
A Flexible Approach for Finding Optimal Paths
with Minimal Conflicts?

J. Bowles and M. B. Caminati

School of Computer Science, University of St Andrews
KY16 9SX St Andrews, United Kingdom
{jkfb|mbc8}@st-andrews.ac.uk

Abstract. Complex systems are usually modelled through a combination
of structural and behavioural models, where separate behavioural models
make it easier to design and understand partial behaviour. When partial
models are combined, we need to guarantee that they are consistent, and
several automated techniques have been developed to check this. We argue
that in some cases it is impossible to guarantee total consistency, and
instead we want to find execution paths across such models with minimal
conflicts with respect to a certain metric of interest. We present an efficient
and scalable solution to find optimal paths through a combination of the
theorem prover Isabelle with the constraint solver Z3. Our approach has
been inspired by a healthcare problem, namely how to detect conflicts
between medications taken by patients with multiple chronic conditions,
and how to find preferable alternatives automatically.

1 Introduction

In complex systems design, it is common to model components separately in
order to facilitate the understanding and analysis of their behaviour. Nonetheless,
modelling the complete behaviour of a component is hard [25], and often sets
of possible scenarios of execution are captured instead. A scenario describes
a particular situation that may involve a component and how it behaves and
interacts with other components. In practice, UML’s sequence diagrams are
commonly used to model scenarios [20]. From such individual scenarios, we then
need to be able to derive the complete behaviour of a component. The same ideas
apply if we model (partial) business processes within an organisation, for instance
using BPMN [19]. In either case, we need a means to compose models (scenarios
or processes), and when this cannot be done, detect and resolve inconsistencies.

Composing systems manually can only be done for small systems. As a
result, in recent years, various methods for automated model composition have
been introduced [1,5,22,11,13,23,26,27,28,4,6]. Most of these methods introduce
algorithms to produce a composite model from partial specifications and assume a
formal underlying semantics [11]. In our recent work [4,6], we have used constraint
solvers (Alloy [9] and Z3 [17] respectively) for automatically constructing the
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composed model. This involves generating all constraints associated to the models,
and using an automated solver to find a solution (the composed model) for the
conjunction of all constraints. Using Alloy for model composition (usually only
for structural models), is an active area of research [23,28], but the use of Z3 is a
novelty of [6]. In [6] we did not exploit Z3’s arithmetic capabilities which we have
done more recently in [7]. Most existing approaches can detect inconsistencies,
but fail to provide a means to resolve them.

We argue that in some cases it is impossible to guarantee total consistency
between scenarios of execution. Instead we want to find execution paths across
such models with minimal conflicts with respect to a certain metric of interest.
We present an efficient and scalable solution to find optimal paths through a
combination of the theorem prover Isabelle [18] with the constraint solver Z3.
Our approach has been inspired by a healthcare problem, namely how to detect
conflicts between medications taken by patients with multiple chronic conditions,
and how to find preferable alternatives automatically. In this paper, we focus
on the theoretical foundations required to address the problem and our medical
domain, but remind the reader of the more general applicability of our work and
considerable practical benefits.

This paper provides a formal statement of the problem, a measure of inconsis-
tency, and shows how the obtained problem can be turned into an optimisation
problem. In addition, it illustrates how a SMT solver can be used to find a
scalable solution to the proposed problem. As a final contribution, the paper
introduces a general technique to combine Z3 with Isabelle in order to ensure
that the SMT translation of the problem is formally correct.

Paper structure: Section 2 introduces the formalisation of the problem and our
solution. Section 3 translates this formulation into an SMT context. In Section 4,
a concrete application in the healthcare domain is introduced to motivate the
approach introduced in this paper, and is used to evaluate our design through
a basic implementation featuring simple input and output interfaces. Section 5
exposes the general technique we used to combine the theorem prover Isabelle
and the SMT solver to guarantee the correctness of the SMT code illustrated in
Section 3. Section 6 discusses related work, and Section 7 concludes.

2 Description of the Problem and Approach

Our problem is formulated formally as follows: we are given a list of simple
directed acyclic graphs Gi, i = 1, . . . , n, each with exactly one source node. Since
each of the graphs is simple, each Gi can be thought of as a finite set of ordered
pairs of nodes (j, k), each representing a directed edge from node j to node k.
Therefore, we can define G :=

⋃n
i=1Gi, and denote by V (G′) the set of nodes

touched by any edge in G′ ⊆ G. Further, we assume that V (Gi1) ∩ V (Gi2) = ∅
for any i1 6= i2 ∈ {i1, . . . , in}: i.e., distinct graphs have no nodes in common.

We want to obtain a list of paths, one for each given graph, each leading from
the source of the corresponding graph to one of it sinks (we recall that a source
is a node with no incoming edges and a sink one with no exiting edges). Such



a list of paths must be determined so as to maximise a given score, which can
be thought of as a metric of the compatibility of the resulting execution paths.
Before defining how this score is computed, we need to describe how the needed
input data and the output are encoded. Examples later clarify the need for these
notions.

2.1 Score model

To compute the score, we assume to be given further input, besides the list of
graphs G1, . . . , Gn, as follows.

1. A map t : G→ N×N associating to each edge e a pair (t− (e) , t+ (e)), where
t− (e) is the minimal time and t+ (e) is the maximal time e has to wait before
e can occur. We require t− (e) ≤ t+ (e) for any e ∈ G. It can be used to
bound the occurrence of tasks associated to nodes in a graph. For example,
t− expresses that the next task cannot start before t− time units, and t+

expresses that it must occur before t+ time units.
2. A list τ := {τ1, . . . , τn} of integers, where τi specifies the instant at which

the source node of the graph Gi is executed. This list can be used to express
the requirement that different models start their execution at different times.

3. A finite set R of resources.
4. A map M : V (G)→ 2R. M(j) specifies a subset of resources among which

one can be chosen in order to perform the task corresponding to node j.
5. A map g : R→ Z× N associating to each resource r an effectiveness score
g1(r) and an amount g2(r). The effectiveness is a measure of how well a
given resource performs a task, and the amount is how much of the resource
is consumed for performing the task. For example, a hardware resource is
needed for a given time, a medication must be taken at a given dosage, etc. . .

6. A map I : R×R→ Z yielding an interaction. The interaction is an integer
expressing how much two resources mutually boost or interfere, where a
negative interaction means a counter-productive effect (i.e., diminishing the
overall effectiveness of the two interacting resources).

7. A map f : Z×N×N×N→ Z combining an interaction between two resources,
a time distance, and the amounts of the two resources to yield the component
of the overall score for a given pair of resources. f takes into account the
fact that the actual interaction between resources occurring at distinct nodes
depends not only on the interaction between the resources (as defined at
the previous point), but on their amount and on how much time passes
between their occurrences. We will refer to the integer values returned by f
as interaction scores.

2.2 Output

Given a list G1, . . . Gn of directed acyclic graphs, a set of resources R and maps
f , g, I, M , t as introduced in the previous section, the output is a triple of
functions (F, c,m), each defined on the set of all nodes, V (G).



F is a boolean function telling us which nodes are executed, c (j) returns the
instant at which node j is executed, while m (j) is the resource picked to perform
the task associated to the node j. We will use the notation P [X] to indicate the
image of the set X through the relation P ; for example, F [{true}] is the set of
executed nodes. With this notation in place, we require that F , c and m satisfy
all the following conditions:

1. the set on which F is true determines one path for each Gi, starting from
the source of Gi and ending at one of its sinks; this is a way to represent the
paths that we anticipated as our main goal at the beginning of this section.
More formally, F satisfies the following requirement: for any i ∈ {1, . . . , n}
there is a finite sequence wi of nodes of Gi such that (a) wi

0 is the source of
Gi, (b) wi

|wi|−1 is a sink of Gi, (c) ∀j ∈
{

1, . . . ,
∣∣wi
∣∣− 1

} (
wi

j−1, w
i
j

)
∈ Gi,

and (d)
{
wi

0, . . . , w
i
|wi|−1

}
= F−1 [{true}] ∩Gi.

2. ∀j ∈ V (G) , F (j)→ m (j) ∈M (j);
3. for any i ∈ {1, . . . , n}, if j is the source node of Gi, then c (j) = τi;
4. if there is an edge going from the node j to the node k, and j and k are

executed, then

t− (j, k) ≤ c (k)− c (j) ≤ t+ (j, k) ;

5. the global score:∑
j∈F−1[{true}]

g1 (m (j)) +

∑
i1,i2∈{1,...,n},i1<i2

j∈F−1[{true}]∩V (Gi1)
k∈F−1[{true}]∩V (Gi2)

f (I (m (j) ,m (k)) , |c (k)− c (j)| , g2 (m (j)) , g2 (m (k)))

(1)

is maximal.

The first term in (1) sums the effectiveness of each picked resource for each
executed node, irrespectively of whether distinct picked resources interact. The
second term sums together the interaction scores of each pair of resources picked
in distinct graphs. The interaction score for each of such pairs depends on the
absolute interaction of the two resources (specified by I), the time distance
separating the occurrence of the two resources, and the amount.

2.3 An Illustrative Example

We use a simplified example to motivate our formal problem. A more realistic
example and our solution is given in Section 4.

Assume that a patient with an acute condition is hospitalised on day 0. There
are two possible treatments for the condition: a non-surgical treatment and



surgery. The two alternatives are represented by the two branches in the directed
graph of Fig. 1 (left), where the source node represents the hospitalisation. The
right branch represents the choice of surgery with nodes n3 and n4 denoting the
steps implied by this choice (n3: pre-surgical testing and n4: the surgery itself).
Each node in a treatment graph may have one or more ways of performing it.
For example, in the case of pre-surgical testing it involves administering one
of two drugs (d1 or d2), while in the case of the surgery, only one resource is
present (we assume here that there is only one way to perform it). The left branch
(with n2) models the non-surgical choice, here associated to the prescription of
drug d0 (with no other choice available). The weights on the edges are the time
constraints for the subsequent step: for example, after pre-surgical testing was
performed (n3), surgery cannot happen before 2 days have passed, but should
happen within 4 days (for illustration purposes only).

n2:{d0}

n3:{d1,d2}

n4:{s}

{d3}

{d4}

{d3}

{d4}

{d3}

{d4}

(1,2) (1,2)

(2,4)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

{h}

Fig. 1. A simple example problem.

Additionally, this particular patient suffers
from a chronic condition, which requires him
to take drug d3 on even days and d4 on odd
days. This can be represented by a path graph,
unfolding the alternation of d3 and d4 for a
given finite number of days (Fig. 1 right).

It is known that surgery is preferred, but
d1 interacts negatively with d3 and d2 with
d4. We ignore drug dosages here, which our
formalisation can handle as well. The prob-
lem we want to solve is to find how to best
schedule steps in the hospitalisation, and how
to choose between the non-surgical and the
surgical treatment, taking into account the re-
spective effectiveness and the interaction with
the treatments for the chronic condition.

3 SMT Translation

We now need to represent the notions presented in Section 2 in a way amenable
to SMT computations. In doing so, we will write formulas close to the first-order
logic language used by SMT solvers; for the sake of readability, however, we will
employ some notational simplifications. In particular, we adopt infix notation
instead of prefix notation, we omit type specifications, and we use subscripts and
other typographic features not available in plain-text syntax of SMT-LIB.

To represent the output F , we introduce one boolean variable nodei for each
node i (i.e., the truth value of nodei will yield F (i)). First, we must pick all the
sources of the Gi’s, so that the corresponding node variables will be asserted
to be true. Afterwards, for each source, we must assert that exactly one of its
children must be true. Then, for every child set to true, we must ask that exactly
one of its children must be true, and so on, until no node has children (we reached
a sink). Besides doing that, we want to make sure that no other node is selected.



Correspondingly, we generate, for the node i, the assertions

nodei →
∨

j|(i,j)∈G


 ∧

k 6=j,
k|(i,k)∈G

(¬ nodek)

 ∧ nodej

 (2)

 ∧
(j,i)∈G

(¬ nodej)

→¬ nodei, (3)

where we adopted an informal intensional implosion of the arguments of connec-
tives for reader’s convenience, rather than writing the extensional form actually
needed for SMT-LIB. For example, the expression

∧
(j,i)∈G (¬nodej) appearing

in (3) is a shortcut for scanning the input G to take all the first components of
pairs having i as a second component (let us assume they are nodei1 , . . . ,nodeip),
and then writing the SMT expression and nodei1 . . . nodeip .

3.1 Scores in SMT

To represent the output c, we introduce one numerical variable clockj for each
node j. For each j, k such that (j, k) ∈ G, we create the following assertion:

nodej ∧ nodek → clockk − clockj ≥ t− (j, k) ∧ clockk − clockj ≤ t+ (j, k) .

Additionally, we impose that each source node happens at the time specified by
τ ; therefore, if j is the source node of Gi, we assert:

clockj = τi. (4)

To represent the output m, we introduce one variable labelj for each node j,
whose value is the name of the drug picked for the node j. Now we can introduce
two kinds of scores, represented by integer SMT variables scorej and scorej,k,
respectively: the first represents the effectiveness of the prescription associated
to node j, while the second is the score generated by possible conflicts between
the prescriptions picked for node j and for node k. We first zero out the scores
for the non-executed nodes:

¬nodei → scorei,j = 0 ∧ scorei = 0 ∧ scorej,i = 0.

Since the variables nodej describe whether a node is executed the final
optimisation, we generate the following assertions for each possible j, k:

nodej ∧ nodek → scorej,k =

f (I (labelj , labelk) , |clockk − clockj | , g2 (labelj) , g2 (labelk)) .

We finally assign the sum of all scorei,j ’s and scorei’s to a variable, and ask
for an SMT solution to all the assertions which maximises that variable; this
requires the optimizing version of the SMT solver Z3, νZ (also known as µZ or
Z3Opt) [2].

The map I assigns a degree to the possible conflicts; this assignment, together
with f , determines how the interactions influence the resulting choice of resources,
timing, and the execution paths in the different models. These choices add
flexibility to the whole approach but, on the other hand, need to be done by a
domain expert.



4 Evaluation and Use Cases

In healthcare management and practice, as in other domains, clinical and medical
procedures are streamlined by adopting standardised guidelines. In particular,
treatments for common chronic conditions have been subject to various clinical
trials, and the outcomes documented in clinical pathways specifying accepted
treatment steps, possible alternatives, and recommendations to follow. Clinical
pathways are informal flowcharts, with natural language annotations, and as such
they can be formalised as directed acyclic graph structures, usually with one
initial node (the source), and each node representing a medication prescription.
Applying a single clinical pathway to a given patient is subject to a number of
variable aspects and requirements, for example:

1. pathways typically present alternatives from which one is chosen;
2. there is often a choice to be taken among equivalent drugs in a group;
3. the time separating subsequent steps in a pathway is typically not fixed,

being liable to be adapted to the context and the patient situation;
4. the dosage of the chosen drugs influences how drugs mutually interact;
5. the set of chronic conditions typically changes over the patient’s life span:

when this happens, even the treatment of the pre-existing conditions must
be reconsidered.

On patients suffering from multiple chronic conditions, several pathways have
to be applied concurrently, so that the number of possible combinations of these
parameters increases dramatically. Our goal is to present the clinician suggestions
about which choice of the parameters above is the best. The model presented in the
previous sections allows us to capture all these aspects: the resources correspond
to the single treatments (e.g., drugs, or surgical procedures), the effectiveness score
expresses how well a single treatment performs, the amount can be used to express
the dosage of a drug, and I can model, for example, drug-drug interaction. For
consistency and comparison, we evaluate our design on a well-known case [8] of a
hypothetical 79-year-old woman with five diseases: chronic obstructive pulmonary
disease (COPD), diabetes mellitus (type 2), hypertension, osteoarthritis, and
osteoporosis. To this end, we extracted data to represent pathways and scores
from two sources, respectively: NICE pathways1, publicly available as informal
flowcharts with accompanying text, and the website drugs.com to derive the
scores.

Given the form in which pathways from NICE are presented, we extracted the
data needed as input to our design manually, for each of the five conditions we
are considering (see [12]). We pruned the nodes not liable to cause conflicts (e.g.,
“ongoing monitoring of HbA1c”), generated an adjacency relation describing the
underlying graph, and attached a list of possible medications for each node (for
example, when a medication group such as Sulfonylurea was associated to a node,
we inserted the list of all the medications in the group in the corresponding node
of the graph we generated). The resulting graphs are visible in Fig. 2 and Fig. 3,

1 http://pathways.nice.org.uk/

http://pathways.nice.org.uk/


Fig. 2. Pharmaceutical graphs for Diabetes and Hypertension based on NICE pathways.
ACE – angiotensin-converting-enzyme, ARB – angiotensin receptor blocker, CCB –
calcium channel blocker.

Fig. 3. Pharmaceutical graphs for three additional conditions. NSAID – nonsteroidal
anti-inflammatory drug, COX-2 – Cyclooxygenase-2.

where numbers in brackets represent the number of individual medications in
a group. They contain a total of 127 distinct medications. Some of the graph
parameters, such as the duration limits (described by the functions t− and t+

introduced in Section 2) can depend on the single patient and on the context, and
are therefore not present in the data provided by NICE. For evaluation purposes,
we generated suitable data reasonable for our purposes to fill the gaps (this will
be done by clinicians in the future). To retrieve all the possible drug conflicts,
we used the interaction engine on the mentioned site drugs.com2, and obtained
a classification (minor, moderate and major): 178 minor conflicts, 3033 moderate
conflicts, 270 major conflicts, for a total of 3481 conflicts, an amount too large
to analyse manually.

4.1 Results

The data extracted as explained above was represented in a textual, comma-
separated value (CSV) format, and we built a simple implementation of our
design, parsing these files, generating SMT code, producing text representa-
tions of (F, c,m), together with a graphical representation of the output using

2 http://www.drugs.com/drug_interactions.html

http://www.drugs.com/drug_interactions.html


Cytoscape3[24]. For computations, we assigned the values of −100, −1000 and
−5000 to minor, moderate and major conflicts, respectively. Another important
parameter we had to set is f , which weights the conflicts according to time
separation and dosage. We chose a simple form, which takes the conflict and
zeroes it as soon as the time distance is greater than 8 time units or one of the
dosages is less than 10 dosage units.

Fig. 4. Time- and dosage- aware optimal solution generated by Z3 for a hypothetical
five-comorbid patient, as represented in the graphical front-end.

The output is shown in Fig. 4: the text in the nodes of Fig. 2 and Fig. 3 have
been substituted by the drug ultimately picked in the maximised solution, except
for the non-executed nodes, which are marked with “N/A”. In the lower part of
the interface, the user can see the node list with all the relevant information: the
picked drug, the clock (i.e., the value returned by c introduced in Section 2.2)
for the corresponding event, the score, the conflicting nodes (if any) and the
conflict score (if any). The user can also click on single node to highlight only the
relevant data. For this example, the total score is −1220, while the total conflict
is −2100, composed as follows:

– the insulin-benazepril interaction contributes −1000,
– the doxazosin-fentanyl interaction contributes −1000,

3 Cytoscape is a software platform for the visualisation of complex network integrated
with any type of attribute data, with a focus on molecular interaction networks. It
was chosen among several other visualisation platforms because of the variety of
layout algorithms available, the simple data import/export format available, and the
relatively moderate adoption effort it required from us.
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Fig. 5. Time- and dosage- aware optimal solution generated by Z3 with four concurrent
morbidities.

– the benazepril-calciumVitaminD interaction contributes −100.

To assess the performance of the proposed approach, we timed the presented
implementation. The average running time is 28.1 seconds, including the SMT
code generation from the input data (which, however, takes a negligible amount
of time); these results were obtained on an off-the-shelf laptop with 4GB RAM
and a dual-core 2GHz CPU, running a 32-bit Linux OS. The actual run-times
would likely be less, since in real situations a number of possibilities are excluded
and additional restrictions often apply. For example, a portion of drugs could
be excluded a priori because not available, or because known to have too many
interactions; what is more, the doctor might impose manually a choice in a graph
branch, thereby reducing the combinations.

4.2 Introducing time offsets

Suppose a patient is being treated for a number of conditions, when she gets
diagnosed an additional condition (requirement (5) of Section 4). We want to
show how the time-awareness of our design helps when facing such a situation.
Let the instant in which the additional condition gets diagnosed be denoted
by 0. Starting from time 0, we want to re-assess the patient’s situation to get
suggestion about which changes in the therapy should be implemented, assuming
that the treatment for the pre-existing conditions started at some time in the
past −x. To achieve that, it will suffice to change condition (4) (Section 3.1)
whenever j refers to an initial node of the pre-existing conditions:

clockj = −x,

while we assert clockj = 0 when the index j refers to the new condition.
We evaluated how this can change the recommendation given by our system

in a very simple case. First, we ran the simulation as in the preceding section,
except that we did not include osteoporosis, and obtained the solution shown in
Fig. 5. Then we added back osteoporosis with a starting time 0, while changing



the starting time of the remaining four conditions to −6. The result is shown
in Fig. 6. As it can be seen by comparing the results, the addition of the new
condition (osteoporosis) modified the suggested pathway for one of the existing
conditions (hypertension). This means that the clinician could consider back-
tracking and changing the previously established therapy in view of the modified
clinical situation. It should be noted that the running time for these examples is
substantially the same as that for the example in the previous section ( ≤ 30 s).

5 Formal Verification

Formulas (2) and (3) correspond to SMT assertions whose number quickly grows
even for small graphs. There are more immediate ways of expressing the same
problem as an SMT problem, but they turn out to be significantly less efficient.
Our idea (extending the approach taken in [7]) is to exploit Isabelle’s SMT-LIB
generator to automatically produce SMT code from Isabelle definitions that we
can formally prove to be correct via formal Isabelle theorems. This SMT code will
typically be not as efficient as the SMT code that we will effectively run; however,
we can use an SMT solver to prove that the two are equivalent. This allows us to
infer (if we trust the SMT solver) that the formal correctness theorems proved in
Isabelle apply to the SMT code that we will effectively run.

This approach is illustrated in Fig. 7. While this scheme can be applied
generally, we use formulas (2) and (3) (Section 3) to illustrate it. We rewrite
them as the following equivalent Isabelle/HOL definitions:

abbreviation ”conditionTwo ’ G F ==
(∀ p . (F p & ¬ isSink ’ G p ) → (∃ ! c . (G p c & F c ) ) ) ”

abbreviation ”conditionThree ’ G F ==
∀ c . (¬ isSource ’ G c & (∀ p . G p c → ¬ F p ) ) → (¬ F c )”

Here, G is a graph and F is a set of nodes expressed as predicates (i.e., there
is an edge from m to n if and only if G m n is true, and the node m is selected if
and only if Fm is true), and isSink’ G s is a predicate telling whether s is a sink
for the graph G; similarly for isSource’. To these definitions, we add another,
corresponding to the requirement that all the sources must be selected:

paracetamol

valdecoxib

OSTEOARTRITIS

etidronate

calciumVitaminD

OSTEOPOROSIS

DIABETES

N/Aaclidinium

COPD

metformin

insulin

sitagliptin

N/A levalbuterol

N/A

doxazosin

nimodipine

eprosartan

N/A

HYPERTENSION

Fig. 6. The optimal solution after a fifth condition was added with a time offset.
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Fig. 7. Overview of the formal verification of the SMT code.

abbreviation ”conditionOne ’ G F ==
(∀ s . isSource ’ G s → F s )”

Now, we put together these conditions:

abbreviation ”formalConditions ’ G F == conditionOne ’ G F &
conditionTwo ’ G F & conditionThree ’ G F”

and use Isabelle’s SMT generator to produce corresponding SMT code:

lemma assumes ”formalConditions ’ G F” shows False

sledgehammer [ provers=z3 , minimize=false ,
timeout=1, overlord=true ] ( assms ) .

sledgehammer is an Isabelle tool for theorem proving, and it works by negating
the thesis of the considered theorem, and to challenge an SMT solver (or other
tools) to consider whether the obtained problem is satisfiable. If it is not, it can
use the information to find a proof. In this case, we are not interested in theorem
proving, but only in the generated SMT code. More details can be found in [7],
where we directly use the generated code to compute. Here, we make an indirect
use of it: the generated code is used to define a boolean SMT variable formal,
containing all the corresponding assertions. That is, formal will be true if and
only if the automatically generated formalConditions’ G F is true. We do the
same for the assertions illustrated at the beginning of Section 3, to obtain an
SMT variable that we call efficient. In other words, efficient will be true if
and only if each nodej obeys the group of assertions in Section 3. We add the
requirement that Fj = nodej for any node j. If this group assertions and the
group of assertions enclosed in formalConditions’ introduced above were not
equivalent, there should be a choice of F satisfying one but not the other group.
Therefore, we express the following SMT assertion:

( assert (or ( and formal ( not efficient ) )
( and ( not formal ) efficient ) ) ) .

If the SMT solver returns (unsat), this means that the two conditions are
indeed equivalent. It should be noted that this check is only needed once; for the
example of Section 4, we obtained an (unsat) answer in about 5 seconds.



Once we have the guarantee of the equivalence between the SMT code that we
run and the SMT code generated from Isabelle definitions, we can start proving
formal theorems in Isabelle about these definitions, in order to make sure they
present the intended properties.

As an example, we discuss how to prove that the nodes selected by the SMT
assertions labelled as formal is indeed a path leading from a source to a sink for
the corresponding graph. To do so, we start from defining in Isabelle/HOL the
canonical notion of walk in a simple directed graph:

definition ”isWalk G w == w 6= [ ] →
(∀i∈{1..<size w } . (w ! ( i−1) ,w ! i )∈G )” ,

which amounts to asking that any consecutive entries of the node list w are joined
by an edge (note that w!0, w!1, . . . are the entries of the list w). We want to
prove that any selection of nodes of a given graph G obtained from the assertions
formal are the entries of a walk which starts from the source of G, ends in a
sink of G and has no repetitions. To this end, we formally proved the following
theorem:

theorem assumes ”finite G” ”card ( sources G)=1”
”irrefl ( trancl G )” ”conditionOne ( set2pred G ) ( unset F )”
”conditionTwo ( set2pred G ) ( unset F )”
”conditionThree ( set2pred G ) ( unset F )” shows

”∃ w . distinct w & isWalk G w & last w∈sinks G &
{hd w}=F∩sources G & set w=F∩nodes G”

The converter set2pred serves to pass from G represented as a set of pairs to
its representation as a binary boolean predicate. In Isabelle, they have different
types, and using sets is more expressive than using predicates, leading to more
readable statements; on the other hand, sets are not present natively in the
SMT-LIB language, and using predicates is therefore preferable. Similarly, unset
passes from the set F to its representation as a unary boolean predicate.

The theorem assumes that the graph is finite, and that there is only one source.
Given that it is represented as a set of ordered pairs, it is inherently directed,
while irrefl (trancl G) states that its transitive closure is not reflexive. This is
the set-theoretical way of requiring that G is acyclic. Under these assumptions,
plus the requirements that the SMT solver proved to be equivalent to the SMT
assertions that we execute, the theorem states that the set F∩nodes G is the
entries set of some walk w for G which starts at the source (hd w is the first entry
of w), ends at a sink, and has no repetitions (keyword distinct). The conditions
about w in the thesis of the theorem above correspond to requirements at the
point (1) of the list of conditions at the beginning of Section 2.2.

6 Related Work

The problem of model composition has been treated by using SMT solvers or
constraint solvers in previous works [28,23,27,4,6]. To the best of our knowledge,



no other existing approach to the problem adopts a metric to be maximised, as
we did here. From an abstract viewpoint, there are some similarities between
the model we proposed in Section 2 and that presented in [14] where, however,
there is only one graph involved, and the semantics associated to it and the
problem to be solved are entirely different. In [12], the specific problem of the
composition of pharmaceutical graphs is solved by the usage of SMT solvers in
a way which inspired the present paper. Here, we addressed two of the main
limitations conceded in [12], namely the lack of dosage and timing information,
presenting an SMT-based design which adds those information coordinates to
obtain a more flexible and realistic solution to the problem of minimising conflict
in multiple pathway applications on multimorbid patients.

The issue of verifying SMT code, a solution to which we discussed in Section 5,
is underexplored: indeed, SMT solvers are typically used the other way around,
i.e., to aid in the verification of software or in formal proofs [3].

The problem of automated detection and resolution of pathway conflicts
in patients with multimorbidity is gaining considerable attention. In [10], on-
tologies are used to represent pathways, with one additional ontology (Merge
Representation Ontology, MRO) created by interviewing clinicians to identify
merging criteria, and instantiated to find merge points of two given pathways. No
information is given, however, on how adaptable the approach is and whether the
instantiation process is automatic. Similarly, recent work proposing extensions to
the existing GLARE project [21] also uses ontologies, but focuses on soliciting
clinicians’ input for conflicts solution, rather than automating it. Constraint logic
programming (CLP) to express and deal with conflicts is proposed in [16]. While
CLP solvers and SMT solvers have fundamental similarities, their expressiveness,
background technologies and domains of application differ. With the efficiency of
the current, mutually competitive, SMT solvers growing at a steadfast pace, their
lower expressiveness is getting more and more effectively compensated. Another
route has been brought forward in [15], where an ad-hoc algorithm is proposed
based on formal rules expressing the actions to be taken upon the happening of
given premises expressing conflicts. Whereas this solution has the advantage of
accurately solving conflicts, based on the actual medical meaning of the rules
themselves, it relies on specific software, which looks problematic in view of
extensions and further development.

7 Conclusions

We introduced a general way of expressing the problem of execution paths across
combined behavioural models of complex systems as an optimisation problem on
a suitably defined score metric, expressed the latter problem in SMT language
and evaluated the whole approach on a concrete, well-known healthcare problem.
Additionally, we formally proved the correctness of our SMT code through a
novel application of theorem prover Isabelle, exploiting the latter’s ability of
generating SMT code. This is important because writing SMT code directly is
time-consuming and error-prone while, and the existing interfaces of SMT solvers



with higher-level languages (e.g., APIs) are currently (as far as we know) not
formally verified.

Our approach can be adapted to a wide range of conditions: for example, by
imposing manual restrictions on the number of resources, by manually imposing
a chosen path in some of the graphs, by changing how f operates, or by offsetting
the application of distinct models time-wise; in the latter case, we showed how
this can be exploited in a simple way to manage the changes to a patient’s therapy
following the diagnose of a new condition.

While the current execution time is tolerable for interactive use, we believe
that in real situations it can be dramatically lower, on average. Nonetheless, we
are experimenting with scopes, a feature of Z3 which allows incremental solving
by specifying a block of assumptions which are always held, together with a stack
of additional assumptions which can be pushed and popped repeatedly. When
suitably handled, this feature is likely to allow to reduce the SMT computation
time upon modifications of the inputs, since a relevant part of it will remain
unchanged throughout the modifications (e.g., the topology of the graphs). As a
further, orthogonal code improvement strategy, we are investigating restrictions of
the theory known to the solver (using the (set−logic) command); this requires
expressing our SMT-LIB code into a form allowed by the selected restriction.
The code presented here can be run under the UFLIA theory, but we are positive
about it being adaptable to a fragment of UFLIA (e.g., QF_UFLIA), which would
likely result in better performance.

The presented design has some limitations. First, while it can find an execution
minimising the conflict, it cannot suggest additional remedies to neutralise or
mitigate the arising conflicts. Secondly, it does not handle, currently, directed
graph presenting cycles (we are not aware of any existing approach supporting
the presence of cycles in our main application domain, e.g., clinical pathways
composition). Third, the score calculation could be made context-aware by
considering previously occurred resources in the same graphs. A possible attack
to the last issue could consist in generalising the maps f and g by adding
arguments to them expressing the context: we are experimenting in this sense.
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