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Algorithms for the Numerical Solution
of a Finite-Part Integral Equation
J. TWEED, R. ST. JOHN AND M. H. DUNN

Old Dominion University, Norfolk, VA 23529, U.S.A.

(Received May 1998; revised and accepted July 1998)

Abstract—The authors investigate a hypersingular integral equation which arises in the study
of acoustic wave scattering by moving objects. A Galerkin method and two collocation methods
are presented for solving the problem numerically. These numerical techniques are compared and
contrasted in three test problems. © 1999 Elsevier Science Ltd. All rights reserved.

KeywordS—Singula.r integral equation, Finite-part integral, Hypersingular integral, Galerkin
method, Collocation method.

1. INTRODUCTION

Investigations into the scattering of acoustic waves by moving objects have led the authors to
consider the integral equation [1]

/bjﬁ{;+Cln|s—x|+D(s,m)} ds = g(z), z € (a,b), (1)
. A6 \G-o
where C is a constant, D(s, ) is a nonsingular kernel, and

A(s) = /(b—8)(s —a). (2)
The integral equation is accompanied by two subsidiary conditions (linear functionals)

Wi(f) =ge, k=01, (3)

either or both of which may be of the integral type

b
wih) = [ E 16 ds =g (@

in which the wyg(s) are prescribed functions, or of the end point type

Wi(f) = flc) = gk (5)

in which ¢ =a or b.
The first integral in (1) is a finite-part integral defined by

b F(s) d [° F(s)
/,, G-t ® &), 53¢

s, (6)
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where the integral on the right of (6) is a Cauchy principal value integral. Equations involving
such integrals have been investigated by a number of authors [2-6] but not that given by (1)
and (3).

It is well known that the shifted Chebyshev polynomials of the first and second kind, respec-

tively,
2s—b—a 2s—b—a
=Tp| —————— 1, un(s)=Up | ———-—1}, <s<
ta(s) T( P > un(s) =U ( T a ) a<s<}b (7
are related via the Cauchy type integral 7]
b—a [°  ta(s) {0, n=0, @
2 J, A(s)(s — .’L’) Un—1{z), n>1.
Therefore, by differentiation, we find that
(b—-a)z/ tn(8) { 0, n=0,1, ©)
A S)(S - 2)2 C121—2(z)7 n2>2,
where 05 b
s—b—a
n—2(8) = Ci_, (ﬁ—) (10)

and the C,(y) are Gegenbauer polynomials of degree m and parameter A. Equation (9) suggests
that (1) and (3) may be solved by expanding f(s) in a series of shifted Chebyshev polynomials
of the first kind. We may therefore seek to approximate f(s) by the finite sum

N
= fata(s). (11)
n=0

With this approximation the subsidiary conditions (3) take the form

> fawnk =gk, k=0,1, (12)

n=0

where
Wk = Wk(tn). (13)

In the case of an integral condition (4), we have

wa = | “X((s)) tn(s) ds, (14)
while, for a left end condition, we have
wng = (—1)7, (15)
and for a right end condition
Wnk = 1, (16)

k=0,1,n=0,1,...,N.
On substituting from (11) into (1) and making use of (9} and of the result [7]

% ta(s)
o As)

In|s — z| ds = —wpuntn(x) (17)
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_ln 4 —_
Ho = b—a y Mn =

we find that the coefficients f,, n =0,1,2,..., N must satisfy the equation

in which

S|

) (n>1), (18)

N
> faKa(@) = g(z), z€(a,b), (19)
n=0
where 8
Kn(z) = G _”a)2 (1 = 6n0)(1 = 6n1)c2_5(z) — TClintn(z) + Dn(z) (20)
and R
Da(z) = Z‘ég D(s, z)ds. (21)

2. THE GALERKIN METHOD
In the Galerkin Method, g(z) is approximated by the sum

N
= Z GmCon—2(T). (22)
m=2
The orthogonality conditions [7]
b 4
b—
[ 2@ @@ =5 (152) 67~ 16 23)
p,q = 2,3,... are then used to show that (19) is equivalent to the linear algebraic system
> faKnm=gm, m=23,...,N, (24)
where
Kom = onm + CYam + Do, (25)
8 2 \* 1%, .
=5 (522 || A@s)a@)ds, (26)
= 1= 500 - )i (72) [ M@k ate)a
= n0 nl me—1\b_a A T)Cpo\X)Cp_2\T) AT
8
= (—’L)—2(1 = 6n0)(1 = 6n1)brm, (27)
_g n

o = —H (b a) / A% ()t (2)%_o () da, (28)
D, = (m2 — < 2 a) / / > (s & _,(z)D(s, z) ds dz, (29)

n=0,1,...,N;m=2,3,.
Now, by means of the change of variable z = ((b — a)/2)y + (b + a)/2, we readily see that
Yam = (—8tn/(m? — 1))Jum, where

! 213/2 2
o = / (-9 T@)Ch W dy

1
% /_ 1 (1= ¥3)"? T (y) [yUm-1(y) - MTm(y)] dy (30)

=3 / sin @ cos né [sin m@ cos @ — m sin 6 cosmb)] db
0

= 16 (M + 1)(6nm—2 + oo m—2) — 2Mbnm + (M = 1)(6nms2 + bnobom+2)] -
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Thus

Yom = —7In (b

4 s | 26nm Sni2m bn_2m
8. = —=4 nm = — - - s
— a> m2,  Vim 2°m3 Tnm 2 [n2 —1 nn+1) nn-1) (31)

n=23,...,.Nym=23,...,N.

In order to evaluate the elements g, and Dy,,, we recall the Gaussian quadrature formula (8]

b g M
i AE:; ds ~ XWZ ;F(sk), (32)

where M is the number of Gaussian points and

s __b—acos (2k - D7 b+a
k= 2M 2

k=1,2,..., M. (33)

An application of this formula to (26) and (29) yields the results

-2 (Z 4iiA4(s) (%), (sk) (34

9m=——7\3-2 M 2 k)9(Sk)Cr_2(8k), )
8 2 \*1 &

Prm = or 1 (b = ) 37 2 A on)in(o)a(5)Dlsts 1), (35)

n=0,1,...,N;m=2,3,...,N.

Lastly, we observe that the linear system (24) consists of N — 1 equations for the N + 1
unknowns f,,n=20,1,...,N.

These are supplemented by the two subsidiary conditions (12) thus yielding the (N+1)x (N +1)
system

N
> faWak=g, k=0,1,...,N, (36)
n=0

where

wnk, n=01,...,N, k=01,
War = (37)

Kupe, n=0,1,....,N, k=2,3,...,N.

3. THE COLLOCATION METHOD

On approximating f(s) by the finite sum (11), it was found that the integral equation (1) and
its subsidiary conditions (3) yielded the equations

N
Y fawnk =gk, k=0,1 (38)
n=0
and
N
anKn(x) = g(z), z € (a,b) (39)
n=0
for the expansion coefficients fo, f1, f2,...,fn. In the Collocation Method, N — 1 collocation
points z2, 3,24, ...,ZN € (a,b) are chosen and the f, are found by solving the N +1 simultaneous
linear algebraic equations
N
an'wnk = Gk, k=0,1,
n=0

N (40)
3 foKalzk) =g(zx),  k=23,...,N.
n=0
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In the numerical results which follow, two distinct collocation schemes are used. In the first of
these, the collocation points :1:2 are taken to be the zeros of ¢ty_1(z) so that

(41)

1 2k—3
0 . Z(ph—
xk—2(b a)cos[zN_2

1
Tr]+§(b+a), k=23,...,N.

In the second scheme, the collocation points z} are taken to be the zeros of uy_;(x) so that

T

Il

%(b—a)cos [(k—1)7’:,-] +%(b+a), k=2,3,...,N. (42)

4. NUMERICAL RESULTS

In this section, we illustrate the use of the above algorithms by displaying the results obtained
from their application to three test problems.

PrROBLEM 1. The first problem to be considered is that of solving the integral equation

1
/1 \/{(j)si’ {(s _la:)2 +In|s — x| +2(s - “’)2} ds = g(z), z € (-1,1), (43)

with subsidiary conditions

f(=1)=0 and f(1)=0 (44)
and right-hand side
167 5—4dzx T 2
g(a:)—m+7rln( 8 )+E(201n2——5+24x—16x). (45)
It is not too difficult to show that this problem has the exact solution
3 5+4s

Table 1 below exhibits the results obtained for Problem 1. It shows the exact and computed
values of f(s) for several values of s when 25 terms of the expansion are taken and 25 quadrature
points used. This table also shows the time taken for each of the numerical schemes used.

Table 1. Test results for Problem 1 with 25 series terms and 25 quadrature points.

Values of f(s)
s . Collocation Collocation
Exact Galerkin . )
with :1:2 with xi
—1.00 0.0000000 0.0000000 0.0000000 0.0000000
—0.80 —0.2341463 —0.2341463 —0.2341464 —0.2341463
-0.60 -0.4612613 —0.4612612 —0.4612613 —0.4612613
—0.40 —0.6787879 ~0.6787878 —0.6787880 -0.6787879
-0.20 —0.8827586 —0.8827585 —0.8827586 —0.8827586
0.00 —1.0666667 —1.0666665 —1.0666665 —1.0666666
0.20 ~1.2190476 -1.2190475 —1.2190476 —1.2190476
0.40 —-1.3176471 —-1.3176469 —1.3176472 —1.3176471
0.60 —1.3128205 —1.3128203 —1.3128207 —1.3128206
0.80 —1.0666667 —1.0666664 —1.0666668 —1.0666667
1.00 0.0000000 0.0000000 0.0000000 0.0000000
Elapsed Time (Sec) 12.76 0.12 0.12
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PrOBLEM 2. Next we consider the problem of solving the integral equation

/—1 Vv1-s? {(3 "13’")2

with subsidiary conditions

+1n|s—-x|+2(s—a:)2} ds = g(z), z € (-1,1),

f(-1)=0 and /_1%@:0

and right-hand side

g(z) = Z?g%T+Wm(5;%>+W(M2+%)'

In this case the exact solution is

3 3+ 2s

) =s—1~ 3

(48)

(49)

(50)

Table 2 exhibits the results obtained for Problem 2. It shows the exact and computed values
of f(s) for several values of s when 25 terms of the expansion are taken and 25 quadrature points

used. This table also shows the time taken for each of the numerical schemes used.

Table 2. Test results for Problem 2 with 25 series terms and 25 quadrature points.

Values of f(s)
s Exact Galerkin Col%ocation Col%oca.tion
with 2 with z}
-1.00 0.0000000 0.0000000 0.0000000 0.0000000
—0.80 -0.1008130 —0.1008130 —0.1008130 —0.1008130
-0.60 —0.1945946 —0.1945946 —0.1945946 —0.1945946
—0.40 -0.2787879 —0.2787879 —0.2787880 —0.2787879
-0.20 —0.3494253 —0.3494253 —0.3494253 —0.3494253
0.00 —0.4000000 —0.4000000 —0.3999999 ~0.4000000
0.20 —0.4190476 —-0.4190476 -0.4190476 —0.4190476
0.40 —0.3843137 —0.3843137 —0.3843139 —0.3843138
0.60 -0.2461538 —0.2461538 —0.2461540 —0.2461539
0.80 0.1333333 0.1333334 0.1333332 0.1333333
1.00 1.3333333 1.3333332 1.3333333 1.3333333
Elapsed Time (Sec) 12.74 0.12 0.12

PRrOBLEM 3. Lastly, we consider the problem of solving the integral equation

1
[1 \/{(j)sz {(s _11)2 +Inls —z|+2(s - x)z} ds = g(z), z e (-1,1),

with subsidiary conditions

/st“) and / m

)+7r(ln2+%+x).

and right-hand side

g(z) =

167

(5 - 4z)?

+7ln 5—dx
8

=0

(51)

(52)

(53)
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Table 3. Test results for Problem 3 with 25 series terms and 25 quadrature points.

Values of f(s)
] Exact Galerkin Col?ocat;on Col?ocation
with z{ with z}

—-1.00 0.3333333 0.3333333 0.3333333 0.3333333
-0.80 0.1658537 0.1658536 0.1658536 0.1658537
—-0.60 0.0054054 0.0054054 0.0054054 0.0054054
—-0.40 —0.1454545 —0.1454546 —0.1454546 —0.1454546
-0.20 —0.2827586 —-0.2827586 —0.2827586 —0.2827586

0.00 —0.4000000 -0.4000000 —0.3999999 —0.4000000

0.20 —0.4857143 —0.4857143 —0.4857143 —0.4857143

0.40 —-0.5176471 —0.5176470 —0.5176472 -0.5176471

0.60 —0.4461538 —0.4461538 —0.4461540 —-0.4461539

0.80 —0.1333333 —0.1333333 —0.1333335 —-0.1333334

1.00 1.0000000 0.9999998 1.0000000 1.0000000
Elapsed Time (Sec) 12.77 0.13 0.13

In this case the exact solution is
flo) = ——-1-s (54)
5 —4s

Table 3 exhibits the results obtained for Problem 3. It shows the exact and computed values
of f(s) for several values of s when 25 terms of the expansion are taken and 25 quadrature points
used. This table also shows the time taken for each of the numerical schemes used.

The computations associated with the problems discussed above were performed on a 233 Mhz
Pentium II computer with 64 Mb of RAM. Each of the proposed algorithms converged quickly
providing high accuracy with relatively few terms in the series approximation. For the problems
considered, the collocation algorithms were clearly more efficient than the Galerkin algorithm.
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