3 research outputs found

    A flexible approach for finding optimal paths with minimal conflicts

    Get PDF
    This research is supported by EPSRC grant EP/M014290/1.Complex systems are usually modelled through a combination of structural and behavioural models, where separate behavioural models make it easier to design and understand partial behaviour. When partial models are combined, we need to guarantee that they are consistent, and several automated techniques have been developed to check this. We argue that in some cases it is impossible to guarantee total consistency, and instead we want to find execution paths across such models with minimal conflicts with respect to a certain metric of interest. We present an efficient and scalable solution to find optimal paths through a combination of the theorem prover Isabelle with the constraint solver Z3. Our approach has been inspired by a healthcare problem, namely how to detect conflicts between medications taken by patients with multiple chronic conditions, and how to find preferable alternatives automatically.Postprin

    A framework for automated conflict detection and resolution in medical guidelines

    Get PDF
    This research is supported by the MRC-funded UK Research and Innovation grant MR/S003819/1 and by EPSRC grant EP/M014290/1.Common chronic conditions are routinely treated following standardised procedures known as clinical guidelines. For patients suffering from two or more chronic conditions, known as multimorbidity, several guidelines have to be applied simultaneously, which may lead to severe adverse effects when the combined recommendations and prescribed medications are inconsistent or incomplete. This paper presents an automated formal framework to detect, highlight and resolve conflicts in the treatments used for patients with multimorbidities focusing on medications. The presented extended framework has a front-end which takes guidelines captured in a standard modelling language and returns the visualisation of the detected conflicts as well as suggested alternative treatments. Internally, the guidelines are transformed into formal models capturing the possible unfoldings of the guidelines. The back-end takes the formal models associated with multiple guidelines and checks their correctness with a theorem prover, and inherent inconsistencies with a constraint solver. Key to our approach is the use of an optimising constraint solver which enables us to search for the best solution that resolves/minimises conflicts according to medication efficacy and the degree of severity in case of harmful combinations, also taking into account their temporal overlapping. The approach is illustrated throughout with a real medical example.Publisher PDFPeer reviewe

    A flexible approach for finding optimal paths with minimal conflicts

    No full text
    Complex systems are usually modelled through a combination of structural and behavioural models, where separate behavioural models make it easier to design and understand partial behaviour. When partial models are combined, we need to guarantee that they are consistent, and several automated techniques have been developed to check this. We argue that in some cases it is impossible to guarantee total consistency, and instead we want to find execution paths across such models with minimal conflicts with respect to a certain metric of interest. We present an efficient and scalable solution to find optimal paths through a combination of the theorem prover Isabelle with the constraint solver Z3. Our approach has been inspired by a healthcare problem, namely how to detect conflicts between medications taken by patients with multiple chronic conditions, and how to find preferable alternatives automatically
    corecore