
ar
X

iv
:1

80
4.

05
23

6v
2 

 [
cs

.L
O

] 
 2

7 
O

ct
 2

01
8

Modal Dependent Type Theory and Dependent

Right Adjoints

Lars Birkedal1, Ranald Clouston2, Bassel Mannaa3, Rasmus Ejlers

Møgelberg4, Andrew M. Pitts5, and Bas Spitters6

1,6 Department of Computer Science and Engineering, Aarhus University, Aarhus,

Denmark

ranald.clouston@cs.au.dk, spitters@cs.au.dk

2 Research School of Computer Science, Australian National University,

Australia

3,4 Department of Computer Science, IT University of Copenhagen, Copenhagen,

Denmark

basm@itu.dk,mogel@itu.dk

5 Department of Computer Science & Technology, University of Cambridge,

Cambridge, United Kingdom

Andrew.Pitts@cl.cam.ac.uk

Abstract

In recent years we have seen several new models of dependent type theory extended with some

form of modal necessity operator, including nominal type theory, guarded and clocked type

theory, and spatial and cohesive type theory. In this paper we study modal dependent type

theory: dependent type theory with an operator satisfying (a dependent version of) the K-axiom

of modal logic. We investigate both semantics and syntax. For the semantics, we introduce

categories with families with a dependent right adjoint (CwDRA) and show that the examples

above can be presented as such. Indeed, we show that any finite limit category with an adjunction

of endofunctors gives rise to a CwDRA via the local universe construction. For the syntax, we

introduce a dependently typed extension of Fitch-style modal lambda-calculus, show that it can

be interpreted in any CwDRA, and build a term model. We extend the syntax and semantics

with universes.

1 Introduction

Dependent types are a powerful technology for both programming and formal proof. In

recent years we have seen several new models of dependent type theory extended with a type-

former resembling modal necessity, such as nominal type theory (Pitts, Matthiesen & Derikx

2015), guarded (Birkedal, Møgelberg, Schwinghammer & Støvring 2012, Bizjak, Grathwohl,

Clouston, Møgelberg & Birkedal 2016, Bizjak & Møgelberg 2018, Birkedal, Bizjak, Clouston,

Grathwohl, Spitters & Vezzosi 2018) and clocked (Mannaa & Møgelberg 2018) type theory,

and spatial and cohesive type theory (Shulman 2017). These examples all satisfy the K

axiom of modal logic

�(A → B) → �A → �B

but are not all (co)monads, the more extensively studied construction in the context of

dependent type theory (Krishnaswami, Pradic & Benton 2015, Shulman 2017, de Paiva &

Ritter 2016). Motivated in part by these examples, in this paper we study modal dependent

type theory: dependent type theory with an operator satisfying (a dependent generalisation

of) the K-axiom of modal logic. We investigate both semantics and syntax.
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2 Modal Dependent Type Theory and Dependent Right Adjoints

For the semantics, we introduce categories with families with a dependent right adjoint

(CwDRA) and show that this dependent right adjoint models the modality in the examples

mentioned above. Indeed, we show that any finite limit category with an adjunction of

endofunctors1 gives rise to a CwDRA via the local universe construction (Lumsdaine &

Warren 2015). In particular, by applying the local universe construction to a locally cartesian

closed category with an adjunction of endofunctors, we get a model of modal dependent type

theory with Π- and Σ-types.

For the syntax, we adapt the simply typed Fitch-style modal lambda-calculus introduced

by Borghuis (1994) and Martini & Masini (1996), inspired by Fitch’s proof theory for modal

logic (Fitch 1952). In such a calculus � is introduced by ‘shutting’ a strict subordinate proof

and eliminating by ‘opening’ one. For example the axiom K is inhabited by the term

λf.λx.shut((open f)(open x)) (1)

The nesting of subordinate proofs can be tracked in sequent style by a special symbol in the

context which we call a lock, and write b; the open lock symbol is intended to suggest we

have access to the contents of a box. Following Clouston (2018), the lock can be understood

as an operation on contexts left adjoint to �; hence Fitch-style modal λ-calculus has a model

in any cartesian closed category equipped with an adjunction of endofunctors. Here we show,

in work inspired by Clocked Type Theory (Bahr, Grathwohl & Møgelberg 2017), that Fitch-

style λ-calculus lifts with a minimum of difficulty to dependent types. In particular the term

(1), where f is a dependent function, has type

�(Πy : A. B) → Πx : �A.�B[open x/y]

This dependent version of the K axiom, not obviously expressible without the open construct

of a Fitch-style calculus, allows modalised functions to be applied to modalised data even in

the dependent case. This capability is known to be essential in at least one example, namely

proofs about guarded recursion (Bizjak et al. 2016)2. We show that our calculus can be

soundly interpreted in any CwDRA, and construct a term model.

We also extend the syntax and semantics of modal dependent type theory with universes.

Here we restrict attention to models based on (pre)sheaves, for which Coquand has proposed

a particularly simple formulation of universes (Coquand 2012). We show how to extend

Coquand’s notion of a category with universes with dependent right adjoints, and observe

that a construction encoding the modality on the universe, introduced for guarded type

theory by Bizjak et al. (2016), in fact arises for more general reasons.

Another motivation for the present work is that it can be understood as providing a

notion of a dependent adjunction between endofunctors. An ordinary adjunction L ⊣ R on

a category C is a natural bijective correspondence C(LA, B) ∼= C(A, R B). With dependent

types one might consider dependent functions from LA to B, where B may depend on LA,

and similarly from A to R B. Our notion of CwDRA then defines what it means to have

an adjoint correspondence in this dependent case. Our Fitch-style modal dependent type

theory can therefore also be understood as a term language for dependent adjoints.

Outline We introduce CwDRAs in Section 2, and present the syntax of modal dependent

type theory in Section 3. In Section 4 we show how to construct a CwDRA from an ad-

junction on a category with finite limits. In Section 5 we show how various models in the

1 This should not be confused with models where there are adjoint functors between different categories
which can be composed to define a monad or comonad.

2 This capability was achieved by Bizjak et al. (Bizjak et al. 2016) via delayed substitutions, but this
construction does not straightforwardly support an operational semantics (Bahr et al. 2017).
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literature can be presented as CwDRAs. The extension with universes is defined in Section 6.

We end with a discussion of related and future work in Section 7.

2 Categorical Semantics of Modal Dependent Type Theory

The notion of category with families (CwF) (Dybjer 1995, Hofmann 1997) provides a se-

mantics for the development of dependent type theory which elides some difficult aspects

of syntax, such as variable binding, as well as the coherence problems of simpler notions of

model. It can be connected to syntax by a soundness argument and term model construction,

and to more intuitive models via ‘strictification’ constructions. In this section we extend

this notion to introduce categories with a dependent right adjoint (CwDRA). We first recall

the standard definition:

◮ Definition 1 (category with families). A CwF is specified by:

1. A category C with a terminal object ⊤. Given objects Γ, ∆ ∈ C, write C(∆, Γ) for the

set of morphisms from ∆ to Γ in C. The identity morphism on Γ is just written id with

Γ implicit. The composition of γ ∈ C(∆, Γ) with δ ∈ C(Φ, ∆) is written γ ◦ δ.

2. For each object Γ ∈ C, a set C(Γ) of families over Γ.

3. For each object Γ ∈ C and family A ∈ C(Γ), a set C(Γ ⊢ A) of elements of the family A

over Γ.

4. For each morphism γ ∈ C(∆, Γ), re-indexing functions A ∈ C(Γ) 7→ A[γ] ∈ C(∆) and

a ∈ C(Γ ⊢ A) 7→ a[γ] ∈ C(∆ ⊢ A[γ]), satisfying A[id] = A, A[γ ◦ δ] = A[γ][δ], a[id] = a

and a[γ ◦ δ] = a[γ][δ].

5. For each object Γ ∈ C and family A ∈ C(Γ), a comprehension object Γ.A ∈ C equipped

with a projection morphism pA ∈ C(Γ.A, Γ), a generic element qA ∈ C(Γ.A ⊢ A[pA])

and a pairing operation γ ∈ C(∆, Γ), a ∈ C(∆ ⊢ A[γ]) 7→ (γ, a) ∈ C(∆, Γ.A) satisfying

pA ◦ (γ, a) = γ, qA[(γ, a)] = a, (γ, a) ◦ δ = (γ ◦ δ, a[δ]) and (pA, qA) = id.

A dependent right adjoint then extends the definition of CwF with a functor on contexts

L and an operation on families R, intuitively understood to be left and right adjoints:

◮ Definition 2 (category with a dependent right adjoint). A CwDRA is a CwF C equipped

with the following extra structure:

1. An endofunctor L : C → C on the underlying category of the CwF.

2. For each object Γ ∈ C and family A ∈ C(LΓ), a family RΓ A ∈ C(Γ), stable under

re-indexing in the sense that for all γ ∈ C(∆, Γ) we have

(RΓ A)[γ] = R∆(A[Lγ]) ∈ C(∆) (2)

3. For each object Γ ∈ C and family A ∈ C(LΓ) a bijection

C(LΓ ⊢ A) ∼= C(Γ ⊢ RΓ A) (3)

We write the effect of this bijection on a ∈ C(LΓ ⊢ A) as a ∈ C(Γ ⊢ RΓ A) and write the

effect of its inverse on b ∈ C(Γ ⊢ RΓ A) also as b ∈ C(LΓ ⊢ A). Thus

a = a (a ∈ C(LΓ ⊢ A)) (4)

b = b (b ∈ C(Γ ⊢ RΓ A)) (5)
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The bijection is required to be stable under re-indexing in the sense that for all γ ∈

C(∆, Γ) we have

a[γ] = a[Lγ] (6)

from which it follows that we also have

b[Lγ] = b[γ] (7)

(since using (4)–(6), we have b[γ] = b[γ] = b[Lγ] = b[Lγ]).

3 Syntax of Modal Dependent Type Theory

In this section we extend Fitch-style modal λ-calculus (Borghuis 1994) to dependent types,

and connect this to the notion of CwDRA via a soundness proof and term model construction.

We define our dependent types broadly in the style of ECC (Luo 1989), as this is close to

the implementation of some proof assistants (Norell 2007).

We define the raw syntax of contexts, types, and terms as follows:

Γ , ⋄ | Γ, x : A | Γ,b

A , Πx : A. B | �A

t , x | λx.t | t t | shut t | open t

We omit the leftmost ‘⋄,’ where the context is non-empty. Π-types are included in the gram-

mar as an exemplar to show that standard constructions can be given standard definitions,

without reference to the locks in the context. One could similarly add an empty type, unit

type, booleans, Σ-types, W-types, universes (of which more in Section 6), and so forth.

Judgements have forms

Γ ⊢ ‘Γ is a well-formed context’

Γ ⊢ A ‘A is a well-formed type in context Γ’

Γ ⊢ A = B ‘A and B are equal types in context Γ’

Γ ⊢ t : A ‘t is a term with type A in context Γ’

Γ ⊢ t = u : A ‘t and u are equal terms with type A in context Γ’

Figure 1 presents the typing rules of the calculus. The syntactic results below follow

easily by induction on these rules. We remark only that exchange of variables with locks,

and weakening of locks, are not admissible, and that the (lock-free) weakening Γ′ in the open

rule is essential to proving variable weakening.

◮ Lemma 3. Let J range over the possible strings to the right of a turnstile in a judgement.

1. If Γ, x : A, y : B, Γ′ ⊢ J and x is not free in B, then Γ, y : B, x : A, Γ′ ⊢ J;

2. If Γ, Γ′ ⊢ J, and Γ ⊢ A, and x is a fresh variable, then Γ, x : A, Γ′ ⊢ J;

3. If Γ, x : A, Γ′ ⊢ J and Γ ⊢ u : A, then Γ, Γ′[u/x] ⊢ J[u/x];

4. If Γ ⊢ t : A then Γ ⊢ A;

5. If Γ ⊢ t = u : A then Γ ⊢ t : A and Γ ⊢ u : A.
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Context formation rules:

⋄ ⊢

Γ ⊢ Γ ⊢ A

Γ, x : A ⊢
x /∈ Γ

Γ ⊢

Γ,b ⊢

Γ, x : A, y : B, Γ′ ⊢

Γ, y : B, x : A, Γ′ ⊢
x not free in B

Type formation rules:

Γ ⊢ A Γ, x : A ⊢ B

Γ ⊢ Πx : A. B

Γ,b ⊢ A

Γ ⊢ �A

Type equality rules are just equivalence and congruence.

Term formation rules:

Γ ⊢ t : A Γ ⊢ A = B

Γ ⊢ t : B

Γ, x : A, Γ′ ⊢

Γ, x : A, Γ′ ⊢ x : A
b /∈ Γ′

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : Πx : A. B

Γ ⊢ t : Πx : A. B Γ ⊢ u : A

Γ ⊢ t u : B[u/x]

Γ,b ⊢ t : A

Γ ⊢ shut t : �A

Γ ⊢ t : �A Γ,b, Γ′ ⊢

Γ,b, Γ′ ⊢ open t : A
b /∈ Γ′

Term equality rules, omitting equivalence and congruence:

Γ ⊢ (λx.t)u : A

Γ ⊢ (λx.t)u = t[u/x] : A

Γ ⊢ open shut t : A

Γ ⊢ open shut t = t : A

Γ ⊢ t : Πx : A. B

Γ ⊢ t = λx.t x : Πx : A. B
x /∈ Γ

Γ ⊢ t : �A

Γ ⊢ t = shut open t : �A

Figure 1 Typing rules for a dependent Fitch-style modal λ-calculus.
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P(Γ; A; ⋄) = pJAK

P(Γ; A; Γ′, y : B) =
(
P(Γ; A; Γ′) ◦ pJΓ,x:A,Γ′⊢BK, qJΓ,x:A,Γ′⊢BK

)

P(Γ; A; Γ′,b) = L P(Γ; A; Γ′)

E(Γ; A; B; ⋄) = ((pJΓ⊢BK ◦ pJΓ,y:B⊢AK, qJΓ,y:B⊢AK), qJΓ⊢BK[pJΓ,y:B⊢AK])

E(Γ; A; B; Γ′, z : C) = (E(Γ; A; B; Γ′) ◦ pJΓ,y:B,x:A,Γ′⊢CK, qJΓ,y:B,x:A,Γ′⊢CK)

E(Γ; A; B; Γ′,b) = L E(Γ; A; B; Γ′)

S(Γ; A; ⋄; t) = (id, JtK)

S(Γ; A; Γ′, y : B; t) = (S(Γ; A; Γ′; t) ◦ pJΓ,Γ′[t/x]⊢B[t/x]K, qJΓ,Γ′[t/x]⊢B[t/x]K)

S(Γ; A; Γ′,b; t) = L S(Γ; A; Γ′; t)

Figure 2 C-morphisms corresponding to weakening, exchange, and substitution.

3.1 Sound interpretation in CwDRAs

In this section we show that the calculus of Figure 1 can be soundly interpreted in any

CwDRA. We wish to give meaning to contexts, types, and terms, but (via the type conversion

rule) these can have multiple derivations, so it is not possible to work by induction on the

formation rules. Instead, following e.g. Hofmann (1997), we define a partial map from raw

syntax to semantics by induction on the grammar, then prove this map is defined for well-

formed syntax. By ‘raw syntax’ we mean contexts, types accompanied by a context, and

terms accompanied by context and type, defined via the grammar. The size of a type or

term is the number of connectives and variables used to define it, and the size of a context

is the sum of the sizes of its types.

Well-defined contexts will be interpreted as objects in C, types in context Γ ⊢ A as

families in C(JΓK), and typed terms in context Γ ⊢ t : A as elements in C(JΓK ⊢ JΓ ⊢ AK).

Where there is no confusion we write JΓ ⊢ AK as JAK and JΓ ⊢ t : AK as JΓ ⊢ tK or JtK.

The partial interpretation of raw syntax is as follows, following the convention that ill-

formed expressions (for example, where a subexpression is undefined) are undefined. We

omit the details for Π-types and other standard constructions, which are as usual.

• J⋄K = ⊤;

• JΓ, x : AK = JΓK.JAK;

• JΓ,bK = LJΓK;

• JΓ ⊢ �AK = RJΓK(JAK);

• JΓ, x : A, x1 : A1, . . . , xn : An ⊢ x : AK = qJAK[pJA1K ◦ · · · ◦ pJAnK];

• JΓ ⊢ shut t : �AK = JtK;

• JΓ,b, x1 : A1, . . . , xn : An ⊢ open t : AK = JtK[pJA1K ◦ · · · ◦ pJAnK].

In Figure 2 we define expressions P(Γ; A; Γ′), E(Γ; A; B; Γ′), and S(Γ; A; Γ′; t) that, where

defined, define C-morphisms corresponding respectively to weakening, exchange, and sub-

stitution in contexts.

◮ Lemma 4. Suppose JΓ, Γ′K and JΓ, x : A, Γ′K are defined. Then the following properties

hold:

1. JΓ, x : A, Γ′ ⊢ XK ≃ JΓ, Γ′ ⊢ XK[P(Γ; A; Γ′)], where ≃ is Kleene equality, and X is a type

or typed term;

2. P(Γ; A; Γ′) is a well-defined morphism from JΓ, x : A, Γ′K to JΓ, Γ′K;

Proof. The proof proceeds by mutual induction on the size of Γ′ (for statement 2) and the

size of Γ′ plus the size of X (for statement 1). We present only the cases particular to �.
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We start with statement 1. We use the mutual induction with statement 2 at the

smaller size of Γ′ alone to ensure that P(Γ; A; Γ′) is well-formed with the correct domain

and codomain.

The � case follows because JΓ, x : A, Γ′ ⊢ �BK = RJΓ,x:A,Γ′KJΓ, x : A, Γ′,b ⊢ BK =

RJΓ,x:A,Γ′K(JΓ, Γ′,b ⊢ BK[P(Γ; A; Γ′,b)]) by induction, which is RJΓ,x:A,Γ′K(JΓ, Γ′,b ⊢ BK[LP(Γ; A; Γ′)]) =

(RJΓ,Γ′KJΓ, Γ′,b ⊢ BK)[P(Γ; A; Γ′)] by (2), which is then JΓ, Γ′ ⊢ �BK[P(Γ; A; Γ′)].

The shut case follows immediately from (6) and induction. For open, the case where the

deleted variable x is to the right of the lock follows by Definition 1 part 5. Suppose instead

it is to the left. Then JΓ, Γ′,b, y1 : B1, . . . , yn : Bn ⊢ open tK[P(Γ; A; Γ′,b, y1 : B1, . . . , yn :

Bn)] = JtK[pJB1K ◦ · · · ◦ pJBnK ◦ P(Γ; A; Γ′,b, y1 : B1, . . . , yn : Bn)] = JtK[P(Γ; A; Γ′,b) ◦

pJB1K ◦ · · · ◦ pJBnK] by Definition 1 part 5, which is JtK[LP(Γ; A; Γ′)][pJB1K ◦ · · · ◦ pJBnK] =

JtK[P(Γ; A; Γ′)][pJB1K ◦ · · · ◦ pJBnK] by (7), which is JΓ, x : A, Γ′ ⊢ tK[pJB1K ◦ · · · ◦ pJBnK] by

induction as required.

For statement 2, the lock case holds immediately by application of the functor L. �

◮ Lemma 5. Suppose JΓ, x : A, y : B, Γ′K and JΓ ⊢ BK are defined. Then the following

properties hold:

1. JΓ, y : B, x : A, Γ′ ⊢ XK ≃ JΓ, x : A, y : B, Γ′ ⊢ XK[E(Γ; A; B; Γ′)], where X is a type or

typed term;

2. E(Γ; A; B; Γ′) is a well-defined morphism from JΓ, y : B, x : A, Γ′K to JΓ, x : A, y : B, Γ′K;

Proof. The base case of statement 1 uses Lemma 4; the proof otherwise follows just as with

Lemma 4. �

◮ Lemma 6. Suppose JΓ ⊢ t : AK and JΓ, x : A, Γ′K are defined. Then the following properties

hold:

1. JΓ, Γ′[t/x] ⊢ X [t/x]K ≃ JΓ, x : A, Γ′ ⊢ XK[S(Γ; A; Γ′; t)], where X is a type or typed term;

2. S(Γ; A; Γ′; t) is a well-defined morphism from JΓ, Γ′[t/x]K to JΓ, x : A, Γ′K;

Proof. As with Lemma 4. �

◮ Theorem 7 (Soundness). Where a context, type, or term is well-formed, its denotation is

well-defined, and all types and terms identified by equations have the same denotation.

Proof. Most cases follow as usual, using Lemmas 4, 5, and 6 as needed. The well-definedness

of the formation rules for � are straightforward, so we present only the equations for �:

Starting with Γ,b ⊢ t : A we have Γ,b, x1 : A1, . . . , xn : An ⊢ open shut t : A and

wish to prove its denotation is equal to that of t (with the weakening x1, . . . , xn). Then

Jopen shut tK = JtK[pJA1K ◦ · · · ◦ pJAnK] = JtK[pJA1K ◦ · · · ◦ pJAnK], which is the weakening of t

by Lemma 4.

The equality of Jshut open tK and JtK is straightforward. �

3.2 Term model

We now develop as our first example of a CwDRA, a term model built from the syntax of

our calculus. The objects of this category are contexts modulo equality, which is defined

pointwise via type equality. We define an arrow ∆ → Γ as a sequence of substitutions of an

equivalence class of terms for each variable in Γ:

• the empty sequence is an arrow ∆ → ·;

• Given f : ∆ → Γ, type Γ ⊢ A and term ∆ ⊢ t : A f , then [t/x] ◦ f modulo equality on t

is an arrow ∆ → Γ, x : A;
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• Given f : ∆ → Γ and a well-formed context ∆,b, ∆′ with no locks in ∆′, then f is also

an arrow ∆,b, ∆′ → Γ,b.

We usually refer to the equivalence classes in arrows via representatives. Note that substi-

tution respect these equivalence classes because of the congruence rules.

We next prove that this defines a category. Identity arrows are easily constructed:

◮ Lemma 8. If f : ∆ → Γ then f : ∆, x : A → Γ.

Proof. By induction on the construction on f . The base case is trivial.

Given f : ∆ → Γ and ∆ ⊢ t : B f , by induction we have f : ∆, x : A → Γ and by variable

weakening we have ∆, x : A ⊢ t : B f as required.

Supposing we have f : ∆ → Γ yielding f : ∆,b, ∆′ → Γ, we could similarly get

f : ∆,b, ∆′, x : A → Γ. �

The identity on Γ simply replaces all variables by themselves.

◮ Lemma 9. The identity on each Γ is well defined as an arrow.

Proof. By induction on Γ. The identity on · is the empty sequence of substitutions. Given

id : Γ → Γ, we have id : Γ, x : A → Γ by Lemma 8, and Γ, x : A ⊢ x : A as required.

id : Γ → Γ immediately yields id : Γ,b → Γ,b. �

The composition case is slightly more interesting:

◮ Lemma 10. Given Γ, Γ′ ⊢ J and f : ∆ → Γ, we have ∆, Γ′ f ⊢ J f .

Proof. By induction on the construction on f . The base case requires that Γ′ ⊢ J implies

∆, Γ′ ⊢ J; this left weakening property is easily proved by induction on the typing rules.

Given f : ∆ → Γ, ∆ ⊢ t : A f and Γ, x : A, Γ′ ⊢ J, by induction ∆, x : A f, Γ′ f ⊢ J f .

Then by Lemma 3 part 3 we have ∆, (Γ′ f)[t/x] ⊢ (J f)[t/x] as required. The lock case is

trivial. �

The composition of f : ∆ → ∆′ and g : ∆′ → Γ involves replacing each [t/x] in g with

[t f/x].

◮ Lemma 11. The composition of two arrows f : ∆ → ∆′ and g : ∆′ → Γ is a well-defined

arrow.

Proof. By induction on the definition of g. The base case is trivial, and extension by a new

substitution follows via Lemma 10.

Now suppose we have g : ∆′ → Γ yielding g : ∆′,b, ∆′′ → Γ,b. Now if we have

f : ∆ → ∆′,b, ∆′′ this must have arisen via some f ′ : ∆0 → ∆′ generating f ′ : ∆0,b, ∆1 →

∆′,b, where ∆ = ∆0,b, ∆1. By induction we have well-defined g ◦ f ′ : ∆0 → Γ. Hence

g ◦ f ′ : ∆ → Γ,b. But g ◦ f ′ = g ◦ f because the variables of ∆′′ do not appear in g. �

Checking the category axioms is straightforward. The category definitions then extend

to a CwF in the usual way: the terminal object is ⋄, the families over Γ are the types modulo

equivalence well-defined in context Γ, the elements of any such type are the terms modulo

equivalence, re-indexing is substitution, comprehension corresponds to extending a context

with a new variable, the projection morphism is the replacement of variables by themselves,

and the generic element is given by the variable rule.

Moving to the definition of a CwDRA, the endofunctor L acts by mapping Γ 7→ Γ,b,

and does not change arrows. The family RΓ A is the type Γ ⊢ �A, which is stable under
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re-indexing by Lemma 3 part 3. The bijections between families are supplied by the shut

and open rules, with all equations following from the definitional equalities.

We do not attempt to prove that the term model is the initial CwDRA; such a result for

dependent type theories appears to require syntax be written in a more verbose style than

is appropriate for a paper introducing a new type theory (Castellan 2014). Nonetheless our

type theory and notion of model are close enough that we conjecture that such a development

is possible.

4 A general construction of CwDRAs

In this section we show how to construct a CwDRA from an adjunction of endofunctors on

a category with finite limits. We will refer to categories with finite limits more briefly as

cartesian categories. We will use this construction in Section 5 to prove that the examples

mentioned in the introduction can indeed be presented as CwDRAs. Our construction is

an extension of the local universe construction (Lumsdaine & Warren 2015), which maps

cartesian categories to categories with families, and locally cartesian closed categories to

categories with families with Π- and Σ-types. The local universe construction is one of the

known solutions to the problem of constructing a strict model of type theory out of a locally

cartesian closed category (see (Hofmann 1994, Lumsdaine & Warren 2015, Kapulkin &

Lumsdaine 2016, Hofmann 1997) for discussions of alternative approaches to ’strictification’).

We first recall the local universe construction. Since it can be traced back to Giraud’s

work on fibred categories (Giraud 1965), we refer to it as the Giraud CwF associated to a

cartesian category.

◮ Definition 12. Let C be a cartesian category. The Giraud CwF of C (GC) is the CwF

whose underlying category is C, and where a family A ∈ GC(Γ) is a pair of morphisms

E

v

��

Γ
u

// U

(8)

and an element of GC(Γ⊢A), for A = (u, v) ∈ GC(Γ), is a map a : Γ → E such that v ◦a = u.

Reindexing of A = (u, v) ∈ GC(Γ) and a ∈ GC(Γ ⊢ A) along γ ∈ C(∆, Γ) are given by

A[γ] , (u ◦ γ, v) ∈ GC(∆) (9)

a[γ] , a ◦ γ ∈ GC(∆ ⊢ A[γ]) (10)

The comprehension Γ.A ∈ C, for A = (u, v) ∈ GC(Γ), is given by the pullback of diagram

(8), and the pairing operation is obtained from the universal property of pullbacks.

Note that the local universe construction does indeed yield a category with families; in

particular, reindexing in GC is strict as required, simply because reindexing is given by

composition.

◮ Remark. The name ’local universe’ derives from the similarity to Voevodsky’s use of a

(global) universe U to construct strict models of type theory (Voevodsky 2014, Kapulkin &

Lumsdaine 2016) in which types in a context Γ are modelled as morphisms Γ → U . In the

local universe construction, the universe varies from type to type.

In fact, the local universe construction is functorial; a precise statement requires a novel

notion of CwF-morphism:
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◮ Definition 13. A weak CwF morphism R between CwFs consists of a functor R :

C → D between the underlying categories preserving the terminal object, an operation on

families mapping A ∈ C(Γ) to a family R A ∈ D(R Γ), an operation on elements mapping

a ∈ C(Γ⊢A) to an element R a ∈ D(R Γ⊢R A), and an isomorphism νΓ,A : R Γ. R A → R(Γ.A),

inverse to (R pA, R qA). These are required to commute with reindexing, in the sense that

R A[R γ] = R(A[γ]) and R t[R γ] = R(t[γ]).

Note that a weak CwF morphism preserves comprehension and the terminal object only

up to isomorphism instead of on the nose, as required by the stricter notion of morphism

of Dybjer (Dybjer 1995, Definition 2). Weak CwF morphisms sit between strict CwF-

morphisms and pseudo-CwF morphisms (Castellan, Clairambault & Dybjer 2017).

◮ Theorem 14. G is a (fully faithful) functor from the category of cartesian categories and

finite limit preserving functors, to the category of CwFs with weak morphisms.

Proof. Let R : C → D be a finite limit preserving functor. For each Γ ∈ C and A = (u, v) ∈

GC(Γ), we simply let R A , (R u, R v). Likewise, for an element a ∈ GC(Γ ⊢ A), we let R a

be the action of R on the morphism a. Finally, since comprehension is defined by pullback

and R preserves pullbacks up to isomorphism, we obtain the required νΓ,A. �

We now embark on showing that if we apply the local universe construction to a cartesian

category C with a pair of adjoint endofunctors, then the resulting CwF GC is in fact a

CwDRA (Theorem 18). To this end, we introduce the intermediate notion of a category

with families with an adjunction:

◮ Definition 15. A CwF+A consists of a CwF with an adjunction L ⊣ R on the category

of contexts, such that R extends to a weak CwF endomorphism.

Note that the conditions for a CwF+A are stronger than those for a CwDRA; for instance,

a CwDRA does not require R to be defined on the context category. We return to the relation

between these constructions in Section 4.1

◮ Lemma 16. If C is a cartesian category and L ⊣ R are adjoint endofunctors on C, then

GC with the adjunction L ⊣ R is a CwF+A.

Proof. We are already given an adjunction on the underlying category of GC. Theorem 14

constructs the weak CwF morphism. �

◮ Lemma 17. If C with the adjunction L ⊣ R is a CwF+A, then there is a CwDRA structure

on C with L as the required functor on C.

Proof. We write η for the unit of the adjunction. For a family A ∈ C(LΓ), we define RΓ A ∈

C(Γ) to be (R A)[η]. For an element a ∈ C(LΓ⊢A), we define its transpose a ∈ C(Γ⊢RΓ A) to

be (R a)[η]. For the opposite direction, suppose b ∈ C(Γ⊢RΓ A). Since (η, b) : Γ → R LΓ. R A,

we have that L(ν ◦ (η, t)) : LΓ → L R(LΓ.A) and thus we can define b ∈ C(LΓ ⊢ A) to be the

element qA[ε ◦ L(ν ◦ (η, t))]. �

◮ Theorem 18. If C is a cartesian category and L ⊣ R are adjoint endofunctors on C, then

GC has the structure of a CwDRA.

Proof. By Lemmas 16 and 17. �
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The above Theorem 18 thus provides a general construction of CwDRAs. In Section 5

we use it to present examples from the literature. As mentioned earlier, the local universe

construction interacts well with other type formers: If we start with a locally cartesian

closed category C (with W-types, Id-types and a universe), then GC also models dependent

products Π and sums Σ (and W-types, Id-types and a universe); see Lumsdaine & Warren

(2015). In Section 6 we consider universes.

4.1 CwF+A from a CwDRA

In this subsection we show how to produce a CwF+A from a CwDRA under the assumption

that the CwF is democratic. Intuitively, a democratic CwF is one where every context comes

from a type, and hence it is not surprising that for a democratic CwDRA one can use the

action of the dependent right adjoint on families to define a right adjoint on contexts.

◮ Definition 19. A CwF is democratic (Clairambault & Dybjer 2014) if for every context

Γ there is a family Γ̂ ∈ C(⊤) and an isomorphism ζΓ : Γ → ⊤.Γ̂.

◮ Theorem 20. Let C be a democratic CwDRA. The endofunctor L : C → C, part of the

CwDRA structure, has a right adjoint R.

Proof. For Γ ∈ C, we define R Γ ∈ C by R Γ , ⊤. R⊤(Γ̂[!L⊤]).

R Γ , ⊤. R⊤(Γ̂[!L⊤]) (11)

We have a bijection, natural in ∆

C(∆, R Γ) ∼= C(∆ ⊢ R⊤(Γ̂[!L⊤]))[!∆]))

∼= C(∆ ⊢ R∆(Γ̂[!L∆])))

∼= C(L∆ ⊢ Γ̂[!L∆]))

∼= C(L∆, ⊤.Γ̂)

∼= C(L∆, Γ)

The last of the above bijections follows by composition with ζ−1
Γ .

Let γ : Γ′ → Γ we have then an action γ∗ : C(−, R Γ′) → C(−, R Γ) given by

C(−, R Γ′) ∼= C(L−, Γ′)
−◦γ
−−−→ C(L−, Γ) ∼= C(−, R Γ)

Define R γ = γ∗
R Γ′(idR Γ′). Then the correspondence C(∆, R Γ) ∼= C(L∆, Γ) is natural in Γ,

proving that R is a right adjoint to L. �

Consider a democratic CwDRA, with C as the underlying category, and L ⊣ R the adjunction

obtained from the above theorem. We then extend R to a weak CwF morphism by defining,

for a family A ∈ C(Γ) and an element a ∈ C(Γ ⊢ A),

R A , RR Γ(A[ε]) R a , a[ε]

where ε : L R Γ → Γ is the counit of the adjunction.

◮ Lemma 21. R as defined above is a weak CwF morphism. In particular, for A ∈ C(Γ) we

have an isomorphism νΓ,A : R Γ. R A → R(Γ.A), inverse to (R pA, R qA).
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Proof. We will show a bijection C(∆, R Γ. R A) ∼= C(∆, R(Γ.A)) natural in ∆. We have

C(∆, R Γ. R A) ∼=
∏

γ:C(∆,R Γ)

C(∆ ⊢ (R A)[γ])

We have a bijection −⊤ : C(∆, R Γ) ∼= C(L∆, Γ). But

(R A)[γ] = (RR Γ A[ε])[γ] = R∆(A[ε ◦ Lγ]) = R∆(A[γ⊤])

Hence we have a bijection C(∆ ⊢ (R A)[γ]) ∼= C(L∆ ⊢ A[γ⊤]). So

C(∆, R Γ. R A) ∼=
∏

γ:C(∆,R Γ)

C(∆ ⊢ (R A)[γ])

∼=
∏

γ′:C(L∆,Γ)

C(L∆ ⊢ A[γ′])

∼= C(L∆, Γ.A)

∼= C(∆, R(Γ.A))

By the Yoneda lemma, this implies R Γ. R A ∼= C(∆, R(Γ.A), and it is easy to check that the

direction C(∆, R(Γ.A) → R Γ. R A is given by (R pA, R qA). �

◮ Corollary 22. A democratic CwDRA has the structure of CwF+A

◮ Remark. For a category C with a terminal object, the CwF GC is democratic with Γ̂ given

by the diagram:

Γ

!Γ

��

1
!1

// 1

◮ Remark. For ordinary dependent type theory, the term model is a democratic CwF (Castellan

et al. 2017, Section 4). However, the term model for our modal dependent type theory is not

democratic, since there is, for example, no type corresponding to the context b consisting

of just one lock.

5 Examples

We now present concrete examples of CWDRAs generated from cartesian categories with

an adjunction of endofunctors, including those mentioned in the introduction.

Π type with closed domain Consider a CwF where the underlying category of contexts

C is cartesian closed, and let A be a closed type. We have then an adjunction of endo-

functors − × ⊤.A ⊣ −⊤.A on C, and suppose that the right adjoint extends to a weak CwF

endomorphism, giving the structure of a CwF+A. As we saw above, this happens e.g. when

the CwF is of the form GC. In this case RΓ B behaves as a type of the form Π(x : A)B since

C(Γ ⊢ RΓ B) ∼= C(Γ × ⊤.A ⊢ B) ∼= C(Γ.(A[!Γ]) ⊢ B).

Thus, the notion of dependent right adjoint generalises Π types with closed domain. This

generalises to the setting where C carries the structure of a monoidal closed category, in

which case the adjunction − ⊗ ⊤.A ⊣ ⊤.A ⊸ (−) extends to give a dependent notion of

linear function space with closed domain. The next example is an instance of this.
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Dependent name abstraction The notion of dependent name abstraction for families

of nominal sets was introduced by Pitts et al. (Pitts et al. 2015, Section 3.6) to give a

semantics for an extension of Martin-Löf Type Theory with names and constructs for fresh-

ness and name-abstraction. It provides an example of a CwDRA that can be presented via

Theorem 18. In this case C is the category Nom of nominal sets and equivariant func-

tions (Pitts 2013). Its objects are sets Γ equipped with an action of finite permutations of

a fixed infinite set of atomic names A, with respect to which the elements of Γ are finitely

supported, and its morphisms are functions that preserve the action of name permutations.

Nom is a topos (it is equivalent to the Schanuel topos (Pitts 2013, Section 6.3)) and hence

in particular is cartesian. We take the functor L : Nom → Nom to be separated prod-

uct (Pitts 2013, Section 3.4) with the nominal set of atomic names. This has a right adjoint

R that sends each Γ ∈ Nom to the nominal set of name abstractions [A]Γ (Pitts 2013,

Section 4.2) whose elements are a generic form of α-equivalence class in the case that Γ is a

nominal set of syntax trees for some language.

Applying Theorem 18, we get a CwDRA structure on GNom. In fact the CwF GNom

has an equivalent, more concrete description in this case, in terms of families of nominal

sets (Pitts et al. 2015, Section 3.1). Under this equivalence, the value RΓ A ∈ GNom(Γ)

of the dependent right adjoint at A ∈ G(LΓ) corresponds to the family of dependent name

abstractions defined by Pitts et al. (2015, Section 3.6). The bijection (3) is given in one

direction by the name abstraction operation (Pitts et al. 2015, (40)) and in the other by

concretion at a fresh name (Pitts et al. 2015, (42)).

Guarded and Clocked Type Theory Guarded recursion (Nakano 2000) is an extension

of type theory with a modal later operator, denoted ⊲, on types, an operation next : A → ⊲A

and a guarded fixed point operator fix : (⊲A → A) → A mapping f to a fixed point for f◦next.

The standard model of guarded recursion is the topos of trees (Birkedal et al. 2012), i.e.,

the category of presheaves on ω, with ⊲X(n + 1) = X(n), ⊲X(0) = 1. The later operator

has a left adjoint ⊳, called earlier, given by ⊳X(n) = X(n + 1), so ⊲ yields a dependent right

adjoint on the induced CwDRA.

Birkedal et al. (Birkedal et al. 2012, Section 6.1) show that ⊳ in a dependently typed

setting does not commute with reindexing. However it does have a left adjoint, namely the

‘stutter’ functor ! with !X(0) = X(0) and !X(n + 1) = X(n), so ⊳ does give rise to a well-

behaved modality in the setting of this paper. This apparent contradiction is resolved by the

use of locks in the context: Γ ⊢ A does not give rise to a well-behaved Γ ⊢ ⊳A, but Γ,b ⊢ A

does. This is an intriguing example of the Fitch-style approach increasing expressivity.

Guarded recursion can be used to encode coinduction given a constant modality (Clouston,

Bizjak, Grathwohl & Birkedal 2015), denoted �, on the topos of trees, defined as �X(n) =

limk X(k). The � functor is the right adjoint of the essential geometric morphism on ω̂

induced by 0 : ω → ω, the constant map to 0, and hence it also yields a dependent right

adjoint. In Clouston et al. (2015), � was used in a simple type theory, employing ‘explicit

substitutions’ following Bierman & de Paiva (2000). As we will discuss in Section 7 this

approach proved difficult to extend to dependent types, and we wish to use the modal

dependent type theory of the present paper to study � in dependent type theory.

An alternative to the constant modality are the clock quantifiers of Atkey & McBride

(2013), which unlike the constant modality have already been combined succesfully with de-

pendent types (Møgelberg 2014, Bizjak et al. 2016). They are also slightly more general than

the constant modality, as multiple clocks allow coinductive data structures that unroll in

multiple dimensions, such as infinitely-wide infinitely-deep trees. The denotational seman-

tics (Bizjak & Møgelberg 2018), however, are more complicated, consisting of presheaves
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over a category of ‘time objects’, restricted to those fulfilling an ‘orthogonality’ condition.

Nevertheless the ⊳ ⊣ ⊲ adjunction of the topos of trees lifts to this category, and so once

again we may construct a CwDRA.

Clocked Type Theory (CloTT) (Bahr et al. 2017) is a recent type theory for guarded

recursion that has strongly normalising reduction semantics, and has been shown to have

semantics in the category discussed above (Mannaa & Møgelberg 2018). The operator ⊲

is refined to a form of dependent function type ⊲ (α : κ).A over ticks α on clock κ. Ticks

can appear in contexts as Γ, α : κ; these are similar to the locks of Fitch-style contexts,

except that ticks have names, and can be weakened. The names of ticks play a crucial role

in controlling fixed point unfoldings.

Finally, the modal operator ⊲ on the topos of trees can be generalized to the presheaf

topos Ĉ × ω for any category C, simply by using the identity on C to extend the underlying

functor (which generates the essential geometric morphism) on ω to C×ω. In Birkedal et al.

(2018) this topos, with C the cube category, is used to model guarded cubical type theory;

an extension of cubical type theory (Cohen, Coquand, Huber & Mörtberg 2016). In more

detail, one uses a CwF where families are certain fibrations, and since ⊲ preserves fibrations,

it does indeed extend to a CwDRA.

Cohesive Toposes Cohesive toposes have also recently been considered as models of a

form of modal type theory (Shulman 2017, Rijke, Shulman & Spitters 2018). Cohesive

toposes carry a triple adjunction
∫

⊣ ♭ ⊣ ♯ and hence induce two dependent right adjoints.

Examples of cohesive toposes include simplicial sets ∆̂ and cubical sets �̂; since these are

presheaf toposes they also model universes. For example, for simplicial sets, the triple of

adjoints are given by the essential geometric morphism induced by the constant functor

0 : ∆ → ∆. In the category of cubical sets ♯ has a further right adjoint, used by Nuyts,

Vezzosi & Devriese (2017) to reason about parametricity.

Tiny objects Licata, Orton, Pitts & Spitters (2018) use a tiny object I to construct

the fibrant universe in the cubical model of homotopy type theory. An object I is tiny if

exponentation by it has a right-adjoint. The corresponding dependent right adjoint plays an

important part in the construction of the fibrant universe. Like ⊳ above, this right-adjoint

is not available in the internal logic of a topos, but our present framework is still applicable.

6 Universes

In this section, we extend our modal dependent type theory with universes. For the seman-

tics, we start from Coquand’s notion of a category with universes (Coquand 2012), which

covers all presheaf models of dependent type theory with universes. The notion of cate-

gory with universes rests on the observation that in presheaf models one can interpret an

inverse pq to the usual function El from codes to types, and hence obtain a simpler notion

of universe than usual (such as in Hofmann 1997, section 2.1.6).

◮ Definition 23 (category with universes). A CwU is specified by:

1. A category C with a terminal object ⊤.

2. For each object Γ ∈ C and natural number n ∈ N, a set C(Γ, n) of families at universe

level n over Γ.

3. For each object Γ ∈ C, natural number n, and family A ∈ C(Γ, n), a set C(Γ ⊢ A) of

elements (at some level) of the family A over Γ.
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4. For each morphism γ ∈ C(∆, Γ), re-indexing functions A ∈ C(Γ, n) 7→ A[γ] ∈ C(∆, n)

and a ∈ C(Γ⊢A) 7→ a[γ] ∈ C(∆⊢A[γ]), satisfying equations for associativity and identity

as in a CwF.

5. For each object Γ ∈ C, number n and family A ∈ C(Γ, n), a comprehension object

Γ.A ∈ C equipped with projections and generic elements satisfying equations as in a

CwF.

6. For each number n, a family Un ∈ C(⊤, n + 1), the universe at level n.

7. For each object Γ ∈ C and number n, a code function A ∈ C(Γ, n) 7→ pAq ∈ C(Γ⊢Un[!Γ]),

and an element function u ∈ C(Γ ⊢ Un[!Γ]) 7→ E u ∈ C(Γ, n), satisfying pAq[γ] = pA[γ]q,

EpAq = A, and pE uq = u.

We will of course want the universes to be closed under various type-forming operations,

but in this formalisation of universes these definitions are just as for CwFs, without having

to explicitly reflect them into the universes.

◮ Lemma 24. The element function is stable under re-indexing: (E u)[γ] = E(u[γ]).

Proof. (E u)[γ] = Ep(E u)[γ]q = E(pE uq[γ]) = E(u[γ]). �

◮ Corollary 25. In a CwU there is a generic family El ∈ C(⊤.Un, n) of types of level n (for

each n ∈ N), with the property that El [(!Γ, pAq)] = A, for all A ∈ C(Γ, n).

Proof. Since p =! : ⊤.Un → ⊤, we have q ∈ C(⊤.Un ⊢ Un) and thus we can define El to be

E q, and then the required property follows by Lemma 24. �

For a CwU, there is an underlying CwF with families over Γ given as C(Γ) =
⋃

n C(Γ, n).

Using this we can extend the definition of CwDRA to categories with universes in the obvious

way, as follows:

◮ Definition 26 (CwUDRA). A category with universe and dependent right adjoint

(CwUDRA) is a CwU with the structure of a CwDRA such that operation on types

preserves universe levels in the sense that A ∈ C(LΓ, n) implies RΓ A ∈ C(Γ, n).

Such structure is often obtained in practice by showing that there is a right adjoint at the

level of contexts (as in our notion of CwF+A from Definition 15) that preserves universes

in the following sense:

◮ Definition 27. A universe endomorphism on a CwU is a finite limit preserving functor

R on the category of contexts together with, for each n, a family Rl ∈ C(R(⊤.Un), n) and

an isomorphism

R(⊤.Un).Rl R(⊤.Un.El )

R(⊤.Un)

p

∼=

R p
(12)

In other words, there is a morphism ℓ : R(⊤.Un).Rl → R(⊤.Un.El ) and an element r ∈

C(R(⊤.Un.El ) ⊢ Rl[R p]) satisfying ℓ ◦ (R p, r) = id and (R p, r) ◦ ℓ = id.

Arrow-theoretically the above definition means that the universe R(⊤.Un.El ) → R(⊤.Un)

is a pullback of ⊤.Un.El → ⊤.Un, that is, we have a universe category endomorphism in the

sense of Voevodsky (2014). To see how such universe endomorphisms give rise to CwUDRA

structure (Theorem 30) we need to extend the notion of CwF+A from Definition 15 to the

setting of universes:
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◮ Definition 28 (CwU+A). A weak CwU morphism R is a weak CwF morphism on the

underlying CwFs preserving size in the sense that A ∈ C(Γ, n) implies R A ∈ C(R Γ, n). A

CwU+A consists of a CwU with an adjunction L ⊣ R on the category of contexts, such

that R extends to a weak CwU morphism.

Given a CwU with a weak CwU morphism R, then clearly R is a universe endomorphism,

with Rl , R(El ), r , R q and ℓ , ν. Conversely:

◮ Lemma 29. Any CwU with a universe endomorphism R : C → D extends to a weak CwU

morphism.

Proof. Given Γ ⊢n A, since we have (!Γ, pAq) : Γ → ⊤.Un, we can define R Γ ⊢n R A by:

R A , Rl[R (!Γ, pAq)] (13)

This is stable under re-indexing, since for γ : ∆ → Γ

R(A γ) , Rl[R (!∆, pA γq)]

= Rl[R (!∆, pAqγ)]

= Rl[R((!Γ, pAq) ◦ γ)]

= Rl[R (!Γ, pAq) ◦ R γ]

= (Rl[R (!Γ, pAq)])[R γ]

, (R A)[R γ]

Given Γ ⊢ a : A, by Corollary 25 we have Γ ⊢ a : El [(!Γ, pAq)] and hence

((!Γ, pAq) , a) : Γ → ⊤.Un.El

Therefore

R Γ ⊢ r[R ((!Γ, pAq) , a)] : (Rl[R p])[R ((!Γ, pAq) , a)]

But (Rl[R p])[R ((!Γ, pAq) , a)] = Rl[R(p ◦ ((!Γ, pAq) , a))] = Rl[R (!Γ, pAq)) , R A. Therefore

we get R Γ ⊢ R a : R A by defining

R a , r[R ((!Γ, pAq) , a)] (14)

and this is stable under re-indexing, since for γ : ∆ → Γ

(R a)[R γ] , r[R ((!Γ, pAq) , a)][R γ]

= r[R ((!∆, pAq[γ]) , a[γ])]

= r[R ((!∆, pA[γ]q) , a[γ])]

, R(a[γ])

Finally we must show that R commutes with comprehension. For this, note that there

are pullback squares

R(Γ.A)
R((!Γ,pAq),q)

//

R p

��

R(⊤.Un.El )

R p

��

R Γ
R(!Γ,pAq)

// R(⊤.Un)

R Γ. R A
(R(!Γ,pAq),q)

//

p

��

R(⊤.Un).Rl

p

��

R Γ
R(!Γ,pAq)

// R(⊤.Un)

(the former because the functor R has a left adjoint and hence preserves pullbacks and

the latter by definition of R A). Thus the pullback of the isomorphism in (12) gives an

isomorphism pr : R Γ. R A ∼= R(Γ.A) whose inverse is (R p, R q). �
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◮ Remark. We observe that for R as constructed above, the image under R of maps with

Un-small fibers is classified by Rl ∈ C(R(⊤.Un), n). That is to say that (!R Γ, pR Aq) =

(!R Γ, pRlq) ◦ R (!Γ, pAq) which is true by our choice of R A = Rl[R (!Γ, pAq)]. Hence, the type

of codes for such fibers is R applied to the codes for types. The same situation occurred for

⊲ in Birkedal & Møgelberg (2013, V.5), but was not observed at the time.

◮ Theorem 30. Any CwU equipped with an adjunction on the category of contexts whose

right adjoint is a universe endomorphism can be given the structure of a CwUDRA.

Proof. Combine Lemmas 17 and 29. �

For most of the presheaf examples considered in Section 5, the dependent right adjoint

is obtained as the direct image of an essential geometric morphism arising from a functor

on the category on which the presheaves are defined. We show that in this case, the right

adjoint preserves universe levels and hence gives a CwUDRA. For simplicity, we will restrict

to one universe and show that the right adjoint preserves smallness with respect to this.

Let U be a universe in an ambient set theory. We call the elements of U , U -sets. A

U -small category is one where both the sets of objects and the set of morphisms are U -small.

Let us assume that U is U -complete — it is closed under limits of U -small diagrams. A

Grothendieck universe in ZFC would satisfy these conditions.

◮ Proposition 31. Let C, D be a U -small categories and f : C → D a functor between them.

The direct image f∗ of the induced geometric morphism preserves size. In particular, for

each endofunctor f , the direct image is a weak CwU morphism.

Proof. Since f∗ is a right adjoint, we know that it induces a weak CwF morphism, and we

just need to show that it maps U -small families to U -small families. Recall first that the

direct image f∗ is the (pointwise) right Kan extension (Johnstone 2002, A4.1.4) defined on

objects by the limit of the diagram

(Ranf F )d , lim(f ↓ d)
π1→ Cop F

→ Uset,

for F ∈ Ĉ and d ∈ D. Here (f ↓ d) denotes the comma category consisting of pairs

(c; g : f(c) → d).

A family α : F → G, for F, G ∈ Ĉ is U -small if for each c and each x ∈ G(c) the set

α−1
c (x) is in U . Given (xg)g∈f↓d ∈ f∗G(d) = (Ranf G)d, the preimage (f∗α)−1((xg)g∈f↓d)

is the set

{(yg)g∈f↓d ∈ (Ranf G)d | ∀g.αc(yg) = xg}

which is the limit of the diagram associating to each g the set α−1
c (xg). Since each of these

sets are in U by assumption and since also f ↓ d is in U , by the assumption of U being

closed under limits, also (f∗α)−1((xg)g∈f↓d) is in U as desired. �

Syntax At this stage it should hopefully be clear that one can refine and extend the syntax

of modal dependent type theory from Section 3 so that the resulting syntactic type theory

can be modelled in a CwU+A. The idea is, of course, to refine the judgement for well-formed

types and to include a level n, so that it has the form Γ ⊢n A, and likewise for type equality

judgements. For example,

Γ,b ⊢n A

Γ ⊢n �A
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In addition to the existing rules for types (indexed with a level) and terms, we then also

include:

⋄ ⊢n+1 Un

Γ ⊢n A

Γ ⊢ pAq : Un

Γ ⊢ u : Un

Γ ⊢n E u

Finally, we add the following type and term equality rules:

Γ ⊢n A

Γ ⊢n EpAq = A

Γ ⊢ u : Un

Γ ⊢ pE uq = u : Un

As an example, there is a term

�̂ , λx.p�E(open x)q : �Un → Un

which encodes the � type constructor on the universe in the sense that

E(�̂(shut u)) = �(E u)

This is similar to the ⊲̂ operator of Guarded Dependent Type Theory (Bizjak et al. 2016),

which is essential to defining guarded recursive types. Thus, ⊲̂ arises for general reasons

quite unconnected to the specifics of guarded recursion.

7 Discussion

7.1 Related Work

Modal dependent type theory builds on work on the computational interpretation of modal

logic with simple types. Some of this work involves a standard notion of context; most

relevantly to this paper, the calculus for Intuitionistic K of Bellin, De Paiva & Ritter (2001),

which employs explicit substitutions in terms. Departing from standard contexts, Fitch-style

calculi were introduced independently by Borghuis (1994) and Martini & Masini (1996).

Recent work by Clouston (2018) argued that Fitch-style calculus can be extended to a

variety of different modal logics, and gave a sound categorical interpretation by modelling

the modality as a right adjoint. Another non-standard notion of context are the dual contexts

introduced by Davies & Pfenning (2001) for the modal logic Intuituionistic S4 of comonads.

Here a context ∆; Γ has semantics �∆ ∧ Γ, so the structure in the context is modelled by

the modality itself, not its left adjoint. Recent work by Kavvos (2017) has extended this

approach to a variety of modal logics, including Intuitionistic K.

There exists recent work employing variants of dual contexts for modal dependent type

theory, all involving (co)monads rather than the more basic logic of this paper. Indeed we

do not know how to combine the K axiom alone with dependent types via dual contexts; it

is not obvious how to extend Kavvos’s simply-typed calculus. This should be compared to

the ease of extending the simply-typed Fitch-style calculus with dependent types. We hope

that Fitch-style calculi continue to provide a relatively simple setting for modal dependent

type theory as we explore the extensions discussed in the next subsection.

The first work on modal dependent types with dual contexts, spatial type theory (Shulman

2017), designed for applications in homotopy type theory (see also (Wellen 2017, Licata

et al. 2018)), extends the Davies-Pfenning calculus for a comonad with both dependent

types and a second modality, a monad right adjoint to the comonad. Second, the calculus

for parametricity of Nuyts et al. (2017) uses three zones to extend Davies-Pfenning with a
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monad left adjoint to the comonad. They focus on Π- and Σ-types with modalised argu-

ments, but a more standard modality can be extracted by taking the second argument of a

modalised Σ-type to be the unit type. In both the above works the leftmost modality is in-

tended to itself be a right adjoint, so they potentially could also be captured by a Fitch-style

calculus. Third, de Paiva & Ritter (2016) suggest a generalisation of Davies-Pfenning with

some unusual properties, as � types carry an auxiliary typed variable and Π-types may only

draw their argument from the modal context. We finally note the dual contexts approach

has inspired the mode theories of Licata, Shulman & Riley (2017), but this line of work as

yet does not support a term calculus.

We are not aware of any successful extensions of the explicit substitution approach to

dependent types; our own experiments with this while developing Guarded Dependent Type

Theory (Clouston et al. 2015) suggests this is probably possible but becomes unwieldy with

real examples. Far more succesful was the Clocked Type Theory (Bahr et al. 2017) discussed

in Section 5, which can now be seen to have rediscovered the Fitch-style framework, albeit

with the innovation of named locks to control fixed-point unfoldings. That work provides

the inspiration for the more foundational developments of this paper.

7.2 Future work

We wish to develop operational semantics for dependent Fitch-style calculi, and conjecture

that standard techniques for sound normalisation and canonicity can be extended, as was

possible for simply-typed Fitch-style calculi (Borghuis 1994, Clouston 2018), and for Clocked

Type Theory (Bahr et al. 2017). Such results should then lead to practical implementation.

The modal axiom Intuitionistic K was used in this paper because it provides a basic

notion of modal necessity and holds of many useful models. Nonetheless for particular appli-

cations we will want to develop Fitch-style calculi corresponding to more particular logics.

There can be no algorithm for converting additional axioms to well-behaved calculi, but we

know that Fitch-style calculi are extremely versatile in the simply typed case (Clouston 2018),

and Clocked Type Theory provides one example of this with dependent types. In particular

we are interested in Fitch-style calculi with multiple interacting modalities, each of which is

assigned its own lock; we hope to develop guarded type theory with both ⊲ and � modalities

in this style.

The notion of CwF with a weak CwF endomorphism (Definition 13) is more general than

our CwF+A as it does not require a left adjoint, but because such a morphism must pre-

serve products it appears to be a rival candidate for a notion of model of modal dependent

type theory. However we do not know how to capture this class of models in syntax. Un-

derstanding this would be valuable because truncation (Awodey & Bauer 2004), considered

as an endofunctor for example on sets, defines such a morphism but is not a right adjoint.

Truncation allows one to move between general types and propositions. For example com-

bining it with guarded types would allow us to formalise work in this field that makes that

distinction (Birkedal et al. 2012, Clouston et al. 2015).
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