Algorithms for the Numerical Solution of a FinitePart Integral Equation

J. Tweed
Old Dominion University
R. St. John
Old Dominion University
M.H.Dunn
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs
Part of the Applied Mathematics Commons

Repository Citation

Tweed, J.; St. John, R.; and Dunn, M. H., "Algorithms for the Numerical Solution of a Finite-Part Integral Equation" (1999).
Mathematics \& Statistics Faculty Publications. 132.
https://digitalcommons.odu.edu/mathstat_fac_pubs/132

Original Publication Citation

Tweed, J., St John, R., \& Dunn, M. H. (1999). Algorithms for the numerical solution of a finite-part integral equation. Applied Mathematics Letters, 12(3), 3-9. doi:10.1016/s0893-9659(98)00163-3

Algorithms for the Numerical Solution of a Finite-Part Integral Equation

J. Tweed, R. St. John and M. H. Dunn
Old Dominion University, Norfolk, VA 23529, U.S.A.

(Received May 1998; revised and accepted July 1998)

Abstract

The authors investigate a hypersingular integral equation which arises in the study of acoustic wave scattering by moving objects. A Galerkin method and two collocation methods are presented for solving the problem numerically. These numerical techniques are compared and contrasted in three test problems. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords-Singular integral equation, Finite-part integral, Hypersingular integral, Galerkin method, Collocation method.

1. INTRODUCTION

Investigations into the scattering of acoustic waves by moving objects have led the authors to consider the integral equation [1]

$$
\begin{equation*}
\int_{a}^{b} \frac{f(s)}{\Delta(s)}\left\{\frac{1}{(s-x)^{2}}+C \ln |s-x|+D(s, x)\right\} d s=g(x), \quad x \in(a, b) \tag{1}
\end{equation*}
$$

where C is a constant, $D(s, x)$ is a nonsingular kernel, and

$$
\begin{equation*}
\Delta(s)=\sqrt{(b-s)(s-a)} \tag{2}
\end{equation*}
$$

The integral equation is accompanied by two subsidiary conditions (linear functionals)

$$
\begin{equation*}
W_{k}(f)=g_{k}, \quad k=0,1 \tag{3}
\end{equation*}
$$

either or both of which may be of the integral type

$$
\begin{equation*}
W_{k}(f)=\int_{a}^{b} \frac{w_{k}(s)}{\Delta(s)} f(s) d s=g_{k} \tag{4}
\end{equation*}
$$

in which the $w_{k}(s)$ are prescribed functions, or of the end point type

$$
\begin{equation*}
W_{k}(f)=f(c)=g_{k} \tag{5}
\end{equation*}
$$

in which $c=a$ or b.
The first integral in (1) is a finite-part integral defined by

$$
\begin{equation*}
\int_{a}^{b} \frac{F(s)}{(s-x)^{2}} d s=\frac{d}{d x} \int_{a}^{b} \frac{F(s)}{s-x} d s \tag{6}
\end{equation*}
$$

where the integral on the right of (6) is a Cauchy principal value integral. Equations involving such integrals have been investigated by a number of authors [2-6] but not that given by (1) and (3).

It is well known that the shifted Chebyshev polynomials of the first and second kind, respectively,

$$
\begin{equation*}
t_{n}(s)=T_{n}\left(\frac{2 s-b-a}{b-a}\right), \quad u_{n}(s)=U_{n}\left(\frac{2 s-b-a}{b-a}\right), \quad a \leq s \leq b \tag{7}
\end{equation*}
$$

are related via the Cauchy type integral [7]

$$
\frac{b-a}{2 \pi} \int_{a}^{b} \frac{t_{n}(s)}{\Delta(s)(s-x)} d s= \begin{cases}0, & n=0 \tag{8}\\ u_{n-1}(x), & n \geq 1\end{cases}
$$

Therefore, by differentiation, we find that

$$
\frac{(b-a)^{2}}{8 \pi} \int_{a}^{b} \frac{t_{n}(s)}{\Delta(s)(s-x)^{2}} d s= \begin{cases}0, & n=0,1 \tag{9}\\ c_{n-2}^{2}(x), & n \geq 2\end{cases}
$$

where

$$
\begin{equation*}
c_{n-2}^{2}(s)=C_{n-2}^{2}\left(\frac{2 s-b-a}{b-a}\right) \tag{10}
\end{equation*}
$$

and the $C_{m}^{\lambda}(y)$ are Gegenbauer polynomials of degree m and parameter λ. Equation (9) suggests that (1) and (3) may be solved by expanding $f(s)$ in a series of shifted Chebyshev polynomials of the first kind. We may therefore seek to approximate $f(s)$ by the finite sum

$$
\begin{equation*}
f(s)=\sum_{n=0}^{N} f_{n} t_{n}(s) \tag{11}
\end{equation*}
$$

With this approximation the subsidiary conditions (3) take the form

$$
\begin{equation*}
\sum_{n=0}^{N} f_{n} w_{n k}=g_{k}, \quad k=0,1 \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{n k}=W_{k}\left(t_{n}\right) \tag{13}
\end{equation*}
$$

In the case of an integral condition (4), we have

$$
\begin{equation*}
w_{n k}=\int_{a}^{b} \frac{w_{k}(s)}{\Delta(s)} t_{n}(s) d s \tag{14}
\end{equation*}
$$

while, for a left end condition, we have

$$
\begin{equation*}
w_{n k}=(-1)^{n}, \tag{15}
\end{equation*}
$$

and for a right end condition

$$
\begin{equation*}
w_{n k}=1, \tag{16}
\end{equation*}
$$

$k=0,1 ; n=0,1, \ldots, N$.
On substituting from (11) into (1) and making use of (9) and of the result [7]

$$
\begin{equation*}
\int_{a}^{b} \frac{t_{n}(s)}{\Delta(s)} \ln |s-x| d s=-\pi \mu_{n} t_{n}(x) \tag{17}
\end{equation*}
$$

in which

$$
\begin{equation*}
\mu_{0}=\ln \left(\frac{4}{b-a}\right), \quad \mu_{n}=\frac{1}{n}, \quad(n \geq 1), \tag{18}
\end{equation*}
$$

we find that the coefficients $f_{n}, n=0,1,2, \ldots, N$ must satisfy the equation

$$
\begin{equation*}
\sum_{n=0}^{N} f_{n} K_{n}(x)=g(x), \quad x \in(a, b) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{n}(x)=\frac{8 \pi}{(b-a)^{2}}\left(1-\delta_{n 0}\right)\left(1-\delta_{n 1}\right) c_{n-2}^{2}(x)-\pi C \mu_{n} t_{n}(x)+D_{n}(x) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{n}(x)=\int_{a}^{b} \frac{t_{n}(s)}{\Delta(s)} D(s, x) d s \tag{21}
\end{equation*}
$$

2. THE GALERKIN METHOD

In the Galerkin Method, $g(x)$ is approximated by the sum

$$
\begin{equation*}
g(x)=\sum_{m=2}^{N} g_{m} c_{m-2}^{2}(x) \tag{22}
\end{equation*}
$$

The orthogonality conditions [7]

$$
\begin{equation*}
\int_{a}^{b} \Delta^{3}(x) c_{p-2}^{2}(x) c_{q-2}^{2}(x) d x=\frac{\pi}{8}\left(\frac{b-a}{2}\right)^{4}\left(p^{2}-1\right) \delta_{p q} \tag{23}
\end{equation*}
$$

$p, q=2,3, \ldots$ are then used to show that (19) is equivalent to the linear algebraic system

$$
\begin{equation*}
\sum_{n=0}^{N} f_{n} K_{n m}=g_{m}, \quad m=2,3, \ldots, N \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
K_{n m} & =\alpha_{n m}+C \gamma_{n m}+D_{n m}, \tag{25}\\
g_{m} & =\frac{8}{\pi\left(m^{2}-1\right)}\left(\frac{2}{b-a}\right)^{4} \int_{a}^{b} \Delta^{3}(x) g(x) c_{m-2}^{2}(x) d x, \tag{26}\\
\alpha_{n m} & =\left(1-\delta_{n 0}\right)\left(1-\delta_{n 1}\right) \frac{16}{m^{2}-1}\left(\frac{2}{b-a}\right)^{6} \int_{a}^{b} \Delta^{3}(x) c_{n-2}^{2}(x) c_{m-2}^{2}(x) d x \\
& =\frac{8 \pi}{(b-a)^{2}}\left(1-\delta_{n 0}\right)\left(1-\delta_{n 1}\right) \delta_{n m}, \tag{27}\\
\gamma_{n m} & =\frac{-8 \mu_{n}}{m^{2}-1}\left(\frac{2}{b-a}\right)^{4} \int_{a}^{b} \Delta^{3}(x) t_{n}(x) c_{m-2}^{2}(x) d x, \tag{28}\\
D_{n m} & =\frac{8}{\pi\left(m^{2}-1\right)}\left(\frac{2}{b-a}\right)^{4} \int_{a}^{b} \int_{a}^{b} \frac{\Delta^{3}(x)}{\Delta(s)} t_{n}(s) c_{m-2}^{2}(x) D(s, x) d s d x, \tag{29}
\end{align*}
$$

$n=0,1, \ldots, N ; m=2,3, \ldots, N$.
Now, by means of the change of variable $x=((b-a) / 2) y+(b+a) / 2$, we readily see that $\gamma_{n m}=\left(-8 \mu_{n} /\left(m^{2}-1\right)\right) J_{n m}$, where

$$
\begin{align*}
J_{n m} & =\int_{-1}^{1}\left(1-y^{2}\right)^{3 / 2} T_{n}(y) C_{m-2}^{2}(y) d y \\
& =\frac{1}{2} \int_{-1}^{1}\left(1-y^{2}\right)^{1 / 2} T_{n}(y)\left[y U_{m-1}(y)-m T_{m}(y)\right] d y \tag{30}\\
& =\frac{1}{2} \int_{0}^{\pi} \sin \theta \cos n \theta[\sin m \theta \cos \theta-m \sin \theta \cos m \theta] d \theta \\
& =\frac{\pi}{16}\left[(m+1)\left(\delta_{n m-2}+\delta_{n 0} \delta_{0 m-2}\right)-2 m \delta_{n m}+(m-1)\left(\delta_{n m+2}+\delta_{n 0} \delta_{0 m+2}\right)\right]
\end{align*}
$$

Thus

$$
\begin{equation*}
\gamma_{0 m}=-\pi \ln \left(\frac{4}{b-a}\right) \delta_{m 2}, \quad \gamma_{1 m}=-\frac{\pi}{4} \delta_{m 3}, \quad \gamma_{n m}=\frac{\pi}{2}\left[\frac{2 \delta_{n m}}{n^{2}-1}-\frac{\delta_{n+2 m}}{n(n+1)}-\frac{\delta_{n-2 m}}{n(n-1)}\right] \tag{31}
\end{equation*}
$$

$n=2,3, \ldots, N ; m=2,3, \ldots, N$.
In order to evaluate the elements g_{m} and $D_{n m}$, we recall the Gaussian quadrature formula [8]

$$
\begin{equation*}
\int_{a}^{b} \frac{F(s)}{\Delta(s)} d s \approx \frac{\pi}{M} \sum_{k=1}^{M} F\left(s_{k}\right) \tag{32}
\end{equation*}
$$

where M is the number of Gaussian points and

$$
\begin{equation*}
s_{k}=\frac{b-a}{2} \cos \left[\frac{(2 k-1) \pi}{2 M}\right]+\frac{b+a}{2}, \quad k=1,2, \ldots, M \tag{33}
\end{equation*}
$$

An application of this formula to (26) and (29) yields the results

$$
\begin{align*}
g_{m} & =\frac{8}{m^{2}-1}\left(\frac{2}{b-a}\right)^{4} \frac{1}{M} \sum_{k=1}^{M} \Delta^{4}\left(s_{k}\right) g\left(s_{k}\right) c_{m-2}^{2}\left(s_{k}\right) \tag{34}\\
D_{n m} & =\frac{8 \pi}{m^{2}-1}\left(\frac{2}{b-a}\right)^{4} \frac{1}{M^{2}} \sum_{k, l=1}^{M} \Delta^{4}\left(s_{k}\right) t_{n}\left(s_{l}\right) c_{m-2}^{2}\left(s_{k}\right) D\left(s_{l}, s_{k}\right) \tag{35}
\end{align*}
$$

$n=0,1, \ldots, N ; m=2,3, \ldots, N$.
Lastly, we observe that the linear system (24) consists of $N-1$ equations for the $N+1$ unknowns $f_{n}, n=0,1, \ldots, N$.

These are supplemented by the two subsidiary conditions (12) thus yielding the ($N+1$) $\times(N+1)$ system

$$
\begin{equation*}
\sum_{n=0}^{N} f_{n} W_{n k}=g_{k}, \quad k=0,1, \ldots, N \tag{36}
\end{equation*}
$$

where

$$
W_{n k}=\left\{\begin{array}{lll}
w_{n k}, & n=0,1, \ldots, N, & k=0,1 \tag{37}\\
K_{n k}, & n=0,1, \ldots, N, & k=2,3, \ldots, N
\end{array}\right.
$$

3. THE COLLOCATION METHOD

On approximating $f(s)$ by the finite sum (11), it was found that the integral equation (1) and its subsidiary conditions (3) yielded the equations

$$
\begin{equation*}
\sum_{n=0}^{N} f_{n} w_{n k}=g_{k}, \quad k=0,1 \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{N} f_{n} K_{n}(x)=g(x), \quad x \in(a, b) \tag{39}
\end{equation*}
$$

for the expansion coefficients $f_{0}, f_{1}, f_{2}, \ldots, f_{N}$. In the Collocation Method, $N-1$ collocation points $x_{2}, x_{3}, x_{4}, \ldots, x_{N} \in(a, b)$ are chosen and the f_{n} are found by solving the $N+1$ simultaneous linear algebraic equations

$$
\begin{align*}
\sum_{n=0}^{N} f_{n} w_{n k} & =g_{k}, & k=0,1, \tag{40}\\
\sum_{n=0}^{N} f_{n} K_{n}\left(x_{k}\right) & =g\left(x_{k}\right), & k=2,3, \ldots, N
\end{align*}
$$

In the numerical results which follow, two distinct collocation schemes are used. In the first of these, the collocation points x_{k}^{0} are taken to be the zeros of $t_{N-1}(x)$ so that

$$
\begin{equation*}
x_{k}^{0}=\frac{1}{2}(b-a) \cos \left[\frac{2 k-3}{2 N-2} \pi\right]+\frac{1}{2}(b+a), \quad k=2,3, \ldots, N . \tag{41}
\end{equation*}
$$

In the second scheme, the collocation points x_{k}^{1} are taken to be the zeros of $u_{N-1}(x)$ so that

$$
\begin{equation*}
x_{k}^{1}=\frac{1}{2}(b-a) \cos \left[(k-1) \frac{\pi}{N}\right]+\frac{1}{2}(b+a), \quad k=2,3, \ldots, N . \tag{42}
\end{equation*}
$$

4. NUMERICAL RESULTS

In this section, we illustrate the use of the above algorithms by displaying the results obtained from their application to three test problems.
Problem 1. The first problem to be considered is that of solving the integral equation

$$
\begin{equation*}
\int_{-1}^{1} \frac{f(s)}{\sqrt{1-s^{2}}}\left\{\frac{1}{(s-x)^{2}}+\ln |s-x|+2(s-x)^{2}\right\} d s=g(x), \quad x \in(-1,1) \tag{43}
\end{equation*}
$$

with subsidiary conditions

$$
\begin{equation*}
f(-1)=0 \quad \text { and } \quad f(1)=0 \tag{44}
\end{equation*}
$$

and right-hand side

$$
\begin{equation*}
g(x)=\frac{16 \pi}{(5-4 x)^{2}}+\pi \ln \left(\frac{5-4 x}{8}\right)+\frac{\pi}{12}\left(20 \ln 2-5+24 x-16 x^{2}\right) . \tag{45}
\end{equation*}
$$

It is not too difficult to show that this problem has the exact solution

$$
\begin{equation*}
f(s)=\frac{3}{5-4 s}-\frac{5+4 s}{3} \tag{46}
\end{equation*}
$$

Table 1 below exhibits the results obtained for Problem 1. It shows the exact and computed values of $f(s)$ for several values of s when 25 terms of the expansion are taken and 25 quadrature points used. This table also shows the time taken for each of the numerical schemes used.

Table 1. Test results for Problem 1 with 25 series terms and 25 quadrature points.

s	Values of $f(s)$							
	Exact	Galerkin	Collocation with x_{k}^{0}	Collocation with x_{k}^{1}				
-1.00	0.0000000	0.0000000	0.0000000	0.0000000				
-0.80	-0.2341463	-0.2341463	-0.2341464	-0.2341463				
-0.60	-0.4612613	-0.4612612	-0.4612613	-0.4612613				
-0.40	-0.6787879	-0.6787878	-0.6787880	-0.6787879				
-0.20	-0.8827586	-0.8827585	-0.8827586	-0.8827586				
0.00	-1.0666667	-1.0666665	-1.0666665	-1.0666666				
0.20	-1.2190476	-1.2190475	-1.2190476	-1.2190476				
0.40	-1.3176471	-1.3176469	-1.3176472	-1.3176471				
0.60	-1.3128205	-1.3128203	-1.3128207	-1.3128206				
0.80	-1.0666667	-1.0666664	-1.0666668	-1.0666667				
1.00	0.0000000	0.0000000	0.0000000	0.0000000				
Elapsed Time (Sec)						12.76	0.12	0.12

Problem 2. Next we consider the problem of solving the integral equation

$$
\begin{equation*}
\int_{-1}^{1} \frac{f(s)}{\sqrt{1-s^{2}}}\left\{\frac{1}{(s-x)^{2}}+\ln |s-x|+2(s-x)^{2}\right\} d s=g(x), \quad x \in(-1,1) \tag{47}
\end{equation*}
$$

with subsidiary conditions

$$
\begin{equation*}
f(-1)=0 \quad \text { and } \quad \int_{-1}^{1} \frac{f(s)}{\sqrt{1-s^{2}}} d s=0 \tag{48}
\end{equation*}
$$

and right-hand side

$$
\begin{equation*}
g(x)=\frac{16 \pi}{(5-4 x)^{2}}+\pi \ln \left(\frac{5-4 x}{8}\right)+\pi\left(\ln 2+\frac{1}{4}\right) \tag{49}
\end{equation*}
$$

In this case the exact solution is

$$
\begin{equation*}
f(s)=\frac{3}{5-4 s}-\frac{3+2 s}{3} \tag{50}
\end{equation*}
$$

Table 2 exhibits the results obtained for Problem 2. It shows the exact and computed values of $f(s)$ for several values of s when 25 terms of the expansion are taken and 25 quadrature points used. This table also shows the time taken for each of the numerical schemes used.

Table 2. Test results for Problem 2 with 25 series terms and 25 quadrature points.

s	Values of $f(s)$				
	Exact	Galerkin	Collocation with x_{k}^{0}	Collocation with $x_{k}^{\frac{1}{k}}$	
-1.00	0.0000000	0.0000000	0.0000000	0.0000000	
-0.80	-0.1008130	-0.1008130	-0.1008130	-0.1008130	
-0.60	-0.1945946	-0.1945946	-0.1945946	-0.1945946	
-0.40	-0.2787879	-0.2787879	-0.2787880	-0.2787879	
-0.20	-0.3494253	-0.3494253	-0.3494253	-0.3494253	
0.00	-0.4000000	-0.4000000	-0.3999999	-0.4000000	
0.20	-0.4190476	-0.4190476	-0.4190476	-0.4190476	
0.40	-0.3843137	-0.3843137	-0.3843139	-0.3843138	
0.60	-0.2461538	-0.2461538	-0.2461540	-0.2461539	
0.80	0.1333333	0.1333334	0.1333332	0.1333333	
1.00	1.3333333	1.3333332	1.3333333	1.3333333	
Elapsed Time (Sec)		12.74	0.12	0.12	

Problem 3. Lastly, we consider the problem of solving the integral equation

$$
\begin{equation*}
\int_{-1}^{1} \frac{f(s)}{\sqrt{1-s^{2}}}\left\{\frac{1}{(s-x)^{2}}+\ln |s-x|+2(s-x)^{2}\right\} d s=g(x), \quad x \in(-1,1) \tag{51}
\end{equation*}
$$

with subsidiary conditions

$$
\begin{equation*}
\int_{-1}^{1} \frac{f(s)}{\sqrt{1-s^{2}}} d s=0 \quad \text { and } \quad \int_{-1}^{1} \frac{s f(s)}{\sqrt{1-s^{2}}} d s=0 \tag{52}
\end{equation*}
$$

and right-hand side

$$
\begin{equation*}
g(x)=\frac{16 \pi}{(5-4 x)^{2}}+\pi \ln \left(\frac{5-4 x}{8}\right)+\pi\left(\ln 2+\frac{1}{4}+x\right) \tag{53}
\end{equation*}
$$

Table 3. Test results for Problem 3 with 25 series terms and 25 quadrature points.

s	Values of $f(s)$				
	Exact	Galerkin	Collocation with x_{k}^{0}	Collocation with x_{k}^{1}	
-1.00	0.3333333	0.3333333	0.3333333	0.3333333	
-0.80	0.1658537	0.1658536	0.1658536	0.1658537	
-0.60	0.0054054	0.0054054	0.0054054	0.0054054	
-0.40	-0.1454545	-0.1454546	-0.1454546	-0.1454546	
-0.20	-0.2827586	-0.2827586	-0.2827586	-0.2827586	
0.00	-0.4000000	-0.4000000	-0.3999999	-0.4000000	
0.20	-0.4857143	-0.4857143	-0.4857143	-0.4857143	
0.40	-0.5176471	-0.5176470	-0.5176472	-0.5176471	
0.60	-0.4461538	-0.4461538	-0.4461540	-0.4461539	
0.80	-0.1333333	-0.1333333	-0.1333335	-0.1333334	
1.00	1.0000000	0.9999998	1.0000000	1.0000000	
Elapsed Time (Sec)	12.77	0.13	0.13		

In this case the exact solution is

$$
\begin{equation*}
f(s)=\frac{3}{5-4 s}-1-s \tag{54}
\end{equation*}
$$

Table 3 exhibits the results obtained for Problem 3. It shows the exact and computed values of $f(s)$ for several values of s when 25 terms of the expansion are taken and 25 quadrature points used. This table also shows the time taken for each of the numerical schemes used.

The computations associated with the problems discussed above were performed on a 233 Mhz Pentium II computer with 64 Mb of RAM. Each of the proposed algorithms converged quickly providing high accuracy with relatively few terms in the series approximation. For the problems considered, the collocation algorithms were clearly more efficient than the Galerkin algorithm.

REFERENCES

1. M.H. Dunn, J. Tweed and F. Farassat, The prediction of ducted fan engine noise via a boundary integral equation method, AIAA Paper 96-1770, (April 1996).
2. A. Frenkel, A Chebyshev expansion of singular integrodifferential equations with a $\partial^{2} \ln |s-t| / \partial s \partial t$ kernel, J. Comp. Phys. 51, 335-342 (1983).
3. M.A. Golberg, The convergence of several algorthms for solving integral equations with a finite part integral, J. Integral Equations 5, 329-340 (1983).
4. M.A. Golberg, The convergence of several algorthms for solving integral equations with a finite part integrals II, Applied Math. \& Comp. 21, 283-293 (1987).
5. A.C. Kaya and F. Erdogan, On the solution of integral equations with strongly singular kernels, Quart. Appl. Math. XLV (1), 105-122 (1987).
6. A.C. Kaya and F. Erdogan, On the solution of integral equations with a generalized Cauchy kernel, Quart. Appl. Math. XLV (3), 455-469 (1987).
7. W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York, (1966).
8. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, (1965).
