new state estimate and covariance. The new

estimates overwrite the a priori estimates in the internal memory and are also writ-

ten into the memory bu�er such that both the core and the processor have the most

recent estimate. The core noti�es the processor upon completion, setting a control

bit and/or generating an interrupt.

A state diagram of the update step illustrating the described process for the Parallel

design can be seen in Figure 3.24. This state machine occurs within the update state

in Figure 3.15. The state machine for the Parallel update step is very similar to the

Serial design (cf. Figure 3.11) but with an additional state to handle the prefetch

module and instead of a wait state, the IP core assumes the processor has already

handled the transformation of the sigma points.

IDLE Calculate
Mean

Calculate
Residuals

Calculate
Cov.

RDY

RDY

Prefetch
RDY

Calculate
Cov.

Obs.
Res.

trisolve
Matrix
Multiply-
Add

Matrix
Multiply-
Add

RDYRDYRDY

update
complete

Start
update RDY RDY

Figure 3.24: State diagram of the update step for the Parallel design

83

3.4 Pipeline design

3.4 Pipeline design

In this section, the Pipeline variant of the HW/SW codesign is introduced; this section

is based on work �rst presented in Soh and Wu (2017a). The three major datapaths

remain the same as in the Parallel design; however, changes to the division of the

UKF algorithm and hardware implementation, in order to accommodate calculation

of multiple UKF instances simultaneously, are described.

The Pipeline design reinforces the main bene�t of hardware implementations � wide

parallelism � with a `high-level' pipeline to increase performance even further. This

design strategy uses the most resources but also has the highest performance in terms

of algorithm throughput, though not necessarily in terms of algorithm latency.

The Pipeline design makes use of the parallelised datapaths as described in the Parallel

design and retains the same logical separation of the UKF with three major steps:

sig_gen, predict, update. However, unlike the previous two designs, the Pipeline

design also sections the UKF hardware into multiple parts at an HDL level, meaning

no hardware is reused between sections. This allows each section to run independently

and in parallel, a necessity for a hardware pipeline. The top-level block diagram of

the Pipeline design can be seen in Figure 3.25. The IP core features a memory bu�er

and three sub-modules, one for each of the major steps.

Processor

sig_gen

Buffer

Interrupt

Bus
IP Core

predict

update

Figure 3.25: Top-level block diagram of the Pipeline design

In order to accommodate sections of the UKF running independently, the memory

84

3.4 Pipeline design

bu�er is itself sectioned into three parts as well; the memory map for the Pipeline

design can be seen in Figure 3.26. The IP core modules assume that valid data is in

the correct section of the memory bu�er once any of the steps has been signalled to

start; the processor must place the required data (e.g. transformed sigma points) in

the appropriate section beforehand.

Control Register

0

1

Out In

sig_gen Buffer

predict Buffer

update Buffer

P + 1

2P + 1

Figure 3.26: Memory map for the Pipeline design. The exact addresses (left) are
dependant on the parameter P , which controls the depth of the memory bu�er (see
Section 3.1.1). In/Out is with respect to the IP core; so In: PS → IP core and Out:
PS ← IP core.

The control scheme is similar to the Parallel design, where a control register at the

top of the memory bu�er. The control register allows the processor to reset or enable

the IP core as well as to start or stop any of the three core modules as desired; the

control register also records the current state of the three modules as well as the

IP core as a whole. The control register may be polled by the processor to control

the IP core or use an optional interrupt line that may be attached as one of the the

processor's external interrupt sources. The IP core generates an interrupt to signify

the completion of calculations from any of the three modules as well as readiness to

accept new data. The control register can be seen in Table 3.5.

With the three sub-modules able to operate independently, the IP core may be used

85

3.4 Pipeline design

No. I/O Function
0 O NC
1 O Idle
2 O Interrupt �ag
3 O sig_gen_a step complete
4 O sig_gen_b step complete
5 O predict step complete
6 O update step complete
7 O NC
8 I Reset
9 I Enable
10 I Interrupt clear
11 I NC
12 I Start sig_gen step
13 I Start predict step
14 I Start update step
15 I NC

Table 3.5: Control register for the Pipeline design. I/O is with respect to the IP core;
so I: PS → IP core and O: PS ← IP core. NC = Not connected.

as a pipeline where the sig_gen module is able to accept new data while the predict

step is still calculating the previous estimate; the pipeline stages can be seen in Figure

3.27. The sig_gen step contains two large matrix operations � trisolve and the

matrix multiply-add � which can lead to long calculation times for large matrices;

because of this, the sig_gen step is broken up into two stages � the �rst two stages �

for the pipeline. The third stage is the software `stage' where the processor propagates

the sigma points through the system models. The �nal two stages are simply for the

predict and update steps. The selection of these �ve stages was due to the logical

separation of the UKF allowing for easy control of the IP core by the processor; ease

of control was prioritised over hardware e�ciency so the performance of the pipeline

may not necessarily be as high as it could be.

Each of the three sub-modules are parameterisable to use multiple PEs, within their

respective datapaths, at the designer's discretion. Since no hardware is reused, there

is no longer a need for a state machine to control access/data �ow for individual

modules. The organisation of memory blocks in the Pipeline design is the same as

86

3.4 Pipeline design

Data Flow

Stage 1

IP Core

sig_gen (a)

Stage 2

IP Core

sig_gen (b)

Stage 3

Processor

System

Models

Stage 4

IP Core

predict

Stage 5

IP Core

update

Figure 3.27: Stages of the �ve-stage UKF pipeline

in the Parallel design with `serial' and `parallel' memory blocks (see Figure 3.12);

additionally, some memory blocks are FIFOs which are explained further in the next

three sections. The full list of instantiated modules and memories used by the Pipeline

design are:

• Modules

� Sigma points generation

∗ Memory prefetch

∗ Triangular linear equations solver

∗ Matrix multiply-add

∗ Memory serialiser

� Predict

∗ Memory prefetch

∗ Calculate mean/covariance ×2

∗ Calculate sigma point residuals (Subtract)

∗ Memory serialiser

� Update

∗ Memory prefetch ×2

∗ Calculate mean/covariance ×3

∗ Calculate sigma point residuals (Subtract)

87

3.4 Pipeline design

∗ Triangular linear equations solver

∗ Matrix multiply-add ×2

∗ Memory serialiser ×3

• Memory

� Sigma weighting matrix (Serial)

� State sigma points residuals (FIFO)

� predict state estimate/covariance (FIFO)

� Sigma points generation

∗ Cholesky decomposition (Parallel)

� Predict

∗ State mean (Parallel)

∗ State sigma point residuals (Parallel)

� Update

∗ State sigma points residuals (FIFO)

∗ predict state estimate/covariance (FIFO)

∗ Observation mean (Parallel)

∗ Observation sigma points residuals (Parallel)

∗ Observation covariance (Serial)

∗ Cross covariance (Parallel)

∗ Observation residual (Serial)

∗ Kalman gain (Serial)

3.4.1 Sigma points generation

A block diagram of this module showing the �ow of data can be seen in Figure 3.28.

The sig_gen module for the Pipeline design is very similar to the Parallel design

(cf. Figure 3.16) except that there are no longer local/internal memory blocks for

88

3.4 Pipeline design

the augmented state and covariance, and the module operates in two stages for the

pipeline (see Figure 3.27).

trisolve Matrix
Multiply-Add

Memory
Serialiser

Memory
Buffer

Prefetch

Figure 3.28: Block diagram of the sig_gen step for the Pipeline design

To start the sig_gen module, the processor must �rst place the current augmented

state and covariance estimate into the memory bu�er. The �rst stage (sig_gen (a))

contains the matrix `square-root' and a prefetch module to hold the augmented state

vector. The second stage (sig_gen (b)) contains just the matrix multiply-add. The

sig_gen module is able to accept new data (i.e. the augmented state and covariance

of another UKF instance) once the �rst stage (sig_gen (a), i.e. the trisolvemodule)

has completed. The control register contains control bits to start the sig_gen module

as well as bits to signify the completion of either pipeline stage; an interrupt is also

generated when either stage has completed. The datapath for the triangular linear

equations solver (trisolve) and the matrix multiply-add modules are the same as

described in the Parallel design (Sections 3.3.2.1 and 3.3.2.2 respectively).

3.4.2 Predict step

The architecture for the predict step can be seen in Figure 3.29 showing the data

�ow between modules. The functionality of the predict step in the Pipeline design is

also very similar to the Parallel design (cf. Figure 3.20) except that the a priori state

estimate and covariance are output to a FIFO (in addition to the memory bu�er).

This is because these values are necessary during calculations in the update step and

89

3.4 Pipeline design

there are no longer any local memory blocks for the augmented state and covariance;

once the values are output into the FIFO, the predict module can continue with

the next UKF instance without losing any data. Similarly, the predict `sigma point

residuals' are necessary for calculation of the cross covariance (see (2.22)) and are

output to a FIFO as well.

Memory
Buffer

Prefetch Calculate
Mean Subtract Calculate

Covariance

Memory
Serialiser

Memory
Serialiser

FIFO
To update

Figure 3.29: Block diagram of the predict step for the Pipeline design

The processor may initiate a predict step once it has placed a valid set of transformed

sigma points into the memory bu�er. The processor must propagate the sigma points,

generated from the sig_gen module, through both the predict model as well as

the update model as both the predict and update steps are calculated together in

succession (they are the two �nal stages of the pipeline). As with the sig_gen step,

the control register contains control bits the processor may use to start the predict

step and record its completion; an interrupt is generated on completion as well. The

datapath for the calculation of the mean/covariance is also the same as in the Parallel

design (see Section 3.3.3.1).

3.4.3 Update step

The architecture for the update step in the Pipeline design, showing the data �ow be-

tween modules, can be seen in Figure 3.30. The update module is functionally similar

to the Parallel design (cf. Figure 3.23) but has some key practical di�erences since

none of the hardware is reused; there is also the additional FIFO with intermediate

values from the predict step.

90

3.5 Summary

Memory
Buffer

Calculate
Mean Subtract Calculate

Covariance

Calculate
Covariance

trisolve Matrix
Multiply-Add

Matrix
Multiply-Add

Subtract

Prefetch Memory
Serialiser

Memory
Serialiser

FIFO
From predict

Figure 3.30: Block diagram of the update step for the Pipeline design

The update step proceeds immediately after the predict step (as the �fth and �nal

stage of the pipeline). As with the Parallel design, a prefetch stage converts the

transformed sigma points into a parallel memory structure then calculates the mean

and `sigma point residuals'. However, in the Pipeline design, the two covariance

calculations occur in parallel (the calculation covariance module is instantiated twice).

These two covariances are used to calculate the Kalman gain which is then used, along

with the a priori state estimate and covariance, to calculate the new state estimate and

covariance; for this calculation as well, the matrix multiply-add module is instantiated

twice and the two matrix multiply-add calculations occur in parallel. Finally, the new

state estimate is written to the memory bu�er for the processor to collect. The control

register contains a control bit signifying completion of the update step only and, as

usual, an interrupt is generated on completion.

3.5 Summary

In this chapter, the FPGA-based HW/SW codesign of the UKF was presented. The

partitioning strategy for the UKF was introduced, splitting the UKF into application-

speci�c and non-application-speci�c parts; the method of implementing these two

parts on the FPGA was also described. Implementing the application-speci�c parts in

software that runs on a processor allows the design to retain �exibility and portability,

while implementing the rest of the algorithm in hardware as an IP core allows for

91

3.5 Summary

the acceleration of large and cumbersome matrix operations, increasing performance.

A parameterisation scheme for the codesign is outlined which allows the IP core to

handle di�erent applications with di�erent vector/matrix sizes. These parameters are

collected into a parameter �le which is used to generate header �les that are included

into the hardware and software source �les so that both parts know how to interpret

the data passed between them.

To maximise the �exibility of the codesign, three variants were presented. The Serial

design aims to use the least amount of hardware resources possible and so does not

make use of parallelism in its main datapaths. This is so that the Serial design can

be easily integrated into larger SoC or fault-tolerant systems but also means that

the performance boost may be modest. The Parallel design does use parallelism in

the main datapaths which increases performance but will also increase the amount

of resources used. With the additional resource usage, the Parallel design may only

be feasible as a coprocessor unless high-end FPGAs are used. The Pipeline design

features parallelism not only in the main datapaths but also at the top-level, allowing

multiple instances of the UKF to be calculated at once. The Pipeline design has the

highest performance but will also use the most amount of resources and so is intended

for use as a coprocessor only.

The approach presented means that the codesign is highly �exible and can be easily

ported to any application. Once a system designer has formulated the UKF for an

application, the application-speci�c parts are developed in software, the parameter

�le is updated and the IP core synthesised for the new set of parameters. From the

Serial to Parallel to Pipeline design, the designer can scale the performance of the

codesign depending on the level of hardware resources available; the designer can

�ne-tune the balance between resources and performance further in the Parallel and

Pipeline designs by altering the number of processing elements. Thus, the proposed

HW/SW codesign is both a scalable and portable implementation of the UKF and

suitable for use in a generic state estimation library.

92

Chapter 4

Testing and Validation of the

Hardware/Software Codesign

To validate the implementation of the hardware/software UKF and demonstrate its

e�ectiveness, two example applications involving nanosatellites and micro-UAVs are

presented in this chapter. The nanosatellite application emulates the attitude deter-

mination subsystem of a nanosatellite in two related situations: a single uncontrolled

nanosatellite and a small constellation of uncontrolled nanosatellites. For the micro-

UAV application, the state estimation part of a visual Simultaneous Localisation And

Mapping (SLAM) system is considered.

It is envisioned that a system designer looking to use the HW/SW UKF in a new

application simply formulates the UKF appropriately for that application, i.e. formu-

lates the system models (2.1), and sets the algorithm parameters (see Section 3.1.1).

Then, once the UKF algorithm has been de�ned, the HW/SW codesign detailed in

Chapter 3 can then be used to actually implement the UKF and accelerate its perfor-

mance. The example applications in the next two sections attempts to employ this

process.

93

4.1 Nanosatellites

4.1 Nanosatellites

In order for nanosatellites to gain wider use for more speci�c scienti�c objectives, such

as remote sensing, they also have to operate in a capacity where they can be consid-

ered bene�cial over a single, larger satellite. One such proposal to this end is to have

multiple satellites �y in formation with a homogeneous sensor set on-board; however,

this approach still requires much higher accuracy pointing capabilities. Furthermore,

each satellite's attitude determination and control system (ADCS) will likely need to

be working at high sampling frequencies in order to maintain the satellites' forma-

tion for this type of multi-nodal sensing. This results in an increased computational

load which is problematic for nanosatellites. Translating the necessary functionality

into hardware and implementing it onto an FPGA is one approach to alleviate such

problems.

FPGAs are becoming increasingly popular in space applications as mentioned in Sec-

tion 2.3.1 and an FPGA allows multiple subsystem functions to be implemented as

a SoC, which frees up valuable real estate within the satellite normally required by

multiple processors. For this kind of nanosatellite application, it is envisioned that the

Serial design could handle attitude determination and control for that nanosatellite as

part of a greater SoC that handles all of the necessary computation for the nanosatel-

lite. The Parallel and Pipeline design could be used in larger nano/microsatellites

where greater performance may be required.

This section describes two related nanosatellite applications. The �rst involves the

attitude determination subsystem of a single uncontrolled nanosatellite and is based

on simulation results �rst presented in Soh and Wu (2014). The second simulates a

small constellation of �ve uncontrolled nanosatellites, one of which is considered the

`lead' nanosatellite which uses the UKF to calculate the attitude of all �ve nanosatel-

lites in the constellation; this second application is based on results �rst presented in

Soh and Wu (2017a).

The UKF was implemented using a number of methods for validation and comparison

purposes. Once formulated, the UKF was �rst implemented in Matlab (SW) to

94

4.1 Nanosatellites

validate the design of the UKF algorithm. Next, the UKF was implemented again

using the HW/SW codesign on an FPGA development board in order to validate the

codesign. Finally, the UKF was implemented a third time in C (SW), but on the

same FPGA development board, to provide a performance benchmark the HW/SW

codesign could be compared to. The three di�erent implementations of the UKF used

for this example application are summarised in Table 4.1

Implementation Platform Purpose
Matlab (SW) PC Validation of UKF algorithm
Codesign (HW/SW) Dev. board Validation of codesign
C (SW) Dev. board UKF implementation performance comparison

Table 4.1: Summary of the di�erent UKF implementations for the nanosatellite ex-
ample application

The FPGA development board used was the Zedboard (AVNet, 2014), featuring a

Xilinx Zynq-7000 series XC7Z020 (Xilinx, 2016), seen in Figure 4.1. The relevant

features of the board are:

• Dual ARM Cortex-A9 processor system (PS) @ 667 MHz

• The equivalent of an Artix-7 device in programmable logic (PL)

• AXI4 PS-PL interface

All three variants of the HW/SW codesign were implemented. The hardware part

of the codesign, the IP core, was developed in Verilog and synthesised and imple-

mented using Vivado 2014.1; basic arithmetic (i.e. Table 3.2) was implemented using

�oating point IP cores from Xilinx's IP catalogue. All designs used a single precision

(IEEE 754-2008) number representation. The target synthesisable frequency for the

IP core was 100 MHz and the Parallel and Pipeline version were instantiated with

two processing elements (PEs) for the whole design (i.e. each individual module had

two processing elements). The software part of the codesign was implemented in C

as bare-metal application on the processor system. The general purpose AXI4 in-

terface between the PS and the PL was used by the two parts to communicate with

95

4.1 Nanosatellites

Figure 4.1: Zedboard development board used for two of the UKF implementations

each other (@ 100 MHz as well). The C (SW) implementation of the UKF was a

bare-metal application that used the GNU Scienti�c Library (GSL) for its vector and

matrix manipulations.

To test the di�erent UKF implementations, a simulator was constructed in Mat-

lab to model the nanosatellites' motion. Both the single nanosatellite case and the

nanosatellite constellation case are modelled in this simulator; the details are given

in Section 4.1.5. Simulated sensor measurements were generated from the nanosatel-

lites' motion and passed to each of the three UKF implementations which is acting

as the attitude determination subsystem. For the Matlab implementation, the simu-

lated measurements could be passed directly. For the HW/SW codesign and the C

(SW) implementations, the simulated measurements were �rst exported to a C header

which was included during compilation. The Matlab and C (SW) implementations

of the UKF were applied to both modelled cases but for the HW/SW codesign im-

plementation, the Serial and Parallel variants were applied to the single nanosatellite

case while the Pipeline variant was applied to the nanosatellite constellation case.

96

4.1 Nanosatellites

4.1.1 System Model

Each individual nanosatellite is modelled as a 1U CubeSat. The attitude of the

nanosatellite is represented by the unit quaternion q = [q, q0]
T where q = [q1, q2, q3]

T

and which satis�es q21 + q22 + q23 + q20 = 1.

The kinematic equations for the satellite in terms of quaternions are given by:

q̇ =
1

2

(
q0I3×3 + q×

)
ω (4.1a)

q̇0 = −
1

2
qTω (4.1b)

where ω is the angular rate and q× is the skew-symmetric matrix of q given by:

q× =

0 −q3 q2

q3 0 −q1
−q2 q1 0

 (4.2)

4.1.2 Sensor Model

We consider a basic sensor set common on nanosatellites - a three-axis MEMS IMU

including an accelerometer, gyroscope and magnetometer. We use the standard gy-

roscopic model for the gyroscope:

zg = ωT + β + ηg (4.3)

β̇ = ηd (4.4)

where ωT is the true angular velocity, β is the gyroscopic bias, β̇ is the gyroscopic

bias drift and ηg,ηd are noise terms that are assumed to be zero-mean Gaussians.

Similarly, we model the accelerometer and magnetometer as:

za = aT + ηa (4.5)

zm = mT + ηm (4.6)

97

4.1 Nanosatellites

where aT is the true local acceleration vector, mT is the true local magnetic vector

and ηa,ηm are again, zero-mean Gaussian measurement noise terms.

4.1.3 Predict Model

We use a dead-reckoning model and the gyroscopic data to predict the motion of the

nanosatellite. However, it is necessary to account for the gyroscopic bias drift so we

estimate the current gyroscopic bias as well. Let the state vector be:

x = [q, q0, β]
T (4.7)

The predict model, f, is then:

f(X x
k−1|k−1,Xw

k−1|k−1) = X x
k−1|k−1 + f ′(X x

k−1|k−1,Xw
k−1|k−1) · dt (4.8)

f ′(X x
k−1|k−1,Xw

k−1|k−1) =

1
2
(q0I3×3 + q×) zg

−1
2
qTzg

03×1

+wk (4.9)

where dt is the time step between samples, wk = [ηq, β̇]
T is the process noise and ηq

is assumed to be a zero-mean Gaussian.

4.1.4 Update Model

The accelerometer and magnetometer data is used to correct for the gyroscopic bias,

so the observation model, h, is:

h(X x
k−1|k−1, X v

k−1|k−1) =

Aq (q) gba
Aq (q)bm

+ vk (4.10)

98

4.1 Nanosatellites

where ba and bm are the respective body frame vectors, g is the magnitude of the

gravity vector (assumed 8.94 m.s−2 at an altitude of 300 km), vk = [ηa, ηm] is the

measurement noise and Aq(q) is the rotation matrix between the body frame and

local frame given by:

Aq(q) =

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) q20 − q21 − q22 + q23

 (4.11)

4.1.5 Simulation Model

Collecting all the relevant terms, the initial augmented state vector is given by:

xa0 = [q, q0, β, 04×1, 03×1, 03×1, 03×1]
T (4.12)

and the initial augmented covariance is a diagonal matrix with diagonal terms:

diag(Pa
0) = [16×1, ηq, β̇, ηa, ηm] (4.13)

The state vector length is 7, the number of observation variables is 6 and the aug-

mented state vector length is 20. The quaternion noise term was modelled with

covariance ηq = 10−6. The simulated sensor set was homogeneous so the modelled

errors are the same for each nanosatellite. The gyroscopic bias drift was modelled

with covariance ηd = 10−2 ◦/s2. The measurement noise terms were modelled with

covariances: ηg = 10−1 ◦/s, ηa = 10−2g, ηm = 10−2 gauss.

Each individual satellite was modelled as undergoing a di�erent motion, including: a

steady state, slow oscillations about one or more axes and full tumbling. The motion

was modelled using Euler angles in a local ground frame which is relevant in most

remote sensing applications; here, we use roll-pitch-yaw to refer to rotations about

the x-y-z axis respectively. An example of the simulated truth data can be seen in

Figure 4.2 and the simulated motions of each of the �ve nanosatellites can be seen in

Table 4.2.

99

4.1 Nanosatellites

Satellite No. Type of motion

1
Sinusoidal oscillation over all three axes with an amplitude of 5◦

and natural frequency ωn = 0.01 Hz

2
Sinusoidal oscillation over all three axes with an amplitude of 5◦

and natural frequency ωn = 0.05 Hz
3 Full tumbling about the roll axis with frequency 0.01 Hz

4
Sinusoidal oscillation about the roll/pitch axes with an amplitude
of 45◦ and natural frequency ωn = 0.002 Hz

5
Sinusoidal oscillation about the pitch/yaw axes with an amplitude
of 2◦ and natural frequency ωn = 0.1 Hz

Table 4.2: Modelled motions for each of the nanosatellites. The motion for the
�rst satellite is reused between the single nanosatellite case and the nanosatellite
constellation case.

To generate the sensor measurements, the simulated motions where converted into

the body frame via rotation matrix with 1-2-3 referring to roll-pitch-yaw respectively:

Aeuler =

c1c2 c1s2s3 − s1c3 s1s3 + c1s2c3

s1c2 s1s2s3 + c1c3 s1s2s3 − c1s3
−s2 c2s3 c2c3

 (4.14)

It is assumed that the magnetometer is aligned with the x-axis (bm = [1, 0, 0]) and

the accelerometer is aligned with the z-axis (ba = [0, 0, 1]). Next, using the sensor

models described earlier, noise terms were added to the sensor `truth' data which was

then sampled at 1 Hz to simulate measurements from an actual set of sensors; an

example of the simulated gyroscopic measurements for one of the nanosatellites can

be seen in Figure 4.3.

4.1.6 Results

The UKF was simulated in Matlab environment as well as on the Zedboard devel-

opment board. For the two Zedboard implementations, the simulated sensor dataset

was loaded into the onboard memory (RAM) and the UKF simulated as if it were

receiving data from the actual sensors. The dataset used in all three implementations

100

4.1 Nanosatellites

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-2

-1

0

1

2

3

4

R
ol

l R
at

e
(°

/s
)

Gyroscopic truth data

#1
#2
#3
#4
#5

(a) `Truth' data

xy

z

(b) Reference frame

Figure 4.2: Simulated `truth' roll for all �ve nanosatellites

was the same. State estimates from the UKF were stored on the Zedboard for the

duration of the simulation then read back into Matlab afterwards for analysis. Both

applications, single nanosatellite and nanosatellite constellation, were simulated in

this way.

For the �rst simulation, with a single nanosatellite, all three implementations pro-

duced (within working precision) the simulation results in Figure 4.4a and 4.4b; these

�gures show the absolute attitude error (i.e. the di�erence between the UKF esti-

mated attitude and the simulated `truth') of the nanosatellite. In Figure 4.4a, the

top graph shows the �rst tenth of a second of the simulation, highlighting early con-

vergence of the �lter to the truth from an initial noisy estimate. The bottom �gure

shows the �rst second of the simulation, highlighting the ability of the �lter to main-

tain its accuracy (< 0.1◦ error) after convergence. Figure 4.4b shows that the UKF

101

4.1 Nanosatellites

Time (s)
0 100 200 300 400 500 600 700 800 900 1000

R
ol

l R
at

e
(°

/s
)

-2

-1

0

1

2

3

4

5
Gyroscopic sensor data

#1
#2
#3
#4
#5

Figure 4.3: Sample of the simulated gyroscopic sensor data for all �ve nanosatellites.
For clarity, only `measurements' for the roll axis is shown.

is able to correct for the inaccuracies arising from the gyroscopic bias and bias drift

over the full duration of the simulation.

These results demonstrate that there are no implementation issues when taking the

UKF to a HW/SW codesign; the codesign, and IP core, is able to completely replicate

software-based implementations of the UKF. The overall latency of the C (SW) imple-

mentation and the HW/SW codesign (Serial and Parallel) for the single nanosatellite

case were measured using the ARMv7 Performance Monitoring Unit (PMU) and can

be seen in Table 4.3. This overall latency is the time taken to complete one full

iteration of the UKF (all steps). The Serial design o�ers a modest 1.8× increase

in performance over the C (SW) implementation and can be run at ≈ 2 kHz which

is more than adequate for the sampling frequency assumed by the simulation. The

Parallel design o�ers a slightly better 2.4× speed-up, for the 2 PE case, over the C

102

4.1 Nanosatellites

(a) At the very beginning of the simulation. (b) For the full simulation

Figure 4.4: Absolute attitude error

(SW) implementation. Note that the processor system operates at a clock frequency

more than 6 times the frequency used by the IP core (667 MHz vs. 100 MHz), yet

the IP core is still able to out perform the C (SW) implementation.

SW Serial Parallel
Total 660 363 272

Table 4.3: Overall latency for the single nanosatellite. All values in µs.

For the second simulation, with a constellation of �ve nanosatellites, �ve instances

of the UKF were calculated, one for each nanosatellite, and all three implementa-

tions produced (within working precision) the simulation results in Figure 4.5; these

�gures once again show the absolute attitude error of the nanosatellite. The UKF

is again able to quickly converge after initialisation and maintain its accuracy over

the duration of the simulation. Though the UKF is able to display good accuracy

(< 0.2◦) for most of the nanosatellites, it exhibits slightly poorer performance (< 1◦)

for nanosatellites undergoing the more erratic motions.

The overall latency for the C (SW) implementation and the Pipeline variant of the

HW/SW codesign for the nanosatellite constellation case was also measured and can

103

4.1 Nanosatellites

Time (s)
0 100 200 300 400 500 600 700 800 900

R
ol

l E
rr

or
 (
°)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Absolute Attitude Error

#1
#2
#3
#4
#5

Figure 4.5: Absolute attitude error for the full simulation

be seen in Table 4.4. The C (SW) implementation must calculate each of the 5

UKF instances sequentially while the Pipeline design is able to accept data for a

new instance after the �rst stage is complete. The Pipeline design o�ers a 2.75×
performance gain in the 2 PE case.

SW Pipeline
Total 3347 1219

Table 4.4: Overall latency for the nanosatellite constellation. All values in µs.

104

4.2 Simultaneous Localisation And Mapping

4.2 Simultaneous Localisation And Mapping

Autonomous navigation is one of the main focus areas in increasing the capabilities,

and thus viability, of robotic/autonomous systems in any given application. Au-

tonomous navigation is an extremely complex process with many aspects that have

to work together within several layers of abstraction. State estimation, to serve local-

isation and mapping subsystems, sits in a `middle' layer with state estimates passed

to `higher' level path planning or other decision making algorithms, while requiring

information about the environment from `lower' level perception subsystems. For

an unknown environment or an environment with only limited existing information

about it, the SLAM problem is how an autonomous system can construct or update a

map of the environment while simultaneously keeping track of its location within that

environment. The issue is that, in general, for a system to localise itself within an

environment, a map of that environment is required but in order to generate a map

of the environment, the system needs to know where it is within that environment.

Many solutions to the SLAM problem exist, including: the EKF, particle �lters and,

of course, the UKF; an informative treatise on SLAM is given by Durrant-Whyte and

Bailey (2006).

Early SLAM solutions focused on ground robotics and, as such, were restricted to

2D. Here, the full 3D case is considered which is a straightforward, if not necessarily

simple, extension. Common sensor sets used in SLAM solutions include laser range-

�nders and cameras for vision-based navigation. The application modelled here is a

small quadcopter UAV with a single, �xed pinhole camera with static landmarks in

an enclosed room. There are, of course, many more parts to vision-based navigation

than just the SLAM system. Image processing capabilities are needed to extract rel-

evant features or landmarks from the camera data stream as well as perform data

association between extracted features and previously known landmarks. As men-

tioned, information generated from the SLAM solution can be passed to higher-level

navigation algorithms. The main concern here, however, is state estimation and, in

particular, the performance of the UKF, so it is assumed that all feature extraction

and data association has already been handled.

105

4.2 Simultaneous Localisation And Mapping

As with the previous nanosatellite application, multiple methods are used to imple-

ment the UKF for testing and validation. A Matlab implementation is used again to

validate the formulation of the UKF, however, the codesign implementation is tested

a little di�erently.

As mentioned in Section 3.1, the hardware part � the IP core � implements the non-

application-speci�c parts of the UKF; when moving to a new application, the IP

core only needs to be instantiated with the correct set of parameters (see Section

3.1.1) rather than redesigned. In the previous section (Section 4.1), it was already

demonstrated that the HW/SW codesign is capable of completely replicating the

UKF algorithm so here the focus is on the performance of the IP core. As long as

the design of the UKF algorithm is validated (and thus that the selected parameters

are correct) then the performance of the IP core can be tested alone, without the

software part.

In addition to this, the simulation environment necessary to test a full SLAM solution

(including other parts, e.g. data association) is quite complex and beyond the scope

of this thesis. The complexity makes it di�cult to construct the required simulator

in an embedded platform. For this reason, the performance of the IP core is not

tested using the Zedboard platform as in the nanosatellite application, but instead by

using Xilinx's Vivado Simulator (Xilinx, 2017b) to perform a behavioural simulation.

Behavioural simulation is ordinarily used only to verify functionality but as long

as operational (e.g. processor setting a control bit) and timing assumptions (e.g.

input clock frequency) made during the behavioural simulation are veri�ed post-

implementation, Vivado Simulator provides the execution time of the IP core accurate

to the clock cycle.

In this case, the IP core used the �oating point IP cores from Xilinx's IP catalogue

for its basic arithmetic (i.e. Table 3.2) and was synthesised with a target frequency

of 100 MHz. With the assumptions for the IP core validated post-implement, Vivado

Simulator was used to measure performance. The HW/SW codesign variants tested

here are the Serial design and the two processing element (PE) case of the Parallel

design.

106

4.2 Simultaneous Localisation And Mapping

4.2.1 System Model

The outputs of any SLAM solution is the pose of the autonomous system or robot, in

this case the UAV, as well as the positions of relevant landmarks in the environment

which can be used to generate a map. The UAV pose includes 3D Cartesian co-

ordinates in some world frame for the UAV's position and quaternions, as in 4.1.1,

for the UAV's attitude. The motion of the UAV is modelled with the angular rates

given by (4.1) and the linear rates given by:

v = Aq(q)vR (4.15)

where vR is the linear velocity of the UAV in the UAV frame and Aq(q), given by

(4.11) as before, is the rotation of the UAV frame with respect to the world frame.

The UAV linear and angular rates are controlled via inputs:

uk = [uxyz, uψθφ] (4.16a)

uxyz =

ux

uy

uz

+ ηu,xyz (4.16b)

uψθφ =

uψ

uθ

uφ

+ ηu,ψθφ (4.16c)

where uxyz is the desired linear motion for the x, y and z axes respectively, uψθφ is

the desired angular motion about the roll, pitch, yaw rotational axes respectively and

ηu,xyz and ηu,ψθφ are the zero-mean Gaussian control noise terms.

Landmarks in the environment are represented using the inverse depth parameterisa-

tion. For i-th landmark Li:

Li = [xi, yi, zi, α, β, ρ] (4.17)

where xi, yi, zi are the co-ordinates of the UAV when the landmark was �rst seen in

107

4.2 Simultaneous Localisation And Mapping

the world frame, α and β are the azimuth and elevation to the landmark respectively,

when it was �rst seen in the world frame and ρ is the inverse depth (i.e. ρ = 1/d

where d is the distance to the landmark) of the landmark. The inverse depth parame-

terisation is common for vision-based SLAM solutions as it provides low linearisation

errors at low parallax and has the ability to represent any distance from the system

immediately; features at very large distances that are e�ectively `in�nite' from the

system would ordinarily be unusable, attracting additional processing to treat or dis-

card those sensor readings, but, in this parameterisation, is simply treated as zero.

Full details of the inverse depth parameterisation is presented by Civera et al. (2008)

(who also provides a monocular SLAM example implementation).

4.2.2 Sensor Model

The sole sensor used in this application is the aforementioned pinhole camera, �xed

to the front of the UAV and its aperture aligned perpendicular to the UAV x-/roll

axis. Since it is assumed that feature extraction and data association has already

been performed, the camera observations are already rotated (ordinarily the mapping

of the 3D co-ordinates to a 2D image plane described here is a perspective projection

with a 180◦ rotation in the image plane) and the sensor readings are simply the

camera/image frame co-ordinates to the landmark. The pinhole camera model for

the co-ordinates of some point P , which exists in the environment, in the camera

frame is given by:

zc =

 zc,u

zc,v

 =

 fu
yP
xP

fv
zP
xP

+ ηc (4.18)

where fu and fv are the distances from the centre of the aperture of the camera to

the centre of the image plane (i.e. the camera co-ordinate frame), xP , yP , zP are

the Cartesian co-ordinates of the point P in the UAV frame and ηc is a zero-mean

Gaussian noise term.

108

4.2 Simultaneous Localisation And Mapping

4.2.3 Predict Model

The predict model uses a dead reckoning model and the control inputs to predict the

motion of the UAV. The positions of known landmarks are also tracked so let the

state vector be:

x = [p, q, q0, L1, . . . , Ln]
T (4.19)

where p = [px, py, pz] is the Cartesian position of the UAV in the world frame. The

predict model, f is then:

f(X x
k−1|k−1,Xw

k−1|k−1) = X x
k−1|k−1 + f ′(X x

k−1|k−1,Xw
k−1|k−1) · dt (4.20a)

f ′(X x
k−1|k−1,Xw

k−1|k−1) =

Aq(q)uxyz
1

2
(q0I3×3 + q×)uψθφ

−1

2
qTuψθφ

0
...

0

(4.20b)

where dt is the time step between control inputs.

4.2.4 Update Model

The update model uses new measurements of one of the landmarks to update the

state of both the UAV and that landmark. The observation model, h, is:

h(X x
k−1|k−1, X v

k−1|k−1) =

 fu
yL
xL

fv
zL
xL

+ vk (4.21)

109

4.2 Simultaneous Localisation And Mapping

where vk = ηc is the observation noise and xL, yL, zL are the co-ordinates of landmark

in the world frame calculated via:
xL

yL

zL

 = Aq(q)

ρ (Li,xyz − pk−1) +

cosα cos β

sinα cos β

sin β

 (4.22)

where Li,xyz is the Cartesian position of the UAV in the world frame when the i-th

landmark was �rst seen and pk−1 is the a priori estimate of the position of the UAV

in the world frame.

As the UAV moves around the environment, the number of visible landmarks is not

necessary static. If a new landmark is detected, the state vector needs to be expanded

and initialised with the new information. Adding a new landmark to the tracking is

done by passing the current state and observation to an inverse sensor model, h−1,

given by:

Li,0 = h−1(xk−1, zk) (4.23)

h−1(xk−1, zk) =

pk−1

arctan (ly, lx)

arctan
(
lz,
√
l2x + l2y

)
ρ0

 (4.24)

lx

ly

lz

 = Aq(q)

1
zc,u
fu
zc,v
fv

 (4.25)

where lx, ly, lz are the co-ordinates of the newly detected landmark in the world

frame. New landmarks are detected when observations cannot be associated with

existing known landmarks; as mentioned, this data association is assumed to be

handled already. When known landmarks have not been seen in some time, they are

usually deleted from tracking to reduce computational burden; this process is again

handled by the data association process that is not being considered here.

110

4.2 Simultaneous Localisation And Mapping

4.2.5 Simulation Model

With all the relevant terms, the initial augmented state vector is:

xa0 = [p, q, q0, L1, . . . , Ln, 03×1, 03×1, 02×1]
T (4.26)

and the initial augmented covariance is a diagonal matrix with diagonal terms:

diag(Pa
0) = [1(7+6n)×1, ηu,xyz, ηu,ψθφ, ηc] (4.27)

The length of the state vector is 7 + 6n where n is the number of known features,

the number of observation variables is 2 and the augmented state vector has 15 + 6n

variables. The maximum number of landmarks considered in this simulation is 3

(i.e. n = 3) so the maximum state and augmented state vector has 25 and 33

variables respectively. The control noise terms are modelled with covariances ηu,xyz =

[0.002812, 0.004349, 0.002248]m.s−1 and ηu,ψθφ = [0.01993, 0.03476, 0.03223] rad.s−1

while the observation noise is modelled with covariance ηc = 5.

A diagram of the initial setup of the simulation area can be seen in Figure 4.6. At the

beginning of the simulation, the UAV is `hovering' in one position (the origin) and is

initialised with a slightly noisy estimate of its own position. The three landmarks are

scattered at di�erent positions and altitudes around the simulation area. All three

landmark are in view of the UAV at the start and so the UAV has an initial (inaccu-

rate) estimate of their positions; each of the estimates have relative high uncertainties

(the green ellipses).

4.2.6 Results

The UAV is �own around in a polygon shape, roughly 3 × 2 m in size, maintaining

its initial altitude and orientation (i.e. the UAV does not rotate during the �ight);

the �nal status of the simulation area can be seen in Figure 4.7. The SLAM solution

has been able to track to the motion of the UAV along its path, i.e. the estimated

111

4.2 Simultaneous Localisation And Mapping

0.5

3

0.6

2

0.7

4

z
(m

)

0.8

1 3

y (m)

0.9

2

x (m)

0

1

1
-1

0
-2 -1

True Landmark
Estimated Landmark
True Robot Pose
Estimated Robot Pose
True Path
Dead Reckon Path
SLAM Path

Figure 4.6: The initial UAV and landmark position estimates for the SLAM simu-
lation. The green ellipses are the covariance (representing the uncertainty) of the
various position estimates.

and true paths converge; a dead reckoning path (integrating the control actions) is

included for comparison. The SLAM solution has also been able to estimate the

positions of the three landmarks with a high amount of certainty; the estimated and

true positions overlap and the uncertainty (green ellipses) have shrunk considerably

around the estimate.

A closer look at the UAV path (distance with respect to the origin) can be seen in

Figure 4.8, split into the two relevant dimensions (the UAV was �own level, at the

same altitude). The true path and the SLAM UKF estimated path are nearly indis-

tinguishable, but the dead reckoning path clearly deviates further and further as the

simulation proceeds particularly in the (world) y-axis as the UAV makes many more

turns. Figure 4.9 shows the position error of the UAV over the whole simulation. This

112

4.2 Simultaneous Localisation And Mapping

0.5

3

0.6

2

0.7

4

z
(m

)

0.8

1 3

y (m)

0.9

2

x (m)

0

1

1
-1

0
-2 -1

True Landmark
Estimated Landmark
True Robot Pose
Estimated Robot Pose
True Path
Dead Reckon Path
SLAM Path

Figure 4.7: The �nal UAV and landmark position estimates for the SLAM simulation.
The green ellipses are the covariance (representing the uncertainty) of the various
position estimates.

is the di�erence between the UAV's true path and the UKF's estimate of the path.

The dead reckoning estimate rapidly becomes poor while the SLAM UKF estimate is

able to maintain a high level (< 50 mm) of accuracy for the whole simulation. How-

ever, there is some instability on the accuracy of the SLAM UKF estimate because

the number of landmarks in view is not static. The UAV loses sight of the landmarks

during some parts of the simulation leading to a worsening position estimate.

The measurement and analysis of the latency for the SLAM solution is conducted

slightly di�erently than the nanosatellite application. Hardware or HW/SW imple-

mentations of the UKF are rare to begin with (see Section 2.5.3) and the author is

not aware of any targeting a SLAM system. Because there are a number of di�erent

ways to implement a SLAM system, literature in the �eld often focuses on algorith-

mic performance rather than runtime performance or execution time (e.g. Wang,

113

4.2 Simultaneous Localisation And Mapping

0 5 10 15 20 25 30

Time (s)

-1

0

1

2

3

x
P

os
iti

on
 (

m
)

UAV Path

True
Dead Reckoning
SLAM

0 5 10 15 20 25 30

Time (s)

-1

-0.5

0

0.5

1

1.5

2

y
P

os
iti

on
 (

m
)

Figure 4.8: The path �own by the UAV for the SLAM simulation. The �gure shows
the distance of the UAV from the origin. The z-axis is omitted as the UAV was �own
level, at the same altitude.

Fu, et al. (2013) or Huang et al. (2013)). For literature that does factor in runtime

performance (e.g. Holmes et al. (2009) or Tuna et al. (2012)), the SLAM system is

usually implemented on a powerful PC microprocessor; examples of the SLAM system

being implemented on an embedded system are rare and examples of an embedded

UKF-SLAM system are even rarer. Furthermore, the presented example application

is a simplistic SLAM system aimed at demonstrating the �exibility of the HW/SW

codesign rather than attempting to provide a competitive SLAM implementation.

Factors such as data association are not handled and there are only a small number

of landmarks (realistic SLAM systems can utilise thousands of landmarks/features).

This makes comparing the presented example application to existing implementations

114

4.2 Simultaneous Localisation And Mapping

0 5 10 15 20 25 30

Time (s)

-0.15

-0.1

-0.05

0

0.05

x
E

rr
or

 (
m

)
UAV Position error

SLAM
Dead Reckoning

0 5 10 15 20 25 30

Time (s)

-0.05

0

0.05

0.1

0.15

0.2

0.25

y
E

rr
or

 (
m

)

Figure 4.9: The UAV position error for the SLAM simulation. The UAV loses sight
of all three of the landmarks in the 10-18 second range leading to a small deviation
in the x-axis estimate. The instability in the SLAM estimate around 18 - 21 seconds
is when the UAV regains sight of these landmarks and incorporates them into the
position estimate again.

somewhat di�cult and not necessarily meaningful.

For these reasons, runtime performance of the Matlab implementation, done on a PC,

is reported rather than an embedded implementation such as the C (SW) implemen-

tation in the nanosatellite application. The Matlab simulation was performed on a

PC featuring an Intel Core i7-4770K @ 3.5 GHz; each step was run at least 10 times

and the average value is reported here. Though the performance of the hardware

part of the codesign, the IP core, was measured using a behavioural simulation in

the Vivado Simulator, the software part of the codesign was still implemented in C

onto the Zedboard which allows for a slightly more accurate performance estimate.

115

4.2 Simultaneous Localisation And Mapping

This means the performance of the hardware part and software part was measured

independently then combined later; this is unlike the nanosatellite application where

the entire codesign was implemented, tested and measured as a whole.

Matlab Serial Parallel
Sig. Gen. 76 - 334
Predict 902 944 281
Update 819 220 169
Total:
- 0 978 944 615
- 1 1873 1572 1118
- 2 2768 2200 1621
- 3 3663 2828 2124

Table 4.5: Overall latency for the SLAM application. All values in µs. Total values
are for the listed number of observed features at the current time step. Matlab's
Cholesky Decomposition implementation is heavily optimised and use of vectorised
arithmetic for the matrix multiplication is why the sig_gen step is so quick.

The overall latency of the SLAM solution for the Matlab, Serial and Parallel (2 PE)

implementations can be seen in Table 4.5. The latency of the algorithm depends on

the number of landmarks that are visible at any given time step. The structure of the

algorithm is also slightly di�erent compared to the nanosatellite application. In the

previous application, the UKF at a single time step involves a sig_gen step followed

by the predict step followed by an update step. For the SLAM solution, however,

multiple update steps needs to be performed depending on how many observations

were made in a single time step; in some cases, no observations of landmarks were

made and so no update step was performed. In addition to this, because the update

step updates the augmented state and covariance, subsequent update steps require

the sigma points to be re-sampled. The full process is:

for time step k do

sig_gen step

predict step

for i = observation do

if i = new landmark then

116

4.2 Simultaneous Localisation And Mapping

Initialise new landmark with (4.23)

else

if i > 1 then

sig_gen step to re-sample sigma points

end if

update step

end if

end for

end for

Thus at each time step, one sig_gen and predict step is performed, but n update

and n− 1 sig_gen steps are required where n is the number of observations made of

known landmarks; here, the maximum number of observations is three (there are three

landmarks) so n = 0−3 at each time step. No update is performed for new landmarks

or known landmarks that have no observations. The Serial design provides a modest

1.04 - 1.3× speed-up over the Matlab implementation, depending on the number of

observed features, while the Parallel design for the 2 processing element case provides

a 1.6 - 1.7× speed-up; though the performance bene�t is small, the working clock

frequency for the FPGA is a mere fraction of the PC. The faster update step means

the two HW/SW codesign implementations will not scale as poorly as the Matlab

implementation for larger numbers of landmarks.

The main concern for visual SLAM implementations, or visual navigation systems

in general, is the ability to perform online calculations in `real-time'. For vision-

based systems `real-time' usually means the frame rate of the camera (or cameras),

commonly 30 Hz. Each of the implementations here would more than meet the real-

time requirements for low numbers of landmarks. The example presented here is

only the state estimation part of a full vision-based navigation system which would

also include the actual image processing, data association, path planning etc. but

the faster the state estimation part is able to run, the more time is available to be

performing more complex, and intelligent, calculations.

It should also be noted that the implementation presented here is a `naive' approach

117

4.3 Summary

to the SLAM problem. This is because each observed landmark adds variables to

the state vector. Clearly, as the number of observed landmarks increases, potentially

into the hundreds or thousands depending on the exact application, the state vector

increases to a point where the UKF is no longer feasible. A quirk of the SLAM

problem, however, is that observations of landmarks are independent of each other

� i.e. for any given observation, the only state variables a�ected are the UAV's, or

in general the robot/autonomous system, and the landmark observed. Given this

independence between landmarks, it is not necessary to formulate one UKF with all

the landmarks but instead multiple UKFs can be formulated, each of which track one

landmark; Huang et al. (2009), for example, detail one such approach. This approach

still requires n update steps and re-sampling of the sigma points each time but with

much smaller state vectors. In this example, the predict state and augmented state

vector would only need to have 7 and 13 variables respectively (only including the

UAV pose and control noise but not the measurement noise) while the update state

and augmented state vector would have 13 and 15 variables respectively (including

the UAV pose, landmark position and measurement noise). Segmenting the UKF in

this way bene�ts the hardware/software approach more so than microprocessor-based

approaches since with appropriate choices of processing elements, the time complexity

of the each UKF instance could be reduced even further. Particle �lter based solutions

to the SLAM problem, one, for example, described by Kim et al. (2008), could go

another additional step and run UKF instances for each particle in parallel (since each

particle is also independent of other particles), either with multiple instantiations of

the Serial/Parallel design, or perhaps by using the Pipeline design.

4.3 Summary

In this chapter, implementations of the HW/SW UKF for two example applications

were presented. The �rst application utilised the UKF as part of an attitude determi-

nation subsystem for a nanosatellite. Two situations were modelled: a single uncon-

trolled nanosatellite and a small constellation of �ve nanosatellites, one of which was

118

4.3 Summary

the `lead' satellite that performed attitude determination for the whole constellation.

The HW/SW codesign implementation was compared to a Matlab implementation of

the UKF for this application and was found to generate exactly the same state esti-

mation results i.e. no functionality issues arose when taking the UKF to a HW/SW

implementation. The Serial and Parallel (2 PE) variants were used in the single

nanosatellite case and were found to o�er a 1.8× and 2.4× speedup, respectively,

over a purely C (SW) implementation of the UKF. The Pipeline (2 PE) design was

found to o�er a 2.75× speedup in the nanosatellite constellation case.

The second application utilised the UKF as the state estimator within a SLAM system

on a small UAV. The focus for the second application was runtime performance of

the HW/SW codesign. The Serial and Parallel (2 PE) variants were found to o�er a

1.3× and 1.7× speedup over a Matlab implementation of the UKF, respectively, with

three landmarks present.

The two example applications presented were representative of the applications the

proposed generic state estimation library is targeted at. Although both feature

aerospace systems, the di�erences between the example applications are su�cient

to demonstrate the ease of which a system designer can apply the HW/SW codesign

to their system. All three variants of the codesign are viable and, though modest,

provide performance gains over purely software implementations of the UKF. The ex-

ample applications show that the HW/SW codesign of the UKF retains the �exibility

and portability of software while enjoying the performance bene�ts of hardware.

119

Chapter 5

Implementation Analysis of the

Hardware/Software Codesign

In this chapter, the physical implementation of the HW/SW codesign is analysed in

much greater detail. The HW/SW codesign, all three variants, was implemented for

a wide range of parameters in order to demonstrate the �exibility and e�ectiveness

of the design. In particular, the Parallel and Pipeline variants allow for scaling of

the processing elements to suit the application and the hardware e�ciency of either

variant changes dramatically depending on the size of various UKF parameters; for

example, the length of the augmented state vector, number of state variables, number

of observation variables etc. This chapter presents implementations for three example

applications, giving synthesis results, power usage and a timing analysis for each ap-

plication. Two further analyses are given focussing on the latency of each submodule

in the IP core and the e�ect of scaling the augmented state vector on the latency of

the IP core.

5.1 Analysis overview

For all implementations described in this chapter, synthesis and implementation runs

were targeted at the Zynq-7000 XC7Z045 (Xilinx, 2016) at a target frequency of

120

5.1 Analysis overview

100 MHz. Though the implementations of the example applications presented in

Chapter 4 was for the Zynq-7000 XC7Z020, the Parallel and Pipeline design do not

�t on this device for larger numbers of processing elements. In order to still compare

implementation details, this larger device in the Zynq-7000 family is used instead.

All the devices in the Zynq-7000 family feature the same processing system; the only

di�erence for larger devices is the amount of programmable logic available.

Resources utilisation of the device by the IP core is reported by Vivado (Xilinx, 2017a)

post-implementation. The power analysis is done via the Xilinx Power Estimator

(XPE) (Xilinx, 2017c) post-implementation; all power estimates exclude the device

static power dissipation and the processing system power draw.

The execution time (latency) for any hardware part is measured via behavioural

simulation in Vivado Simulator (Xilinx, 2017b), assuming a clock frequency of 100

MHz; this assumption was validated post-implementation for all designs. Though

behavioural simulations are usually used for only functional veri�cation, Vivado Sim-

ulator provides cycle accurate execution times as long as timing assumptions made

in the simulation are veri�ed post-implementation. The entire IP core utilises syn-

chronous logic and is on a single clock domain which makes con�rming the proper

distribution of the assumed clock signals, in this case 100 MHz, relatively straight-

forward.

The execution time (latency) of any software part is measured via the ARMv7 Perfor-

mance Monitor Unit (PMU) which counts processor clock cycles between two epochs;

because the number of processor clock cycles to perform a given task can vary, each

measurement was conducted at least 10 times and the average latency measured is

reported here.

Implementations for the three example applications are done to explore the e�ect

certain UKF parameters (see Section 3.1.1) have on the IP core. The �rst example

application is simply an expanded implementation of the design �rst presented in

Section 4.1, the attitude determination subsystem for a nanosatellite; this further

reinforces the suitability of the HW/SW codesign for these type of applications. The

second example application explores the impact a UKF with larger numbers of obser-

121

5.2 Example application: Nanosatellites

vation variables may have on the hardware. For each of the three variants presented

in Chapter 3, the update step was the most complex part of the designs. Because the

update step updates the state estimate with the current observation, increasing the

number of observations may have a disproportionately detrimental e�ect on perfor-

mance. The third example application explores the e�ect of �ne-tuning the number

of processing elements (PEs) used for each module; all the other implementations so

far have assumed the same number of PEs for each module but this �ner level of

tuning is available to the system designer if they wish to use it.

The �nal two sections explore the scalability of the design further. The impact on

the latency of the IP core as the number of PEs is scaled is analysed for each module

in the IP core. This allows the system designer to intelligently make decisions about

adjusting the number of PEs further. The impact on the latency of the IP core as the

augmented state variables is scaled, is also analysed. This is of importance because

some applications can have very large numbers of state variables (e.g. thousands for

visual SLAM systems); a system designer will want to use the least number of PEs,

and thus resources, to achieve an adequate level of performance.

5.2 Example application: Nanosatellites

First, expanded implementation results for the nanosatellite example application de-

scribed in the previous chapter (Section 4.1) are presented and analysed. Recall that

this application, involving the attitude determination of a nanosatellite, had 7 state

variables, 6 observation variables and 20 augmented state variables. This section is

based on results �rst presented in Soh and Wu (2014) for the Serial design and Soh

and Wu (2017b) for the Pipeline design.

5.2.1 Synthesis results

Synthesis results for the Serial design and a selection of di�erent numbers of processing

elements for the Parallel design can be seen in Table 5.1. These results do not include

122

5.2 Example application: Nanosatellites

the processor but do include the logic necessary for the AXI4 interface ports. The

initial numbers of PEs were chosen to be multiples of the number of augmented state

variables so that the major datapaths remained data e�cient. Recall, for example,

the Parallel design matrix multiply-add datapath (Section 3.3.2.2); each PE calculates

an entire row in the result matrix. If the number of PEs is not a multiple of the size

of the matrix, then the last iteration of the calculations will not have enough data to

�ll all the PEs making the datapath slightly ine�cient.

Resource Serial 2 PE 5 PE 10 PE
FF 7668 (2) 14286 (3) 27311 (6) 48714 (11)
LUT 5764 (3) 15158 (7) 29500 (13) 53427 (24)
BRAM 16.5 (3) 36.5 (7) 62 (11) 109.5 (20)
DSP48 35 (4) 62 (7) 104 (12) 182 (20)

Table 5.1: Resource utilisation (% Total) for the Serial and Parallel designs on the
XC7Z045

The resources required by the Serial design are relatively low only needing a small

percentage of the available resources. Similarly, the Parallel design, with low numbers

of processing elements, utilises a relatively small percentage of the available resources.

The XC7Z045 is a mid-range device in the Zynq-7000 series which means even the 10

PE case for the Parallel design still only uses a quarter of the available LUTs. For

comparison, synthesis results of the Serial design and the Parallel design for the 2

and 5 PE cases for the XC7Z020 are presented in Table 5.2.

Resource Serial 2 PE 5 PE
FF 7401 (7) 15813 (15) 30712 (29)
LUT 5941 (11) 13635 (26) 26377 (50)
BRAM 16.5 (12) 36.5 (26) 62 (44)
DSP48 18 (8) 36 (16) 78 (36)

Table 5.2: Resource utilisation (% Total) for the Serial and Parallel designs on the
XC7Z020

The XC7Z020 is a low-end device in the Zynq-7000 family but the Serial design only

utilises a quarter of available resources and even the Parallel design up to the 3 PE

123

5.2 Example application: Nanosatellites

case uses a reasonably small amount of resources. This means that the Serial design,

at the very least, will likely have very few issues being integrated into a full SoC,

even on smaller, low-end devices. This is important because these low-end devices

are likely to be favoured by cost (monetary, power consumption, physical space)

conscious designers as nanosatellite systems are generally severely constrained. The

Parallel design, even for low numbers of PEs, uses enough resources that integration

into a SoC may be infeasible for low-end devices; use of the Parallel design as a

coprocessor instead has greater viability. For nano/microsatellite applications, where

a mid-range device such as the XC7Z045 can be used, it may be possible for even the

10 PE case to be integrated into a SoC.

Neither the Serial nor Parallel design require a proportionally large amount of any one

resource. This will allow easier integration into a full SoC, particularly if partially-

recon�gurable regions are used. Requiring too much of any one resource type can

lead to placement and routing issues since resource on-chip locations are �xed by

the manufacturer. The Parallel design, however, uses a disproportionately smaller

amount of FFs than other resources. This implies additional register stages could be

added to major datapaths which would increase the overall latency but could allow

an increase in clock frequency as well. If the increase in clock frequency was greater

than the increase in latency, the overall performance of the design would bene�t.

Synthesis results for the Pipeline design can be seen in Table 5.3. The Pipeline

design uses a huge amount of resources compared to the Serial and Parallel designs.

The Pipeline 2 PE implementation uses nearly the same amount of resources as the

Parallel 10 PE implementation. This most likely makes the Pipeline infeasible on

low-end devices, although in mid-range devices the design could still potentially be

part of a SoC for low numbers of processing elements. Alternatively, the performance

gain of being able to calculate multiple instances of the UKF at once for multiple

satellites could be a worthwhile trade-o� for needing to use mid-range, or even high-

end, devices.

Though the usage of LUTs and DSPs in the Pipeline design has increased massively,

the usage of BRAMs stayed roughly the same. This is likely because the data is

124

5.2 Example application: Nanosatellites

Resource 1 PE 2 PE 5 PE 10 PE
FF 29178 (7) 47022 (11) 101549 (23) 192958 (44)
LUT 20823 (10) 33938 (16) 73798 (34) 138907 (64)
BRAM 32.5 (6) 46 (8) 71.5 (13) 129 (24)
DSP48 64 (7) 114 (13) 264 (29) 514 (57)

Table 5.3: Resource utilisation (% Total) for the Pipeline design

being streamed constantly though the design; intermediate results are no longer being

stored and so do not need to use additional BRAM resources. Once again, the FF

usage is disproportionally smaller than LUT usage, implying that increasing the clock

frequency could be possible.

5.2.2 Power consumption

A power consumption breakdown for the hardware IP core (i.e. excluding the proces-

sor) of the Serial and Parallel designs can be seen in Table 5.4. The power consump-

tion of the Serial design is reasonably low, due to the area e�ciency design goals and

the heavy utilisation of the FPGA clock enable resources to disable modules that are

not currently in use. For reference, the device static power consumption (@ 25◦ C) is

≈ 245 mW and the rough power consumption of the processing system is ≈ 1.5 W. A

conservative estimate of the electrical power available to a CubeSat is in the order of

1-2 W per unit (Selva and Krejci, 2012); larger 2-3U or more CubeSats have a greater

surface area to cover in solar panels. The Serial design could be incorporated into a

1U or larger CubeSat with relative ease, but the Parallel design looks to be feasible

only for 2U CubeSats or larger, even for just the 2 PE case.

A power consumption breakdown of the IP core for the Pipeline design can be seen

in Table 5.5. As might be expected, the power consumption of the Pipeline design

is much larger than the Serial and Parallel designs. The smaller PE cases (1-2) may

be feasible on 2-3U CubeSats or larger but realistically the Pipeline design may only

be appropriate for micro-satellites or larger. On the other hand, it is possible that

the performance gains of the Pipeline design may outweigh the downsides in power

125

5.2 Example application: Nanosatellites

Resource Serial 2 PE 5 PE 10 PE
Clocks 38 74 136 234
Signals 24 83 144 261
Logic 23 76 126 219
BRAM 51 82 112 209
DSP 4 6 21 52
Total 140 336 549 975

Table 5.4: Power consumption of the Serial and Parallel designs. All values in mW

consumption, especially for a constellation.

1 PE 2 PE 5 PE 10 PE
Clocks 131 196 408 754
Signals 130 206 448 836
Logic 116 175 364 666
BRAM 84 111 190 308
DSP 30 53 124 238
Total 491 741 1534 2802

Table 5.5: Power consumption of the Pipeline design. All values in mW

5.2.3 Timing analysis

A breakdown of the execution time (latency) of di�erent modules for the Serial and

Parallel designs can be seen in Table 5.6. The design spends a large amount of the

time propagating the sigma points through the two system models. In the Parallel

design, the majority of the time spent by the design is actually in these system

models, making the software part the main bottleneck. Looking at the sigma point

propagation process a little closer, however, the latency of reading the sigma points

from the memory bu�er and writing the transformed points back to the memory

bu�er was 116 µs. The actual calculation of the system models took a mere 21 µs.

So the bottleneck is actually the speed of the AXI4 port in transferring data between

the processor and the memory bu�er. Using a higher performance communication

bus or other techniques such as Direct Memory Access (DMA) ports may alleviate

126

5.2 Example application: Nanosatellites

this issue but intra-chip communication methods are beyond the scope of this thesis.

SW Serial 2 PE 5 PE 10 PE
Sig. Gen. - - 92 61 51
System model 52 137 137 137 137
Predict 522 170 13 8.5 6.5
Update 87 56 30 21 17
Total 660 363 272 228 212

Table 5.6: Latency of each stage for the Serial and Parallel designs. System models
encompasses propagation through both the predict and the update model on the
processor. All values in µs.

For the hardware part, the majority of time is spent in the sig_gen step. The

two modules in the sig_gen step, the triangular linear equations solver and the

matrix multiply-add, are both large matrix operations which scale with the number

of augmented state variables. Operations in the predict and update step tend to

scale with the number of state or observation variables respectively which are always

necessarily smaller than the number of augmented state variables. It should be noted

that the hardware part appears to su�er from diminishing returns with regards to

decreasing the latency as the number of processing elements increases.

A breakdown of the time spent in di�erent modules for the Pipeline design can be

seen in Table 5.7. Each stage of the Pipeline design, as well as the overall latency, is

roughly in-line with the Serial and Parallel designs.

1 PE 2 PE 5 PE 10 PE
Sig. Gen. (a) 64 59 56 55
Sig. Gen. (b) 93 47 19 10
Models 137 137 137 137
Predict 17 11 6.7 4.7
Update 29 21 16 14
Total 340 275 235 221

Table 5.7: Latency of each stage for the Pipeline design. All values in µs.

Comparing with Table 4.4, since the speed of each stage in the pipeline is limited

by the PS stage, the overall latency for the HW/SW codesign would normally be

127

5.3 Example application: Large number of observation variables

estimated to be roughly 5 times the PS stage. However, there exists further additional

overhead when writing the augmented state/covariance into the memory bu�er at the

start of each UKF instance, and when reading the current state estimate from the

memory bu�er at the end of each UKF instance so the overall latency ends up being

roughly 10 times the longest stage. A timing diagram for the whole pipeline can be

seen in Figure 5.1. Given that the software part limits the pipeline, using a larger

number of processing elements is mostly unnecessary since the pipeline is already

ine�cient. Using lower numbers of processing elements may be able to maintain

performance while saving resources. Given the ine�ciencies caused by the software

stage, the system models could also be implemented in hardware for a proper, full

hardware pipeline but this would obviously relinquish the portability advantage.

sig_gen (a)

sig_gen (a)

sig_gen (a)

sig_gen (b)
Read

Buffer

Write

Buffer
Models Predict

sig_gen (b)

sig_gen (b)

Read

Buffer

Write

Buffer
Models

Read

Buffer

Write

Buffer
Models

Update

Predict Update

Predict Update

0 100 200 300 400 500

#1

#2

#3

Time (us)

Sat. No.

Figure 5.1: Timing of the pipeline for the 2 PE case

5.3 Example application: Large number of obser-

vation variables

A second example application is presented to explore what happens when there are

a greater number of observation variables than state variables, i.e for Mobs > Mstate.

The number of observation variables predominantly a�ects the update step as it is the

update step that uses the observations to update the state estimate and covariance.

Because the update step is generally the most complex sub-module in any variant of

the HW/SW codesign (compare, for example, Figure 3.23 with Figure 3.16), increas-

ing the number of observation variables may have a disproportionate impact on the

implementation of the IP core.

128

5.3 Example application: Large number of observation variables

Since the primary focus here is the performance of the IP core, rather than the UKF

itself, in this example, details of only the hardware IP core are presented. To set

some of the relevant parameters, consider the example of: an application using 3-axis

attitude and angular velocity (6 state variables), two sets of sensor measurements for

both (12 observation variables, double that of the previous section, Section 5.2) and

ideal system models f and h, i.e. no errors; the length of the augmented state vector,

M , is then 18. Once again, the same number of processing elements is instantiated for

each module. The results in this section are based on results that were �rst presented

in Soh and Wu (2017b).

5.3.1 Synthesis results

Synthesis results for the Serial design and a range of processing elements for the

Parallel design is given in Table 5.8. The resource usage is roughly the same as in the

previous example application. Resource usage seems to be dominated by the number

of processing elements rather than changes in the number of state or observation

variables.

Resource Serial 2 PE 5 PE 10 PE
FF 8307 (2) 14392 (3) 27502 (6) 49061 (11)
LUT 6299 (3) 14824 (7) 29026 (13) 52554 (24)
BRAM 16.5 (3) 39 (7) 67.5 (12) 120 (22)
DSP48 35 (4) 66 (7) 108 (12) 184 (20)

Table 5.8: Resource utilisation (% Total) for the Serial and Parallel designs.

Synthesis results for the Pipeline design can be seen in Table 5.9; again the resource

usage is virtually the same as the previous example.

5.3.2 Power consumption

A power estimate for the Serial and Parallel designs can be seen in Table 5.10. Both

the Serial and Parallel designs utilise slightly more power than in the nanosatellite

129

5.3 Example application: Large number of observation variables

Resource 1 PE 2 PE 5 PE 10 PE
FF 29248 (7) 47055 (11) 100996 (23) 191032 (44)
LUT 20811 (10) 33932 (16) 73376 (34) 138949 (64)
BRAM 33 (6) 46.5 (9) 82 (15) 129.5 (24)
DSP48 64 (7) 114 (13) 264 (29) 514 (57)

Table 5.9: Resource utilisation (% Total) for the Pipeline design.

application (Section 5.2). The additional power usage, in this example, appears to be

entirely from the BRAMs. The update step does use more memory than either the

sig_gen or the predict steps which means that increasing the number of observation

variables leads to these memories being larger and could be why this implementation

has a slightly higher power consumption.

Serial 2 PE 5 PE 10 PE
Clocks 44 74 134 233
Signals 29 83 152 249
Logic 28 75 128 208
BRAM 25 101 180 338
DSP 5 22 34 56
Total 131 355 628 1084

Table 5.10: Power consumption for the Serial and Parallel designs. All values in mW

The power estimate for the Pipeline design can be seen in Table 5.11. Unlike the

Parallel design, the Pipeline design only shows increases in power consumption for

the 5+ processing element cases; however, the majority of increases are in the signals,

logic and DSPs rather than the BRAMs. The Pipeline design does not use as much

memory as the Serial/Parallel designs because many of the intermediate products

need not be stored and so the increase in power consumption may simply be from the

increase in activity in the update step.

130

5.3 Example application: Large number of observation variables

1 PE 2 PE 5 PE 10 PE
Clocks 127 197 408 721
Signals 135 205 418 920
Logic 121 172 346 720
BRAM 78 105 194 309
DSP 32 54 124 252
Total 493 733 1490 2922

Table 5.11: Power consumption for the Pipeline design. All values in mW

5.3.3 Timing analysis

The latency across each step for the Serial and Parallel designs can be seen in Table

5.12. The IP core now spends roughly the same amount of time in the sig_gen and

update steps, likely because of the trisolve module. Overall, the IP core for this

implementation is slightly slower than the IP core in the nanosatellite implementation

(recall no software stage is used here). The number of augmented state variables

decreased by 2 compared to the nanosatellite implementation which a�ects the slowest

step but this appears to be more than o�set by the large increase in observation

variables.

SW Serial 2 PE 5 PE 10 PE
Sig. Gen. 402 116 72 52 43
Predict 31 15 9 8 5
Update 174 115 76 52 44
Total 606 246 157 112 92

Table 5.12: Latency of each step for the Serial and Parallel designs. All values in µs.

The latency across each step for the Pipeline design can be seen in Table 5.13 where,

as with the Serial and Parallel designs, the increase in observation variables causes

the update step to outweigh the reduction in augmented state variables.

131

5.4 Example application: Varied PEs

1 PE 2 PE 5 PE 10 PE
Sig. Gen. (a) 51 47 45 44
Sig. Gen. (b) 69 35 16 8
Predict 12 7 6 4
Update 84 55 42 37
Total 216 144 109 93

Table 5.13: Latency of each stage for the Pipeline design. All values in µs.

5.4 Example application: Varied PEs

In the two previous example applications (Sections 5.2 and 5.3), the Parallel and

Pipeline designs were synthesised with the same number of processing elements for

each module; however, this need not be the case. For system designers who want

to quickly and easily implement the UKF with reasonable performance for an ap-

plication, leaving this `default' parameterisation of the processing elements may be

suitable. However for designers looking to optimise the design further, additional

options regarding the parameterisation scheme are available. The nanosatellite ap-

plication, for example, may be one where heavy optimisation to squeeze every bit

of performance from the onboard computing is highly desired. Possible alternative

parameterisation schemes for this application (with M = 20, Mstate = 7, Mobs = 6)

are listed in Table 5.14; a set of illustrative examples are chosen where one of the

major datapaths uses a di�erent number of PEs to the rest of the design.

Scheme No. Description
1 Parallel: 5 PE, trisolve = 2 PE
2 Parallel: 10 PE, trisolve = 5 PE
3 Parallel: 2 PE, Matrix multiply-add = 10 PE
4 Pipeline: 1 PE, sig_gen = 2 PE

Table 5.14: Possible schemes where the number of processing elements varies between
modules.

Synthesis results, power consumption estimates and timing breakdowns can be seen

in Tables 5.15, 5.16 and 5.17 respectively; it should be noted that only details of the

132

5.4 Example application: Varied PEs

hardware part are listed here. Listed in each of these tables are results for all of the al-

ternative parameterisation schemes with the number in the header row corresponding

to the scheme in Table 5.14.

Resource #1 #2 #3 #4
FF 24431 (6) 44640 (10) 14488 (3) 32918 (8)
LUT 25798 (12) 47554 (22) 15297 (7) 23724 (11)
BRAM 60.5 (11) 94.5 (17) 36.5(7) 35.5 (7)
DSP48 82 (9) 154 (17) 46 (5) 72 (8)

Table 5.15: Resource utilisation (% Total) the IP core when the number of processing
elements is varied between modules.

Resource #1 #2 #3 #4
Clocks 126 221 78 144
Signals 126 198 89 144
Logic 106 159 81 129
BRAM 131 174 72 89
DSP 20 29 16 33
Total 509 781 347 539

Table 5.16: Power consumption of the IP core when the number of processing elements
is varied between modules. All values in mW

#1 #2 #3 #4
Sig. Gen. (a) 64 52 55 59
Sig. Gen. (b) - - - 47
Predict 11 11 12 11
Update 24 17 27 21
Total 99 80 94 138

Table 5.17: Latency of the IP core when the number of processing elements is varied
between modules. All values in µs.

The �rst two schemes, where the trisolve module is instantiated with less process-

ing elements than the rest of the design, show a roughly 10% reduction in resource

usage; this despite very little to negligible timing performance loss when compared

to the results presented in Section 5.2 (#1 compared to the 5 PE implementation

133

5.4 Example application: Varied PEs

and #2 compared to the 10 PE implementation). The similar timing performance is

largely due to the fact that greater numbers of processing elements do not necessarily

accelerate the Cholesky Decomposition (a closer look at this e�ect is given in Section

5.5), but also because the number of observation variables is small (e.g. in the 10

PE implementation, since Mobs < NPE, the trisolve datapath during the update

step is already ine�cient). The number of observation variables primarily a�ects the

update step calculations, while the number of state variables a�ects the predict

variables and, of course, the number of augmented state variables mostly a�ects the

sig_gen step. The power consumption savings for these �rst two schemes, espe-

cially for scheme #2, are also quite signi�cant owing to the removal of unnecessary

hardware.

Scheme #3 shows an implementation where one module is given a disproportionately

greater number of processing elements, in this case, the matrix multiply-add mod-

ule. Interestingly, the resource usage doesn't actually change compared to the 2 PE

implementation in Section 5.2 despite an ≈ 30% reduction in runtime performance.

Repeating elements of the comparatively simple matrix multiply-add datapath may

have allowed the synthesis or implementation tool in Vivado to use existing hardware

resources more e�ciently. The LUTs featured by the Zynq-7000 family, for exam-

ple, are capable of implementing two 4-input logic functions OR one 5-input logic

function OR one 6-input logic function (Xilinx, 2016). In this case, it is possible

that many more LUTs are being used to their full capacity in implementing 6-input

logic functions, which would allow an increase in functionality but not necessarily in

resource usage. The power consumption of this scheme is actually slightly higher as

well, pointing to greater activity in the resources used.

Scheme #4 shows a case that attempts to even out the latencies of each stage in

the Pipeline design. Unlike the Parallel design, where any increase in performance

in any module will increase the performance of the whole design, the Pipeline design

is limited by the latency of the longest stage. Increasing the processing elements to

bene�t some stages while another stage still has a longer latency is largely useless.

The predict and update steps are much quicker than the sig_gen step so there is

134

5.5 Latency: UKF steps

not much point using additional processing elements in either step. Scheme #4 uses

two processing elements for the sig_gen step to try and equalise the two sig_gen

stages but leaves only one processing element for the rest of the design. Compared

to the 2 PE implementation listed in Section 5.2, scheme #4 has the exact same

hardware performance but uses ≈ 30 % less resources and power.

Though only a small selection of possible parameterisation schemes have been pre-

sented here, it is clear that plenty of options exist to customise the design for inter-

ested designers. System designers can increase the amount of development e�ort in

order to optimise performance in their desired given application or settle for reason-

able performance but low development e�ort and ease of integration with existing

systems.

5.5 Latency: UKF steps

A closer look at the latency of each of the sig_gen, predict and update steps is

presented in this section. It can be seen in previous implementations that the IP

core as a whole su�ers from diminishing returns as the number of processing elements

increases. For example, in the nanosatellite application (see Table 5.6) going from

the Serial design to the 2 PE Parallel design reduces the execution time by ≈ 90 µs

but adding another 8 PEs to implement the 10 PE case only reduces the execution

time by ≈ 60 µs. Although the latency is lower, it may not be enough to justify the

additional resource usage.

Consider an application with 20 augmented state variables, an even split between the

number of state and observation variables and perfect system models (i.e. Mstate =

M/2, Mobs =M/2), and only implementing the Parallel design. Using 20 augmented

state variables allows comparison of the latencies here with the nanosatellite appli-

cation (see Section 5.2) which also features 20 augmented state variables. Splitting

the variables evenly between state variables and observation variables eliminates any

potential bias they have on the predict and update steps (since the state variables

135

5.5 Latency: UKF steps

predominantly a�ects the predict step while the observation variables predominantly

a�ects the update step).

5.5.1 Sigma points generation

Figure 5.2 shows a graph of the latency of the sig_gen step versus the number of

processing elements. The �rst thing to note is that the latency of the trisolve mod-

ule barely changes with increasing numbers of processing elements. As alluded to in

Section 3.3.2, the Cholesky Decomposition cannot be e�ectively parallelised. Instanti-

ating additional processing elements for this module appears to be a waste of resources

in the sig_gen step. Conversely, the other module, the matrix multiply-add, greatly

bene�ts from the additional processing elements. Therefore the trisolve module

will remain the main hindrance in the sig_gen datapath regardless of instantiated

processing elements while the matrix multiply-add greatly bene�ts from the same.

2 3 4 5 6 7 8 9 10

Processing elements

0

10

20

30

40

50

60

70

80

90

100

La
te

nc
y

(
s)

Sigma points generation

trisolve
mmadd
Total

Figure 5.2: Latency vs. processing elements for the sig_gen step

136

5.5 Latency: UKF steps

5.5.2 Predict step

Figure 5.3 shows a graph of the latency of the predict step versus the number of

processing elements. It can be seen that none of the modules in the predict datapath

disproportionately cause any congestion; furthermore, all modules appear to bene�t

from additional processing elements. For ine�cient processing element numbers, i.e.

a non-multiple of the state variables, additional processing elements actually slightly

increase the latency. However, the total latency of the predict step is much lower

than the other two steps. Even though the predict step bene�ts from additional

processing elements, it may not be necessary to use them since the other steps take

much longer in terms of overall latency anyway.

2 3 4 5 6 7 8 9 10

Processing elements

0

2

4

6

8

10

12

14

16

18

20

La
te

nc
y

(
 s

)

Predict

Prefetch
Calc. Mean
Subtract
Calc. Cov.
Total

Figure 5.3: Latency vs. processing elements for the predict step

137

5.5 Latency: UKF steps

5.5.3 Update step

Figure 5.4 shows a graph of the latency of the update step versus the number of

processing elements. As with the predict step, additional processing elements re-

duce the latency of every module in the update step. Unlike the sig_gen step, the

trisolve module here actually does decrease in latency when additional processing

elements are used. This is most likely due to the fact that the trisolve module

here is used for the matrix right `divide'; i.e. the Cholesky Decomposition followed

by forward elimination then back substitution. Although the Cholesky Decomposi-

tion cannot be e�ectively parallelised, the forward elimination and back substitution

can be, meaning those operations bene�t from additional processing elements. De-

spite this, the Cholesky Decomposition is still necessary and so, as the number of

observation variables increases the trisolve will likely become the limiting factor

again.

2 3 4 5 6 7 8 9 10

Processing elements

0

10

20

30

40

50

60

70

La
te

nc
y

(
 s

)

Update

Prefetch
Calc. Mean
Subtract
Calc. Cov. (Obs)
Calc. Cov. (Cross)
trisolve
mmadd (State)
mmadd (Cov)
Total

Figure 5.4: Latency vs. processing elements for the update step

138

5.6 Latency: Augmented state variables

5.6 Latency: Augmented state variables

The increase in augmented state variables, state variables and observation variables

have di�erent impacts on each of the steps for the IP core. In this section, an im-

plementation exploring the e�ect these variables have on the latency of the design is

examined. Consider an application with an even split between the number of state and

observation variables and perfect system models (i.e. Mstate = M/2, Mobs = M/2).

The even split between state and observation variables has been chosen to remove any

potential bias that might be introduced by having one larger than the other; a small

amount of this bias is seen in Section 5.3. Results for only the Serial and Parallel

designs are presented; although the Pipeline design can calculate multiple instances

of the UKF very quickly, for a single instance of the UKF, the calculation is very

similar to the Parallel design.

10 20 30 40 50 60 70 80 90 100

Augmented State Variables (M)

0

0.5

1

1.5

2

2.5

La
te

nc
y

(
s)

104 Serial

total
predict
update

0.049M2.84

0.027M2.88

0.024M2.78

Figure 5.5: Latency vs. augmented state variables for the Serial design

A graph of the latency versus the number of augmented state variables for the Serial

design can be seen in Figure 5.5. Power series �ts for each of the parts can also be

139

5.6 Latency: Augmented state variables

seen, each of which are roughly O(M2.8). The Cholesky Decomposition in both steps,

as well as the large matrix multiplication for sigma points generation, dominate the

execution time, especially as the state vector gets larger. The Serial design makes

no attempt to really accelerate the UKF over sequential microprocessor-based imple-

mentations as it aims to be used within fault-tolerant SoC systems rather than for

performance computing; an analysis of the time complexity for microprocessor-based

UKFs by Holmes et al. (2009) (with thousands of state variables in fact) notes a time

complexity of O(M2.8) which is in agreement with the results presented here.

A graph of the latency of each step versus the number of augmented state variables for

the 5 PE case can been seen in Figure 5.6 and for the 10 PE case in Figure 5.7. The

number of augmented state variables was capped at a much lower level compared to

Figure 5.5 in order to show some of the small e�ects of the processing elements more

clearly. In both cases, and as seen in the previous implementations, the sig_gen step

takes the longest out of the three steps. The increase in the sig_gen step's latency

also rises faster than the other two steps.

10 15 20 25 30 35 40

Augmented State Variables (M)

0

100

200

300

400

500

600

La
te

nc
y

(
s)

5 PE

total
sig_gen
predict
update

0.13M2.26

0.060M2.32

0.017M2.20

0.060M2.19

Figure 5.6: Latency vs. augmented state variables for the Parallel design (5 PE)

140

5.6 Latency: Augmented state variables

10 12 14 16 18 20 22 24 26 28 30

Augmented State Variables (M)

0

50

100

150

200

250

La
te

nc
y

(
s)

10 PE

total
sig_gen
predict
update

0.023M2.03

0.012M2.04

0.027M2.00

0.086M2.01

Figure 5.7: Latency vs. augmented state variables for the Parallel design (10 PE)

Small dips in the overall latency can be seen in both cases. This is because the

parallelisation scheme of many of the modules discussed in Section 3.3 is most e�cient

when the number of processing elements is some multiple of the size of the matrix

being calculated. For example, consider the matrix multiply-add module described

in Section 3.3.2; if the row size of the matrix to be multiplied is 10, and 10 processing

elements are used, then the calculation only required one iteration as each processing

element calculates one row. If the row size of the matrix to be multiplied is 11-20,

then the number of iterations necessary is 2. Thus, for matrices of size 11-19, the

module is now somewhat ine�cient, since not all processing elements are used every

iteration. Going back to Figure 5.6, the small dips can be seen at every multiple of

5 for the total latency and the sig_gen curves. This is likely because of the large

matrix multiply-add during the sig_gen step. The dips are less pronounced in the

update step and negligible in the predict step; however, the predict step already

has comparatively low latency. In Figure 5.7, it can be seen that although there is a

very obvious dip at M = 20, after that the curves are more or less smooth; for larger

141

5.6 Latency: Augmented state variables

numbers of processing elements this e�ect seems to become negligible.

For lower numbers of the augmented state variables, the extra processing elements

are able to reduce the time complexity of the UKF. The 10 processing element case

is reduced to quadratic complexity, but the 5 processing element case is only reduced

to ≈ O(M2.3). As the augmented state vector grows much larger than the number

of processing elements, the impact of the parallelisation becomes smaller. Figure

5.8 shows the 10 processing element case for much larger augmented state vectors

where the complexity at O(M2.5) is not quite as poor as the Serial design. Figure 5.9

shows the latency for the 20 processing element case with two power series �ts for

augmented state variables lower and higher than the number of processing elements.

There is an increase in complexity as the augmented state vector passes the 20 mark

and at these low numbers of augmented state variables (compared to the number of

processing elements), the complexity itself is even less than quadratic.

10 20 30 40 50 60 70 80 90 100

Augmented State Variables (M)

0

500

1000

1500

2000

2500

3000

3500

4000

La
te

nc
y

(
s)

10 PE

total
sig_gen
predict
update

0.043M2.47

0.026M2.46

0.042M2.47

0.014M2.49

Figure 5.8: Latency vs. augmented state variables for the Parallel design (10 PE)
(Large)

142

5.7 Summary

10 12 14 16 18 20 22 24 26 28 30

Augmented State Variables (M)

20

40

60

80

100

120

140

160

180

200

La
te

nc
y

(
s)

20 PE

total

1.156M1.45

0.440M1.78

Figure 5.9: Latency vs. augmented state variables for the Parallel design (20 PE)

5.7 Summary

This chapter analysed the implementation of the HW/SW codesign in detail. Im-

plementations for three example applications were presented: an expanded imple-

mentation of the nanosatellite application �rst described in Section 4.1, a theoretical

implementation which featured a large number of observation variables and an imple-

mentation where alternative parameterisation schemes for the number of PEs were

explored. Two additional analyses of the e�ect of the number of processing elements

and the e�ect of the number of augmented state variables on the latency of the IP

core were also given.

Implementation details, i.e. resource utilisation, power consumption and a timing

breakdown, were presented for each of the three example applications. The results

demonstrate the HW/SW codesign's �exibility by showing how a system designer

can trade resources for additional performance as desired. The two latency analyses

reinforce this idea, showing how the HW/SW codesign can be optimised further if

143

5.7 Summary

the system designer wishes to spend the extra time and e�ort. The �nal analysis

in particular shows that the HW/SW codesign scales no worse than a traditional

software UKF and potentially, if su�cient resources are spent, scales much better.

Thus the proposed HW/SW codesign has been shown to be a �exible and scalable

implementation of the UKF, suitable for a generic state estimation library.

144

Chapter 6

Conclusion

6.1 Summary

In this thesis, a scalable, portable FPGA-based implementation of the Unscented

Kalman Filter was presented. The proposed design balances development e�ort/complexity

with performance, combining the advantages of both the traditional software approach

and hardware approaches to create a library that system designers can easily use in

a potentially wide variety of applications.

Chapter 1 describes the issue at hand: an eagerness to accelerate the development

of autonomous systems creates a large demand for fast and accurate state estima-

tion, especially for aerospace applications, but a simultaneous desire to miniaturise

aerospace systems and minimise development e�ort, primarily driven by cost con-

cerns, leads to heavy constraints on computing power, electrical power and physical

space available on said systems. The traditional software approach has great porta-

bility between di�erent applications and comparatively simple development processes

but can have lacklustre performance; while the specialised hardware approach trades

a large increase in performance for long and expensive development. Instead, a hard-

ware/software codesign utilises the strengths of both.

Chapter 2 gives background into the Field Programmable Gate Array, the technologies

145

6.1 Summary

it is based on, its common development process and its viability in many applications,

including space (astronautic) applications. The potential to use the FPGA to imple-

ment a System-on-Chip, where multiple `black boxes' or IP cores are implemented

together on a single chip to form a computing system with diverse functionality, is

explored including a brief introduction to intra-chip communication and, of course,

the idea of hardware/software codesign. The `workhorse' of state estimation, the

Extended Kalman Filter, and its shortcomings is described before introducing a po-

tential replacement in the Unscented Kalman Filter. Finally, existing attempts at

hardware or hardware/software Kalman �lters and its variants are detailed.

Chapter 3 presents the three variants of the proposed codesign. The Serial variant is a

straight translation of the UKF into hardware, forgoing the main bene�t of hardware �

namely, parallelism � in order to minimise resource usage and power consumption such

that it is an attractive option for inclusion in fault tolerance recon�gurable systems

or other SoCs. The Parallel variant does leverage the main bene�t of hardware, using

multiple parallel instances of the critical datapaths to accelerate performance with the

intent of being used as a coprocessor in high performance computing systems. The last

variant, Pipeline, adapts a common hardware abstraction to create a high throughput

IP core capable of calculating multiple independent UKFs extremely quickly.

Chapter 4 presents simulations of two example applications demonstrating the e�ec-

tiveness of the UKF and the proposed hardware/software codesign. The �rst applica-

tion simulates the attitude determination of a singular uncontrolled nanosatellite as

well as a constellation of �ve uncontrolled nanosatellites. The UKF is able to converge

quickly and maintain an accurate state estimate for the duration of the simulation.

The hardware/software codesign, using the same simulated datasets is shown to be

capable of completely replicating the UKF with no functionality issues. The Serial

and Parallel (2 PE) designs o�er a 1.8× and 2.4× speedup respectively, over a simi-

lar, purely software, implementation when simulating the singular nanosatellite. The

Pipeline (2 PE) design o�ers a 2.75× speedup when simulating the nanosatellite con-

stellation. The second application simulates the state estimation part of a monocular

Simultaneous Localisation and Mapping system on a small UAV. The UKF is able

146

6.2 Main contributions

to accurately estimate the UAV position as well as the maximum of three observed

landmarks for the duration of the simulation. The Serial design o�ers up to a 1.3×
speedup and the Parallel (2 PE) design o�ers up to a 1.7× speedup over a Matlab

implementation when three landmarks are being observed.

Chapter 5 presents implementation results for a variety of situations, including re-

source usage, power consumption and timing latency, demonstrating the �exibility of

the codesign library which allows for di�erent parameterisation schemes. The �rst

example application is the same nanosatellite application presented earlier with re-

sults for the Serial design and the 1, 2, 5, 10 PE cases for the Parallel and Pipeline

designs. The second application is a theoretical application where the number of ob-

servation variables are greater than the number of state variables in order to explore

any potential biases; results for the Serial design and the 1, 2, 5, 10 PE cases of the

Parallel and Pipeline designs are given. The �nal application is another theoretical

application where the number of processing elements per module is varied; four dif-

ferent parametermisation schemes for the Parallel design only are explored. A closer

look at the impact of the number of processing elements on the sig_gen, predict

and update steps in only the Parallel design is given; it is seen that the Cholesky

Decomposition largely does not bene�t from more processing elements and acts as a

drag on performance. Finally, the impact of the number of augmented state variables

on the latency of the design is examined. The Serial design is shown to have simi-

lar time complexity, O(M2.8), to microprocessor-based implementations of the UKF.

The Parallel design reduces to quadratic complexity for numbers of augmented state

variables comparable to the number of processing elements but tends to O(M2.5) for

larger numbers. For numbers of augmented state variables equal to the number of

processing elements or less, the complexity is below quadratic.

6.2 Main contributions

The main contribution of this thesis is the hardware/software (HW/SW) codesign of

the Unscented Kalman Filter (UKF). A need for fast and accurate state estimation

147

6.2 Main contributions

for small aerospace systems was identi�ed. The need for high performance in these

systems is o�set by the desire to limit overall costs which leads to a reduction in

available physical space, computing power and electrical power; it is strongly desired

to simplify development processes as well. Hardware approaches, such as using a Field

Programmable Gate Array (FPGA), can provide the level of performance required

and, if using a System-on-Chip, can adhere to severe physical and electrical power

constraints; however, FPGAs increase development complexity compared to software

approaches and so do not necessarily reduce costs.

A HW/SW codesign takes the performance gains of a hardware approach and com-

bines it with the �exibility and portability of a software approach. The portability

means the development costs of subsequent aerospace systems are reduced, potentially

back down to feasible levels. When the HW/SW codesign methodology is applied to

a proli�c state estimation algorithm in the UKF, the result is a high performance

state estimation implementation that is also widely applicable and could be used in

a generic state estimation library.

The proposed HW/SW codesign of the UKF described in this thesis splits the application-

speci�c and the non-application speci�c parts of the UKF algorithm and implements

the application-speci�c parts in software while implementing the non-application-

speci�c parts in hardware as a parameterisable IP core. This allows the HW/SW

codesign to make use of the simpler software development processes when moving to

a new application, while still enjoying hardware acceleration for the remainder of the

algorithm. The proposed HW/SW codesign includes three variations: the Serial de-

sign, the Parallel design and the Pipeline design. The Serial design is the most basic

and only provides a direct implementation of the UKF; the Serial design uses the

least amount of resources. The Parallel design makes use of parallelism in its major

datapaths to provide performance boosts; the Parallel design can use a low or high

amount of resources depending on the exact parameterisation scheme. The Pipeline

design makes use of top-level parallelism, in addition to parallelised datapaths, to

calculate multiple instances of the UKF at once; the Pipeline design uses the most

amount of resources. The overall theme of these variants is that a system designer

148

6.2 Main contributions

can choose the balance between resources used and performance as they desire. Thus,

the proposed HW/SW codesign is both a portable and scalable implementation of

the UKF.

The proposed HW/SW codesign is implemented in two illustrative example applica-

tions for validation. A nanosatellite application with two related situations, a single

nanosatellite and a nanosatellite constellation, is presented. Here, the UKF is part

of the attitude determination subsystem of the nanosatellite. The HW/SW codesign

is found to completely replicate the UKF with no functionality issues and provides

modest performance boosts over similar purely software implementations. The sec-

ond example application is the state estimation part within a Simultaneous Local-

isation and Mapping (SLAM) system on a small Unmanned Aerial Vehicle (UAV).

The HW/SW codesign once again provides modest performance boosts over purely

software implementations. These two example applications are representative of the

aerospace systems the HW/SW codesign is targeted at and they show the HW/SW

codesign does indeed boost performance while retaining portability.

A series of deeper analyses of the HW/SW codesign's physical implementation is also

presented. The HW/SW codesign is implemented for a variety of parameterisation

schemes in three example applications. The implementation of the nanosatellite appli-

cation used for validation is expanded, a theoretical application with a large number of

observation variables is implemented before, �nally, an application where the number

of processing elements (PEs) varies between modules is implemented. Two further

analyses on the e�ect of the number of processing elements and augmented state

variables on the latency of the IP core are given. These example applications and

analyses show the �exibility of the IP core, allowing the system designer to optimise

the performance of the IP core if they desire, but still providing adequate perfor-

mance if they don't. They also show the HW/SW codesign, at worst, scales as well

as an ordinary software implementation of the UKF but, at best, scales far better; the

choice is up to the system designer to use resources to gain additional performance.

Thus, this thesis describes a scalable, portable, FPGA-based implementation of the

UKF which makes use of HW/SW codesign techniques to provide a foundation for a

149

6.3 Future work

generic state estimation library.

6.3 Future work

The �rst area of future work should explore intra-chip communication technologies

and how to integrate the proposed design into a full SoC. As noted in Chapter 5,

one of the main areas of congestion in the design is the interaction between the

processing system and the IP core. Although the propagation of the sigma points

through the system models is not necessarily a long process, the writing and reading

of the sigma points and transformed sigma points to and from the IP core memory

bu�er is obviously highly dependant on the communication interface. In the examples

presented here, the general-purpose AXI4 port acted as somewhat of a hindrance,

resulting in the software part being the longest latency aspect of the design. However,

the communication method used may be dictated by other requirements in a SoC

implementation, so integration into a proper SoC with the goal of exploring the

e�ects of those requirements on the performance of the codesign is another potential

area of focus.

Whether within a SoC or standalone embedded system, implementation of the code-

sign for a `real' system, as opposed to the simulated systems presented here, could be

tested. Though care was taken to produce high �delity simulations, the nanosatel-

lite and SLAM applications presented are obviously only a starting point toward

more realistic implementations. Usage of the design within a predominantly COTS

nanosatellite computing system or trying to integrate an FPGA and the codesign

onto a small UAV to attempt hardware-in-loop simulations could be the next step for

future work.

Taking the system models and translating them into hardware is also a potential

option. Though this contradicts the design philosophy used throughout this thesis,

and forgoes many of its bene�ts, for certain applications where performance demands

are high, in particular where the Pipeline design may be useful, an interested designer

may be willing to spend the additional development e�ort. The IP core functions as

150

6.3 Future work

described as long as the appropriate control bits are set and valid data is placed in

the memory bu�er, regardless of what is on the other end of the bu�er. If, instead of

a communication interface, a secondary IP core implementing the system models was

attached, as long as that IP core also managed the control register, the UKF codesign

would still function as is. This means a designer would still save on development e�ort

overall, since most of the UKF is already implemented, but could squeeze even more

performance out of the hardware and potentially negate the largest source of latency.

151

References

Actel (2012). ProASIC3 FPGA Fabric User's Guide. Revision 4.
Altera (2016). Cyclone IV FPGA Device Family Overview. CYIV-51001-2.0.
Amiri, Kiarash, Joseph R. Cavallaro, Chris Dick, and Raghu Mysore Rao (2011).

�A High Throughput Con�gurable SDR Detector for Multi-user MIMO Wireless
Systems�. English. In: Journal of Signal Processing Systems 62.2, pp. 233�245.
issn: 1939-8018. doi: 10.1007/s11265-009-0360-5. url: http://dx.doi.
org/10.1007/s11265-009-0360-5.

ARM (2013). ARM AMBA AXI and ACE Protocol Speci�cation. Issue E.
Aung, Yan Lin, Siew-Kei Lam, and T. Srikanthan (2013). �Hardware-Software Code-

sign of EKF-Based Motor Control for Domain-Speci�c Recon�gurable Platform�.
In: Electronic System Design (ISED), 2013 International Symposium on, pp. 93�
97. doi: 10.1109/ISED.2013.25.

AVNet (2014). Zedboard Hardware User's Guide. v2.2.
Aysu, A., C. Patterson, and P. Schaumont (2013). �Low-cost and area-e�cient FPGA

implementations of lattice-based cryptography�. In: 2013 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pp. 81�86. doi:
10.1109/HST.2013.6581570.

Azarderakhsh, R. and A. Reyhani-Masoleh (2015). �Parallel and High-Speed Com-
putations of Elliptic Curve Cryptography Using Hybrid-Double Multipliers�. In:
IEEE Transactions on Parallel and Distributed Systems 26.6, pp. 1668�1677.
issn: 1045-9219. doi: 10.1109/TPDS.2014.2323062.

Bacon, David F, Rodric Rabbah, and Sunil Shukla (2013). �FPGA programming for
the masses�. In: Communications of the ACM 56.4, pp. 56�63.

Bahri, I., L. Idkhajine, E. Monmasson, and M.E.A. Benkhelifa (2013). �Optimal hard-
ware/software partitioning of a system on chip FPGA-based sensorless AC drive
current controller�. In:Mathematics and Computers in Simulation 90. ELECTRI-
MACS 2011 - PART I, pp. 145�161. issn: 0378-4754. doi: http://dx.doi.org/
10.1016/j.matcom.2012.06.008. url: http://www.sciencedirect.com/
science/article/pii/S0378475412001437.

Baklouti, M., Ph. Marquet, J.L. Dekeyser, and M. Abid (2015). �FPGA-based many-
core System-on-Chip design�. In:Microprocessors and Microsystems 39.4, pp. 302�
312. issn: 0141-9331. doi: http://dx.doi.org/10.1016/j.micpro.2015.

152

https://doi.org/10.1007/s11265-009-0360-5
http://dx.doi.org/10.1007/s11265-009-0360-5
http://dx.doi.org/10.1007/s11265-009-0360-5
https://doi.org/10.1109/ISED.2013.25
https://doi.org/10.1109/HST.2013.6581570
https://doi.org/10.1109/TPDS.2014.2323062
https://doi.org/http://dx.doi.org/10.1016/j.matcom.2012.06.008
https://doi.org/http://dx.doi.org/10.1016/j.matcom.2012.06.008
http://www.sciencedirect.com/science/article/pii/S0378475412001437
http://www.sciencedirect.com/science/article/pii/S0378475412001437
https://doi.org/http://dx.doi.org/10.1016/j.micpro.2015.03.007
https://doi.org/http://dx.doi.org/10.1016/j.micpro.2015.03.007

References

03.007. url: http://www.sciencedirect.com/science/article/pii/
S0141933115000320.

Becker, J., M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J. Luka (2007).
�Dynamic and Partial FPGA Exploitation�. In: Proceedings of the IEEE 95.2,
pp. 438�452. issn: 0018-9219. doi: 10.1109/JPROC.2006.888404.

Bergsman, P. (2003). �Xilinx FPGA blasted into orbit�. In: Xcell Journal 46, pp. 86�
88.

Biradar, R. G., A. Chatterjee, P. Mishra, and K. George (2015). �FPGA implemen-
tation of a multilayer Arti�cial Neural Network using System-on-Chip design
methodology�. In: 2015 International Conference on Cognitive Computing and
Information Processing(CCIP), pp. 1�6. doi: 10.1109/CCIP.2015.7100683.

Bonato, V., R. Peron, D.F. Wolf, J.A.M. de Holanda, E. Marques, and J.M.P. Cardoso
(2007). �An FPGA Implementation for a Kalman Filter with Application to Mo-
bile Robotics�. In: Industrial Embedded Systems, 2007. SIES '07. International
Symposium on, pp. 148�155. doi: 10.1109/SIES.2007.4297329.

Bonato, Vanderlei, Eduardo Marques, and George A. Constantinides (2009). �A Floating-
point Extended Kalman Filter Implementation for Autonomous Mobile Robots�.
English. In: Journal of Signal Processing Systems 56.1, pp. 41�50. issn: 1939-
8018. doi: 10.1007/s11265-008-0257-8. url: http://dx.doi.org/10.1007/
s11265-008-0257-8.

Bossuet, Lilian, Michael Grand, Lubos Gaspar, Viktor Fischer, and Guy Gogniat
(2013). �Architectures of Flexible Symmetric Key Crypto Engines&Mdash;a Sur-
vey: From Hardware Coprocessor to Multi-crypto-processor System on Chip�. In:
ACM Comput. Surv. 45.4, 41:1�41:32. issn: 0360-0300. doi: 10.1145/2501654.
2501655. url: http://doi.acm.org/10.1145/2501654.2501655.

Bouwmeester, J. and J. Guo (2010). �Survey of worldwide pico- and nanosatellite
missions, distributions and subsystem technology�. In: Acta Astronautica 67.7-
8, pp. 854�862. issn: 0094-5765. doi: http : / / dx . doi . org / 10 . 1016 / j .
actaastro.2010.06.004. url: http://www.sciencedirect.com/science/
article/pii/S0094576510001955.

Brzoza-Woch, R. and P. Nawrocki (2016). �FPGA-Based Web Services � In�nite
Potential or a Road to Nowhere?� In: IEEE Internet Computing 20.1, pp. 44�51.
issn: 1089-7801. doi: 10.1109/MIC.2015.23.

Ca�rey, M., K. Morgan, D. Roussel-Dupre, S. Robinson, A. Nelson, A. Salazar,
M. Wirthlin, W. Howes, and D. Richins (2009). �On-orbit �ight results from
the recon�gurable cibola �ight experiment satellite (CFESat)�. In: Field Pro-
grammable Custom Computing Machines, 2009. FCCM'09. 17th IEEE Sympo-
sium on. IEEE, pp. 3�10.

Chekired, F., A. Mellit, S.A. Kalogirou, and C. Larbes (2014). �Intelligent maximum
power point trackers for photovoltaic applications using FPGA chip: A compar-
ative study�. In: Solar Energy 101.Supplement C, pp. 83�99. issn: 0038-092X.
doi: https://doi.org/10.1016/j.solener.2013.12.026. url: http:
//www.sciencedirect.com/science/article/pii/S0038092X13005513.

153

https://doi.org/http://dx.doi.org/10.1016/j.micpro.2015.03.007
https://doi.org/http://dx.doi.org/10.1016/j.micpro.2015.03.007
http://www.sciencedirect.com/science/article/pii/S0141933115000320
http://www.sciencedirect.com/science/article/pii/S0141933115000320
https://doi.org/10.1109/JPROC.2006.888404
https://doi.org/10.1109/CCIP.2015.7100683
https://doi.org/10.1109/SIES.2007.4297329
https://doi.org/10.1007/s11265-008-0257-8
http://dx.doi.org/10.1007/s11265-008-0257-8
http://dx.doi.org/10.1007/s11265-008-0257-8
https://doi.org/10.1145/2501654.2501655
https://doi.org/10.1145/2501654.2501655
http://doi.acm.org/10.1145/2501654.2501655
https://doi.org/http://dx.doi.org/10.1016/j.actaastro.2010.06.004
https://doi.org/http://dx.doi.org/10.1016/j.actaastro.2010.06.004
http://www.sciencedirect.com/science/article/pii/S0094576510001955
http://www.sciencedirect.com/science/article/pii/S0094576510001955
https://doi.org/10.1109/MIC.2015.23
https://doi.org/https://doi.org/10.1016/j.solener.2013.12.026
http://www.sciencedirect.com/science/article/pii/S0038092X13005513
http://www.sciencedirect.com/science/article/pii/S0038092X13005513

References

Chen, R. and V. K. Prasanna (2016). �Accelerating Equi-Join on a CPU-FPGA Het-
erogeneous Platform�. In: 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 212�219. doi:
10.1109/FCCM.2016.62.

Chodowiec, Pawel and Kris Gaj (2003). �Very Compact FPGA Implementation of
the AES Algorithm�. In: Cryptographic Hardware and Embedded Systems - CHES
2003. Ed. by Colin D. Walter, ÇetinK. Koç, and Christof Paar. Vol. 2779. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 319�333. isbn: 978-
3-540-40833-8. doi: 10.1007/978-3-540-45238-6_26. url: http://dx.doi.
org/10.1007/978-3-540-45238-6_26.

Chu, P.P. (2008). FPGA prototyping by Verilog examples: Xilinx Spartan-3 version.
Wiley-Interscience.

Civera, J., A. J. Davison, and J. M. M. Montiel (2008). �Inverse Depth Parametriza-
tion for Monocular SLAM�. In: IEEE Transactions on Robotics 24.5, pp. 932�
945. issn: 1552-3098. doi: 10.1109/TRO.2008.2003276.

Compton, K. and S. Hauck (2002). �Recon�gurable computing: a survey of systems
and software�. In: ACM Computing Surveys (csuR) 34.2, pp. 171�210.

Contreras, L., S. Cruz, J. M. S. T. Motta, and C. H. Llanos (2015a). �Hardware
Architecture of the EKF Prediction Stage applied to mobile robot localization�.
In: 2015 IEEE 6th Latin American Symposium on Circuits Systems (LASCAS),
pp. 1�4. doi: 10.1109/LASCAS.2015.7250446.

Contreras, Luis, Sérgio Cruz, J. M. S. T. Motta, and Carlos H. Llanos (2015b). �Hard-
ware and Software Co-design for the EKF Applied to the Mobile Robotics Local-
ization Problem�. In: International Journal of Machine Learning and Computing
5.2, p. 101.

Crassidis, J. L., F. L. Markley, and Y. Cheng (2007). �Survey of nonlinear attitude
estimation methods�. In: Journal of Guidance Control and Dynamics 30.1, p. 12.

Crassidis, John L. and F. Landis Markley (2003). �Unscented �ltering for space-
craft attitude estimation�. In: Journal of guidance, control, and dynamics 26.4,
pp. 536�542.

Cruz, S., D.M. Munoz, M. Conde, C.H. Llanos, and G.A. Borges (2013). �FPGA
implementation of a sequential Extended Kalman Filter algorithm applied to
mobile robotics localization problem�. In: Circuits and Systems (LASCAS), 2013
IEEE Fourth Latin American Symposium on, pp. 1�4. doi: 10.1109/LASCAS.
2013.6519021.

Cummings, M. and S. Haruyama (1999). �FPGA in the software radio�. In: Commu-
nications Magazine, IEEE 37.2, pp. 108�112. issn: 0163-6804. doi: 10.1109/
35.747258.

Daoud, Luka, Dawid Zydek, and Henry Selvaraj (2014). �A Survey of High Level
Synthesis Languages, Tools, and Compilers for Recon�gurable High Performance
Computing�. In: Advances in Systems Science: Proceedings of the International
Conference on Systems Science 2013 (ICSS 2013). Ed. by Jerzy Swi¡tek, Adam
Grzech, Paweª Swi¡tek, and Jakub M. Tomczak. Cham: Springer International

154

https://doi.org/10.1109/FCCM.2016.62
https://doi.org/10.1007/978-3-540-45238-6_26
http://dx.doi.org/10.1007/978-3-540-45238-6_26
http://dx.doi.org/10.1007/978-3-540-45238-6_26
https://doi.org/10.1109/TRO.2008.2003276
https://doi.org/10.1109/LASCAS.2015.7250446
https://doi.org/10.1109/LASCAS.2013.6519021
https://doi.org/10.1109/LASCAS.2013.6519021
https://doi.org/10.1109/35.747258
https://doi.org/10.1109/35.747258

References

Publishing, pp. 483�492. isbn: 978-3-319-01857-7. doi: 10.1007/978-3-319-
01857-7_47. url: https://doi.org/10.1007/978-3-319-01857-7_47.

Davidson, J. (1993). �FPGA implementation of a recon�gurable microprocessor�. In:
Custom Integrated Circuits Conference, 1993., Proceedings of the IEEE 1993,
pp. 3.2.1�3.2.4. doi: 10.1109/CICC.1993.590366.

Dawood, A. S., S. J. Visser, and J. A. Williams (2002). �Recon�gurable FPGAS for
real time image processing in space�. In: Digital Signal Processing, 2002. DSP
2002. 2002 14th International Conference on. Vol. 2. IEEE, pp. 845�848.

Dimond, R., S. Racaniere, and O. Pell (2011). �Accelerating Large-Scale HPC Ap-
plications Using FPGAs�. In: Computer Arithmetic (ARITH), 2011 20th IEEE
Symposium on, pp. 191�192. doi: 10.1109/ARITH.2011.34.

Dumitriu, V., L. Kirischian, and V. Kirischain (2012). �A framework for adaptive
recon�gurable space-borne computing platforms for run-time self-recovery from
transient and permanent hardware faults�. In: Adaptive Hardware and Systems
(AHS), 2012 NASA/ESA Conference on, pp. 280�287. doi: 10.1109/AHS.2012.
6268663.

Durrant-Whyte, H. and Tim Bailey (2006). �Simultaneous localization and mapping:
part I�. In: Robotics Automation Magazine, IEEE 13.2, pp. 99�110. issn: 1070-
9932. doi: 10.1109/MRA.2006.1638022.

Dyken, Jason Van and José G. Delgado-Frias (2010). �FPGA schemes for mini-
mizing the power-throughput trade-o� in executing the Advanced Encryption
Standard algorithm�. In: Journal of Systems Architecture 56.2�3, pp. 116�123.
issn: 1383-7621. doi: 10.1016/j.sysarc.2009.12.001. url: http://www.
sciencedirect.com/science/article/pii/S1383762109000800.

Fiethe, B., F. Bubenhagen, T. Lange, H. Michalik, H. Michel, J. Woch, and J.
Hirzberger (2012). �Adaptive hardware by dynamic recon�guration for the So-
lar Orbiter PHI instrument�. In: Adaptive Hardware and Systems (AHS), 2012
NASA/ESA Conference on, pp. 31�37. doi: 10.1109/AHS.2012.6268666.

Flesch, G., D. Keymeulen, D. Dolman, C. Holyoake, and D. McKee (2017). �A System-
On-Chip platform for Earth and Planetary Laser Spectrometers�. In: 2017 IEEE
Aerospace Conference, pp. 1�12. doi: 10.1109/AERO.2017.7943935.

Fossati, L. and J. Ilstad (2011). �The future of embedded systems at ESA: To-
wards adaptability and recon�gurability�. In: Adaptive Hardware and Systems
(AHS), 2011 NASA/ESA Conference on, pp. 113�120. doi: 10 . 1109 / AHS .
2011.5963924.

Fraser, B.J, C.T Russell, J.D Means, F.W Menk, and C.L Waters (2000). �FedSat —
An Australian research microsatellite�. In: Advances in Space Research 25.7�8.
Proceedings of the DO.1 Symposium of COSPAR Scienti�c Commission D,
pp. 1325�1336. issn: 0273-1177. doi: 10.1016/S0273-1177(99)00641-9. url:
http://www.sciencedirect.com/science/article/pii/S0273117799006419.

Fritz, Michael, Sebastian Winter, Juergen Freund, Stefan P�ueger, Oliver Zeile, Jens
Eickho�, and Hans-Peter Roeser (2015). �Hardware-in-the-loop environment for
veri�cation of a small satellite's on-board software�. In: Aerospace Science and

155

https://doi.org/10.1007/978-3-319-01857-7_47
https://doi.org/10.1007/978-3-319-01857-7_47
https://doi.org/10.1007/978-3-319-01857-7_47
https://doi.org/10.1109/CICC.1993.590366
https://doi.org/10.1109/ARITH.2011.34
https://doi.org/10.1109/AHS.2012.6268663
https://doi.org/10.1109/AHS.2012.6268663
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1016/j.sysarc.2009.12.001
http://www.sciencedirect.com/science/article/pii/S1383762109000800
http://www.sciencedirect.com/science/article/pii/S1383762109000800
https://doi.org/10.1109/AHS.2012.6268666
https://doi.org/10.1109/AERO.2017.7943935
https://doi.org/10.1109/AHS.2011.5963924
https://doi.org/10.1109/AHS.2011.5963924
https://doi.org/10.1016/S0273-1177(99)00641-9
http://www.sciencedirect.com/science/article/pii/S0273117799006419

References

Technology 47, pp. 388�395. issn: 1270-9638. doi: http://dx.doi.org/10.
1016/j.ast.2015.09.020. url: http://www.sciencedirect.com/science/
article/pii/S1270963815002783.

García, Gabriel J., Carlos A. Jara, Jorge Pomares, Aiman Alabdo, Lucas M. Poggi,
and Fernando Torres (2014). �A Survey on FPGA-Based Sensor Systems: To-
wards Intelligent and Recon�gurable Low-Power Sensors for Computer Vision,
Control and Signal Processing�. In: Sensors 14.4, pp. 6247�6278. issn: 1424-8220.
doi: 10.3390/s140406247. url: http://www.mdpi.com/1424-8220/14/4/
6247.

Gelb, Arthur (1974). Applied optimal estimation. MIT press.
Ghallab, Y. H. and Y. Ismail (2014). �CMOS Based Lab-on-a-Chip: Applications,

Challenges and Future Trends�. In: IEEE Circuits and Systems Magazine 14.2,
pp. 27�47. issn: 1531-636X. doi: 10.1109/MCAS.2014.2314264.

El-Ghazawi, T., E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and D. Buell (2008).
�The promise of high-performance recon�gurable computing�. In: Computer 41.2,
pp. 69�76.

Giannitrapani, A., N. Ceccarelli, F. Scortecci, and A. Garulli (2011). �Comparison of
EKF and UKF for Spacecraft Localization via Angle Measurements�. In: IEEE
Transactions on Aerospace and Electronic Systems 47.1, pp. 75�84. issn: 0018-
9251. doi: 10.1109/TAES.2011.5705660.

Golub, Gene H. and Charles F. Van Loan (1996). Matrix computations. Third. Balti-
more: Johns Hopkins University Press.

Gomperts, A., A. Ukil, and F. Zur�uh (2011). �Development and Implementation
of Parameterized FPGA-Based General Purpose Neural Networks for Online
Applications�. In: Industrial Informatics, IEEE Transactions on 7.1, pp. 78�89.
issn: 1551-3203. doi: 10.1109/TII.2010.2085006.

Grillmayer, Georg, Albert Falke, and Hans-Peter Roeser (2005). �Technology Demon-
stration with the Micro-satellite Flying Laptop�. In: Small Satellites for Earth
Observation: Selected Proceedings of the 5th International Symposium of the In-
ternational Academy of Astronautics, Berlin, April 4-8 2005. De Gruyter, p. 419.

Guo, H., H. Chen, F. Xu, F. Wang, and G. Lu (2012). �Implementation of EKF
for Vehicle Velocities Estimation on FPGA�. In: Industrial Electronics, IEEE
Transactions on PP.99, p. 1. issn: 0278-0046. doi: 10.1109/TIE.2012.2208436.

Guo, Shuxiang, Shaowu Pan, Xiaoqiong Li, Liwei Shi, Pengyi Zhang, Ping Guo, and
Yanlin He (2017). �A system on chip-based real-time tracking system for am-
phibious spherical robots�. In: International Journal of Advanced Robotic Systems
14.4, p. 1729881417716559. doi: 10.1177/1729881417716559. eprint: https:
//doi.org/10.1177/1729881417716559. url: https://doi.org/10.1177/
1729881417716559.

Haddow, P.C. and A.M. Tyrrell (2011). �Challenges of evolvable hardware: past,
present and the path to a promising future�. In: Genetic Programming and Evolv-
able Machines 12.3, pp. 183�215.

156

https://doi.org/http://dx.doi.org/10.1016/j.ast.2015.09.020
https://doi.org/http://dx.doi.org/10.1016/j.ast.2015.09.020
http://www.sciencedirect.com/science/article/pii/S1270963815002783
http://www.sciencedirect.com/science/article/pii/S1270963815002783
https://doi.org/10.3390/s140406247
http://www.mdpi.com/1424-8220/14/4/6247
http://www.mdpi.com/1424-8220/14/4/6247
https://doi.org/10.1109/MCAS.2014.2314264
https://doi.org/10.1109/TAES.2011.5705660
https://doi.org/10.1109/TII.2010.2085006
https://doi.org/10.1109/TIE.2012.2208436
https://doi.org/10.1177/1729881417716559
https://doi.org/10.1177/1729881417716559
https://doi.org/10.1177/1729881417716559
https://doi.org/10.1177/1729881417716559
https://doi.org/10.1177/1729881417716559

References

Hamada, Tsuyoshi and Yuichiro Shibata (2013). �FPGA-Based HPRC Systems for
Scienti�c Applications�. In: High-Performance Computing Using FPGAs. Ed. by
Wim Vanderbauwhede and Khaled Benkrid. New York, NY: Springer New York,
pp. 367�387. isbn: 978-1-4614-1791-0. doi: 10.1007/978-1-4614-1791-0_12.
url: https://doi.org/10.1007/978-1-4614-1791-0_12.

Hartley, E. N., J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan, and G. A.
Constantinides (2014). �Predictive Control Using an FPGA With Application to
Aircraft Control�. In: IEEE Transactions on Control Systems Technology 22.3,
pp. 1006�1017. issn: 1063-6536. doi: 10.1109/TCST.2013.2271791.

He, Chun, A. Papakonstantinou, and Deming Chen (2009). �A novel SoC architecture
on FPGA for ultra fast face detection�. In: Computer Design, 2009. ICCD 2009.
IEEE International Conference on, pp. 412�418. doi: 10.1109/ICCD.2009.
5413122.

Herbordt, M.C., T. VanCourt, Yongfeng Gu, B. Sukhwani, A. Conti, J. Model, and D.
Di Sabello (2007). �Achieving High Performance with FPGA-Based Computing�.
In: Computer 40.3, pp. 50�57. issn: 0018-9162. doi: 10.1109/MC.2007.79.

Hoang, Trang and Van Loi Nguyen (2012). �An E�cient FPGA Implementation of the
Advanced Encryption Standard Algorithm�. In: Computing and Communication
Technologies, Research, Innovation, and Vision for the Future (RIVF), 2012
IEEE RIVF International Conference on, pp. 1�4. doi: 10.1109/rivf.2012.
6169845.

Hodjat, A. and I. Verbauwhede (2004). �A 21.54 Gbits/s fully pipelined AES processor
on FPGA�. In: Field-Programmable Custom Computing Machines, 2004. FCCM
2004. 12th Annual IEEE Symposium on, pp. 308�309. doi: 10.1109/FCCM.
2004.1.

Holmes, S.A., G. Klein, and D.W. Murray (2009). �An O(N2) Square Root Unscented
Kalman Filter for Visual Simultaneous Localization and Mapping�. In: Pattern
Analysis and Machine Intelligence, IEEE Transactions on 31.7, pp. 1251�1263.
issn: 0162-8828. doi: 10.1109/TPAMI.2008.189.

Honegger, D., H. Oleynikova, and M. Pollefeys (2014). �Real-time and low latency
embedded computer vision hardware based on a combination of FPGA and mo-
bile CPU�. In: 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 4930�4935. doi: 10.1109/IROS.2014.6943263.

Hopson, B., K. Benkrid, D. Keymeulen, and N. Aranki (2012). �Real-time CCSDS
lossless adaptive hyperspectral image compression on parallel GPGPU amp;
multicore processor systems�. In: Adaptive Hardware and Systems (AHS), 2012
NASA/ESA Conference on, pp. 107�114. doi: 10.1109/AHS.2012.6268637.

Huang, G.P., AI Mourikis, and S.I Roumeliotis (2013). �A Quadratic-Complexity
Observability-Constrained Unscented Kalman Filter for SLAM�. In: Robotics,
IEEE Transactions on 29.5, pp. 1226�1243. issn: 1552-3098. doi: 10.1109/
TRO.2013.2267991.

Huang, Guoquan P., AI Mourikis, and S.I Roumeliotis (2009). �On the complexity and
consistency of UKF-based SLAM�. In: Robotics and Automation, 2009. ICRA

157

https://doi.org/10.1007/978-1-4614-1791-0_12
https://doi.org/10.1007/978-1-4614-1791-0_12
https://doi.org/10.1109/TCST.2013.2271791
https://doi.org/10.1109/ICCD.2009.5413122
https://doi.org/10.1109/ICCD.2009.5413122
https://doi.org/10.1109/MC.2007.79
https://doi.org/10.1109/rivf.2012.6169845
https://doi.org/10.1109/rivf.2012.6169845
https://doi.org/10.1109/FCCM.2004.1
https://doi.org/10.1109/FCCM.2004.1
https://doi.org/10.1109/TPAMI.2008.189
https://doi.org/10.1109/IROS.2014.6943263
https://doi.org/10.1109/AHS.2012.6268637
https://doi.org/10.1109/TRO.2013.2267991
https://doi.org/10.1109/TRO.2013.2267991

References

'09. IEEE International Conference on, pp. 4401�4408. doi: 10.1109/ROBOT.
2009.5152793.

Huber, F., P. Behr, HP Röser, and S. Pletner (2007). �FPGA based on-board com-
puter system for the Flying Laptop micro-satellite�. In: Proceedings of the Data
System in Aerospace Conference, SP-638, ESA, Naples.

Huebner, M., T. Becker, and J. Becker (2004). �Real-time LUT-based network topolo-
gies for dynamic and partial FPGA self-recon�guration�. In: Integrated Circuits
and Systems Design, 2004. SBCCI 2004. 17th Symposium on, pp. 28�32. doi:
10.1109/SBCCI.2004.240972.

Idkhajine, L., E. Monmasson, and A. Maalouf (2012). �Fully FPGA-Based Sensorless
Control for Synchronous AC Drive Using an Extended Kalman Filter�. In: Indus-
trial Electronics, IEEE Transactions on 59.10, pp. 3908�3918. issn: 0278-0046.
doi: 10.1109/TIE.2012.2189533.

Iturbe, X., K. Benkrid, T. Arslan, Chuan Hong, A.T. Erdogan, and I. Martinez (2011).
�Enabling FPGAs for future deep space exploration missions: Improving fault-
tolerance and computation density with R3TOS�. In: Adaptive Hardware and
Systems (AHS), 2011 NASA/ESA Conference on, pp. 104�112. doi: 10.1109/
AHS.2011.5963923.

Jafarzadeh, S., C. Lascu, and M.S. Fadali (2012). �State Estimation of Induction
Motor Drives Using the Unscented Kalman Filter�. In: Industrial Electronics,
IEEE Transactions on 59.11, pp. 4207�4216. issn: 0278-0046. doi: 10.1109/
TIE.2011.2174533.

Jones, D.H., A. Powell, C. Bouganis, and P. Y K Cheung (2010). �GPU Versus FPGA
for High Productivity Computing�. In: Field Programmable Logic and Applica-
tions (FPL), 2010 International Conference on, pp. 119�124. doi: 10.1109/
FPL.2010.32.

Julier, S.J. (2003). �The spherical simplex unscented transformation�. In: American
Control Conference, 2003. Proceedings of the 2003. Vol. 3, 2430�2434 vol.3. doi:
10.1109/ACC.2003.1243439.

Julier, S.J. and J.K. Uhlmann (1997). �A new extension of the Kalman �lter to non-
linear systems�. In: Int. Symp. Aerospace/Defense Sensing, Simul. and Controls.
Vol. 3, p. 26.

� (2004). �Unscented �ltering and nonlinear estimation�. In: Proceedings of the
IEEE 92.3, pp. 401�422.

Jung, S.L., M.Y. Chang, J.Y. Jyang, L.C. Yeh, and Y.Y. Tzou (1999). �Design and
implementation of an FPGA-based control IC for AC-voltage regulation�. In:
Power Electronics, IEEE Transactions on 14.3, pp. 522�532.

Kalman, Rudolph Emil (1960). �A new approach to linear �ltering and prediction
problems�. In: Journal of Basic Engineering 82.1, pp. 35�45.

Kandepu, Rambabu, Bjarne Foss, and Lars Imsland (2008). �Applying the unscented
Kalman �lter for nonlinear state estimation�. In: Journal of Process Control
18.7�8, pp. 753�768. issn: 0959-1524. doi: 10.1016/j.jprocont.2007.11.004.
url: http://www.sciencedirect.com/science/article/pii/S0959152407001655.

158

https://doi.org/10.1109/ROBOT.2009.5152793
https://doi.org/10.1109/ROBOT.2009.5152793
https://doi.org/10.1109/SBCCI.2004.240972
https://doi.org/10.1109/TIE.2012.2189533
https://doi.org/10.1109/AHS.2011.5963923
https://doi.org/10.1109/AHS.2011.5963923
https://doi.org/10.1109/TIE.2011.2174533
https://doi.org/10.1109/TIE.2011.2174533
https://doi.org/10.1109/FPL.2010.32
https://doi.org/10.1109/FPL.2010.32
https://doi.org/10.1109/ACC.2003.1243439
https://doi.org/10.1016/j.jprocont.2007.11.004
http://www.sciencedirect.com/science/article/pii/S0959152407001655

References

Kestur, S., J. D. Davis, and O. Williams (2010). �BLAS Comparison on FPGA,
CPU and GPU�. In: 2010 IEEE Computer Society Annual Symposium on VLSI,
pp. 288�293. doi: 10.1109/ISVLSI.2010.84.

Kim, Chanki, R. Sakthivel, and Wan Kyun Chung (2008). �Unscented FastSLAM:
A Robust and E�cient Solution to the SLAM Problem�. In: Robotics, IEEE
Transactions on 24.4, pp. 808�820. issn: 1552-3098. doi: 10.1109/TRO.2008.
924946.

Kim, Daijin (2000). �An implementation of fuzzy logic controller on the recon�gurable
FPGA system�. In: Industrial Electronics, IEEE Transactions on 47.3, pp. 703�
715. issn: 0278-0046. doi: 10.1109/41.847911.

Kish, F., V. Lal, P. Evans, S. W. Corzine, M. Ziari, T. Butrie, M. Re�e, H. S. Tsai, A.
Dentai, J. Pleumeekers, M. Missey, M. Fisher, S. Murthy, R. Salvatore, P. Samra,
S. Demars, N. Kim, A. James, A. Hosseini, P. Studenkov, M. Lauermann, R.
Going, M. Lu, J. Zhang, J. Tang, J. Bostak, T. Vallaitis, M. Kuntz, D. Pavinski,
A. Karanicolas, B. Behnia, D. Engel, O. Khayam, N. Modi, M. R. Chitgarha,
P. Mertz, W. Ko, R. Maher, J. Osenbach, J. T. Rahn, H. Sun, K. T. Wu, M.
Mitchell, and D. Welch (2018). �System-on-Chip Photonic Integrated Circuits�.
In: IEEE Journal of Selected Topics in Quantum Electronics 24.1, pp. 1�20. issn:
1077-260X. doi: 10.1109/JSTQE.2017.2717863.

Kowalczyk, Marcin and Tomasz Kryjak (2017). �Object Tracking With the Use of
a Moving Camera Implemented in Heterogeneous Zynq System on Chip�. In:
Trends in Advanced Intelligent Control, Optimization and Automation: Proceed-
ings of KKA 2017�The 19th Polish Control Conference, Kraków, Poland, June
18�21, 2017. Ed. by Wojciech Mitkowski, Janusz Kacprzyk, Krzysztof Oprz¦d-
kiewicz, and Paweª Skruch. Cham: Springer International Publishing, pp. 354�
363. isbn: 978-3-319-60699-6. doi: 10.1007/978-3-319-60699-6_34. url:
https://doi.org/10.1007/978-3-319-60699-6_34.

Krach, F., B. Frackelton, J. Carletta, and R. Veillette (2003). �FPGA-based imple-
mentation of digital control for a magnetic bearing�. In: 2003 American Control
Conference, pp. 1080�1085.

Kumar, S., A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,
and A. Hemani (2002). �A network on chip architecture and design methodology�.
In: VLSI, 2002. Proceedings. IEEE Computer Society Annual Symposium on,
pp. 105�112. doi: 10.1109/ISVLSI.2002.1016885.

Kumar, Vinay B.Y., Siddharth Joshi, Sachin B. Patkar, and H. Narayanan (2010).
�FPGA Based High Performance Double-Precision Matrix Multiplication�. En-
glish. In: International Journal of Parallel Programming 38.3-4, pp. 322�338.
issn: 0885-7458. doi: 10.1007/s10766-010-0131-8. url: http://dx.doi.
org/10.1007/s10766-010-0131-8.

Kuon, I., R. Tessier, and J. Rose (2008). �Fpga architecture: Survey and challenges�.
In: Foundations and Trends R© in Electronic Design Automation 2.2, pp. 135�253.

Kurt-Yavuz, Z. and S. Yavuz (2012). �A comparison of EKF, UKF, FastSLAM2.0, and
UKF-based FastSLAM algorithms�. In: Intelligent Engineering Systems (INES),

159

https://doi.org/10.1109/ISVLSI.2010.84
https://doi.org/10.1109/TRO.2008.924946
https://doi.org/10.1109/TRO.2008.924946
https://doi.org/10.1109/41.847911
https://doi.org/10.1109/JSTQE.2017.2717863
https://doi.org/10.1007/978-3-319-60699-6_34
https://doi.org/10.1007/978-3-319-60699-6_34
https://doi.org/10.1109/ISVLSI.2002.1016885
https://doi.org/10.1007/s10766-010-0131-8
http://dx.doi.org/10.1007/s10766-010-0131-8
http://dx.doi.org/10.1007/s10766-010-0131-8

References

2012 IEEE 16th International Conference on, pp. 37�43. doi: 10.1109/INES.
2012.6249866.

Kuwahara, T., F. Böhringer, A. Falke, J. Eickho�, F. Huber, and H.P. Röser (2009).
�FPGA-based operational concept and payload data processing for the Flying
Laptop satellite�. In: Acta Astronautica 65.11, pp. 1616�1627.

Lacey, G., G. W. Taylor, and S. Areibi (2016). �Deep Learning on FPGAs: Past,
Present, and Future�. In: ArXiv e-prints. arXiv: 1602.04283 [cs.DC].

Lambert, C., T. Kalganova, and E. Stomeo (2009). �FPGA-based systems for evolv-
able hardware�. In: International Journal of Electrical, Computer, and Systems
Engineering 3.1, pp. 62�68.

Ledesma-Carrillo, L.M., E. Cabal-Yepez, R. de J Romero-Troncoso, A. Garcia-Perez,
R.A. Osornio-Rios, and T.D. Carozzi (2011). �Recon�gurable FPGA-Based Unit
for Singular Value Decomposition of Large m x n Matrices�. In: Recon�gurable
Computing and FPGAs (ReConFig), 2011 International Conference on, pp. 345�
350. doi: 10.1109/ReConFig.2011.77.

Lehtoranta, I., E. Salminen, A. Kulmala, M. Hannikainen, and T.D. Hamalainen
(2005). �A parallel MPEG-4 encoder for FPGA based multiprocessor SoC�. In:
Field Programmable Logic and Applications, 2005. International Conference on,
pp. 380�385. doi: 10.1109/FPL.2005.1515751.

López, B., J. Valverde, E. de la Torre, and T. Riesgo (2014). �Power-aware multi-
objective evolvable hardware system on an FPGA�. In: 2014 NASA/ESA Con-
ference on Adaptive Hardware and Systems (AHS), pp. 61�68. doi: 10.1109/
AHS.2014.6880159.

Maheshwarappa, M. R., M. D. J. Bowyer, and C. P. Bridges (2017). �Improvements
in CPU FPGA Performance for Small Satellite SDR Applications�. In: IEEE
Transactions on Aerospace and Electronic Systems 53.1, pp. 310�322. issn: 0018-
9251. doi: 10.1109/TAES.2017.2650320.

Al-Mahmood, Ali and Michael Opoku Agyeman (2017). �A Study of FPGA-based
System-on-Chip Designs for Real-Time Industrial Application�. In: International
Journal of Computer Applications 163.6, pp. 9�19.

Michell, G. De and R. K. Gupta (1997). �Hardware/software co-design�. In: Proceed-
ings of the IEEE 85.3, pp. 349�365. issn: 0018-9219. doi: 10.1109/5.558708.

Monmasson, E. and M.N. Cirstea (2007). �FPGA Design Methodology for Industrial
Control Systems � A Review�. In: Industrial Electronics, IEEE Transactions on
54.4, pp. 1824�1842. issn: 0278-0046. doi: 10.1109/TIE.2007.898281.

Nørgaard, Magnus, Niels K. Poulsen, and Ole Ravn (2000). �New developments in
state estimation for nonlinear systems�. In: Automatica 36.11, pp. 1627�1638.
issn: 0005-1098. doi: http : / / dx . doi . org / 10 . 1016 / S0005 - 1098(00)

00089- 3. url: http://www.sciencedirect.com/science/article/pii/
S0005109800000893.

Oetken, A., S. Wildermann, J. Teich, and D. Koch (2010). �A Bus-Based SoC Ar-
chitecture for Flexible Module Placement on Recon�gurable FPGAs�. In: Field

160

https://doi.org/10.1109/INES.2012.6249866
https://doi.org/10.1109/INES.2012.6249866
http://arxiv.org/abs/1602.04283
https://doi.org/10.1109/ReConFig.2011.77
https://doi.org/10.1109/FPL.2005.1515751
https://doi.org/10.1109/AHS.2014.6880159
https://doi.org/10.1109/AHS.2014.6880159
https://doi.org/10.1109/TAES.2017.2650320
https://doi.org/10.1109/5.558708
https://doi.org/10.1109/TIE.2007.898281
https://doi.org/http://dx.doi.org/10.1016/S0005-1098(00)00089-3
https://doi.org/http://dx.doi.org/10.1016/S0005-1098(00)00089-3
http://www.sciencedirect.com/science/article/pii/S0005109800000893
http://www.sciencedirect.com/science/article/pii/S0005109800000893

References

Programmable Logic and Applications (FPL), 2010 International Conference on,
pp. 234�239. doi: 10.1109/FPL.2010.54.

Pang, L., M. Zhao, and Y. d. Luo (2014). �A high performance system-on-chip archi-
tecture for digital wideband radar receiver�. In: 2014 12th International Confer-
ence on Signal Processing (ICSP), pp. 2106�2109. doi: 10.1109/ICOSP.2014.
7015366.

Patwardhan, Sachin C., Shankar Narasimhan, Prakash Jagadeesan, Bhushan Gopaluni,
and Sirish L. Shah (2012). �Nonlinear Bayesian state estimation: A review of re-
cent developments�. In: Control Engineering Practice 20.10. 4th Symposium on
Advanced Control of Industrial Processes (ADCONIP), pp. 933�953. issn: 0967-
0661. doi: http://dx.doi.org/10.1016/j.conengprac.2012.04.003. url:
http://www.sciencedirect.com/science/article/pii/S0967066112000871.

Perea, Laura, Jonathan How, Louis Breger, and Pedro Elosegui (2007). �Nonlinearity
in sensor fusion: divergence issues in EKF, modi�ed truncated GSF, and UKF�.
In: AIAA Guidance, Navigation and Control Conference and Exhibit, p. 6514.

St-Pierre, M. and D. Gingras (2004). �Comparison between the unscented Kalman
�lter and the extended Kalman �lter for the position estimation module of an
integrated navigation information system�. In: IEEE Intelligent Vehicles Sympo-
sium, 2004, pp. 831�835. doi: 10.1109/IVS.2004.1336492.

Prasad, E. L., A. R. Reddy, and M. N. G. Prasad (2016). �Performance comparison of
Network on Chip methods�. In: 2016 Online International Conference on Green
Engineering and Technologies (IC-GET), pp. 1�8. doi: 10.1109/GET.2016.
7916861.

Qiu, Jiantao, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng
Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong Yang (2016).
�Going Deeper with Embedded FPGA Platform for Convolutional Neural Net-
work�. In: Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. FPGA '16. Monterey, California, USA: ACM,
pp. 26�35. isbn: 978-1-4503-3856-1. doi: 10 . 1145 / 2847263 . 2847265. url:
http://doi.acm.org/10.1145/2847263.2847265.

Quinchia, A.G. and C. Ferrer (2011). �A low-cost GPS&INS integrated system based
on a FPGA platform�. In: Localization and GNSS (ICL-GNSS), 2011 Interna-
tional Conference on, pp. 152�157. doi: 10.1109/ICL-GNSS.2011.5955277.

Ramchandani, Varun, Kranthi Pamarthi, and Shubhajit Roy Chowdhury (2012).
�Comparative Study of Maximum Power Point Tracking Using Linear Kalman
Filter & Unscented Kalman Filter for Solar Photovoltaic Array on Field Pro-
grammable Gate Array�. In: International Journal on Smart Sensing & Intelli-
gent Systems 5.3.

Rhudy, Matthew, Yu Gu, Jason Gross, and Marcello R Napolitano (2012). �Evaluation
of matrix square root operations for UKF within a UAV GPS/INS sensor fusion
application�. In: International Journal of Navigation and Observation 2011.

Rossi, D.L., V. Bonato, E. Marques, and J.M. Gago Pontes de Brito Lima (2011). �A
PID Controller Applied to the Gain Control of a CMOS Camera Using Recon�g-

161

https://doi.org/10.1109/FPL.2010.54
https://doi.org/10.1109/ICOSP.2014.7015366
https://doi.org/10.1109/ICOSP.2014.7015366
https://doi.org/http://dx.doi.org/10.1016/j.conengprac.2012.04.003
http://www.sciencedirect.com/science/article/pii/S0967066112000871
https://doi.org/10.1109/IVS.2004.1336492
https://doi.org/10.1109/GET.2016.7916861
https://doi.org/10.1109/GET.2016.7916861
https://doi.org/10.1145/2847263.2847265
http://doi.acm.org/10.1145/2847263.2847265
https://doi.org/10.1109/ICL-GNSS.2011.5955277

References

urable Computing�. In: Recon�gurable Computing and FPGAs (ReConFig), 2011
International Conference on, pp. 141�145. doi: 10.1109/ReConFig.2011.2.

Saggese, G.P., A. Mazzeo, N. Mazzocca, and A.G.M. Strollo (2003). �An FPGA-
Based Performance Analysis of the Unrolling, Tiling, and Pipelining of the AES
Algorithm�. In: Field Programmable Logic and Application. Ed. by Peter Cheung
and GeorgeA. Constantinides. Vol. 2778. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 292�302. isbn: 978-3-540-40822-2. doi: 10.1007/
978-3-540-45234-8_29. url: http://dx.doi.org/10.1007/978-3-540-
45234-8_29.

Salvador, R., A. Otero, J. Mora, E. de la Torre, T. Riesgo, and L. Sekanina (2013).
�Self-Recon�gurable Evolvable Hardware System for Adaptive Image Process-
ing�. In: IEEE Transactions on Computers 62.8, pp. 1481�1493. issn: 0018-9340.
doi: 10.1109/TC.2013.78.

Schaeferling, M. and G. Kiefer (2011). �Object Recognition on a Chip: A Complete
SURF-Based System on a Single FPGA�. In: Recon�gurable Computing and FP-
GAs (ReConFig), 2011 International Conference on, pp. 49�54. doi: 10.1109/
ReConFig.2011.65.

Selva, Daniel and David Krejci (2012). �A survey and assessment of the capabili-
ties of Cubesats for Earth observation�. In: Acta Astronautica 74, pp. 50�68.
issn: 0094-5765. doi: http://dx.doi.org/10.1016/j.actaastro.2011.
12.014. url: http://www.sciencedirect.com/science/article/pii/
S0094576511003742.

Sharma, M. and D. Kumar (2012). �Wishbone bus Architecture � A Survey and
Comparison�. In: arXiv preprint arXiv:1205.1860.

Sharma, S., S. Kulkarn, V. Pujari, M. Vanitha, and P. Lakshminarsimhan (2010).
�FPGA Implementation of M-PSK Modulators for Satellite Communication�. In:
Advances in Recent Technologies in Communication and Computing (ARTCom),
2010 International Conference on. IEEE, pp. 136�139.

Simon, Dan (2006). Optimal state estimation: Kalman, H in�nity, and nonlinear
approaches. John Wiley & Sons.

Singh, Amit Kumar, Muhammad Sha�que, Akash Kumar, and Jörg Henkel (2013).
�Mapping on Multi/Many-core Systems: Survey of Current and Emerging Trends�.
In: Proceedings of the 50th Annual Design Automation Conference. DAC '13.
Austin, Texas: ACM, 1:1�1:10. isbn: 978-1-4503-2071-9. doi: 10.1145/2463209.
2488734. url: http://doi.acm.org/10.1145/2463209.2488734.

Siozios, K. and D. Soudris (2012). �A low-cost fault tolerant solution targeting to
commercial FPGA devices�. In: Adaptive Hardware and Systems (AHS), 2012
NASA/ESA Conference on, pp. 46�53. doi: 10.1109/AHS.2012.6268668.

Sitz, A., U. Schwarz, J. Kurths, and H. U. Voss (2002). �Estimation of parameters
and unobserved components for nonlinear systems from noisy time series�. In:
Phys. Rev. E 66 (1), p. 016210. doi: 10.1103/PhysRevE.66.016210. url:
http://link.aps.org/doi/10.1103/PhysRevE.66.016210.

162

https://doi.org/10.1109/ReConFig.2011.2
https://doi.org/10.1007/978-3-540-45234-8_29
https://doi.org/10.1007/978-3-540-45234-8_29
http://dx.doi.org/10.1007/978-3-540-45234-8_29
http://dx.doi.org/10.1007/978-3-540-45234-8_29
https://doi.org/10.1109/TC.2013.78
https://doi.org/10.1109/ReConFig.2011.65
https://doi.org/10.1109/ReConFig.2011.65
https://doi.org/http://dx.doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/http://dx.doi.org/10.1016/j.actaastro.2011.12.014
http://www.sciencedirect.com/science/article/pii/S0094576511003742
http://www.sciencedirect.com/science/article/pii/S0094576511003742
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1145/2463209.2488734
http://doi.acm.org/10.1145/2463209.2488734
https://doi.org/10.1109/AHS.2012.6268668
https://doi.org/10.1103/PhysRevE.66.016210
http://link.aps.org/doi/10.1103/PhysRevE.66.016210

References

Soh, J. and X. Wu (2012). �A FPGA-based approach to attitude determination for
nanosatellites�. In: Industrial Electronics and Applications (ICIEA), 2012 7th
IEEE Conference on, pp. 1700�1704. doi: 10.1109/ICIEA.2012.6360999.

� (2014). �A Modular FPGA-based Implementation of the Unscented Kalman Fil-
ter�. In: Adaptive Hardware and Systems (AHS), 2014 NASA/ESA Conference
on, pp. 127�134. doi: 10.1109/AHS.2014.6880168.

� (2017a). �A Five-Stage Pipeline Architecture of the Unscented Kalman Filter for
System-on-Chip Applications�. In: IEEE Transactions on Industrial Electronics
PP.99, pp. 1�1. issn: 0278-0046. doi: 10.1109/TIE.2017.2740844.

� (2017b). �An FPGA-Based Unscented Kalman Filter for System-On-Chip Ap-
plications�. In: IEEE Transactions on Circuits and Systems II: Express Briefs
64.4, pp. 447�451. issn: 1549-7747. doi: 10.1109/TCSII.2016.2565730.

Stratikopoulos, A., G. Chrysos, I. Papaefstathiou, and A. Dollas (2014). �HPC-gSpan:
An FPGA-based parallel system for frequent subgraph mining�. In: 2014 24th
International Conference on Field Programmable Logic and Applications (FPL),
pp. 1�4. doi: 10.1109/FPL.2014.6927441.

Teich, J. (2012). �Hardware/Software Codesign: The Past, the Present, and Predicting
the Future�. In: Proceedings of the IEEE 100.Special Centennial Issue, pp. 1411�
1430. issn: 0018-9219. doi: 10.1109/JPROC.2011.2182009.

Tertei, D. T., J. Piat, and M. Devy (2014). �FPGA design and implementation of a
matrix multiplier based accelerator for 3D EKF SLAM�. In: 2014 International
Conference on ReConFigurable Computing and FPGAs (ReConFig14), pp. 1�6.
doi: 10.1109/ReConFig.2014.7032523.

Todman, T.J., G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, and P.Y.K.
Cheung (2005). �Recon�gurable computing: architectures and design methods�.
In: Computers and Digital Techniques, IEE Proceedings- 152.2, pp. 193�207.

Tumeo, A., M. Monchiero, G. Palermo, F. Ferrandi, and D. Sciuto (2007). �A Pipelined
Fast 2D-DCT Accelerator for FPGA-based SoCs�. In: VLSI, 2007. ISVLSI '07.
IEEE Computer Society Annual Symposium on, pp. 331�336. doi: 10.1109/
ISVLSI.2007.13.

Tuna, G., K. Gulez, V.C. Gungor, and T. Veli Mumcu (2012). �Evaluations of di�erent
Simultaneous Localization and Mapping (SLAM) algorithms�. In: IECON 2012 -
38th Annual Conference on IEEE Industrial Electronics Society, pp. 2693�2698.
doi: 10.1109/IECON.2012.6389151.

Van Dyke, Matthew C., Jana L. Schwartz, and Christopher D. Hall (2004). �Unscented
Kalman �ltering for spacecraft attitude state and parameter estimation�. In:
Advances in the Astronautical Sciences 118.1, pp. 217�228.

Visser, S.J., A.S. Dawood, and J.A. Williams (2002). �FPGA based real-time adap-
tive �ltering for space applications�. In: Field-Programmable Technology, 2002.
(FPT). Proceedings. 2002 IEEE International Conference on, pp. 322�326. doi:
10.1109/FPT.2002.1188702.

Vladimirova, Tanya and Xiaofeng Wu (2007). �A Recon�gurable System-on-Chip Ar-
chitecture for Pico-Satellite Missions�. In: CPA. Ed. by Alistair A. McEwan,

163

https://doi.org/10.1109/ICIEA.2012.6360999
https://doi.org/10.1109/AHS.2014.6880168
https://doi.org/10.1109/TIE.2017.2740844
https://doi.org/10.1109/TCSII.2016.2565730
https://doi.org/10.1109/FPL.2014.6927441
https://doi.org/10.1109/JPROC.2011.2182009
https://doi.org/10.1109/ReConFig.2014.7032523
https://doi.org/10.1109/ISVLSI.2007.13
https://doi.org/10.1109/ISVLSI.2007.13
https://doi.org/10.1109/IECON.2012.6389151
https://doi.org/10.1109/FPT.2002.1188702

References

Steve A. Schneider, Wilson I�ll, and Peter H. Welch. Vol. 65. Concurrent Sys-
tems Engineering Series. IOS Press, pp. 493�502. isbn: 978-1-58603-767-3.

Wan, E.A. and R. Van Der Merwe (2000). �The unscented Kalman �lter for nonlinear
estimation�. In: Adaptive Systems for Signal Processing, Communications, and
Control Symposium 2000. AS-SPCC. The IEEE 2000. IEEE, pp. 153�158.

Wang, Hongjian, Guixia Fu, Juan Li, Zheping Yan, and Xinqian Bian (2013). �An
adaptive UKF based SLAMmethod for unmanned underwater vehicle�. In:Math-
ematical Problems in Engineering 2013.

Wang, J., S. Zhong, L. Yan, and Z. Cao (2014). �An Embedded System-on-Chip Ar-
chitecture for Real-time Visual Detection and Matching�. In: IEEE Transactions
on Circuits and Systems for Video Technology 24.3, pp. 525�538. issn: 1051-8215.
doi: 10.1109/TCSVT.2013.2280040.

Wang, Y., Q. Liu, and A. E. Fathy (2013). �CW and Pulse � Doppler Radar Processing
Based on FPGA for Human Sensing Applications�. In: IEEE Transactions on
Geoscience and Remote Sensing 51.5, pp. 3097�3107. issn: 0196-2892. doi: 10.
1109/TGRS.2012.2217975.

Wang, Yue, K. Cunningham, P. Nagvajara, and J. Johnson (2010). �Singular Value
Decomposition Hardware for MIMO: State of the Art and Custom Design�. In:
Recon�gurable Computing and FPGAs (ReConFig), 2010 International Confer-
ence on, pp. 400�405. doi: 10.1109/ReConFig.2010.62.

Wiklund, D. and Dake Liu (2003). �SoCBUS: switched network on chip for hard real
time embedded systems�. In: Proceedings International Parallel and Distributed
Processing Symposium. doi: 10.1109/IPDPS.2003.1213180.

Williams, J.A., A.S. Dawood, and S.J. Visser (2002). �FPGA-based cloud detection
for real-time onboard remote sensing�. In: Field-Programmable Technology, 2002.
(FPT). Proceedings. 2002 IEEE International Conference on, pp. 110�116. doi:
10.1109/FPT.2002.1188671.

Wittig, R.D. and P. Chow (1996). �OneChip: an FPGA processor with recon�gurable
logic�. In: FPGAs for Custom Computing Machines, 1996. Proceedings. IEEE
Symposium on, pp. 126�135. doi: 10.1109/FPGA.1996.564773.

Wolf, W. (2003). �A decade of hardware/software codesign�. In: Computer 36.4,
pp. 38�43. issn: 0018-9162. doi: 10.1109/MC.2003.1193227.

Wu, Haoyang, Tao Wang, Zhiwei Li, Boyan Ding, Xiaoguang Li, Tianfu Jiang, Jun
Liu, and Songwu Lu (2017). �GRT 2.0: An FPGA-based SDR Platform for Cog-
nitive Radio Networks�. In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. FPGA '17. Monterey, Califor-
nia, USA: ACM, pp. 294�295. isbn: 978-1-4503-4354-1. doi: 10.1145/3020078.
3021798. url: http://doi.acm.org/10.1145/3020078.3021798.

Xilinx (2010). Virtex-4 Family Overview. DS112 (v3.1).
� (2016). Zynq-7000 All Programmable SoC Technical Reference Manual. UG585

(v1.11).
� (2017a). Vivado Design Suite User Guide: Getting Started. UG910 (v2017.2).
� (2017b). Vivado Design Suite User Guide: Logic Simulation. UG900 (v2017.2).

164

https://doi.org/10.1109/TCSVT.2013.2280040
https://doi.org/10.1109/TGRS.2012.2217975
https://doi.org/10.1109/TGRS.2012.2217975
https://doi.org/10.1109/ReConFig.2010.62
https://doi.org/10.1109/IPDPS.2003.1213180
https://doi.org/10.1109/FPT.2002.1188671
https://doi.org/10.1109/FPGA.1996.564773
https://doi.org/10.1109/MC.2003.1193227
https://doi.org/10.1145/3020078.3021798
https://doi.org/10.1145/3020078.3021798
http://doi.acm.org/10.1145/3020078.3021798

References

Xilinx (2017c). Vivado Design Suite User Guide: Power Analysis and Optimisation.
UG907 (v2017.2).

Xiong, K., C. W. Chan, and H.Y. Zhang (2007). �Detection of satellite attitude sensor
faults using the UKF�. In: Aerospace and Electronic Systems, IEEE Transactions
on 43.2, pp. 480�491. issn: 0018-9251. doi: 10.1109/TAES.2007.4285348.

Yang, Depeng, G.D. Peterson, Husheng Li, and Junqing Sun (2009). �An FPGA Im-
plementation for Solving Least Square Problem�. In: Field Programmable Custom
Computing Machines, 2009. FCCM '09. 17th IEEE Symposium on, pp. 303�306.
doi: 10.1109/FCCM.2009.47.

Yang, G., L. Xie, M. Mäntysalo, X. Zhou, Z. Pang, L. D. Xu, S. Kao-Walter, Q.
Chen, and L. R. Zheng (2014). �A Health-IoT Platform Based on the Integration
of Intelligent Packaging, Unobtrusive Bio-Sensor, and Intelligent Medicine Box�.
In: IEEE Transactions on Industrial Informatics 10.4, pp. 2180�2191. issn: 1551-
3203. doi: 10.1109/TII.2014.2307795.

Yang, Shuangming, Bin Deng, Jiang Wang, Huiyan Li, Chen Liu, Chris Fietkiewicz,
and Kenneth A Loparo (2017). �E�cient implementation of a real-time estima-
tion system for thalamocortical hidden Parkinsonian properties�. In: Scienti�c
reports 7, p. 40152.

Ye, Zhuan, J. Grosspietsch, and G. Memik (2007). �An FPGA Based All-Digital
Transmitter with Radio Frequency Output for Software De�ned Radio�. In: De-
sign, Automation Test in Europe Conference Exhibition, 2007. DATE '07, pp. 1�
6. doi: 10.1109/DATE.2007.364561.

Zheng, D., T. Vladimirova, H. Tiggeler, and M. Sweeting (2001). �Recon�gurable
Single-Chip On-Board Computer for a Small Satellite�. In: 52nd International
Astronautical Congress, Toulouse, France.

Zhigang, Luo, Li Wei, Zhang Yan, and Guan Wei (2003). �A multi-standard SDR base
band platform�. In: Computer Networks and Mobile Computing, 2003. ICCNMC
2003. 2003 International Conference on, pp. 461�464. doi: 10.1109/ICCNMC.
2003.1243091.

Zhong, G., S. Niar, A. Prakash, and T. Mitra (2016). �Design of Multiple-Target
Tracking System on Heterogeneous System-on-Chip Devices�. In: IEEE Trans-
actions on Vehicular Technology 65.6, pp. 4802�4812. issn: 0018-9545. doi: 10.
1109/TVT.2016.2546957.

Zhou, Junchuan, Yuhong Yang, Jieying Zhang, Ezzaldeen Edwan, Otmar Lo�eld, and
Stefan Knedlik (2011). �Tightly-coupled INS/GPS using Quaternion-based Un-
scented Kalman �lter�. In: AIAA Guidance, Navigation and Control Conference.

Zhu, Jihan and Peter Sutton (2003). �FPGA Implementations of Neural Networks � A
Survey of a Decade of Progress�. In: Field Programmable Logic and Application.
Ed. by Peter Cheung and George A. Constantinides. Vol. 2778. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 1062�1066. isbn: 978-3-540-
40822-2. doi: 10.1007/978-3-540-45234-8_120. url: http://dx.doi.org/
10.1007/978-3-540-45234-8_120.

165

https://doi.org/10.1109/TAES.2007.4285348
https://doi.org/10.1109/FCCM.2009.47
https://doi.org/10.1109/TII.2014.2307795
https://doi.org/10.1109/DATE.2007.364561
https://doi.org/10.1109/ICCNMC.2003.1243091
https://doi.org/10.1109/ICCNMC.2003.1243091
https://doi.org/10.1109/TVT.2016.2546957
https://doi.org/10.1109/TVT.2016.2546957
https://doi.org/10.1007/978-3-540-45234-8_120
http://dx.doi.org/10.1007/978-3-540-45234-8_120
http://dx.doi.org/10.1007/978-3-540-45234-8_120

References

刘仙, 朱波, 刘会军, and 高庆 (2014). FPGA (�eld programmable gate array)-based
UKF (unscented Kalman �lter) algorithm and �ltering on brain dynamics model
by FPGA-based UKF algorithm. CN Patent CN104143017 A. url: http://www.
google.com/patents/CN104143017A?cl=en.

姬红兵, 李倩, 王玮, and 闫家铭 (2013). FPGA (Field Programmable Gata Array)-
based unscented kalman �lter system and parallel implementation method. CN
Patent CN101777887 B. url: http://www.google.com.na/patents/CN101777887B?
cl=en.

166

http://www.google.com/patents/CN104143017A?cl=en
http://www.google.com/patents/CN104143017A?cl=en
http://www.google.com.na/patents/CN101777887B?cl=en
http://www.google.com.na/patents/CN101777887B?cl=en

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations & Non-standard Terms
	Nomenclature
	1 Introduction
	1.1 Thesis motivations
	1.2 Thesis overview
	1.3 Summary of publications

	2 Background
	2.1 Field Programmable Gate Arrays
	2.1.1 FPGA technologies

	2.2 FPGA development
	2.2.1 Number Representation

	2.3 Applications of FPGAs
	2.3.1 Space Applications

	2.4 System-on-Chip
	2.4.1 Intra-chip communication
	2.4.2 Partial Runtime Reconfiguration
	2.4.3 Hardware/Software Codesign

	2.5 State Estimation
	2.5.1 Extended Kalman Filter
	2.5.2 Unscented Kalman Filter
	2.5.2.1 Spherical simplex sigma points

	2.5.3 Hardware Kalman Filters

	2.6 Summary

	3 HW/SW Codesign of the UKF
	3.1 Design overview
	3.1.1 Header generation

	3.2 Serial design
	3.2.1 State machine
	3.2.2 Predict step
	3.2.2.1 Triangular linear equations solver
	3.2.2.2 Matrix multiply-add
	3.2.2.3 Calculated mean/covariance

	3.2.3 Update step

	3.3 Parallel design
	3.3.1 State machine
	3.3.2 Sigma points generation
	3.3.2.1 Triangular linear equations solver
	3.3.2.2 Matrix multiply-add

	3.3.3 Predict step
	3.3.3.1 Calculation of mean/covariance

	3.3.4 Update step

	3.4 Pipeline design
	3.4.1 Sigma points generation
	3.4.2 Predict step
	3.4.3 Update step

	3.5 Summary

	4 Testing and Validation of the HW/SW Codesign
	4.1 Nanosatellites
	4.1.1 System Model
	4.1.2 Sensor Model
	4.1.3 Predict Model
	4.1.4 Update Model
	4.1.5 Simulation Model
	4.1.6 Results

	4.2 Simultaneous Localisation And Mapping
	4.2.1 System Model
	4.2.2 Sensor Model
	4.2.3 Predict Model
	4.2.4 Update Model
	4.2.5 Simulation Model
	4.2.6 Results

	4.3 Summary

	5 Implementation Analysis of the HW/SW Codesign
	5.1 Analysis overview
	5.2 Example application: Nanosatellites
	5.2.1 Synthesis results
	5.2.2 Power consumption
	5.2.3 Timing analysis

	5.3 Example application: Large number of observation variables
	5.3.1 Synthesis results
	5.3.2 Power consumption
	5.3.3 Timing analysis

	5.4 Example application: Varied PEs
	5.5 Latency: UKF steps
	5.5.1 Sigma points generation
	5.5.2 Predict step
	5.5.3 Update step

	5.6 Latency: Augmented state variables
	5.7 Summary

	6 Conclusion
	6.1 Summary
	6.2 Main contributions
	6.3 Future work

	References

