33 research outputs found

    A Fibrational Framework for Substructural and Modal Logics

    Get PDF
    We define a general framework that abstracts the common features of many intuitionistic substructural and modal logics / type theories. The framework is a sequent calculus / normal-form type theory parametrized by a mode theory, which is used to describe the structure of contexts and the structural properties they obey. In this sequent calculus, the context itself obeys standard structural properties, while a term, drawn from the mode theory, constrains how the context can be used. Product types, implications, and modalities are defined as instances of two general connectives, one positive and one negative, that manipulate these terms. Specific mode theories can express a range of substructural and modal connectives, including non-associative, ordered, linear, affine, relevant, and cartesian products and implications; monoidal and non-monoidal functors, (co)monads and adjunctions; n-linear variables; and bunched implications. We prove cut (and identity) admissibility independently of the mode theory, obtaining it for many different logics at once. Further, we give a general equational theory on derivations / terms that, in addition to the usual beta/eta-rules, characterizes when two derivations differ only by the placement of structural rules. Additionally, we give an equivalent semantic presentation of these ideas, in which a mode theory corresponds to a 2-dimensional cartesian multicategory, the framework corresponds to another such multicategory with a functor to the mode theory, and the logical connectives make this into a bifibration. Finally, we show how the framework can be used both to encode existing existing logics / type theories and to design new ones

    A linear algebra approach to linear metatheory

    Get PDF
    Linear typed λ-calculi are more delicate than their simply typed siblings when it comes to metatheoretic results like preservation of typing under renaming and substitution. Tracking the usage of variables in contexts places more constraints on how variables may be renamed or substituted. We present a methodology based on linear algebra over semirings, extending McBride's kits and traversals approach for the metatheory of syntax with binding to linear usage-annotated terms. Our approach is readily formalisable, and we have done so in Agda

    Modal Abstractions for Virtualizing Memory Addresses

    Full text link
    Operating system kernels employ virtual memory management (VMM) subsystems to virtualize the addresses of memory regions in order to to isolate untrusted processes, ensure process isolation and implement demand-paging and copy-on-write behaviors for performance and resource controls. Bugs in these systems can lead to kernel crashes. VMM code is a critical piece of general-purpose OS kernels, but their verification is challenging due to the hardware interface (mappings are updated via writes to memory locations, using addresses which are themselves virtualized). Prior work on VMM verification has either only handled a single address space, trusted significant pieces of assembly code, or resorted to direct reasoning over machine semantics rather than exposing a clean logical interface. In this paper, we introduce a modal abstraction to describe the truth of assertions relative to a specific virtual address space, allowing different address spaces to refer to each other, and enabling verification of instruction sequences manipulating multiple address spaces. Using them effectively requires working with other assertions, such as points-to assertions in our separation logic, as relative to a given address space. We therefore define virtual points-to assertions, which mimic hardware address translation, relative to a page table root. We demonstrate our approach with challenging fragments of VMM code showing that our approach handles examples beyond what prior work can address, including reasoning about a sequence of instructions as it changes address spaces. All definitions and theorems mentioned in this paper including the operational model of a RISC-like fragment of supervisor-mode x86-64, and a logic as an instantiation of the Iris framework, are mechanized inside Coq

    Modal dependent type theory and dependent right adjoints

    Get PDF
    In recent years we have seen several new models of dependent type theory extended with some form of modal necessity operator, including nominal type theory, guarded and clocked type theory, and spatial and cohesive type theory. In this paper we study modal dependent type theory: dependent type theory with an operator satisfying (a dependent version of) the K-axiom of modal logic. We investigate both semantics and syntax. For the semantics, we introduce categories with families with a dependent right adjoint (CwDRA) and show that the examples above can be presented as such. Indeed, we show that any finite limit category with an adjunction of endofunctors gives rise to a CwDRA via the local universe construction. For the syntax, we introduce a dependently typed extension of Fitch-style modal lambda-calculus, show that it can be interpreted in any CwDRA, and build a term model. We extend the syntax and semantics with universes

    Multimodal Dependent Type Theory

    Get PDF
    We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations

    Semantics of multimodal adjoint type theory

    Full text link
    We show that contrary to appearances, Multimodal Type Theory (MTT) over a 2-category M can be interpreted in any M-shaped diagram of categories having, and functors preserving, M-sized limits, without the need for extra left adjoints. This is achieved by a construction called "co-dextrification" that co-freely adds left adjoints to any such diagram, which can then be used to interpret the "context lock" functors of MTT. Furthermore, if any of the functors in the diagram have right adjoints, these can also be internalized in type theory as negative modalities in the style of FitchTT. We introduce the name Multimodal Adjoint Type Theory (MATT) for the resulting combined general modal type theory. In particular, we can interpret MATT in any finite diagram of toposes and geometric morphisms, with positive modalities for inverse image functors and negative modalities for direct image functors.Comment: 24 pages. v2: Improved notation; extended pre-proceedings version for MFPS 202
    corecore