515 research outputs found

    Microfabricated tactile sensors for biomedical applications: a review

    Get PDF
    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described

    Temperature compensated tactile sensing using MOSFET with P(VDF-TrFE)/BaTiO3 capacitor as extended gate

    Get PDF
    This work presents Poly(vinylidene fluoride – trifluoroethylene))/Barium Titanate (P(VDF-TrFE)-BT) nanocomposite based touch sensors tightly coupled with MOSFET devices in extended gate configuration. The P(VDF-TrFE)-BT nanocomposite exploits the distinct piezo and pyroelectric properties of P(VDF-TrFE) polymer matrix and BT fillers to suppress the temperature response when force and temperature are varied simultaneously. The reasons for this unique feature have been established through structural and electrical characterization of nanocomposite. The proposed touch sensor was tested over a wide range of force/pressure (0-4N)/(0-364 Pa) and temperature (26-70°C) with almost linear response. The sensitivity towards force/pressure and temperature sensor are 670 mV/N/7.36 mV/Pa and 15.34 mV/°C respectively. With this modified touch sensing capability, the proposed sensors will open new direction for tactile sensing in robotic applications

    Study to design and develop remote manipulator system

    Get PDF
    Modeling of human performance in remote manipulation tasks is reported by automated procedures using computers to analyze and count motions during a manipulation task. Performance is monitored by an on-line computer capable of measuring the joint angles of both master and slave and in some cases the trajectory and velocity of the hand itself. In this way the operator's strategies with different transmission delays, displays, tasks, and manipulators can be analyzed in detail for comparison. Some progress is described in obtaining a set of standard tasks and difficulty measures for evaluating manipulator performance

    Human-Machine Interfaces using Distributed Sensing and Stimulation Systems

    Get PDF
    As the technology moves towards more natural human-machine interfaces (e.g. bionic limbs, teleoperation, virtual reality), it is necessary to develop a sensory feedback system in order to foster embodiment and achieve better immersion in the control system. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing a wide bandwidth of information. To provide this type of feedback, it is necessary to develop a distributed sensing system that could extract a wide range of information during the interaction between the robot and the environment. In addition, a distributed feedback interface is needed to deliver such information to the user. This thesis proposes the development of a distributed sensing system (e-skin) to acquire tactile sensation, a first integration of distributed sensing system on a robotic hand, the development of a sensory feedback system that compromises the distributed sensing system and a distributed stimulation system, and finally the implementation of deep learning methods for the classification of tactile data. It\u2019s core focus addresses the development and testing of a sensory feedback system, based on the latest distributed sensing and stimulation techniques. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives, and the used methodology and contributions; as well as six studies that tackled the development of human-machine interfaces

    Embedded Electronic Systems for Electronic Skin Applications

    Get PDF
    The advances in sensor devices are potentially providing new solutions to many applications including prosthetics and robotics. Endowing upper limb prosthesis with tactile sensors (electronic/sensitive skin) can be used to provide tactile sensory feedback to the amputees. In this regard, the prosthetic device is meant to be equipped with tactile sensing system allowing the user limb to receive tactile feedback about objects and contact surfaces. Thus, embedding tactile sensing system is required for wearable sensors that should cover wide areas of the prosthetics. However, embedding sensing system involves set of challenges in terms of power consumption, data processing, real-time response and design scalability (e-skin may include large number of tactile sensors). The tactile sensing system is constituted of: (i) a tactile sensor array, (ii) an interface electronic circuit, (iii) an embedded processing unit, and (iv) a communication interface to transmit tactile data. The objective of the thesis is to develop an efficient embedded tactile sensing system targeting e-skin application (e.g. prosthetic) by: 1) developing a low power and miniaturized interface electronics circuit, operating in real-time; 2) proposing an efficient algorithm for embedded tactile data processing, affecting the system time latency and power consumption; 3) implementing an efficient communication channel/interface, suitable for large amount of data generated from large number of sensors. Most of the interface electronics for tactile sensing system proposed in the literature are composed of signal conditioning and commercial data acquisition devices (i.e. DAQ). However, these devices are bulky (PC-based) and thus not suitable for portable prosthetics from the size, power consumption and scalability point of view. Regarding the tactile data processing, some works have exploited machine learning methods for extracting meaningful information from tactile data. However, embedding these algorithms poses some challenges because of 1) the high amount of data to be processed significantly affecting the real time functionality, and 2) the complex processing tasks imposing burden in terms of power consumption. On the other hand, the literature shows lack in studies addressing data transfer in tactile sensing system. Thus, dealing with large number of sensors will pose challenges on the communication bandwidth and reliability. Therefore, this thesis exploits three approaches: 1) Developing a low power and miniaturized Interface Electronics (IE), capable of interfacing and acquiring signals from large number of tactile sensors in real-time. We developed a portable IE system based on a low power arm microcontroller and a DDC232 A/D converter, that handles an array of 32 tactile sensors. Upon touch applied to the sensors, the IE acquires and pre-process the sensor signals at low power consumption achieving a battery lifetime of about 22 hours. Then we assessed the functionality of the IE by carrying out Electrical and electromechanical characterization experiments to monitor the response of the interface electronics with PVDF-based piezoelectric sensors. The results of electrical and electromechanical tests validate the correct functionality of the proposed system. In addition, we implemented filtering methods on the IE that reduced the effect of noise in the system. Furthermore, we evaluated our proposed IE by integrating it in tactile sensory feedback system, showing effective deliver of tactile data to the user. The proposed system overcomes similar state of art solutions dealing with higher number of input channels and maintaining real time functionality. 2) Optimizing and implementing a tensorial-based machine learning algorithm for touch modality classification on embedded Zynq System-on-chip (SoC). The algorithm is based on Support Vector Machine classifier to discriminate between three input touch modality classes \u201cbrushing\u201d, \u201crolling\u201d and \u201csliding\u201d. We introduced an efficient algorithm minimizing the hardware implementation complexity in terms of number of operations and memory storage which directly affect time latency and power consumption. With respect to the original algorithm, the proposed approach \u2013 implemented on Zynq SoC \u2013 achieved reduction in the number of operations per inference from 545 M-ops to 18 M-ops and the memory storage from 52.2 KB to 1.7 KB. Moreover, the proposed method speeds up the inference time by a factor of 43 7 at a cost of only 2% loss in accuracy, enabling the algorithm to run on embedded processing unit and to extract tactile information in real-time. 3) Implementing a robust and efficient data transfer channel to transfer aggregated data at high transmission data rate and low power consumption. In this approach, we proposed and demonstrated a tactile sensory feedback system based on an optical communication link for prosthetic applications. The optical link features a low power and wide transmission bandwidth, which makes the feedback system suitable for large number of tactile sensors. The low power transmission is due to the employed UWB-based optical modulation. We implemented a system prototype, consisting of digital transmitter and receiver boards and acquisition circuits to interface 32 piezoelectric sensors. Then we evaluated the system performance by measuring, processing and transmitting data of the 32 piezoelectric sensors at 100 Mbps data rate through the optical link, at 50 pJ/bit communication energy consumption. Experimental results have validated the functionality and demonstrated the real time operation of the proposed sensory feedback system

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5

    Biomimetic tactile sensing

    Get PDF
    corecore