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ABSTRACT 

 

 

Data aggregation, which is a process to combine information by defined groups 

for statistical analysis, summary, data size reduction, or other purposes, has 

fundamental challenges, such as loss of the original information. Improper data 

aggregation, such as sampling bias or incorrect calculation of average, may 

cause misreading of information. In first chapter, it is revealed that the harmonic 

mean, which is used to calculate space mean speed for fixed segment, has a 

sampling bias, i.e., overestimation with small samples. The several impact 

analyses show that the sampling bias is affected by sampling rate, time interval, 

segment length, and distribution type.  

 

If the data aggregation is properly used, it can help us improve analytical 

efficiency, encounter some of critical problems, or reveal its casualties and other 

relevant information. Second and third chapters utilize the aggregation of multi-

source data to estimate error distributions of data sources and improve accuracy 

of their measurements. This is a leaping point of evaluating data sources as the 

proposed model does not require ground truth data. Second chapter focuses 

more on the methodology, i.e., a modified Approximate Bayesian Computation, 

incorporated to construct the error distribution with numerous simulations. In the 

simulated experiment, the proposed model outperformed the alternative 

approach, which is a conventional way of evaluating data source that is gathering 

error information by comparing with ground data source. Several sensitivity 

analyses explore that how the model performance is affected by sample size, 

number of data sources, and distribution types. The proposed model in chapter II 

is limited to one dimensional variable, and then the application is expanded to 

improving the position and distance measurement of connected vehicle 

environment. The proposed model can be used to further improve the accuracy 

of vehicle positioning with other existing methods, such as simultaneous 
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localization and mapping (SLAM). The estimation process can be conducted in 

real-time operation, and the learning process will try to keep improving the 

accuracy of estimation. The results show that the proposed model noticeably 

improves the accuracy of position and distance measurements.  
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INTRODUCTION  

 

 

Albert Einstein said, “Whoever is careless with the truth in small matters cannot 

be trusted with important matters.” I, as an engineer and as a researcher, see 

that the efforts to find the truths are often ignored despite its vital importance. For 

instances, people evaluate models or systems based on benchmark data without 

justifications of selecting the benchmark data. How can we be sure the 

benchmark data are true or nearly true? This question could bring more 

philosophical discussions even in science fields, e.g., uncertainty of quantum 

mechanics. Having a confidence interval in statistical inferences, rather than 

providing a deterministic number, could possibly be inherited with considerations 

of the stochastic nature. Unfortunately, this dissertation does not cover the 

philosophical matters, but focuses on a specific data aggregation issue and a 

way to utilize multi-source data to better estimate the truth. Although the most of 

discussions are limited to transportation field with specific circumstances, 

implications and applications of the dissertation should not be limited in such 

area.  

 

Technological advancements have enabled vast volumes of data and information 

available in both real-time and historical bases. Major traffic information providers 

have built a data warehouse of multiple petabytes or even more that stores 

minute-by-minute traffic data across millions of road segments. The 

unprecedented amounts of data streaming from various sources, so-called “Big 

Data”, have brought technical challenges for managing the enormous data to 

handle a variety of problems efficiently and effectively. The size of information 

that we collect grows exponentially and makes it almost impossible to process all 

the information at the original level.  
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Besides the limited data storage or processing time, the data aggregation may be 

forced for other reasons. One of the major concerns of providing the raw data is 

confidentiality, which involves ethical or legal issues. However, this should not be 

misinterpreted as if aggregate data does always guarantee the confidentiality. 

For instance, for counties that have only one coal-mine company, the county 

level coal production, employment, and other information will be directly 

associated with the companies even if it was not intended to be revealed at that 

level.  

 

In this study, the term “data aggregation” refers to an action or process that 

combines information by defined groups for statistical analysis, summary, data 

size reduction, or other purposes. Whether it is necessary or not, data can 

always be aggregated at a certain level, depending on how we define it. For 

instance, one’s personal travel speed for a specific segment and time stamp is 

aggregated data at the defined spatial temporal area and the person. In other 

words, the data can also be disaggregated by smaller spaces or time intervals, 

and even the individual may be further separated into different status such as 

vehicle type or number of passengers. Note that neither the term “raw” nor 

“aggregated” assures that the data is aggregated or disaggregated at an 

excessive level.  

 

One of the fundamental challenges of the aggregating data is losing some of the 

original information, unless the raw data are all preserved in accessible places. 

Recovering the original information of raw data from the aggregated data is 

generally unattainable. Even if the aggregated data is enough to provide current 

benefits in an efficient way, more disaggregated data or the raw data may be an 

essential requirement to reuse the information for unforeseen purposes. 

Moreover, improper data aggregation, such as sampling bias or incorrect 

calculation of average, may cause misreading of information. As an example of 

this study’s result, the average speed, calculated by harmonic mean, of a fixed 
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segment tends to be overestimated when only small samples are captured. The 

expected bias could be ignorable at some places, but the consequences could 

become noteworthy as the scope gets larger. The sampling bias may cause poor 

predictive power of modeling analysis, incorrect assessment of projects, and 

inefficient resource allocation.  

 

However, if the data aggregation is properly used, not to mention the reduction of 

the required management resources and the protection of confidentiality, it also 

helps us improve analytical efficiency, encounters some of critical problems, or 

reveals its casualties and other relevant information, which appears to be elusive 

at the original level of data. 

 

Although the data aggregation occurs and matters in almost all places with a 

broad definition of the aggregation, this study aims to reveal a few specific 

challenges of the data aggregation, provide methods to alleviate the issues, and 

utilize the aggregation of multi-source data to estimate the true error distribution, 

in transportation field.  

 

To this end, the dissertation is organized into the following three chapters.  

 Chapter I identifies and proves a bias of space mean speed over sample 

size when using harmonic mean, and provides a correction method.  

 Chapter II estimates the error distribution of multi-source data without 

information of ground truth, when the data is collected independently and 

simultaneously. 

 Chapter III utilizes the second chapter and applies the method to 

connected vehicle systems, to enhance accuracy of position and distance 

measurements.  
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CHAPTER I 

 

A CHALLENGE OF USING HARMONIC MEAN AS A 

CALCULATION OF SPACE MEAN SPEED ON A FIXED-SEGMENT: 

PROOF OF BIAS OVER SAMPLE SIZE AND THE CORRECTION 
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This chapter presents a modified version of a research paper by Hyeonsup Lim, 

Bumjoon Bae, Lee D. Han, and Hamparsum Bozdogan. 

 

 

Abstract 

  

 

Harmonic mean, which is the reciprocal of the arithmetic mean of the reciprocals 

of observations, is considered to be an appropriate average for rates or ratios. In 

transportation, the harmonic mean is used to calculate Space Mean Speed, 

where a designated segment length is fixed or passing vehicles are assumed to 

complete the segment with given speeds. This study identifies and proves a 

sampling bias of harmonic mean, which definitively affects the sampling bias of 

the space mean speed on the fixed segments. The study shows, a mathematical 

proof and numerical example, that harmonic mean is overestimated when the 

sample size is smaller than the population. The study also provides both 

analytical and simulation-based correction approach. From the simulations and 

the three case studies of investigating the impact of the sampling bias in this 

study, it is recognized that the sampling bias is affected by sampling rate, time 

interval, segment length, and distribution type. 
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Introduction 

  

There will be no argument regarding the sample size if we have the data of entire 

population. However, the collected data generally do not cover or guarantee the 

entire population in the field. When an average value of sampled data is used, 

there is an underlying assumption that the average value can represent the entire 

population within a certain tolerance (e.g., a confidence interval in statistical 

inference). 

 

The average value of sampled data, however, may not represent well the 

population if not appropriately aggregated. One possible reason is a sampling 

bias, in which some elements of the population are less or more likely to be 

included in the observation than others. Suppose that a loop detector was 

installed only in the left most lane on a segment of freeway, while truck drivers 

are allowed to drive only on the rest of lanes. It is expected that the average 

travel speed of collected data is likely to be higher than the average of all 

vehicles passed the segment.  

 

Another possible reason of having a biased average is an inappropriate 

calculation of averaging the sampled data. This involves unknown parameters 

used in the calculation, such as a case that a vehicle length is estimated for 

speed data from a single loop detector. Furthermore, the calculation method itself 

could be biased over sample size, such as a harmonic mean, which will be 

discussed throughout this chapter.  

 

Harmonic mean, one of the Pythagorean means, is the reciprocal of the 

arithmetic mean of the reciprocals of observations. The harmonic mean is 

considered to be an appropriate average for rates or ratios, e.g., vehicle speeds. 

As a simple example, when two vehicles travel a certain distance, the two 
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vehicles’ total travel time is the same as the travel time that one travels the whole 

distance at the harmonic mean of the two speeds. It has been used often, but not 

always, as a calculation of space mean speed in transportation field.  

 

The statement, “space mean speed is the same as the harmonic mean of 

observed speeds”, is debatable in a sense that the definition of space mean 

speed differs from researchers. The distinction of definitions has been frequently 

made whether it specifies only the space, or both the space and time. The first 

definition allows the calculation of space mean speed as harmonic mean of 

vehicle speeds, which does not always apply to the second one because some of 

vehicles within the section may not have completed the crossing of segment. 

Therefore, summarizing the definitions, the use of harmonic mean for calculating 

SMS should have, at least, the following conditions: 

 The designated segment is fixed, and so is the length of segment. 

 There is an assumption that all observed vehicles completed (i.e., traveled 

the full distance) the segment over a given time. 

 If vehicle speeds are measured at a point over time, the use of harmonic 

mean assumes that speeds of individual vehicles do not vary much over 

the segment.  

With the aforementioned conditions and definitions, many agencies, where 

infrastructure-based detectors such as loop or radar detectors are employed, 

often use the harmonic mean to calculate the space mean speed because of 

either following the first definition or having difficulties of measuring the explicit 

travel distances of each vehicle in the space-time frame.  

 

The objective of this study is to identify and prove a bias of space mean speed 

over sample size when using harmonic mean, and provide a correction method. 

Note that this paper does not elaborate how to estimate SMS. The study will 

show that space mean speed is overestimated when the sample size is smaller 



8 
 

than the population, and the following sections will describe a mathematical 

proof, numerical example, and a case study of the bias. 

 

Again, it is vital to consider if the expected value of the sample average is biased 

over sample size. It is a theoretical fault affecting the calculation of everywhere 

using harmonic mean of sample data to represent that of the population, even if 

the bias is minimal in some places. Three different case studies were conducted 

to investigate the impact of the sampling bias by time interval, segment length, 

and sampling rate.   

 

 

Literature Review 

 

Space Mean Speed 

In physics, speed is a scalar quantity, which is distinguished from velocity, a 

vector quantity being aware of direction. Transportation engineers more often 

use the term “speed” rather than “velocity”, although a direction is often 

considered technically. The individual vehicle speed is measured through an 

observation over time and space. When averaging a group of vehicle speeds, 

there are two ways of calculation, Time Mean Speed (TMS) and Space Mean 

Speed (SMS). While the TMS is an average of observations of vehicle speeds 

over a given time, the definition of SMS differs from researchers.  

 

One definition of the SMS is the mean speed of vehicles to travel a given 

distance [1-4]. Note that this definition does not specify a time domain. With this 

definition, the harmonic mean can be a correct calculation of the SMS, only when 

all of the observed vehicles completed the segment with a given time. 

Furthermore, Wardrop and Edie implicitly allowed the use of harmonic mean of 
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instant speeds, i.e., the speeds measured at a point over time [1, 4]. This could 

be an insignificant matter if the speed of individual vehicles does not vary much 

over the segment. Otherwise, there will be a difference between the SMS over 

the segment and the harmonic mean of the instant speeds. 

 

The ITE handbooks and HCM define the SMS as the total travel distance divided 

by the total travel time [5-7]. This definition specifies an explicit rectangular space 

and time frame as an observation domain of the average. Wohl and Martin 

defines the SMS as a weighted average associated with the travel time spent 

traveling a given length of segment [8].  

 

Another definition of SMS takes an average speed of all of the vehicles within a 

given segment at an instant time [9-12]. The major distinction is made in which 

they use the arithmetic mean of the vehicle speeds, not the harmonic mean. 

Specifically, Haight shows that the SMS calculated in this manner is unbiased to 

the true distribution of speeds, by assuming that each vehicle does not change 

their speed over the time space diagram [12].  

 

FHWA states that “Regardless of the particular definition put forward for space 

mean speed, …, it is necessary to ensure that one has measured space mean 

speed, rather than time mean speed.” [13]. Our study focuses on the SMS where 

the harmonic mean speed is used as a calculation, and hence the term ‘space 

mean speed’ or ‘SMS’ hereinafter is limited to the certain condition. 

 

Estimation of Space Mean Speed 

Equation 1 and 2 describe TMS and SMS using the limited definitions, by making 

them equivalent to arithmetic mean and harmonic mean respectively. In the 

equations, �̅�𝑡 denotes TMS, �̅�𝑠 denotes SMS, and 𝑢𝑖 is an individual speed of 

vehicle 𝑖.  
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 �̅�𝑡 =
1

𝑁
∑𝑢𝑖

𝑁

𝑖=1

 (1) 

 

 
�̅�𝑠 =

1

1
𝑁
∑

1
𝑢𝑖

𝑁
𝑖=1

 
(2) 

 

TMS is more influenced by faster vehicles, thus the average speed can be 

overestimated for the consideration of macroscopic traffic flow characteristics, 

and consequently the density can be underestimated, although the extent of the 

differences is site-specific [14, 15]. Therefore, it is well known that the SMS 

should be used to estimate a correct density [15, 16]. Compared to TMS, 

Soriguera and Robusté (2011) addressed the importance of SMS in terms of 

both modeling of traffic flow theory and practical purposes.  

 

In 1952, Wardrop showed the general relationship between TMS and SMS [17] : 

 �̅�𝑡 = �̅�𝑠 +
σ𝑠
2

�̅�𝑠
 (3) 

 

The difference between TMS and SMS comes exactly from the calculation of 

average, the arithmetic mean and the harmonic mean. With these definitions, 

TMS is always greater than or equal to SMS. Although Equation 3, shown by 

Wardrop (1952), is theoretically evident and popular, it is not common to estimate 

TMS from SMS and the variance of SMS in practice. Vehicle speed data from 

detectors in highway are often aggregated for a certain time interval (e.g., 30 sec 

or 1 min) and transmitted to Traffic Management Center (TMC) due to a technical 

or cost constraint, in which the aggregated speed is TMS, not SMS [18]. In 

addition, the variance of SMS is typically unobtainable. Therefore, the counter 

relationship between TMS and SMS has been suggested based on empirical 

studies [14, 19, 20]. 
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 �̅�𝑠 = �̅�𝑡 −
σ𝑡
2

�̅�𝑡
 (4) 

 

Soriguera and Robusté (2011) suggested a probabilistic method to estimate SMS 

from TMS based on Equation 4 using aggregated double-loop detector data, in 

which the standard deviation of TMS is estimated by assuming the normality of 

vehicle speed distribution [18]. However, in the study, the normality assumption 

is not proven distinctly. There is a research about determining the required 

penetration or sampling rate to obtain certain confidence interval of SMS in probe 

data collection [21], but the study does not describe the bias of SMS over sample 

size. 

 

Estimation of Harmonic Mean  

In the field other than traffic engineering, several studies have suggested 

methods to estimate the harmonic mean. Limbrunner et al. (2000) introduced an 

Maximum Likelihood Estimate (MLE) for the harmonic mean and showed that 

their model is more efficient than the previously introduced estimators ([22, 23]) 

for the harmonic mean, but the studies are limited to lognormal observations [24]. 

Satagopan et al. (2000) suggested a method to stabilize the harmonic mean 

estimator which is used for the Bayes factor, based on the approach of reducing 

the parameter space by modified estimator for the harmonic mean of heavier 

tailed densities [25]. Although more studies are found in providing analytical 

evidences of the inequality of harmonic mean compared to, normally, either 

arithmetic mean or geometric mean, they didn’t explicitly describe the estimation 

of harmonic mean [26-33].  

 

Jensen et al. (1997, 1998) and Limbrunner et al. (2000) calculated the 

approximations to the bias and variance of harmonic mean estimators where 

data is lognormally distributed [22-24]. If a variable 𝑋 follows a lognormal 
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distribution, then 𝑙𝑛(𝑋) follows a normal distribution with mean μ and variance σ2. 

Jensen et al. describes, as shown in Equation 5, the bias term, which also can be 

used to correct the bias for the lognormal distribution. 

 

bias = exp (μ −
σ2

2
) ∙

[exp(σ2) − 1]

n
 (5) 

 

However, the proof is strictly limited to the case of lognormal distribution. Based 

on our literature review, no study has proved that the expected value of harmonic 

mean decreases as the sample size increases regardless of data distribution.  

 

 

 

Proof of Bias 

 

Jensen’s Inequality 

The Jensen’s Inequality, which has been applied in a variety of engineering 

fields, shows that the convex transformation of expected value of a variable 𝑥 is 

less than or equal to the expected value applied after convex transformation as 

described in Equation 6, where φ(𝑥) is a convex function. 

  

φ(E(𝑥)) ≤ E(φ(𝑥)) (6) 

 

The Jensen’s inequality, although it is not the only way, can prove that arithmetic 

mean is greater than or equal to harmonic mean by Equation 7 to 9, where 

f(𝑥) = 1/𝑥. 

 



13 
 

f(E(𝑥)) ≤ E(f(𝑥)) (7) 

  

𝑛

𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
≤

1
𝑥1

+
1
𝑥2

+⋯+
1
𝑥𝑛

𝑛
 

(8) 

  

𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
𝑛

≥
𝑛

1
𝑥1

+
1
𝑥2

+⋯+
1
𝑥𝑛

 
(9) 

 

Expansion of Jensen’s Inequality 

Suppose that 𝐻n refers to harmonic mean of sample size n, where there are N 

observations in the population and n ≤ N. First, we write an expected value of 

harmonic mean with two samples, 𝐻2, 

 

𝐸(𝐻2) =
1

C(n, 2)
× [

2

1
𝑥1

+
1
𝑥2

+
2

1
𝑥1

+
1
𝑥3

+⋯+
2

1
𝑥𝑁−1

+
1
𝑥𝑁

] 
(10) 

 

By Jensen’s Inequality,  

2

1
𝑥𝑎

+
1
𝑥𝑏

≤
𝑥𝑎 + 𝑥𝑏

2
 

(11) 

 

Therefore, 

 

2

1
𝑥1

+
1
𝑥2

≤
𝑥1 + 𝑥2

2
,

2

1
𝑥1

+
1
𝑥3

≤
𝑥1 + 𝑥3

2
,… ,

2

1
𝑥𝑁−1

+
1
𝑥𝑁

≤
𝑥𝑁−1 + 𝑥𝑁

2
 

(12) 

 

Then, we rewrite Equation 10 using the relationship in Equation 12. 
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𝐸(𝐻2) =
1

C(N, 2)
× [

2

1
𝑥1

+
1
𝑥2

+
2

1
𝑥1

+
1
𝑥3

+⋯+
2

1
𝑥𝑁−1

+
1
𝑥𝑁

] 

             ≤  
1

C(N, 2)
× [

𝑥1 + 𝑥2
2

+
𝑥1 + 𝑥3

2
+⋯+

𝑥𝑁−1 + 𝑥𝑁
2

] 

                                 =
2

N(N − 1)
× [

(𝑁 − 1)(𝑥1 + 𝑥2 +⋯+ 𝑥𝑁)

2
] = 𝐸(𝑥) = 𝐸(𝐻1) 

(13) 

 

This proves, 

 

𝐸(𝐻2) ≤ 𝐸(𝐻1) (14) 

For comparing 𝐻3 and 𝐻2, we first write an expected value of 𝐻3. 

 

𝐸(𝐻3) =
1

C(N, 3)
× [

3

1
𝑥1

+
1
𝑥2

+
1
𝑥3

+
3

1
𝑥1

+
1
𝑥2

+
1
𝑥4

+⋯+
3

1
𝑥𝑁−2

+
1

𝑥𝑁−1
+

1
𝑥𝑁

] 
(15) 

 

Equation 16 takes the harmonic mean of all possible combinations of the two 

samples, from a group with three samples. 

 

3/(
1

𝑥𝑎
+

1

𝑥𝑏
+

1

𝑥𝑐
) = 3/(

1
𝑥𝑎

+
1
𝑥𝑏

2
+

1
𝑥𝑎

+
1
𝑥𝑐

2
+

1
𝑥𝑏

+
1
𝑥𝑐

2
) ≤ (

2

1
𝑥𝑎

+
1
𝑥𝑏

+
2

1
𝑥𝑎

+
1
𝑥𝑐

+
2

1
𝑥𝑏

+
1
𝑥𝑐

)/3 
(16) 

 

Thus, Equation 15 can be rewritten as: 

 

𝐸(𝐻3) =
1

C(N, 3)
× [

3

1
𝑥1

+
1
𝑥2

+
1
𝑥3

+⋯+
3

1
𝑥𝑁−2

+
1

𝑥𝑁−1
+

1
𝑥𝑁

] 

 

≤
1

C(N,3)
× [

2
1/𝑥1 + 1/𝑥2

+
2

1/𝑥1 + 1/𝑥3
+

2
1/𝑥2 + 1/𝑥3

3
+⋯+

2
1/𝑥𝑁−2 + 1/𝑥𝑁−1

+
2

1/𝑥𝑁−2 + 1/𝑥𝑁
+

2
1/𝑥𝑁−1 + 1/𝑥𝑁

3
] 

(17) 
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=
1

C(N, 3)
× [

𝐸(𝐻2) ∙ (N − 2) ∙ C(N, 2)

3
] = 𝐸(𝐻2) 

 

Therefore, it proves 𝐸(𝐻3) ≤ 𝐸(𝐻2). 

 

Likewise, we can compare 𝐻4 and 𝐻3, 

 

𝐸(𝐻4) ≤
1

C(N, 4)
× [

𝐸(𝐻3) ∙ (N − 3) ∙ C(N, 3)

4
] = 𝐸(𝐻3) (18) 

 

By following the same step, we get the inequality over the sample size 𝑛 and 

𝑛 + 1:  

 

𝐸(𝐻𝑛+1) ≤ 𝐸(𝐻𝑛) (19) 

 

By generalizing the relationship, an expected value of harmonic means is 

decreased as the sample size is increased.  

 

𝐸(𝐻𝑚) ≤ 𝐸(𝐻𝑛), 𝑖𝑓 𝑚 ≥ 𝑛 (20) 

 

 

Numerical Example 

 

Suppose that we have a population of 20 data points from 1 to 20 with unit 

increment (1, 2, …, 19, 20). We assume that the observation follows a discrete 

uniform distribution, where each data point is equally likely to be observed with a 

probability of 1/20. Then, the unbiased expected value for sample size 𝑁 can be 
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calculated by simply averaging all possible combinations of picking 𝑁-samples 

among the population, which of number of cases is 20CN.  

For 𝑁 = 1 as an example, the number of all possible combination cases is 20C1 (= 

20), i.e., 20 groups of one sample size. In this case, the harmonic mean of each 

group is identical to the value of the data point in the group. Thus, the expected 

value of harmonic mean of 𝑁 = 1  is same as the arithmetic mean of the 

population, which is 10.5. 

 

𝐸(𝐻1) =
𝐻(1) + 𝐻(2) + ⋯+ 𝐻(19) + 𝐻(20)

20
=

1 + 2 +⋯+ 19 + 20

20
= 10.5 (21) 

 

For 𝑁 = 3, the number of all possible combination cases is 20C3 (=1,140). By 

calculating the harmonic mean of all of the combinations, we obtain the expected 

value of 7.83, as shown in Equation 22. 

 

𝐸(𝐻3) =

3
1
1 +

1
2 +

1
3

+
3

1
1 +

1
2 +

1
4

+⋯+
3

1
18 +

1
19 +

1
20

1,140
= 7.82 

(22) 

 

 

Figure 1. Exact Expected Values of Harmonic Mean over Sample Size 
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Accordingly, for 𝑁 = 20, the expected value of harmonic mean is same as the 

harmonic mean of population, which is 5.56. Figure 1 shows the changes of 

expected value of harmonic mean over sample size for this example. It is very 

clear that the expected value of harmonic mean decreases as the sample size 

increases. 

 

 

Correction of Bias: Analytical Approach  

 

To provide an analytical example of the correction of bias, we assume that the 

travel time of vehicle 𝑖, 𝑡𝑖, follows a gamma distribution. 

 

Sum of Independent Gamma Random Variables 

Let 𝑡𝑖 be a travel rate, an inverse of vehicle speed 𝑣𝑖, and then the harmonic 

mean of 𝑛 vehicle speeds can be calculated as Equation 23.  

 

𝐻n =
𝑛

1
𝑣1

+
1
𝑣2

+⋯+
1
𝑣𝑛

=
1

𝑡1
𝑛 +

𝑡2
𝑛 +⋯+

𝑡𝑛
𝑛

 
(23) 

 

 

Suppose that 𝑡𝑖 follows a gamma distribution, i.e., 𝑣𝑖 follows an inverse gamma 

distribution, with a shape parameter 𝛼 and a rate parameter β.  Then, the 

corresponding probability density function can be calculated as Equation 24, with 

the expected value α/β and variance α/β2.  

 

𝑓(𝑡𝑖) =
βα𝑒−β𝑡𝑖𝑡𝑖

α−1

Γ(α)
, 𝑓𝑜𝑟 𝑡𝑖 ≥ 0 (24) 
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Then, 𝑡𝑖/n follows a gamma distribution with a shape parameter α and a rate 

parameter nβ, since multiplying the 1/n changes only the ratio.  

 

A sum of two independent gamma random variables, with a same rate 

parameter, also follows a gamma distribution. Then, the shape parameter can be 

obtained as a sum of the two shape parameters of the two independent variables 

and the rate parameter remains the same [34]. Therefore, the sum of 𝑡1/n to 𝑡𝑛/

n, which is a denominator of right hand side of Equation 23, follows a gamma 

distribution with a shape parameter nα and a rate parameter nβ. 

 

𝑡1
𝑛
+
𝑡2
𝑛
+⋯+

𝑡𝑛
𝑛
  ~Gamma(nα, nβ) (25) 

 

 

Then, the expected value and variance can be calculated as the followings: 

 

E(𝑡1/n + ⋯𝑡𝑛/n) = (nα)/(nβ) = α/β, 

  Var(𝑡1/n +. . . 𝑡𝑛/n) = (nα)/(nβ)2 = α/(nβ2) 
(26) 

 

Inverse Gamma Distribution 

When 𝑥 is a gamma random variable with the parameters α′ and β′, 1/𝑥 has an 

inverse gamma distribution with the moments of 𝑥 as described in Equation 27 

[35].  

 

E(𝑥𝑛) =  
(β′)𝑛

(α′ − 1) ∙∙∙ (α′ − n)
, 𝑖𝑓 α′ > 𝑛 (27) 

 

For 𝑛 = 1, 
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E(𝑥) =
β′

α′ − 1
, for α′ > 1 (28) 

For 𝑛 = 2, 

E(𝑥2) =
(β′)2

(α′ − 1)(α′ − 2)
, for α′ > 2 (29) 

 

Thus, the variance can be calculated as Equation 30. 

 

Var(𝑥) = E(𝑥2) − E(𝑥)2 = β′
2
/(α′ − 1)2(α′ − 2) (30) 

 

Using the expected value and variance of inverse gamma distribution, the 

expected value and variance of harmonic mean of 𝑛 vehicle speeds can be 

calculated as shown in Equation 31.  

 

E(1/(t1/n + ⋯ tn/n)) = nβ/(nα − 1) 

Var(1/(t1/n + ⋯ tn/n)) = (nβ)2/(nα − 1)2(nα − 2) 
(31) 

 

Therefore, the corrected expected value of harmonic mean, with sampling rate γ 

and collected sample size m = n ∙ γ , can be estimated by Equation 32.  

 

E(𝐻n) = E(𝐻m,γ) = (m/γ) ∙ β/((m/γ) ∙ α − 1)  

Var(𝐻n) = Var(𝐻m,γ) = ((m/γ) ∙ β)2/((m/γ) ∙ α − 1)2((m/γ) ∙ α − 2) 
(32) 

 

Correction of Bias: Simulation-based Approach  

 

The analytical approach to correct the bias is useful only when it is obtainable. 

However, this is not feasible for many cases since the solutions could be too 

complex or unobtainable. More fundamentally, defining distribution of such 

variables to a certain type with parametric estimates may not be reasonable for 
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some cases. To this end, simulation-based approach for the correct of bias might 

be more useful and applicable for most of cases.  

 

Our concern is to know the expected bias from the collected sample data to 

population data. This can be implemented by generating numerous simulations 

with given data distribution and comparing the harmonic mean of two different 

sample sizes of data, one for the population and the other for the sample. The 

ratio of the harmonic mean of simulated population to the harmonic mean of 

simulated sample is defined as an ‘adjustment factor’ in this study, as shown in 

Equation 33. Then, the adjustment can be simply done by multiplying the 

adjustment factor to the harmonic mean of actual sample data. The basic idea 

here is running Monte-Carlo simulations to generate enough data to build the 

reliable adjustment factors.  

 

Adj(𝐻m,γ) = E(𝐻n)̂ /E(𝐻m)̂   

𝐻n̂ = 𝐻m ∙ Adj(𝐻m,γ) 
(33) 

where  

 Adj(𝐻m,γ) is an adjustment factor with sample size 𝑚 and sampling rate γ, 

 𝐻n̂ is an estimated harmonic mean of population size 𝑛, and 

 E(𝐻n)̂  and E(𝐻m)̂  are estimated expected values of harmonic mean for  

 samples size 𝑛 and 𝑚, from the Monte-Carlo simulations. 

 

Example of Simulation-based Correction 

Figure 2 shows a simulation-based correction for the bias of harmonic mean over 

sample size. The example assumes a normally distributed random variable with 

mean of 30 and standard deviation of 10. Then, the expected value of harmonic 

mean over sample size can be estimated by numerous simulations, e.g., a million 

times, as shown in Figure 2 (a).  
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(a) Expected Harmonic Mean over Population Size 

 

 
(b) Adjustment Factor over Sampling Rate 

Figure 2. Example of Simulation-based Correction  
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Based on the estimated expected harmonic mean, the adjustment factors are 

calculated for various sampling rates and population sizes. Suppose that we 

captured only 10% out of 100 vehicles in the field, i.e., the sample size of the 

collected data is only 10 while the population size is 100. In Figure 2 (a), the 

estimated expected harmonic means for population size of 10 and 100 are 26.18 

and 24.95, respectively. The adjustment factor will be 0.95 = 24.95/26.18. The 

correction can simply be conducted by multiplying this adjustment factor to the 

harmonic mean of the collected data. This adjustment factor can be obtained at 

the population size of 100 and 10% sampling rate in Figure 2 (b). 

 

Adjustment Factor by Distribution Type 

To provide some implications on the impact of the bias by different distribution 

types, the adjustment factors are calculated for uniform, normal, and gamma 

distributions with randomly generated parameter estimates and numerous 

simulated data sets. This analysis should enable us to see how the parameter 

estimates of the distributions could affect the adjustment factors. The ranges of 

the parameter estimates tested for each distribution are described in Table 1. 

The parameter estimates were generated within the ranges, and 100,000 

different sets of data were obtained to calculate average adjustment factors.  

 

Table 1 Range of Parameter Estimates for Simulated Distributions 

Distribution Type Parameter 
Range 

Min Max 

Uniform 
Lower Bound 10 55 

Upper Bound 55 100 

Normal 
Mean 20 100 

Standard Deviation 5 50 

Gamma 
Shape Parameter 2 12 

Scale Parameter 5 105 
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Figure 3, 4, and 5 represent the adjustment factors of 10% sampling rate, 

calculated based on the simulations, for the three distribution types. As shown in 

Figure 3, the adjustments factor of uniform distribution decreases i.e., more 

biased, as the upper bound increases and the lower bound decreases. This 

implies that the adjustment factor of uniform distribution decreases as their 

variance increases, since the variance of uniform distribution is proportional to 

the square of difference between the upper bound and the lower bound.  

 

 
Figure 3. The Impact of Overestimation by Distribution Type (Uniform) 

 
Figure 4 illustrates the impact of the overestimation for normal distribution. Like 

uniform distribution, the adjustment factor decreases as the variance increases. 

Also, normally distributed data with larger means tend to have smaller 

adjustment factors, i.e., more bias.  

 

Figure 5 displays the overestimation impact for gamma distribution. Based on the 

simulated tests for gamma distribution, the harmonic mean of sample data tends 

to be more biased when the shape parameter is small. As compared to uniform 

and normal distributions where the both two parameters affect the adjustment 

factor obviously, the impact of overestimation for gamma distribution is very 

sensitive to the shape parameter while the scale parameter relatively affects little.  

Adjustment Factor
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Figure 4. The Impact of Overestimation by Distribution Type (Normal) 

 

 

 

Figure 5. The Impact of Overestimation by Distribution Type (Gamma) 

 

 

Adjustment Factor

Adjustment Factor
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Impact of Bias in Practice: Vehicle Trajectory Data 

 

As shown in the numerical example, the effect of sample size on expected value 

of harmonic mean for certain cases can be roughly seen with simulated data. To 

simplify the simulation, we may consider making an assumption that each 

observation is independent. However, the vehicle-to-vehicle variation of speed is 

not independent, unless completely free flow. Therefore, this study will use real 

vehicle trajectory data, which can be aggregated into different levels of space 

and time interval.  

 

Data Description 

Next Generation SIMulation (NGSIM) is a public-private partnership program, 

provided by the Federal Highway Administration (FHWA), to develop open 

behavioral algorithms for microscopic traffic simulations. The program provides 

data sets for three segments: 1) I-80 in the San Francisco Bay area in 

Emeryville, CA, on April 13, 2005 (45 minutes), 2) Lankershim Boulevard in the 

Universal City neighborhood of Los Angeles, CA, on June 16, 2005 (30 minutes), 

and 3) southbound US 101, also known as the Hollywood Freeway, in Los 

Angeles, CA, on June 15th, 2005 (45 minutes).  The vehicle trajectory data, 

processed from videos, is provided at one-tenth of second with detailed 

information including lane positions and relative locations to other vehicles. 

 

Case Study Result 

Figure 7 displays the simulation results of expected SMS of sampled data, using 

the NGSIM data on I-80 in the San Francisco Bay area. The study area was 

virtually segmented by a certain distance, e.g., every 100 ft. All observed 

vehicles passed the segment were assigned as a population set, with a fixed 

time interval, e.g., 1-minute. Then, the population set was sampled randomly in 
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simulation by different sampling rate, e.g., 10%. In Figure 7, the result (a) shows 

the result of a single simulation run, while the result of (b) is based on 100 

simulations.  

 

 

 

(a) I-80 

 

(b) Lankershim 

 

(c) US 101 

Figure 6. Study Area of NGSIM Dataset 

(Source: http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm, [36]) 

 

 

In Figure 7 (a), SMS of the sample data is often greater than that of the 

population set and the positive bias (sample SMS > population SMS) is more 

likely to happen than the negative bias. Figure 7 (b) more clearly represents that 

there is a positive bias. Note that the expected value of SMS of the sampled data 

is greater than that of the population data set in both cases.   
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(a) Space Mean Speed of Sampled Data (1 Simulation) 

 

  

(b) Expected Space Mean Speed of Sampled Data (100 Simulations) 

Figure 7. Expected Space Mean Speed of Sampled Data (NGSIM I-80) 
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Impact of Time Interval 

Figure 8 shows how the time interval could impact on the overestimation of SMS. 

There are three lines with different marks by three sampling rates, 10%, 30%, 

50%. To see the impact of only time interval, the segments for sites were set to 

be a complete section of collected data, i.e., one segment for each site. Overall, 

the sampling bias tends to be larger where the time interval is relatively small. 

This is not surprising because the adjustment factors get close to 1 as population  

size of single time interval gets larger with longer time interval. This is consistent 

with the example shown in Figure 2. However, the trend of having larger bias 

with small time interval seems not very clear in the I-80 and US-101 data sets. 

This is possibly due to the limited time period of the data collection, which is less 

than an hour. Furthermore, having different time interval affects not only traffic 

counts of each time interval, but also the distribution of vehicle speeds within the 

time interval.  

 

Although the data sets are very limited both temporarily and spatially, it is 

recognizable that the bias of SMS is also different by the sites. With 10% 

sampling rate and 1-minute time interval, the bias of SMS is larger than 1 mph in 

the Lankershim data set while the other two sites have smaller than 0.1 mph of 

bias.  
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(a) NGSIM I-80 Data 

 

 
(b) NGSIM Lankershim Data 

 
(c) NGSIM US-101 Data 

Figure 8. SMS Overestimation by Time Interval (3 NGSIM Data Set) 
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Impact of Segment Length 

While Figure 8 shows the impact of overestimation by time interval, Figure 9 

represents the impact of segment length, with controlling the time interval of 5 

minute. Since NGSIM data sets have no definite segment information but actual 

trajectories of individual vehicles, the segmentation was done virtually by the 

vehicle travel distances and a fixed segment length. For the each virtually 

generated segment, individual vehicle speed is obtained by travel distance over 

travel time within the segment.  

 

Overall, the impact of bias of sample SMS gets smaller as the segment length 

increases. This trend was expected since longer segment will likely to have less 

variation of speed if traffic condition of roadway is consistent. Like the results in 

the impact of time interval, the biases in Lankershim are larger than the other two 

sites. With 100ft segment length and 10% sampling rate, the SMS of sample data 

is overestimated by almost 3 mph.  

 

Note that the results are based on very limited vehicle trajectory data. 

Investigating those trajectory data to see the impact of sampling bias by sampling 

rate, time interval, and segment length, could help traffic operation agencies on 

determining technologies and data sources to produce reliable traffic speed 

information. However, trajectory data are often unavailable yet although new 

traffic data sources, such as GPS on mobile phone, will become more accessible 

to operators and users.  
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(a) NGSIM I-80 Data 

 
(b) NGSIM Lankershim Data 

 

 
(c) NGSIM US-101 Data 

Figure 9. SMS Overestimation by Segment Length (3 NGSIM Data Set) 
 



32 
 

Impact of Bias in Practice: Multiple Segments in Network 

 

This section investigates the impact of sampling bias using typical travel speed 

data that are aggregated by segments in network.  

 

Data Description 

Tennessee Department of Transportation (TDOT) has deployed Remote Traffic 

Microwave Sensors (RTMS) to collect traffic count, speed, and occupancy every 

30 seconds, in Tennessee. The data used in this study cover 204 stations in 

region 1 of Tennessee, as shown in Figure 10 (a), which is mainly Knoxville and 

its sub-urban area, from August 2016 to November 2016.  

 

 

Figure 10. Sample Data Generation Procedure for RTMS Data, TN Region 1 

 

Based on three time period sets (5, 15, and 30 minutes), the 30-seconds RTMS 

data were re-organized by station and day. For each time stamp, the distribution 

of traffic count and speed were estimated using Maximum Likelihood Estimates 

(MLE). As shown in Figure 10, the traffic count was assumed to follow Poisson 

(c) Sample Generation(b) Distribution Estimation(a) RTMS Data Extraction

Traffic Count Distribution
Poisson Distribution

Ci

Si

Normal Distribution

Gamma Distribution

Traffic Speed Distribution
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distribution, and the speed data was assumed to be following either normal or 

gamma distribution. The distribution type of speed, among the two, was selected 

by Bozdogan’s Information Complexity [37]. Using the defined distributions with 

their parameter estimates, traffic count and speed of each in population data 

were generated. Then, sample data (or collected data) were captured by 

sampling rate from 0.01% to 100%, to calculate the difference between SMS of 

the sample data and the generated population data.  

 

Impact of Sampling Rate in Segmented Network 

Figure 11 shows that the sampling bias gets larger as the sampling rate 

decreases. The impact of sampling bias is more significant when the time interval 

is small, but the difference of the impact between the time intervals is relatively 

smaller than that of sampling rate. With sampling rate of 40%, the average 

sampling bias of SMS in this network is less than 0.2 mph.  

 

 
Figure 11. Impact of Sampling Bias on Region 1, Tennessee  
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Impact of Bias in Practice: Data Comparison 

 

This section analyzes the impact of sampling bias where multiple data sources 

are compared.  

Data Description 

To evaluate accuracy of real-time speed data, Hargrove et al. collected traffic 

data in Nashville, TN and compared four different data sources, Bluetooth, 

RTMS, and two private traffic information providers, by using License Plate 

Recognition (LPR) data as ground truth [38]. Table 2 summarizes the data 

sources used in their study. 

 

Table 2 Summary of Selected Traffic Data Sources 

Column1 Bluetooth Data Provider 1 Data Provider 2 RTMS 

Data Type 
Time,  

Signal Strength 

Speed,  

Travel Time 

Speed,  

Travel Time 

Volume, 

Occupancy, 

Speed, Vehicle 

Classification 

Aggregation & 

Time Resolution 

Each MAC 

Address,  

All Lanes 

60-sec, 

All Lanes 

60-sec, 

All Lanes 

30-sec,  

per Lane 

Data Source 

Cellular and in-

vehicle 

Bluetooth 

devices 

State installed 

sensors, probe 

vehicles, GPS, 

cellphone 

State installed 

sensors, probe 

vehicles, GPS. 

Roadside 

detectors 

Accuracy 

Checks 

Performed 

Post collection 

processing with 

filters. 

Independently 

verified in large-

scale testing. 

Data checks 

prior to map 

matching. 

Post collection 

processing with 

filters. 

(Source: Hargrove et al., Empirical Evaluation of the Accuracy of Technologies 

for Measuring Average Speed in Real Time, 2016 [38]) 

 

In this study, the same data set was used to see the impact of sampling rate on 

the comparison results. The challenge here is that LPR technology does not 

capture all vehicles and the license plates read by the technology is not 
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completely accurate, which also cause reducing the sampling rate. Although their 

enhanced LPR matching algorithm improved the matching ratio significantly, 98% 

matching rate with less than 1% of false matching, number of matches from LPR 

data are only about 20% of traffic count from RTMS.  

 

Impact on Comparison of Data Sources 

Figure 12 shows the impact of sampling bias on three performance 

measurements of data accuracy, mean deviation, mean absolute error, and root 

mean square error. The three accuracy measurements are decreased as the 

sampling rate is increased, except mean absolute error and root mean square 

error of the Data Provider 2.  

 

Note that there is a crossing point in mean absolute error, Figure 12 (b), between 

Bluetooth and Data Provider 1. This implies that the sampling rate could be 

critical to determine a more accurate data source for some cases, although the 

changes of performance measurements may seem ignorable for other cases. In 

practical data comparison or evaluation, it is important to know that low sampling 

rate could bring not only increased variation of performance measurements, but 

also the bias of the measurements.  
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(a) Mean Deviation 

 
(b) Mean Absolute Error 

 
(c) Root Mean Square Error 

Figure 12. The Impact of Overestimation on Comparison of Data Sources 
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Conclusion 

 

Our study shows that the expected value of harmonic mean decreases as the 

sample size increases, regardless of its distribution. In other words, the harmonic 

mean of population is overestimated when we have the sample smaller than the 

entire population. This indicates that using the harmonic mean with sample data 

needs extra cautions. Especially for the traffic data, the sample size implies not 

only number of vehicles, but also segment lengths. Thus, to calculate the SMS of 

a segment, the collected data should cover enough of both the length of segment 

and the number of vehicles passing the segment.  

 

This study covers only the three sites to see the impact of sampling bias. 

Therefore, not to mention that the analysis results are limited to those sites, the 

impact of sampling bias in practice may be more significant, depending on their 

sampling rate, time interval, and segment length. Therefore, the impact of the 

bias needs to be investigated on a case-by-case basis.   

 

Both the analytical correction and the simulation-based correction approach are 

provided. Since the analytical correction approach is limited to certain distribution 

types, the simulation-based correction approach is recommended for most of 

cases. The simulated experiments for collected data is also important to see the 

significance of the sampling bias impact, and the correction could be 

unnecessary (or the bias is ignorable) depending on purpose of its use. More 

importantly, it is recommended to consider using data sources with a larger 

sample size before considering the corrections, since a smaller sample size not 

only brings the sampling bias, but also increases its variations.  

 

It is important to know that the harmonic mean is used in many places, although 

our study focused on the SMS. These area or examples, of where the harmonic 
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mean is used and therefore the sampling bias should be considered, include 

calculating the followings [39]:  

 a fuel economy measurement, an average MPG of a group,  

 an average of multiples, such as price-earnings ratio, in finance, 

 an aggregated performance score for algorithms and systems in computer 

science,  

 an average contribution per component, such as parallel resistance and 

parallel inductance, in electronics,  

 the fluctuation effects in generation size of effective breeding population in 

population genetics, and 

 other aggregated measurements in geometry, hydrology, sabermetrics, 

chemistry, and so on.  

 

To understand and solve the issue of sampling bias of harmonic mean with small 

sample size, further discussions and studies are needed. This includes the 

impact of sampling bias on weighted harmonic mean and more empirical analysis 

to investigate the sampling bias of harmonic mean in the fields, which of data are 

not necessarily independent and identically distributed. Furthermore, there is a 

remaining question of how to determine required sample size considering both 

the sampling bias and its variation.  
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CHAPTER II 

 

ESTIMATION OF ERROR DISTRIBUTION FOR MULTI-SOURCE 

DATA WITHOUT GROUND TRUTH DATA USING MODIFIED 

APPROXIMATE BAYESIAN COMPUTATION  
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This chapter presents a modified version of a research paper by Hyeonsup Lim, 

Lee D. Han, Shih Miao Chin, and Ho-ling Hwang. 

 

 

Abstract 

  

 

One of the challenges in measuring accuracy of multi-source data, before this 

study, is a requirement of ground truth data (or baseline data), since the 

accuracy of each data source is defined as the difference between the truth and 

the measurements of the data source. Determining the ground truth data source 

is another challenge since measuring the accuracy of the ground truth involves 

additional requirement of more accurate baseline data. This study proposes a 

methodology to estimate error distributions of data sources by aggregating 

measurements from multi-source data. Approximate Bayesian Computation was 

adopted and modified to construct the error distribution based on simulations. In 

the simulated experiment, the proposed model outperformed the alternative 

approach, which is a conventional way of evaluating data source that is gathering 

error information by using the benchmark data. The sensitivity analysis is also 

provided to explore the model performance by sample size, number of data 

sources, and distribution types. The proposed model is limited to one 

dimensional variable with an assumption of independence between the data 

sources, but the basic approach provided in this study might be easily expanded 

in other applications.  
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Introduction 

 

With technology advancements, data are exploding in respect to its size and 

variety. Major traffic information providers have built a data warehouse of multiple 

petabytes or even more that stores minute-by-minute traffic data across millions 

of road segments. The large and complex data, so called “Big Data”, have 

brought a new era of variety of data-driven modeling and applications.  

 

Specifically, multi-source data have brought the immense and innovative benefits 

in many places. Medical scientists utilize multiple sources of data, including 

patient records, physician reports, medical malpractice claims data, journal 

articles, and other databases, to identify and assess diagnostic error in medicine. 

In ecology, researchers have been reconciling multiple data sources to improve 

prediction of forest disease incidence. In addition, multiple GPS receivers are 

used where highly accurate location information is needed.  

 

One of the big challenges of handling the multi-source data is how to measure 

the reliability and accuracy of each data source. Although the multi-source data 

seem to be promising the better prediction and estimation, use of inaccurate data 

source or improper data aggregation could erroneous estimation results and end 

up with misleading conclusions. Therefore, data accuracy must be considered 

enough and each data source should be treated carefully in the modeling and 

analysis, involving a decision whether the data should be included in the 

analysis.  

 

The information of data accuracy is, often, not available or provided at an 

insufficient level. Sometimes, the accuracy of data may not be important for their 

originated purposes. Even if they do provide some measurements, the 

information could be based on highly controlled conditions such as laboratory 
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experiments. For instance, actual gas mileage reported by drivers is often 

different than the MPG provided by car manufacturers. Moreover, organizations 

may require concealing data and the data accuracy for confidentiality reasons. 

As a result, the prior knowledge of the data accuracy information might be 

inaccurate.  

 

Even if we all agree on that we must provide reliable accuracy information, 

measuring the accuracy is still a big challenge. Even before all of discussions of 

post-processing of data for measuring the accuracy, such as filtering, 

aggregating, and smoothing, one of critical point of measuring the accuracy is a 

requirement of ground-truth data (or baseline data), since the accuracy of each 

data source is defined as the difference between the ground-truth and the 

compared data source. Therefore, the error of ground-truth data should be near 

zero or within certain criteria. However, the resources to obtain the ground-truth 

data are often expensive.  

 

When we have enough data sources that are not extremely biased to one-side in 

average, the distribution of ground-truth can be estimated based on the prior 

knowledge of accuracy of each data source even if some of information is wrong. 

This is similar to applying a democratic decision making in a sense that we 

believe that the decision made by majority vote is better or at least fair. The 

difference is that we listen to all of opinions, make a combined decision, and 

remember who were wrong and how much. The recorded information is used to 

estimate how much wrong that person could be in a next discussion, as well as 

making a better decision.  

 

The objective of this study is to estimate an error distribution of multi-source data 

in one dimension when we do not have the ground truth data. We assume that 

each data source works independently. This study utilizes multi-source data to 

estimate the distribution of ground-truth and then estimate the error distribution of 
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each data source. The proposed algorithm, a modified Approximate Bayesian 

Computation, starts with the prior knowledge of each data source, but keeps 

updating the knowledge as more data are gathered with a simulated set of 

ground-truth.  

 
 

Literature Review 

 

Most of studies in transportation evaluating data accuracy, traditionally, have 

adopted a third source of data as ground truth or reference point, assuming that 

the measurement error of the data is close to zero. To measure the accuracy of 

speed (or travel time) data, previous studies used different types of sensors as a 

benchmark data source, that is assumed to be the ground truth data in their 

analysis. The typical data sources include License Plate Recognition (LPR) [40-

44], probe vehicle[45, 46], Bluetooth[47-52], and Radio Frequency Identification 

(RFID) [53, 54]. Ribeiro et al. have used cartography data as a ground truth 

source to compare the accuracy of several alternate low-cost methods, Google 

Earth, a digital inclinometer, and a laser distance measurer, to measure road 

gradient for cycling infrastructures [55].  They concluded that any of the tools 

presented in the study was unreliable as a single source, but a combination of 

the three tools could be useful to conduct a preliminary assessment of the 

geomorphologic suitability and audit the urban road environment for pedestrians 

and cyclists.  

 

The Bayesian theorem has been applied to combine multi-source data in many 

area, including signal/sensor data [56-58], spatial data [59-61], and audio/visual 

data [62-64]. Likewise, there has been a proliferation of Bayesian theorem based 

studies and applications in transportation field: traffic flow forecasting [65-70], 

travel time/speed estimation [71-76], and traffic crash analysis [77-82]. 
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Specifically, Choi et al. proposed a data fusion algorithm using Bayesian polling 

technique [73].   

 

The typical incarnation of Bayesian theorem can be written as Equation 42, 

where 𝜃 denotes a particular parameter value given data 𝐷 [83]. 

 

𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)
 (34) 

 

In Equation 42, the likelihood 𝑃(𝐷|𝜃) defines the probability of the observed data 

under the particular statistical model parameter value 𝜃. The likelihood, typically, 

can be calculated from an analytical formula for simple models. However, the 

analytical formula for complex models is often elusive.  

 

Approximate Bayesian Computation (ABC), proposed by Mark et al., overcomes 

this issue by approximating the likelihood with systematic simulations, where the 

likelihood function is analytically intractable [84].  Actually, before the term ABC 

was established by Mark et al., the idea of ABC started in 1980s. Diggle and 

Gratton, in 1984, proposed a simulation based method to approximate the 

likelihood by defining a grid of parameter space and simulating each grid point 

[85]. Also, Donald stated a hypothetical sampling mechanism, which coincides 

with the ABC-rejection scheme [86].  

 

While the Diggle and Gratton’s approach aimed at approximating the likelihood 

rather than the posterior, Tavaré et al. described computational methods, i.e., 

ABC algorithm, for posterior inference of the coalescence time (time since the 

most recent common ancestor) of DNA sequence data [87]. Toni et al. combined 

ABC and Sequential Monte Carlo (SMC) to estimate parameters of dynamic 

models and provide a better statistical inference of the model parameters and its 

sensitivity [88]. The proposed model can also be used for the standard Bayesian 
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model selection. Furthermore, Mark et al. specifically described the ABC-

approach and its suitability for problems in population genetics, and the 

application of ABC has spread to epidemiology, systems biology, and etc. [89]. 

However, based on our literature review, the authors could not find any study 

using the ABC approach in transportation field.  

 

As shown in Figure 13, ABC performs numerous simulations based on prior 

distribution of model parameter value, and compares the summary statistic of 

simulated data with the observed data to determine acceptance/rejection of each 

simulation [89]. Since the probability that simulated data exactly coincides with 

the observed data is extremely low in most of cases, the rejection rule should not 

be too strict. Finally, the posterior distribution of model parameter 𝜃 can be 

obtained from the accepted simulations.  

 

 

Figure 13. Parameter Estimation by Approximate Bayesian Computation  
(Source: Mark et al., Approximate Bayesian Computation, 2013 [89]) 
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Methodology 

 

Modified Approximate Bayesian Computation 

Suppose that there are three data sources, 𝑎, 𝑏, and 𝑐, and their observations, 

𝑥𝑎, 𝑥𝑏, and 𝑥𝑐. Unlike the aforementioned ABC, our concern is to know the error 

distribution of each data source. If we know the truth 𝑥𝑇, the error of each data 

source for this observation will be 𝑥𝑎 − 𝑥𝑇, 𝑥𝑏 − 𝑥𝑇, and 𝑥𝑐 − 𝑥𝑇.  

 

𝑃(𝐸𝑟𝑟(𝑥𝑎) = 𝑥𝑎 − 𝑥𝑇|𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) = 𝑃(𝑥𝑇|𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) (35) 

 

However, the ground truth 𝑥𝑇 is often unavailable or very costly to obtain, and 

hence a set of candidates of ground truth �̂�𝑇1, … , �̂�𝑇𝑛 is constructed. This makes 

our interim target to estimate the probability of each candidate of ground truth.  

 

𝑃(�̂�𝑇𝑛|𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) =
𝑃(𝑥𝑎, 𝑥𝑏 , 𝑥𝑐|�̂�𝑇𝑛)𝑃(�̂�𝑇𝑛)

𝑃(𝑥𝑎, 𝑥𝑏 , 𝑥𝑐)
 (36) 

 

Since the relative scale of probability should be obtained for updating the error 

distribution, the probability of the observation 𝑃(𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) and the probability of 

each ground truth candidate 𝑃(�̂�𝑇𝑛) can be ignored if we construct an enough set 

of candidates of ground truth, i.e., almost all possible values of truth and the 

observation of each data source is independent.  

 

𝑃(�̂�𝑇𝑛|𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) ∝ 𝑃(𝑥𝑎, 𝑥𝑏 , 𝑥𝑐|�̂�𝑇𝑛) (37) 

 

𝑃(�̂�𝑇𝑛|𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) = α ∙ 𝑃(𝑥𝑎|�̂�𝑇𝑛) ∙ 𝑃(𝑥𝑏|�̂�𝑇𝑛) ∙ 𝑃(𝑥𝑐|�̂�𝑇𝑛) 

= α ∙ 𝑃(𝐸𝑟𝑟(𝑥𝑎)) ∙ 𝑃(𝐸𝑟𝑟(𝑥𝑏)) ∙ 𝑃(𝐸𝑟𝑟(𝑥𝑐)) 
(38) 

 



47 
 

Then, the estimated error distribution of each data source for the observation can 

be calculated from the probability of the set of candidates of ground truth. For 

instance, the error distribution of data source 𝑎 for the observation is shown in 

Equation 47. 

  

𝑃(𝐸𝑟�̂�(𝑥𝑎) = 𝑥𝑎 − �̂�𝑇𝑛|𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) = 𝑃(�̂�𝑇𝑛|𝑥𝑎, 𝑥𝑏 , 𝑥𝑐) (39) 

 

Figure 14 describes the procedure of proposed algorithm to estimate the error 

distribution of each data source. First, before running the simulation, the 

observed data from multiple sources and the prior knowledge of error distribution 

of each data source will be gathered to calculate the likelihood.  

 

The key point of the proposed algorithm is constructing a candidate set of true 

data points �̂�𝑇𝑛. This is similar to model parameter value to be estimated in ABC 

described in the previous chapter, but no rejection criterion is used because the 

candidate set should cover most of possible points for ground truth. For each 

simulated ground truth point, the likelihood will be calculated based on the 

observed data and the prior error distribution of each data source. As a result, a 

set of likelihoods will be obtained for each observation.  

 

For each data source, the difference between the observed value and each data 

point in the set of ground truth represents the error of the data source. Therefore, 

a set of each data source error value, with the its estimated likelihood, will also 

be obtained, associated with the set of ground truth. Finally, the posterior 

distribution, which is the error distribution of each data source for the 

observation, will be used to update our knowledge on the error distribution of the 

data sources for upcoming observations.  
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Figure 14. Modified Approximate Bayesian Computation (Proposed Model) 
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Simulation Procedure 

 

To accurately assess the performance of the proposed model, the ground truth 

data and the true error distributions of data sources must be known. Such 

information is, generally, not obtainable in practice. Therefore, to investigate 

theoretical aspects of usefulness and limitations of the proposed approach, a 

simulation-based case study was conducted rather than observed data in field. In 

the simulated experiment, the ground truth and the true error distribution of data 

sources are generated by defined conditions, and therefore controlled. The 

overall procedures of the simulated experiment and their analysis results are 

described in the following sections.  

 

Case Description 

To explicitly demonstrate the approach of this study and make it easy to 

understand, the study uses a simple case that there are three detectors 

measuring a distance between two target objects. The detectors have prior 

information of their error distribution, which may or may not be accurate. The 

following assumptions are made for this case of simulation: 

 

 The measured distance by each detector has an error due to only the 

defined distribution of the detector error, which is independent to any 

endogenous or exogenous factors including other detectors.  

 The distribution of detector error remains unchanged during the 

experiment. 

 The detector error follows a gamma distribution. 

 

The distance measurer procures the distance between the target objects. Note 

that the distance measurement described here does not include a direction, and 
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hence it is one dimension. The true distance is defined as the actual distance 

between the target locations while the error is zero. The detector error represents 

the difference between the true distance and measured distance. The procedure 

1 and 2 describes how the detector errors and ground truth data set was 

constructed, and the estimation is conducted by repeating the procedure 3 to 6, 

which is also associated to the steps in Figure 14.  

 

Procedure 1: Generating Distribution of Detector Errors 

The first procedure of simulation is generating the detector errors. It is assumed 

that each detector works independently and does not affect the accuracy of other 

detectors. It is also assumed that the detector error is independent with 

magnitude of the true distance. This may not be realistic since distance measurer 

could be designed for short or long range of distance and perform better on those 

ranges.  

 

Procedure 2: Generating Ground Truth Data Set and Observed Data  

The distance can be measured without knowing the location of objects, although 

it could be necessary in some practical applications. Therefore, the simulation 

generates the set of distances between the objects as ground truth data, without 

concerning the movements of objects. Accordingly, the observed data for each 

detector is generated based on the distribution of detector errors defined in 

Procedure 1. Assuming no missing observation, the number of observations will 

be the number of ground truth data multiplied by the number of detectors (data 

sources). Then, the rest of procedures assume that only the observed data, but 

no ground truth data, is available.  
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Procedure 3: Constructing a Set of Candidates for Ground Truth  

Procedure 3 begins the proposed algorithm to estimate the distribution of multi-

source detector errors. For each observation with multiple measurements of the 

detectors, a set of candidates for ground truth is constructed based on the 

observation. The candidate set will cover a certain confidence interval of the true 

distance, which is estimated based on the prior knowledge of detector errors. 

Then, a vector of 𝑛, the number of candidates of ground truth for each 

observation, evenly spaced points in the feasible range will be generated.  

 

Procedure 4: Calculating Probability 

Now, the observation is associated with each of candidate ground truth points. 

For each detector, the estimated error of the detector with the candidate point is 

a difference between the observed value and the candidate value. The 

probability of obtaining the observation for the detector can be obtained from the 

prior knowledge of distribution of detector error. Then, the likelihood of the true 

distance is equal to the candidate value can be calculated by multiplying the 

probability of obtaining the observation of each detector. This calculation is 

repeated for all set of candidates of ground truth points.  

 

Procedure 5: Estimating a Distribution of Ground Truth 

After calculating the probability of each candidate points, the distribution of 

ground truth is estimated by kernel density estimate, which is a non-parametric 

method to estimate the probability density function. The calculated probability of 

each candidate points is used as a weighting factor. The point estimate of the 

true value can also be obtained by using maximum likelihood estimate (MLE).  
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Procedure 6: Updating an Error Distribution of Each Detector Error 

If the true distance is known, the error of each detector can simply be calculated 

by subtracting the observed value from the true value. Therefore, estimating a 

distribution of ground truth is identical to obtaining a distribution of detector error 

for the observation, and the output of estimated distribution of ground truth will be 

directly used to update a distribution of each detector error. In the simulated 

experiment, the distribution of detector error updated after the distributions of 

ground truth data are estimated for all observations. This can be modified to 

update the error distribution more frequently in real-time operations. Then, 

Procedures 3 to 6 are repeated until the difference of estimated distribution of 

detector errors between the previous iteration and the current iteration is very 

small.  

 

Procedure 7: Adjusting Estimated Error Distribution over Iteration 

Probability calculated in Procedure 4 can be obtained by log-sum of the 

probability of the estimated error of each detector. At the end, to update the 

estimated error distribution, the log-sum should be re-converted to a probability 

by taking an exponential. In this calculation, multiplication of very small 

probabilities, i.e., a large negative number of the log-sum, could be calculated as 

zero in a computer, due to its limited decimal fractions. This might be 

encountered more seriously as number of data sources is increased, which 

means more number of multiplications. The number of iterations could also affect 

increasing this issue, although it might not be a critical issue where those small 

probabilities are ignorable. To encounter the zero probability issues, a minimum 

positive probability among the candidate set is added when probability of zero 

exists.  
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Results 

 

Example of Estimated Error Distribution 

Figure 15 compares the estimated error distribution and true error distribution for 

one data source, over the iteration. As the iteration increases, the line of 

estimated error distribution gets closer to the true error distribution. The 

estimated error distribution could capture that the true error distribution is slightly 

skewed to right and their variance, as well as the mean of error. This is very 

important point to show flexibility of the proposed model, because it does not 

specify a certain type of distribution. This flexibility comes from the approach of 

the proposed model heavily rely on the collected data sets. With this power of 

estimating error distribution, the proposed method can also be used to estimate 

the distribution of ground truth for each data point, if the error distribution of 

detector is sufficiently learned.  

 

 
Figure 15. Example of Estimated Error Distribution over the Iteration  

 

Iteration Number
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Evaluation Criteria 

The Bhattacharyya distance, which is a measurement to account a similarity 

between two probability distributions, was used to evaluate the model 

performance [90]. The Bhattacharyya distance is calculated by taking a negative 

logarithm of Bhattacharyya coefficient, which approximately measures the 

amount of overlap between two statistical samples, as described in Equation 40. 

 

𝐷𝐵(𝑝, 𝑞) = −ln (BC(𝑝, 𝑞)) 

BC(𝑝, 𝑞) = ∫√𝑝(𝑥)𝑞(𝑥) 𝑑𝑥  
(40) 

where 

 𝐷𝐵(𝑝, 𝑞) is the Bhattacharyya distance between two distributions, 𝑝 and 𝑞,  

 BC(𝑝, 𝑞) is the Bhattacharyya coefficient of the two distributions.  

 

To visually provide inferences of the Bhattacharyya distance on this study, Figure 

16 displays four examples of estimated error distributions along with their 

Bhattacharyya distances and Bhattacharyya coefficients. For instance, the  

Bhattacharyya distance of estimated error distribution on the left-top of Figure 16 

can be calculated as − ln(0.8) = 0.22. The given examples are actual estimation 

results from the simulated experiments.  

 

Impact of Number of Data Sources 

To analyze the impact of number of data sources on the model performance, 100 

simulation runs were conducted for each number of data source, with sample 

size of 300. Figure 17 represents the 90% confidence interval, i.e., an interval 

from 5% percentile to 95% percentile, the sample estimate, i.e., the center of the 

confidence interval, and the individual results of Bhattacharyya distance. As 

shown in Figure 17, the Bhattacharyya distance decreases as the number of data 

sources increases. In other words, it is expected that the estimated error  
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Figure 16. Example of Bhattacharyya Distance for This Study  

 
 

 
Figure 17. Bhattacharyya Distance over Number of Data Sources  

 

Bhattacharyya coefficient = 0.8

Bhattacharyya distance = 0.22

Bhattacharyya coefficient = 0.9

Bhattacharyya distance = 0.11

Bhattacharyya coefficient = 0.99

Bhattacharyya distance = 0.01

Bhattacharyya coefficient = 0.95

Bhattacharyya distance = 0.05
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distributions are likely to be closer to the true error distributions when more data 

sources are available. This seems intuitively reasonable since the estimated 

distributions of true value for each data point should become more accurate as 

more information is available. In this simulated experiment, more than 90% of 

estimated error distributions, with seven or more data sources, have the 

Bhattacharyya distance of less than 0.2. The marginal gain we obtain for having 

closer error estimation from additional data source seems to be decreasing as 

the number of data sources increases. In other words, a single additional data 

source could better improve the estimation of error distribution when only a few 

data sources are currently available.  

 

Impact of Sample Size 

Figure 18 illustrates the performance of the estimation of error distribution over 

sample size. In this impact analysis, the number of data sources was set to be 10  

for all cases. It is obvious that larger sample size better improves the model 

performance, i.e., decreasing the Bhattacharyya distance. With sample size of 

less than 200, several estimated error distributions have the Bhattacharyya 

distance of larger than 0.8, which of the Bhattacharyya coefficient is smaller than 

0.45. 

 

Sensitivity Analysis by Distribution Type 

This section was conducted to test the validity of the proposed model on different 

distribution types, i.e., mean, standard deviation, and skewness of the error 

distribution. To reflect flexible families of distributions, the Pearson system, a 

family of continuous probability distributions, was used with randomly generated 

distribution moments, i.e., mean, standard deviation, skewness, and kurtosis. 

The ranges of the moments are described in Table 3.  
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Figure 18. Bhattacharyya Distance over Sample Size 

 

Table 3 Moments of Distributions in the Simulated Experiment 

Column1 Mean 
Standard 

Deviation 
Skewness Kurtosis 

Min -50 10 -5 3 

Max 50 50 5 1000 
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In Figure 19, the model performance is displayed by mean on a horizontal axis 

and standard deviation on a vertical axis. To clearly show where the proposed 

model performed better, the Bhattacharyya coefficient, the larger the better, was 

displayed here instead of the Bhattacharyya distance. The two line-graphs 

alongside the scatter plot represent the average Bhattacharyya coefficient. As 

shown in Figure 19, the model performance seems to be more sensitive to 

standard deviation than mean. As the standard deviation decreases, the 

Bhattacharyya coefficient also decreases.  

 

In Figure 20, the model performance is displayed by standard deviation on a 

horizontal axis and skewness on a vertical axis. The Bhattacharyya coefficient is 

higher in average where the skewness is close to zero, but the difference seems 

not very clear relatively, as compared to the impact of standard deviation. 

Overall, the proposed model better estimates error distributions than the 

alternative by more than 84%. 

 

 
Figure 19. Model Performance by Mean and Standard Deviation 
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Figure 20. Model Performance by Standard Deviation and Skewness 

 

Parameter Estimates of Error Distribution 

Although this study mainly focused on estimating error distribution itself, the 

proposed model could be used to estimate parameters of distributions, e.g., 

mean and standard deviation. In Figure 21, the mean of estimated error 

distribution was compared with the mean of the true error distribution. The 

estimated mean from the proposed model is much closer to the true mean of 

error, as compared to the alternative.  

 

Likewise, Figure 22 is a Q-Q plot of the estimated standard deviation of error 

versus the true standard deviation of error. The estimated standard deviation of 

error by alternative approach tends to be larger than the true standard deviation, 

while the estimated standard deviation by the proposed model is relatively closer 

to the true standard deviation. This is because using a single source of 

benchmark data among the data sources brings extra variations to estimated true 

values by its own variation, even if the benchmark data source is unbiased.  
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Figure 21. Q-Q Plot of Estimated Mean of Error 

 

 

 
Figure 22. Q-Q Plot of Estimated Standard Deviation of Error 
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Conclusion 

 

This study enabled estimating error distribution of data source without the need 

of ground truth data, by incorporating modified Approximate Bayesian 

Computation. In the simulated experiment, the results show that the proposed 

model outperforms the alternative approach, which is a conventional way of 

evaluating data source that is gathering error information by using the benchmark 

data. The sensitivity of the model performance was conducted by sample size, 

number of data sources, and distribution types.  

 

The key benefits of proposed model include the followings: 

 The estimation process does not require a process of determining the 

benchmark (or ground truth) data source, 

 Error estimation of the proposed model does not require parametric 

estimates,  

 Given prior knowledge of each data source might be useful to improve the 

model performance, but the proposed model still can be applied without 

the prior knowledge, 

 Final output of the proposed model entails the actual shape of error 

distribution, which enables user to visually analyze the error distribution 

and make their own decisions, in addition to estimated parameter 

estimates such as mean and standard deviation of the errors.  

 

The proposed model was evaluated on the simulated experiment of distance 

measurements, which is a one-dimensional continuous variable. In practice, it is 

expected that the proposed approach can be applied in various places. For 

instance, when travel speeds are gathered simultaneously from many vehicles, 

the vehicle speed distribution of individual can be estimated using the proposed 

approach. In this case, the estimated distributions represent the characteristics of 
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individual, not the errors. Furthermore, the estimation of error distribution can be 

applied to determining a best data source, which is preferred to be unbiased with 

less variation of error.  

To validate and expand applications of the proposed model, further discussions 

and studies are needed, including, but not limited to: 

 Additional simulation-based experiments with two-dimensional problems 

and different numbers of data sources, 

 Consideration of estimating the error distributions where the accuracy of 

data sources is associated with other factors, 

 Considering weighted estimation using a prior knowledge where a certain 

data source is known to be more accurate, 

 Building an association matrix or chain to consider error distributions of 

where variables are not continuous, i.e., discrete, ordinal, nominal, or 

other non-continuous types,  

 Enhancing the estimation speed, e.g., modifying number of iterations or 

number of candidates, to apply the proposed model in real-time operation 
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CHAPTER III 

 

ENHANCING ACCURACY OF POSITION AND DISTANCE 

MEASUREMENTS FOR CONNECTED VEHICLES BASED ON 

MODIFIED APPROXIMATE BAYESIAN COMPUTATION 

APPROACH  
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This chapter presents a modified version of a research paper by Hyeonsup Lim, 

Lee D. Han, Shih Miao Chin, and Ho-ling Hwang. 

 

 

Abstract 

  

 

Accurate positioning of vehicles is a critical element of autonomous and 

connected vehicle systems. Most of other studies heavily focused on enhancing 

simultaneous localization and mapping (SLAM) methods, i.e., computationally 

constructing or updating a map of an unknown environment and tracking an 

object within the map. This paper provides a method that can, in addition to 

existing SLAM or relevant methods, enhance the raw measurements of position 

and distance and therefore. The basic idea of this study is to identify and update 

error distribution of multi-source raw data measurements by combining all 

available information. A modified Approximate Bayesian Computation method 

was incorporated. The estimation is conducted real-time based, and the learning 

process will try to keep improving the accuracy of estimation. The results show 

that the proposed model noticeably improves the accuracy of position and 

distance measurements. The estimated error distribution can also be used for 

improving results of other post-processing techniques which require assumptions 

of certain type of error distributions. A similar approach can also be utilized to 

enhance accuracy of other sensors or measurements in connected vehicle or 

relevant systems, where multi-data sources are available. 
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Introduction 

 

Autonomous Vehicles (AVs) and/or Connected Vehicles (CVs) will become 

available in near future, most likely will be both as CVs will add cost of only 

several hundred dollars or less [91]. There are a variety of types of sensors that 

could be embedded to AVs and CVs, but one of inevitable functionality is 

positioning and measuring distances between vehicles and objects. The sensors 

and their measurements will affect the accuracy and the reliability of overall 

connected vehicle systems, potentially to road safety as well.  

 

This importance of the measurement accuracy brought attention of industry and 

government agencies that the sensor error needs to be allowed in a certain 

range. Although there are regulations that define range of errors allowed in 

application, how we can measure the errors is a remaining question. To measure 

the error, we often conduct experiments in limited circumstances. Of course, a 

wide range of experiments and a benchmark data sources with high precision will 

lead to more trustful results. Then, how can we be sure they are enough or not, 

with consideration of additional resources needed?  

 

Another challenge is determining the benchmark source to evaluate the 

designated measurements or data source. This requires a method to evaluate 

the benchmark data source or at least to justify why it is used as an alternative of 

the ground truth. Also, even if we conducted the test & field experiments enough 

to define the error distribution of each data source, it may be changed over the 

operations in real field, due to their installation, maintenance, geographical 

circumstance, intervene with other sensors, and so on. These are often hard to 

expect accurately before the implementation.  
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The motivation of this paper is to identify and update error distribution of multi-

source raw data measurements by combining all available information. Then the 

learned distribution is applied, as we operate them, to improve accuracy of the 

measurements in real-time AVs and CVs operations. Before this study, most of 

other studies heavily focused on enhancing simultaneous localization and 

mapping (SLAM) methods, i.e., computationally constructing or updating a map 

of an unknown environment and tracking an object within the map. The 

estimation of error distribution is not an alternative of those existing methods, but 

an enhancement method that can be used in addition to other methods.  

 

The benefit of proposed method also involves low cost of gathering information, 

which will be near to zero except a little bit of additional computational workloads. 

Potentially, it can be used to identify what caused error measurements if 

measurements of those other factors can also be collected. The paper made a 

considerable effort on applying a proposed method in connected vehicles’ 

position and distance measurements, as providing detailed procedures that can 

be applied in practice. Potentially, a similar approach can also be applied where 

multi-source data are available.  

 

Although this paper assumed using raw data of measurements without any 

localization and further post-processing methods, but the proposed method may 

also be used before or after other post-processing techniques. In other words, 

the paper represents how much the proposed method can improve raw data of 

position and distance measurements, and the uses of other existing smoothing 

and filtering techniques are encouraged to further improve the estimation results 

in practice. To this end, there is no comparison between the proposed method 

and other methods, but the improvements from raw data measurements are 

described.   
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Literature Review 

 

In recent years, smart driving technologies, i.e., connected vehicles (CVs) and 

autonomous vehicles (AVs), has gotten so much attentions as a promising future 

that will improve our mobility and safety. NHSTA reported that these technologies 

may reduce car crashes drastically, almost 90% of all the crashes that are 

caused by human error [92].  

 

Although there will be a significant need for discussions on policies and 

regulations related to CVs and AVs, we will still need to confront and address 

technological challenges related to different kinds of the safety and mobility 

issues, such as hacking, malfunctions of computer systems, and low accuracy of 

sensor measurements. The impact of the potential outcomes from implementing 

the new systems under unreliable circumstances could be far more serious than 

types of the car crashes with conventional human-driving systems, since vehicles 

in the new systems are “connected”.  

 

Positioning sensors and telecommunications systems, cameras, and automatic 

transmissions, with a variety of other special sensors, navigation and security 

services, are the key elements for CVs and AVs [93]. It is obvious that highly 

accurate position and distance measurements are essential for CVs and AVs, as 

they will require super reliable navigation capabilities.  

 

Global Positioning Systems (GPS), which is a constant position tracking method 

based on global location and time references of objects from satellites, is an 

indispensable element of CVs and AVs. Typically, the accuracy of position 

measurements of GPS-enabled smartphone, under open sky, is within 5 meter, 

and the accuracy can be improved by using dual-frequency receivers and/or 

augmentation systems [94]. Recently, centimeter-accurate (or even millimeter-
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accurate) GPS has been proposed and developed with its increasing demand, 

but they typically require additional modules or infrastructures, which are used for 

local referencing points to improve the accuracy, and thereby extra costs are 

necessary [95-98].  

 

Another key sensor of CVs and AVs is a Laser Illuminated Detection and 

Ranging (LiDAR), which is a laser detection sensor to identify surrounding 

objects and precisely measure distances to the objects. The accuracy of LiDAR 

varies a lot depending on their cost and environment, like GPS. Bowen and 

Waltermire stated that the accuracy for LIDAR data ranges from root mean 

square error of 1 to 2 meter horizontally and 15 to 20 centimeter vertically, in 

published evaluations [99]. Csanyi and Toth said “State-of-the-art lidar systems 

can achieve 2 to 3 cm ranging accuracy under ideal conditions”, but they also 

pointed out that the accuracy range is not realistic for typical navigation-based 

direct sensor platform orientations [100]. 

 

To improve accuracy of vehicle position measurements, most papers have 

focused on localization methods of tracking objects. Simultaneous Localization 

and Mapping (SLAM) is a method commonly used for improving position 

estimations by using sensor measurements, landmarks, map, and an estimator, 

such as extended Kalman filter and particle filter [101-120]. The extended 

Kalman filter has been used widely, especially in robotics, to address the 

limitation of linearity assumption of Kalman filter for an estimate of the current 

mean and covariance [112, 113, 116, 117]. However, Huang and Gamini have 

addressed convergence and consistency issues of the extended Kalman filter 

[121, 122]. Also, the extended Kalman filter has limitations on data association 

problem and an assumption of Gaussian distribution for sensor measurement 

noises. To overcome this issue, the particle filter has been introduced by 

estimating state from processing raw data without feature detection [104]. 

However, each particle in the particle filter represents a trajectory point, and thus 
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increases computational load. Then, Montemerlo et al. applied Rao-

Blackwellized particle filter (RBPF), which reduces memory usage by sharing a 

map between particles [123]. Although RBPF requires predetermined landmarks, 

it has become more popular recently [101-104, 119, 120]. Unfortunately, the 

performance of both methods varies much depending on those assumptions and 

limitations, study sites and sensor errors, and by far no agreement has been 

made to which method is better in general.   

 

Instead of using all features of localization, Lee et al. proposed a localization 

method based on GPS and DR error estimation that is from a lane detection with 

curved lane models, stop line detection, and curve matching, from [124]. The 

result of their experimental site shows that the error of estimated position stayed 

within a meter. There are decent number of researches on MonoSLAM, 

localization and mapping using a singular data source, mostly visual data [125-

129]. 

 

Several papers have utilized multi-source data to further improve sensor 

measurement accuracy [130-134]. In 2006, Mahlisch et al. provided an approach 

to cross-calibrate vision and ranging sensors by a spatio-temporal alignment 

[134]. They have shown the proposed model could be applicable for real-time 

operation by using low level fusion of multibeam LiDAR and vision sensor 

measurements. Although most of studies in SLAM also use multi-source data, 

focuses on SLAM are more on localization and mapping rather than data source 

type and their error distributions.  

 

One of the main challenges of the smoothing and approximation techniques, 

used in SLAM, is that error distributions of raw measurements are assumed to be 

a certain type, e.g., Gaussian, or the performance is affected by the error 

distributions and other assumptions. The authors indicate that the error 

estimation seems not considered enough in most of studies. Lee et al.’s paper, 
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relatively, focused more on the error estimation, but their approach relies on the 

accuracy of lane detection [124].  

 

More fundamentally, almost all proposed SLAM methods in this literature review 

will need a certain degree of accuracy from raw data measurements, although 

the impact of such accuracy could be different by the smoothing techniques and 

purpose of uses.  

 

This study uses Bayesian approach, which has been used in estimating 

parameters and states for decades, to improve raw data measurements of 

position and distance by estimating error distribution of each data source. Even 

the Kalman filter and particle filter are based on Bayesian statistical inference, 

estimating a joint probability distribution of unknown variables or a conditional 

probability of the states of some processes. In transportation, it has become 

available and more often used than before, not just because their benefits of 

performance, but also due to the introduction of easier approaches such as 

Markov Chain Monte Carlo (MCMC) based Bayesian approach [135].  

 

The modified Approximate Bayesian Computation, described in Chapter II, was 

also applied in this chapter. Most of times, focuses of those Bayesian 

approaches are on estimation of designated parameters or states, not in 

estimating error distributions of those parameters. This is a significant difference 

point of this paper, which of the real-time estimation and learning process is 

based on continuous self-evaluation and updates of the error distributions.  
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Methodology 

 

Modified Approximate Bayesian Computation 

The modified Approximate Bayesian Computation in Chapter II was also used in 

this study. Instead of considering only one-dimensional variable in Chapter II, this 

study involves a mixture of one- and two-dimensional variables, the distance and 

position measurements. For each time stamp, we assume that a vehicle will have 

the following information:  

 Distance measured from the designated vehicle to the most adjacent front 

vehicle (source: a sensor in the designated vehicle) 

 Distance measured from the designated vehicle to the most adjacent rear 

vehicle (source: a sensor in the designated vehicle) 

 Position of the designated vehicle (source: a sensor in the designated 

vehicle) 

 Distance measured from the most adjacent front vehicle to the designated 

vehicle (source: a sensor in the most adjacent front vehicle) 

 Position of the most adjacent front vehicle (source: a sensor in the most 

adjacent front vehicle) 

 Distance measured from the most adjacent rear vehicle to the designated 

vehicle (source: a sensor in the most adjacent rear vehicle) 

 Position of the most adjacent rear vehicle (source: a sensor in the most 

adjacent rear vehicle) 

If there is no error on all the measurements, the distance and position 

measurements must be consistent. For instance, the calculated distance from the 

measured positions of between the front and the designated vehicle should be 

equal to the distance measured from both the designated vehicle and the front 

vehicle. In this case, the number of data sources at a single time frame will be 

seven, and the estimated error distribution of each will contribute to calculate 
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probability of candidate set of true vehicle positions and update its own error 

distributions.  

 

Overall flowchart (diagram) of estimation process 

Figure 23 describes the overall flow of estimation process from gaining sensor 

measurement to updating the estimated error distribution and estimating the true 

position, which is conducted simultaneously but can also be implemented as a 

separate module. In this study, we assume that each vehicle has a such module 

described here and get the sensor measurements from two adjacent vehicles 

(front and rear) as they transmit such information with CV environment. The 

circumstances of data transmission may be different depending on technology 

developments, regions and their policies. Although the scope of this study does 

not cover data missing, the estimation of error distribution process may still work 

on those interruptible situations since the learning process can just skip those 

missing time stamps. In actual applications using the proposed approach, the 

module can be modified to still conduct the process with the limited information if 

only several measurements are missing.  

 

If initial prior distribution is unknown or not setup because of uncertainty, one can 

gather decent number of samples to estimate the initial error distribution. Either 

the prior distribution is manually setup from other information or created by the 

firstly collected sample data, the estimated distribution will be used in the rest of 

process to generate candidates, calculate log-likelihood of the candidates, and 

therefore update the estimated error distribution and estimate the true position of 

vehicles.    
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Figure 23. Overall Procedure of Proposed Model 
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Generating Prior Distribution (Initial Learning) 

At the beginning of the proposed model, we may or may not have enough 

information (or prior knowledge) about error distribution of each sensor 

measurement. The approach described here is to be applied only where the 

given prior knowledge is considered to be not enough.  

 

The basic idea of building a prior distribution of measurement error is to consider 

external information as benchmark data sources and calculate measurement 

errors as compared to the estimated true measurements based on the 

benchmark data. For instance, distance measurements from front and rear 

vehicles to a designated vehicle are used as the benchmark data, i.e., the 

estimated true measurements, and the estimated measurement errors will be a 

difference between the estimated true measurements and the collected 

measurements of the designated vehicle. The assumption of using external data 

sources as benchmark data would be definitely not true, but it could be enough to 

build a prior distribution if we use various external data sources, i.e., here, 

distance measurements from many vehicles, and enough sample size.  

 

 

Generating Candidate Set 

Basically, the grid search is used to generate a local candidate set. The 

estimated true position will be determined by a candidate point that has 

maximum likelihood among the all trial set. The detailed calculation of this 

process is explained in the following section ‘Calculating Log-likelihood of 

Candidates’.  

 

To estimate the true position more precisely, i.e., to have a higher resolution for a 

local optimum, the size of grid search is reduced as shown in Figure 24, by a 

condition, where a local MLE position is inside of boundary of the searching area, 
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not on the boundary. This is to consider the cases where the local MLE position 

is far from the starting point of the search. Each candidate point will have a 

probability calculated by the given information and will be used to update learning 

set, which is explained in the following section.  

 

 

(a)  

 

(b)  

 

(c)  

Figure 24. Candidate Set Generation using Dynamic Grid Search 

 

If we have N consecutively connected vehicles and test all combinations of M 

candidates for each vehicles’ position, the number of computations should be 

made MN times. To reduce the computational load, we only look at local MLE 

positions of front and rear vehicles to estimate a position of designated vehicle 

and update its learning set. Since local MLE position of a vehicle affects the 

estimation of adjacent vehicles, estimating the local MLE positions could be done 

iteratively by using MLE positions of previous iteration each time. This reduces 

the computation load from O(MN) to O(M×N×K), where K is a number of iterations. 

 

Calculating Log-likelihood of Candidates 

Seven measurements are used to calculate log-likelihood of each candidate: the 

position and the two distance measurements of designated vehicle, and the 

position and the distance measurement of the two adjacent vehicles from the 

adjacent vehicles to the designated vehicle.  
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The log-likelihood of candidate position with a given position measurement 

information can be calculated by Equation 41. 

 

 𝐿𝑛𝐿𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝐿𝑜𝑔(𝑃𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑒𝑟𝑟𝑥, 𝑒𝑟𝑟𝑦)) (41) 

where, 

 
𝑒𝑟𝑟𝑥 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑥 − 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑥, 

𝑒𝑟𝑟𝑦 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑦 − 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑦 
(42) 

 

Likewise, the log-likelihood of having a certain distance measurement error for 

each candidate, which is based on the Euclidean distance between the candidate 

positions of the vehicles, can be calculated as the following:  

 

 𝐿𝑛𝐿𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝐿𝑜𝑔(𝑃𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑒𝑟𝑟𝑑𝑖𝑠𝑡.)) (43) 

where, 

 

𝑒𝑟𝑟𝑑𝑖𝑠𝑡. = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑑𝑖𝑠𝑡. − 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑑𝑖𝑠𝑡., 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑑𝑖𝑠𝑡. = √𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑑𝑖𝑓_𝑥
2 + 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑑𝑖𝑓_𝑦

2
 

(44) 

 

For both the position and distance measurement, the probability of having a 

certain error is determined based on the most recently updated (or learned) error 

distribution.  

 

In practical applications, the log-likelihood could be too small (too large negative 

value), which results in having a zero value for most of candidates due to 

computational limitations when it is converted into a probability at the end. To 

avoid this issue, researchers might add a constant value to the log-likelihood, 

which is equivalent to multiplying a constant value to probability.  

 

 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐿𝑛𝐿 =  𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐿𝑛𝐿 +  𝛼 (45) 
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𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  𝐸𝑥𝑝 (∑𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐿𝑛𝐿) × 𝐸𝑥𝑝(𝛼)

= 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝛽 

(46) 

 

These two constant values, 𝛼 and 𝛽, are used only for the avoiding a zero value 

of probability issue, but should not impact overall learning experiences. In other 

words, theoretically, the difference between the original likelihood without the 

adjustment and the adjusted likelihood is only a multiplication of a constant value, 

but any additional difference is made by the computational limitations in the 

calculation of the original likelihood.  

 

Self-Evaluation and Learning  

We could update the estimated error distribution of measurements very 

frequently, in extreme case, every time when a new data set is collected. 

However, too frequent updates might result in poor prediction of error distribution 

for each update, which will also affect the accuracy of posterior distribution and 

the calculation of log-likelihood in each process. Therefore, we need to setup a 

criterion to make system wait the updating of the estimated error distribution until 

it’s learned enough. The remaining question is how we determine “enough”.  

 

Figure 25 illustrates the procedure of the evaluation and update of error 

distribution. In the proposed methodology, the evaluation is conducted to see 

whether the updated error distribution with a newly learned set can better explain 

the collected data measurements. The evaluation criterion here is the sum of log-

likelihood between the one based on the most currently updated error distribution 

and a temporarily estimated error distribution based on the newly learned set. 

Since the learned set is generated based on the most currently updated error 

distribution, the temporarily estimated error distribution will tend to have a lower 

log-likelihood, like having a penalty, if there is no improvement on the current 

learning set. In other words, the update of error distribution is conducted only 
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when we confidently expect it improves the estimation of error distribution. Also, 

a minimum 30 of sample size is used to avoid some randomness, when 

determining whether the temporarily estimated error distribution is better than the 

current one.  

 

One of the most benefits of using the suggested evaluation approach is that it 

does not require additional training data set to evaluate the model performance.  

 

 

 
Figure 25. Procedure of Self-Evaluation and Learning for Proposed Model 

 

 

The self-evaluation will ensure that numerous updates would direct to improve 

the estimation of error distribution and so does on the estimation of true positions. 

However, too strict evaluation criteria, e.g., too large minimum sample size or 

having a too large threshold on the improvement of the log-likelihoods, will slow 

down the update frequency and may reduce the accuracy of estimation in a short 

period of time of learning.  
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Estimating Positions and Distances 

Real-time estimation of position and distance can be conducted in one of two 

different ways: one that uses an exactly same approach used in the learning 

process based on the seven measurements, and the other one to use just the 

three measurements, position and distances to a front/rear vehicle of a 

designated vehicle.  

 

Determining an approach of these two is mainly depending on required minimum 

time lag of providing such estimations and the given data communication 

environments. In other words, the first approach will likely to have a better 

estimation but need more time to process since it requires gathering information 

from other vehicles, and the decision will be made by whether the extra process 

time is worthwhile to have the certain improvement on the estimation. In this 

study, the authors used the first approach, which utilizes all given information.  

 

 

Simulated Experiments 

 

The main purpose of simulated experiments is to evaluate the model 

performance and their limitations. The greatest difference compared to using field 

data is having actual ground truth data. In the field data, there are always 

limitations, e.g., precision, accuracy, and sample size, to collect ground truth (or 

benchmark) data.  

 

Network 

Each simulation run uses a randomly generated network, so that the impact of 

using a certain network, e.g., a straight line, could be minimal to overall model 

performance evaluation.  
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 𝑁𝑜𝑑𝑒(𝑥𝑖, 𝑦𝑖) = 𝑁𝑜𝑑𝑒(𝑥𝑖−1 + 𝛿cos(𝜃𝑖−1), 𝑦𝑖−1 + 𝛿sin(𝜃𝑖−1)) (47) 

 

 𝜃𝑖 = 𝜃𝑖−1 + ∆𝜃𝑖−1 (48) 

 

 ∆𝜃~𝑈(∆𝜃𝑚𝑖𝑛, ∆𝜃𝑚𝑎𝑥) (49) 

where, 

 𝛿 is a unit distance from a node to the nearest node. 

 𝑁𝑜𝑑𝑒(𝑥𝑖, 𝑦𝑖) is a x/y coordinate of node 𝑖, starting from (0,0). 

 

Although the authors do not specify the roadway type into freeway or arterial, it is 

considered to be similar to freeway than arterial since the created networks have 

no signalized intersection.  

 

 

Generated Network Example 1 

 

Generated Network Example 2 

Figure 26. Example of Generated Network  

 

Generating True Positions: Gipps car-following model 

The Gipps car-following model was used to generate true positions of vehicles, 

with uniform random parameter values in the given ranges:  

 Desired speed: 60~100 km/h (17 ~ 28 m/s),  
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 Maximum acceleration: 0.6~1.4 m/s2, 

 Most severe braking that the follower wishes to undertake: 1.5~3.5 m/s2, 

 Follower’s estimate of the leader’s most severe braking capability: 

1.5~3.5 m/s2, 

 The leader’s real length + the follower’s desired inter-vehicle spacing: 

5~10 m 

 

Although a certain car following model was used, the performance of the 

proposed model should not be affected by the type of car following model or their 

parameter values, since the proposed model only deals with collected position 

and distance measurement, but not considering their sequences, i.e., time series. 

However, when the proposed model is applied along with other smoothing 

techniques to further improve the measurements, the results would be affected 

by a chosen car following model. In practical applications, the authors suggest to 

use actual field data in the interested area, not limited to a certain car following 

model, as they can better reflect driver behaviors and the characteristics of the 

local traffic flow.  

 

Performance Measurements (Model Evaluation) 

The performance of the proposed model is evaluated in two aspects:  

 Is the estimated error distribution similar to the true error distribution?  

 Does the estimation of position and distance significantly improve the 

collected measurements?  

To answer the first question, the Bhattacharyya distance, which is a 

measurement to account a similarity between two probability distributions, was 

used, like Chapter II. See Equation 40 in Chapter II.  
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For the second question, Mean Absolute Error (MAE) was used to compare 

estimated measurements to true values.  

 

 𝑀𝐴𝐸𝑖 =
∑ |𝑒𝑖𝑗|
𝑁𝑖
𝑗=1

𝑁𝑖
 (50) 

 𝑒𝑖𝑗 = �̂�𝑖𝑗 − 𝐷𝑖𝑗  𝑓𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒,  (51) 

 

 

Results 

Estimation of Error Distribution  

Figure 27 illustrates how close the estimated error distribution is to the true error 

distribution of distance measurements. In Figure 27 (a), both the estimated and 

true error distributions are skewed to right. In Figure 27 (b), the distance 

measurements tend to be underestimated, i.e., a negative error, and the 

estimated error distribution captures this bias quite well. Capturing the bias is so 

important since the estimated error distribution could be used to calibrate the 

distance measurement even when other external data sources are not available.  

 

Figure 28 is a contour plot of estimated errors on position measurement. The 

value of contour plot represents the probability that the error is within the 

boundary. For instance, the most outward boundary, i.e., a largest one, has a 

value of 0.9, meaning that 90% of position measurement errors are within the 

boundary. Errors of both the x coordinates and y coordinates of position 

measurements in Figure 28 (a) are negative for most of times, while the errors on 

x coordinates of Figure 28 (b) are likely to be positive. In Figure 28 (b), the 

absolute error range of x coordinate is much larger than that of y coordinate. The 

estimated error distribution for both cases have smaller ranges than the true error 

distribution, but the bias (negative or positive) seems to be captured well.  
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(a) 

 
(b) 

Figure 27. Example of Estimated Error Distribution (Distance Measurement) 

 

 

 

 

 
(a) 

 
(b) 

Figure 28. Example of Estimated Error Distribution (Position Measurement) 
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Figure 29 represents the average Bhattacharyya distance of all estimated error 

distributions over learning time. The average Bhattacharyya distances of the 

distance measurements begin with less than 0.4 and drop to below 0.03 in 24 

hours. Considering a data frequency of 1 second in the simulated experiment, we 

can achieve equivalent performance results within 3 hours if the data is collected 

every 0.1 second. The average Bhattacharyya distances of the position 

measurements is larger than the distance measurements over the given time 

period. 

 

 
Figure 29. Overall Bhattacharyya Distance over Learned Time Period 

 

Estimation of Vehicle Positions  

In Figure 30, the examples of estimated vehicle positions are displayed for single 

time period. As shown in Figure 30, the estimated positions (‘x’ marker) are much 

closer to the true position (‘circle’ marker), as compared to the measured 

positions (‘square’ marker).  The improved position estimation can also help 

provide more accurate estimated distance measurements, as it is simply the 

Euclidian distance between the adjacent vehicle positions.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 30. Example of Estimated Positions vs Measured Positions 
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Figure 31 shows the overall performance of those position and distance 

estimation results, as compared to raw measurement data. The MAE of position 

measurement here is the Euclidean distance between the true position and the 

estimated position. It is obvious that the proposed method improves the accuracy 

of both the distance and position measurements significantly. After 24 hours of 

learning, the estimated distance is more accurate than the raw data by 3.8 meter 

(about 70% of original MAE with the raw data), based on MAE. The proposed 

model also improves the MAE of the position measurements by 8.1 meter (more 

than 80% of original MAE with the raw data).  
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(a) Distance (Front) 

 
(b) Distance (Rear) 

 
(c) Position 

Figure 31. Overall Mean Absolute Error over Learning Time 
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Conclusion 

 

This study incorporated the modified Approximate Bayesian Computation and 

estimated error distributions of position and distance measurements in connected 

vehicle environment. The results show that the proposed model noticeably 

improves the accuracy of position and distance measurements. 

The key to improve the accuracy is estimating the error distribution of each data 

source, especially where the shapes of the distributions are not defined. The 

estimated error distribution can also be used for improving results of other post-

processing techniques which require assumptions of certain type of error 

distributions. 

 

The result shows that the estimated position and distance measurements are 

more accurate than raw measurements from the initial time of learning, and it 

becomes more accurate as more data are captured. It is expected that the 

proposed model could improve further than what is shown in this study, as more 

data will be available in the fields.  

 

A similar approach can also be utilized to enhance accuracy of other sensors or 

measurements in connected vehicle or relevant systems, where multi-data 

sources are available. For instance, vehicle speed can be obtained from multiple 

sources, e.g., GPS, odometer, Bluetooth, and roadside detectors. The integration 

of such information could improve the accuracy of the speed and it can be further 

enhanced by knowing the error distribution of the data sources.  

 

Another possible benefit of proposed approach is that it enables to update the 

estimated error distribution as new set of data is gathered. This could be critically 

important to where the error distribution of the sensor measurements is likely to 

be changed over time, affected by its local environments.  
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However, it is also important to know that the proposed model is not able to 

estimate the exact true values of measurements even if the learning time goes 

infinite. It does provide a likelihood of potential true values, and therefore the true 

values can be estimated using maximum likelihood, but the variances of error 

between the true values and the estimated values still exist. In other words, the 

proposed model makes an effort to reduce uncertainties of measurements using 

multi-source information, but those inherent variations will not be completely 

eliminated.  

 

Another limitation of the proposed model is that it assumes overall error 

distributions of all sensors tend to be unbiased. After decent amount of learning 

process, the bias of the estimated error distribution of each data source will be 

significantly contributed by the average error of all the data sources. Therefore, if 

the most (or all) of data sources are biased to one direction, the estimated error 

distributions might be biased as well. If the bias of population is known, the 

estimation can be calibrated by the known bias and the shape of the distribution 

should be captured by the relative difference between the data sources.  
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CONCLUSION 

 

 

This dissertation combined several issues and utilizations of data aggregation in 

transportation field. These studies were conducted to investigate the sampling 

bias of harmonic mean, propose a methodology to estimate error distributions of 

multi-source data, and apply the methodology for improving the accuracy of 

position and distance measurements in connected vehicle environments.  

 

First, the sampling bias of harmonic mean was shown with a mathematical proof 

and a numerical example, as well as their analytical and simulation-based 

corrections, and the impacts of the sampling bias were investigated. The results 

of the impact analysis show that the sampling bias of harmonic mean is affected 

by time interval, segment length, and sampling rate. It is important to know that 

the sampling bias and its corrections, as well as determining required sample 

size, should be considered differently by purpose of its use and their local traffic 

conditions.  

 

Second, aggregating multi-source data was utilized to better estimate error 

distribution of each data source, by incorporating the modified Approximate 

Bayesian Computation. The proposed model eliminates the need for determining 

a benchmark data source (or ground truth). The proposed model outperformed 

the alternative approach, which is a conventional way of evaluating data sources 

by comparing them with the benchmark data. Numerous simulations were 

conducted for sensitivity analysis of sample size, number of data sources, and 

distribution types on its model performance.  

 

Finally, the modified Approximate Bayesian Computation was applied for 

improving the accuracy of the distance and position measurement in connected 

vehicle systems. The results show that the proposed method can enhance the 
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accuracy of the raw measurements. The proposed approach can be easily 

expanded to other measurements in connected vehicle systems or other relevant 

systems, where multi-source data are available. 

 

There are still many remaining challenges on data aggregation in the 

transportation field. Although the subjects covered in the dissertation are very 

limited to the travel speed data and the position and distance measurements, the 

implications and potential applications can be expanded in other fields.  
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