1,816 research outputs found

    Innovative in silico approaches to address avian flu using grid technology

    Get PDF
    The recent years have seen the emergence of diseases which have spread very quickly all around the world either through human travels like SARS or animal migration like avian flu. Among the biggest challenges raised by infectious emerging diseases, one is related to the constant mutation of the viruses which turns them into continuously moving targets for drug and vaccine discovery. Another challenge is related to the early detection and surveillance of the diseases as new cases can appear just anywhere due to the globalization of exchanges and the circulation of people and animals around the earth, as recently demonstrated by the avian flu epidemics. For 3 years now, a collaboration of teams in Europe and Asia has been exploring some innovative in silico approaches to better tackle avian flu taking advantage of the very large computing resources available on international grid infrastructures. Grids were used to study the impact of mutations on the effectiveness of existing drugs against H5N1 and to find potentially new leads active on mutated strains. Grids allow also the integration of distributed data in a completely secured way. The paper presents how we are currently exploring how to integrate the existing data sources towards a global surveillance network for molecular epidemiology.Comment: 7 pages, submitted to Infectious Disorders - Drug Target

    Epigrass: a tool to study disease spread in complex networks.

    Get PDF
    The construction of complex statial simulation models such as those used in network epidemiology, is a daunting task due to the large amount of data involved in their parameterization. Such data, which frequently resides on large geo-referenced databases, has to be processed and assigned to the various components of the model. All this just to construct the model, then it still has to be simulated and analyzed under different epidemiological scenarios. This workflow can only be achieved efficiently by computational tools that can automate most if not all these time-consuming tasks. In this paper, we present a simulation software, Epigrass, aimed to help designing and simulating network-epidemic models with any kind of node behavior.
 
A Network epidemiological model representing the spread of a directly transmitted disease through a bus-transportation network connecting mid-size cities in Brazil. Results show that the topological context of the starting point of the epidemic is of great importance from both control and preventive perspectives.

Epigrass is shown to facilitate greatly the construction, simulation and analysis of complex network models. The output of model results in standard GIS file formats facilitate the post-processing and analysis of results by means of sophisticated GIS software

    Modelling workplace contact networks: the effects of organizational structure, architecture, and reporting errors on epidemic predictions

    Get PDF
    Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0-5 minute contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models.Comment: 36 pages, 4 figure

    The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational models play an increasingly important role in the assessment and control of public health crises, as demonstrated during the 2009 H1N1 influenza pandemic. Much research has been done in recent years in the development of sophisticated data-driven models for realistic computer-based simulations of infectious disease spreading. However, only a few computational tools are presently available for assessing scenarios, predicting epidemic evolutions, and managing health emergencies that can benefit a broad audience of users including policy makers and health institutions.</p> <p>Results</p> <p>We present "GLEaMviz", a publicly available software system that simulates the spread of emerging human-to-human infectious diseases across the world. The GLEaMviz tool comprises three components: the client application, the proxy middleware, and the simulation engine. The latter two components constitute the GLEaMviz server. The simulation engine leverages on the Global Epidemic and Mobility (GLEaM) framework, a stochastic computational scheme that integrates worldwide high-resolution demographic and mobility data to simulate disease spread on the global scale. The GLEaMviz design aims at maximizing flexibility in defining the disease compartmental model and configuring the simulation scenario; it allows the user to set a variety of parameters including: compartment-specific features, transition values, and environmental effects. The output is a dynamic map and a corresponding set of charts that quantitatively describe the geo-temporal evolution of the disease. The software is designed as a client-server system. The multi-platform client, which can be installed on the user's local machine, is used to set up simulations that will be executed on the server, thus avoiding specific requirements for large computational capabilities on the user side.</p> <p>Conclusions</p> <p>The user-friendly graphical interface of the GLEaMviz tool, along with its high level of detail and the realism of its embedded modeling approach, opens up the platform to simulate realistic epidemic scenarios. These features make the GLEaMviz computational tool a convenient teaching/training tool as well as a first step toward the development of a computational tool aimed at facilitating the use and exploitation of computational models for the policy making and scenario analysis of infectious disease outbreaks.</p

    Evaluating the impact of the weather conditions on the influenza propagation

    Get PDF
    We show that the simulation results have the same propagation shape as the weekly influenza rates asrecorded by SISSS. We perform experiments for a realistic scenario based on actual meteorological data from2010-2011, and for synthetic values assumed under simplified predicted climate change conditions. Results show thata diminishing relative humidity of 10% produces an increment of about 1.6% in the final infection rate. The effect oftemperature changes on the infection spread is also noticeable, with a decrease of 1.1% per extra degree.Conclusions: Using a tool like ours could help predict the shape of developing epidemics and its peaks, and wouldpermit to quickly run scenarios to determine the evolution of the epidemic under different conditions. We makeEpiGraph source code and epidemic data publicly availableThis work has been partially supported by the Spanish “Ministerio de Economía y Competitividad” under the project grant TIN2016-79637-P “Towards Unification of HPC and Big Data paradigms”. The work of Maria-Cristina Marinescu has been partially supported by the H2020 European project GrowSmarter under project grant ref. 646456. The role of both funders was limited to financial support and did not imply participation of any kind in the study and collection, analysis, and interpretation of data, nor in the writing of the manuscrip

    Public-Private Health Law: Multiple Directions in Public Health

    Get PDF
    No public law is more public than public health law. Its defining subject is the use of state power to control and prevent death and disease. Its primary institutions are a cluster of state actors, the governmental agencies that comprise the American public health system.,, The system grew out of the eighteenth century boards of health that produced the beginnings of administrative law. Public health law is grounded on statutory provisions that authorize various forms of state action and on judicial decisions that resolve constitutional challenges to those actions
    • …
    corecore