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TECHNICAL ADVANCE Open Access

in silico Surveillance: evaluating outbreak
detection with simulation models
Bryan Lewis1*, Stephen Eubank2, Allyson M Abrams3 and Ken Kleinman3

Abstract

Background: Detecting outbreaks is a crucial task for public health officials, yet gaps remain in the systematic
evaluation of outbreak detection protocols. The authors’ objectives were to design, implement, and test a flexible
methodology for generating detailed synthetic surveillance data that provides realistic geographical and temporal
clustering of cases and use to evaluate outbreak detection protocols.

Methods: A detailed representation of the Boston area was constructed, based on data about individuals, locations,
and activity patterns. Influenza-like illness (ILI) transmission was simulated, producing 100 years of in silico ILI data.
Six different surveillance systems were designed and developed using gathered cases from the simulated disease
data. Performance was measured by inserting test outbreaks into the surveillance streams and analyzing the
likelihood and timeliness of detection.

Results: Detection of outbreaks varied from 21% to 95%. Increased coverage did not linearly improve detection
probability for all surveillance systems. Relaxing the decision threshold for signaling outbreaks greatly increased
false-positives, improved outbreak detection slightly, and led to earlier outbreak detection.

Conclusions: Geographical distribution can be more important than coverage level. Detailed simulations of
infectious disease transmission can be configured to represent nearly any conceivable scenario. They are a powerful
tool for evaluating the performance of surveillance systems and methods used for outbreak detection.

Keywords: Surveillance, Simulation, Outbreak detection, Evaluation, Agent-based model, Influenza-like illness

Background
Detecting outbreaks is a crucial task for public health offi-
cials. Distinguishing between truly significant outbreaks
and normal disease incidence and to do so as early as pos-
sible is a laborious and imperfect science [1]. Techniques
and methodologies have been developed to screen the
increasingly large volumes of data useful to the task [2,3],
yet despite this progress, gaps in performance remain. We
present an agent-based simulation methodology to ad-
dress these challenges.
Developing and evaluating outbreak detection is chal-

lenging for many reasons. A central difficulty is that the
data used to “train” detection algorithms are unique and
relatively brief historical samples and thus do not repre-
sent the full range of possible background scenarios. The
same dearth of historical data complicates evaluation. In

systems where only a count of cases is provided, plausible
synthetic data are relatively easy to generate, and can aid
in development and evaluation. When evaluating a sur-
veillance system with more precise information, notably
detailed geographic locations, simple approaches to gene-
rating hypothetical case counts are not plausible.
Increasingly realistic simulations of infectious disease

spread in highly detailed synthetic populations have
emerged in recent years [4-9]. Agent-based simulations can
represent real-world populations and the day-to-day pro-
cesses that determine disease-spread and health care seek-
ing behavior. Combining these capabilities with detailed
knowledge of a surveillance system allows for the construc-
tion of plausible synthetic surveillance data streams. These
in silico surveillance data streams can be configured to rep-
resent nearly any conceivable set of scenarios, making them
a powerful tool for studying surveillance systems and out-
break detection algorithms.* Correspondence: blewis@vbi.vt.edu
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We use a novel highly detailed agent-based model, which
produces realistic geo-spatial and temporal clustering of
influenza-like illness (ILI), to create a library of daily zip
code counts from 100 influenza seasons. From this syn-
thetic data, we construct six different surveillance streams
that include coverage patterns and health-care-seeking
behaviors. For evaluation, we insert artificial outbreaks into
the synthetic surveillance data streams at different loca-
tions and times and measure the performance of an out-
break detection protocol based on scan statistics. This
approach is novel, and represents (to our knowledge) the
first time a large-scale agent-based model has been used to
evaluate a spatio-temporal outbreak detection tool.

Methods
Synthetic population creation
The methods used to generate a dynamic and highly
detailed synthetic population have been described in detail
previously [4,10]. Real-world data and behavioral models
are used to generate data sets containing the location of
every individual in the population at every moment in the
day. Census data and household location data are used to
assign individuals to households. The activity profiles,
which determine locations throughout the day, were
drawn from large surveys and are assigned to each indivi-
dual based on household and individual demographics, en-
suring that individuals perform activities and in locations
appropriate to their age and household structure [11,12].
An iterative fitting process is used to constrain the dis-
tances traveled to fit distributions from the activity surveys.
This proto-population is then updated with additional

information specific to the context of the study being per-
formed, e.g., zip code locations were calculated for all in-
dividuals to determine their membership in the various
synthetic surveillance systems.

Disease modeling
Influenza and ILI-causing pathogens are transmitted
through aerosol contact routes. A discrete event simula-
tion engine simulates the spread of these diseases through
the simulated population based on contacts between un-
infected and infectious individuals [13,14]. Figure 1 illus-
trates the structure for the ILI disease model, which is an
elaboration on the classic SEIR (Susceptible, Exposed,
Infectious, and Recovered) model that accommodates
multiple manifestations, asymptomatic infections, and a
temporary Recovered state. The detailed disease model
(see Additional file 1) used in the simulation includes a
number of parameters taken from the literature to repre-
sent the broad spectrum of influenza-like illnesses [15-17].
Here, the probability of transmission is a function of the
duration of contact, symptom severity, type of treatments
either individual may have taken, and level of susceptibility
of the uninfected individual. For example, if a person,
asymptomatically infectious with manifestation 1, was in
contact with an individual who was uninfected but had
increased susceptibility due to the point in the season, the
probability of transmission would be scaled by a level of
infectiousness (0.5, due to lack of symptoms), susceptibil-
ity (1.15, due to season), and not influenced by treatment
(no treatment because no symptoms). Under these condi-
tions and 12 hours of interaction between these

Figure 1 Finite state machine representation allows for a flexible representation of a disease process. Each state determines the duration
in that state, level of symptoms, susceptibility, and infectiousness. For example, susceptible individuals have a 75% chance that upon exposure to
an infectious contact and successful infection they will transition to the latent Exposed state in ILI Manifestation 1; after 1 to 2 days they will then
transition to one of the more Infectious states with a 50% chance of having symptoms.
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individuals the calibrated probability of infection within
the simulation would be 0.008322.
The characteristic seasonal pattern of ILI infections

(Figure 2) was generated. First, an ILI disease was spread
in the simulated population, and calibrated to a level that
maintained infection at a stable level over several years.
Seasonal effects were added by gradually increasing the
overall susceptibility to infection of the population in a
controlled fashion. The start of this change occurred at a
“season onset” date selected at random from a distribution
based on historical CDC data [18]. Year-to-year variability
in season onset and pattern was simulated by choosing
from among ten templates inferred from the historical
shapes of influenza incidence. Stochastic variability inher-
ent in the system introduced variations between seasons
such that even realizations based on the same template
differ dramatically.

Care seeking modeling
Health care seeking behavior was modeled by combining
the marginal delay from symptom onset to health care
seeking distribution [19] and day-of-the-week distribution
calculated from Harvard Pilgrim Health Care (HPHC)
clinic data for ILI. The resulting joint distribution deter-
mines the distribution of the number of days following
symptom onset that an individual will wait before seeking
health care, given the day of the week. For example indivi-
duals who would seek care and start experiencing symp-
toms on a Monday have a 37% chance of seeking care that
Monday, but only an 8% chance of seeking care two days
later on Wednesday; whereas if the symptoms start on a

Saturday there is a 25% chance they will seek care on that
Saturday and a 15% chance they will wait two days till
Monday. The probability an affected symptomatic individ-
ual seeks health care, is diagnosed correctly, and is
reported in the surveillance system can be adjusted to cali-
brate to a specific real-world surveillance system, or can
be parameterized based on data. For example, the effects
of a higher co-pay could be introduced to reduce the
probability of seeking care, or the probability of correct
diagnosis could be reduced to reflect the difficulty of
diagnosis.

Surveillance system
Six different surveillance systems were designed. These
represented three different coverage levels and two different
geographic distributions of its membership. The “Natural”
geographic distribution is based on the naturally occurring
distribution of the Harvard Pilgrim Health Care (HPHC)
members, whereas, the “Uniform” distribution draws
members uniformly across the same geographic areas.
The proportions of HPHC members living in each zip
code in the Boston metro area were determined. The
246,606 members resided in 210 of the 755 zip codes in
the synthetic data region (ranging from 64 to 58,857
people in a single zip code), which is 6% of the entire syn-
thetic population. The selection was done by household
and was used as one of the synthetic surveillance systems
(Natural 6). The coverage level was doubled (to ~12%)
and tripled (to ~18%) while maintaining the same surveil-
lance geography (Natural 12 and 18). The same three
coverage levels were combined with a “Uniform” surveil-
lance geography that drew members from the same 210
zip codes, but with an equal proportion of each zip code
as members. Thus, the six surveillance systems evaluated
consist of combinations of the two geographic distribu-
tions (Natural and Uniform) and the three coverage levels
(6%, 12%, and 18%).

Artificial outbreaks
To test the performance of the different surveillance sys-
tems, artificial outbreaks were randomly inserted into the
simulated ILI background signals. Each outbreak consisted
of cases inserted into the surveillance stream (not sub-
jected to care-seeking behavior modeling) over 14 days,
and follows the temporal pattern “2,0,2,0,2,2,0,4,2,0,2,2,0,2”
cases per day. This temporal pattern is the same for all
insertions for the sake of offering a single comparison
across seasons and geographic space. These numbers were
scaled with the coverage level of the surveillance system
being tested (multiplied by 2 at the 12% level and by 3 at
the 18% level). This artificial outbreak was meant to simu-
late a small concentrated outbreak of influenza-like illness
and was based on experience from the Massachusetts
Department of Health. The primary location for insertion

Figure 2 Two years of real ILI data (red) compared to 2 years of
data from a single simulation (black). Each dot represents the
total number of cases seen in the surveillance stream on a single
day; the curves are a smoothed fit to these data.
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was randomly chosen from all zip-codes in the population
and two additional locations near the primary location
were also chosen. The inserted cases were then distributed
at random to these three locations.

Outbreak detection
We assessed the ability to detect the inserted outbreaks
using a space-and-time permutation scan statistic
[20,21]. Cases from the synthetic population and from
the artificial outbreak were assigned a geographic loca-
tion based on the centroid of their home zip code. The
approach finds the cluster least likely to have occurred
by chance, where a cluster consists of 1–14 days in any
fixed circular region, and assigns a p-value to this cluster
using Monte Carlo techniques. This process is repeated
daily as the data accrues. The scan implemented uses 90
days of historical data to establish “normal” patterns.

Evaluation of outbreak detection
Outbreaks were combined with the simulated ILI back-
ground by adding the case counts from the artificial out-
break to the appropriate zip code case count on the
appropriate day. The outbreak detection protocol was per-
formed for every day in which inserted cases could have
been included in a 14-day putative cluster. The scan statis-
tic was considered to have “signaled” if the p-value fell
below a given decision threshold. In this study eight diffe-
rent decision thresholds (p = 0.033, 0.01, 0.0075, 0.005,
0.004, 0.003, 0.002, 0.001) were evaluated.
If any scan signal with a p-value at or below a given de-

cision threshold overlapped one of the locations of the
inserted outbreak, the inserted outbreak was considered
to have been detected at that decision threshold. These
are true positives. After attempting to detect the outbreak,
the inserted cases were removed before the next outbreak
was inserted and its detection attempted. Twelve test out-
breaks were inserted in each of the 100 simulated ILI sea-
sons on randomly chosen dates.
This outbreak detection protocol was also performed

for the one-year simulated ILI counts without any inserted
outbreaks. Any outbreaks signaled in the simulated ILI
background data were considered false positives. Any
identified signals that overlapped in time and space were
“collapsed” into a single “cluster” and designated a false-
positive.

Computations
The simulations of ILI disease and health care seeking be-
havior were performed by EpiSimdemics [14,22] on an SGI
cluster with 96 compute nodes, each with 2 Intel Quad-
Core Xeon E5440 processors. The SaTScan analyses were
conducted on the same cluster. In total 36,500 scans (100
years * 365 days) with no inserted cases were performed,
and 32,400 scans (100 years * 12 insertions * 27 days) were

performed for inserted outbreak detection. These simula-
tions and analyses used 84,000 compute hours and
required 187 GBs of disk space. Outbreak detection ana-
lysis was conducted using SaTScan version 7.0.3 (from
www.satscan.org) and R version 2.9.0 (from r-project.org).
The analysis package, including code to automate the
SaTScan outbreak detection and analysis, will be made
available as an R package.

Results and discussion
Much as any single influenza season is not the same as
previous influenza seasons, the simulated ILI surveillance
counts are not the same as the real-world ILI surveillance
counts, however they share similar characteristics. Figure 2
shows both real data from HPHC and simulated data. ILI
surveillance data is characterized by strong seasonal influ-
ence and a day of the week pattern, which are evident in
the Figure.
The surveillance of the simulated ILI counts without

any inserted outbreaks informs decisions about the real-
world tenability of a surveillance system. Typically over-
burdened public health authorities cannot support sys-
tems with too many false positives. We found 244
overlapping “clusters” of signals in the 100 years of data in
the “Natural 6” system at the 0.001 decision threshold,
when the expected number under the null is 36.5. We also
saw 547, 669, 394, 626, and 732 in the Natural 12, Natural
18, Uniform 6, 12, and 18 systems respectively.
A detailed view of the simulated surveillance data is

seen in Figure 3. The zip code boundaries are illustrated
as a Voronoi tessellation [23] based on the centroid of the
zip code since these are the locations used by the scan-
statistic for clustering purposes and not all zip codes are
included in the surveillance system. The daily counts of
reported cases per zip code are shown as histograms in-
side the zip code boundaries. The relative contributions of
cases from each zip code to the surveillance system can be
seen as can the variability between the locations at similar
times during the surveillance period. The detection of an
inserted outbreak is illustrated with the red highlighted
border, whereas the false positive detection of a cluster
that doesn’t overlap with an inserted outbreak is shown
with a thick black border. The fill color of the clustered
locations reveals the decision threshold at which they were
detected. Animated movies showing this process over the
course of an entire year can be found in the Additional files
2, 3 and 4 (and http://ndssl.vbi.vt.edu/insilicoSurveillance/
index.html).
Performance of the six surveillance systems is summa-

rized as pseudo receiver operator characteristic curves
(pseudo-ROC) [24] in Figure 4. True positives are the pro-
portion of inserted outbreaks detected. False positive pro-
portions used the number of false positives detected at the
highest decision threshold among all surveillance systems
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(Natural 18 with p-value = 0.0333) as the denominator for
all surveillance systems. As coverage increases so does the
likelihood of detection, though the rate of improvement is
non-linear and differs in the two coverage distributions.
The decision threshold influences the proportion of false-
positives more than the probability of detection, though
the effect on probability of detection is stronger in the re-
gion of decision thresholds likely to have tenable false
positive rates (p-value = 0.005 to 0.001). Across all the
surveillance systems, sensitivity improves slightly with

increased decision threshold size, however the proportion
of false positives increases much more rapidly. Overall,
the “Natural” surveillance geography outperforms the
“Uniform” surveillance systems.
For all detected outbreaks, the delay from insertion to

detection can also be measured. The performance of each
surveillance system with respect to the mean detection
delay and the probability of detection is shown in Figure 5.
Given the experimental design, these delays are the theor-
etical earliest point of detection by a public health official.

Figure 3 Simulated ILI surveillance data for downtown Boston as captured by the “Natural 6” surveillance system. Surveillance counts
per day centered in each zip code location are shown as histograms within each zip code. Detection of an inserted test outbreak (red triangle) is
indicated by red bordered zip codes and a false-positive outbreak by black bordered zip codes.

Lewis et al. BMC Medical Informatics and Decision Making 2013, 13:12 Page 5 of 8
http://www.biomedcentral.com/1472-6947/13/12



The surveillance systems based on the “Natural” surveil-
lance geography consistently show earlier detection than
the “Uniform” surveillance geography, even when the
probability for detection is essentially the same between
the two. Interestingly, higher coverage does not lead to
significantly earlier detection: in the case of the “Uniform”
surveillance geography, the highest coverage level leads to
later detection.

Conclusions
Agent-based simulation models incorporating important
processes that lead to realistic simulated surveillance data
is sufficient for evaluating the performance of a surveil-
lance system for outbreak detection. We demonstrated
the use of synthetic methods by conducting an experiment
to assess how the level of coverage and geographic distri-
bution in a surveillance system affect performance. This
kind of experiment can be used to design, as well as to
evaluate, surveillance systems.
Description of the study design and the details of its im-

plementation illustrate the flexibility of the methodology.
For example, the analysis could be extended to include
additional types of inserted outbreaks, and the model
could be altered to supply gastrointestinal surveillance.
Keeping the scale and level of detail in the model similar
to that of the real-world surveillance system facilitates the
analysis of the results and makes the simulation results
more compatible with existing evaluation tools and meth-
ods. These characteristics support the use of agent-based
modeling approaches to a wider variety of public health
problems.
Our study shows that the geographic distribution of a

surveillance system can have a stronger influence on its
ability to detect outbreaks than the level of coverage. This
and similar studies can also give guidance to making ope-
rational decisions, such as selecting a decision threshold
for defining a signal that balances an acceptable number
of false-positives against a desired probability of outbreak
detection.
The 6-fold difference between the nominal false positive

rate of 36.5 signals per hundred years at p-value 0.001
(e.g. [365 days * 100 years] * 0.001) and the observed
count of 244 signals in the simulated “Natural 6” data with
no inserted outbreaks suggests that the spatio-temporal
clustering in the realized simulations is indeed quite differ-
ent from the null hypothesis of case counts proportional
to the population. This confirms that the agent-based
model has the desired effect on the pattern of cases. It also
shows how the process can help public health authorities
anticipate the false positive signaling of such systems.
Efforts to enhance existing surveillance systems can be

guided by testing different surveillance systems using
methods similar to those described here. For example, the
impact of adding a new clinic that would draw patients
from additional locations in the population could be simu-
lated to determine the value of the additional information.
To optimize a surveillance system’s ability to catch out-
breaks, a study design that tests the in silico surveillance
system against a variety of simulated outbreaks and out-
break detection algorithms could be conducted. An as-
sessment of the benefit of finer-grain information could
also be conducted: rather than base the outbreak detection
on the centroids of the home zip code locations, one
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could add the zip code location of the school or work-
place, or replace zip code centroids with anonymized home
addresses.
The high level of detail is a great benefit of agent-based

methods; however, it is also produces what is perhaps their
biggest complication. With so many parameters, proper
calibration can be time consuming and the opportunity for
errors and biases can increase. Similarly, it is sometimes
difficult to find suitable data for parameterizing high fide-
lity models of the real world. For such reasons, these
methods are not always intended to provide definitive
quantitative predictions; rather, they are intended as a tool
for comparisons across several designs or outbreak detec-
tion methods. Additionally, the methods are computation-
ally intensive and very few health departments have the
resources or personnel to perform them. Fortunately
advances in scalable high-performance computing and
web services have already begun to provide these resources
at relatively low cost and with increasing user-friendliness.
Work on developing flexible cyber-infrastructures should
make it possible to provide a relatively simple web-based
interface for users to conduct studies such as this one in
the near future.
Further study using these methods is warranted and will

include broader investigation into evaluating different out-
break detection algorithms and surveillance systems.
These methods will be useful for developing the next gen-
eration of outbreak detection tools. With a very large
library of simulated background disease, one can use clas-
sification techniques and machine learning to develop
“proactive” surveillance systems. These would use state
assessments to guide public health officials about where to
look for further evidence of an outbreak. For instance, an
outbreak that might not create a signal for another week
could be preceded by weak non-signaling outbreaks in
other regions; when taken individually these might be
missed, but when considered as a whole this pattern could
improve confidence that a significant outbreak is about to
occur. This could reduce the burden on PH departments
from following up “unlikely” events and improve PH res-
ponse times to outbreaks by several days. The techniques
needed to accomplish this would be very difficult to apply
to limited historical data, thus requiring an approach like
this one to generate large volumes of plausible high-
fidelity data.
Highly detailed simulation models of infectious disease

transmission can be configured for many purposes serving
public health. We have demonstrated a flexible framework
for using such a model for the evaluation and design of
surveillance systems and outbreak detection. While there
are limitations to the accuracy with which these models
can represent the real world, they can provide sufficiently
realistic data at a level of detail that enables previously im-
possible public health research.

Additional files

Additional file 1: Detailed Disease Model: A state machine
representation of the possible disease states in the simulation.
Starting in the white block on the left an individual can move between
different states of susceptibility (representing seasonal effects) over time,
once infected they progress through an incubated infected stage into a
symptomatic/asymptomatic infectious stage and then into recovered
stages. Each state's susceptibility, relative infectiousness, and duration is
specified.

Additional file 2: Animation of the Natural surveillance system with
6% coverage detecting, missing, and signaling false positives over
the course of a year. The counts per day per location are visualized as
epicurves centered on each location. Locations that are identified as part
of a cluster are filled in with a color ranging from red to pale yellow
denoting the statistical significance of the identified cluster (red = p-
value of 0.001 and pale yellow = p-value of 0.03333). Inserted artificial
outbreaks are shown as red triangles in the epicurves and the locations
are also outlined in red. False-positive outbreaks are outlined with bold
borders in black.

Additional file 3: Animation of the Natural surveillance system with
18% coverage detecting, missing, and signaling false positives over
the course of a year. The counts per day per location are visualized as
epicurves centered on each location. Locations that are identified as part
of a cluster are filled in with a color ranging from red to pale yellow
denoting the statistical significance of the identified cluster (red = p-
value of 0.001 and pale yellow = p-value of 0.03333). Inserted artificial
outbreaks are shown as red triangles in the epicurves and the locations
are also outlined in red. False-positive outbreaks are outlined with bold
borders in black.

Additional file 4: Animation of the “Uniform” surveillance system
with 6% coverage detecting, missing, and signaling false positives
over the course of a year. The counts per day per location are
visualized as epicurves centered on each location. Locations that are
identified as part of a cluster are filled in with a color ranging from red to
pale yellow denoting the statistical significance of the identified cluster
(red = p-value of 0.001 and pale yellow = p-value of 0.03333). Inserted
artificial outbreaks are shown as red triangles in the epicurves and the
locations are also outlined in red. False-positive outbreaks are outlined
with bold borders in black.
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