61 research outputs found

    Algorithms for the Numerical Solution of a Finite-Part Integral Equation

    Get PDF
    The authors investigate a hypersingular integral equation which arises in the study of acoustic wave scattering by moving objects. A Galerkin method and two collocation methods are presented for solving the problem numerically. These numerical techniques are compared and contrasted in three test problems

    Asymptotic expansions and fast computation of oscillatory Hilbert transforms

    Full text link
    In this paper, we study the asymptotics and fast computation of the one-sided oscillatory Hilbert transforms of the form H+(f(t)eiωt)(x)=−int0∞eiωtf(t)t−xdt,ω>0,x≥0,H^{+}(f(t)e^{i\omega t})(x)=-int_{0}^{\infty}e^{i\omega t}\frac{f(t)}{t-x}dt,\qquad \omega>0,\qquad x\geq 0, where the bar indicates the Cauchy principal value and ff is a real-valued function with analytic continuation in the first quadrant, except possibly a branch point of algebraic type at the origin. When x=0x=0, the integral is interpreted as a Hadamard finite-part integral, provided it is divergent. Asymptotic expansions in inverse powers of ω\omega are derived for each fixed x≥0x\geq 0, which clarify the large ω\omega behavior of this transform. We then present efficient and affordable approaches for numerical evaluation of such oscillatory transforms. Depending on the position of xx, we classify our discussion into three regimes, namely, x=O(1)x=\mathcal{O}(1) or x≫1x\gg1, 0<x≪10<x\ll 1 and x=0x=0. Numerical experiments show that the convergence of the proposed methods greatly improve when the frequency ω\omega increases. Some extensions to oscillatory Hilbert transforms with Bessel oscillators are briefly discussed as well.Comment: 32 pages, 6 figures, 4 table

    Remarks on nonlocal trace expansion coefficients

    Full text link
    In a recent work, Paycha and Scott establish formulas for all the Laurent coefficients of Tr(AP^{-s}) at the possible poles. In particular, they show a formula for the zero'th coefficient at s=0, in terms of two functions generalizing, respectively, the Kontsevich-Vishik canonical trace density, and the Wodzicki-Guillemin noncommutative residue density of an associated operator. The purpose of this note is to provide a proof of that formula relying entirely on resolvent techniques (for the sake of possible generalizations to situations where powers are not an easy tool). - We also give some corrections to transition formulas used in our earlier works.Comment: Minor corrections. To appear in a proceedings volume in honor of K. Wojciechowski, "Analysis and Geometry of Boundary Value Problems", World Scientific, 19 page

    The mechanics of a chain or ring of spherical magnets

    Full text link
    Strong magnets, such as neodymium-iron-boron magnets, are increasingly being manufactured as spheres. Because of their dipolar characters, these spheres can easily be arranged into long chains that exhibit mechanical properties reminiscent of elastic strings or rods. While simple formulations exist for the energy of a deformed elastic rod, it is not clear whether or not they are also appropriate for a chain of spherical magnets. In this paper, we use discrete-to-continuum asymptotic analysis to derive a continuum model for the energy of a deformed chain of magnets based on the magnetostatic interactions between individual spheres. We find that the mechanical properties of a chain of magnets differ significantly from those of an elastic rod: while both magnetic chains and elastic rods support bending by change of local curvature, nonlocal interaction terms also appear in the energy formulation for a magnetic chain. This continuum model for the energy of a chain of magnets is used to analyse small deformations of a circular ring of magnets and hence obtain theoretical predictions for the vibrational modes of a circular ring of magnets. Surprisingly, despite the contribution of nonlocal energy terms, we find that the vibrations of a circular ring of magnets are governed by the same equation that governs the vibrations of a circular elastic ring

    Gelfand-Shilov and Gevrey smoothing effect for the spatially inhomogeneous non-cutoff Kac equation

    Full text link
    We consider the spatially inhomogeneous non-cutoff Kac's model of the Boltzmann equation. We prove that the Cauchy problem for the fluctuation around the Maxwellian distribution enjoys Gelfand-Shilov regularizing properties with respect to the velocity variable and Gevrey regularizing properties with respect to the position variable.Comment: 47 page

    On lightest baryon and its excitations in large-N 1+1-dimensional QCD

    Full text link
    We study baryons in multicolour 1+1D QCD via Rajeev's gauge-invariant reformulation as a non-linear classical theory of a bilocal meson field constrained to lie on a Grassmannian. It is known to reproduce 't Hooft's meson spectrum via small oscillations around the vacuum, while baryons arise as topological solitons. The lightest baryon has zero mass per colour in the chiral limit; we find its form factor. It moves at the speed of light through a family of massless states. To model excitations of this baryon, we linearize equations for motion in the tangent space to the Grassmannian, parameterized by a bilocal field U. A redundancy in U is removed and an approximation is made in lieu of a consistency condition on U. The baryon spectrum is given by an eigenvalue problem for a hermitian singular integral operator on such tangent vectors. Excited baryons are like bound states of the lightest one with a meson. Using a rank-1 ansatz for U in a variational formulation, we estimate the mass and form factor of the first excitation.Comment: 26 pages, 3 figures, shorter published version, added remarks on parit
    • …
    corecore