36,024 research outputs found

    Aco-based feature selection algorithm for classification

    Get PDF
    Dataset with a small number of records but big number of attributes represents a phenomenon called ā€œcurse of dimensionalityā€. The classification of this type of dataset requires Feature Selection (FS) methods for the extraction of useful information. The modified graph clustering ant colony optimisation (MGCACO) algorithm is an effective FS method that was developed based on grouping the highly correlated features. However, the MGCACO algorithm has three main drawbacks in producing a features subset because of its clustering method, parameter sensitivity, and the final subset determination. An enhanced graph clustering ant colony optimisation (EGCACO) algorithm is proposed to solve the three (3) MGCACO algorithm problems. The proposed improvement includes: (i) an ACO feature clustering method to obtain clusters of highly correlated features; (ii) an adaptive selection technique for subset construction from the clusters of features; and (iii) a genetic-based method for producing the final subset of features. The ACO feature clustering method utilises the ability of various mechanisms such as intensification and diversification for local and global optimisation to provide highly correlated features. The adaptive technique for ant selection enables the parameter to adaptively change based on the feedback of the search space. The genetic method determines the final subset, automatically, based on the crossover and subset quality calculation. The performance of the proposed algorithm was evaluated on 18 benchmark datasets from the University California Irvine (UCI) repository and nine (9) deoxyribonucleic acid (DNA) microarray datasets against 15 benchmark metaheuristic algorithms. The experimental results of the EGCACO algorithm on the UCI dataset are superior to other benchmark optimisation algorithms in terms of the number of selected features for 16 out of the 18 UCI datasets (88.89%) and the best in eight (8) (44.47%) of the datasets for classification accuracy. Further, experiments on the nine (9) DNA microarray datasets showed that the EGCACO algorithm is superior than the benchmark algorithms in terms of classification accuracy (first rank) for seven (7) datasets (77.78%) and demonstrates the lowest number of selected features in six (6) datasets (66.67%). The proposed EGCACO algorithm can be utilised for FS in DNA microarray classification tasks that involve large dataset size in various application domains

    A new unsupervised feature selection method for text clustering based on genetic algorithms

    Get PDF
    Nowadays a vast amount of textual information is collected and stored in various databases around the world, including the Internet as the largest database of all. This rapidly increasing growth of published text means that even the most avid reader cannot hope to keep up with all the reading in a field and consequently the nuggets of insight or new knowledge are at risk of languishing undiscovered in the literature. Text mining offers a solution to this problem by replacing or supplementing the human reader with automatic systems undeterred by the text explosion. It involves analyzing a large collection of documents to discover previously unknown information. Text clustering is one of the most important areas in text mining, which includes text preprocessing, dimension reduction by selecting some terms (features) and finally clustering using selected terms. Feature selection appears to be the most important step in the process. Conventional unsupervised feature selection methods define a measure of the discriminating power of terms to select proper terms from corpus. However up to now the valuation of terms in groups has not been investigated in reported works. In this paper a new and robust unsupervised feature selection approach is proposed that evaluates terms in groups. In addition a new Modified Term Variance measuring method is proposed for evaluating groups of terms. Furthermore a genetic based algorithm is designed and implemented for finding the most valuable groups of terms based on the new measure. These terms then will be utilized to generate the final feature vector for the clustering process . In order to evaluate and justify our approach the proposed method and also a conventional term variance method are implemented and tested using corpus collection Reuters-21578. For a more accurate comparison, methods have been tested on three corpuses and for each corpus clustering task has been done ten times and results are averaged. Results of comparing these two methods are very promising and show that our method produces better average accuracy and F1-measure than the conventional term variance method

    An ADMM Based Framework for AutoML Pipeline Configuration

    Full text link
    We study the AutoML problem of automatically configuring machine learning pipelines by jointly selecting algorithms and their appropriate hyper-parameters for all steps in supervised learning pipelines. This black-box (gradient-free) optimization with mixed integer & continuous variables is a challenging problem. We propose a novel AutoML scheme by leveraging the alternating direction method of multipliers (ADMM). The proposed framework is able to (i) decompose the optimization problem into easier sub-problems that have a reduced number of variables and circumvent the challenge of mixed variable categories, and (ii) incorporate black-box constraints along-side the black-box optimization objective. We empirically evaluate the flexibility (in utilizing existing AutoML techniques), effectiveness (against open source AutoML toolkits),and unique capability (of executing AutoML with practically motivated black-box constraints) of our proposed scheme on a collection of binary classification data sets from UCI ML& OpenML repositories. We observe that on an average our framework provides significant gains in comparison to other AutoML frameworks (Auto-sklearn & TPOT), highlighting the practical advantages of this framework

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Variable selection and updating in model-based discriminant analysis for high dimensional data with food authenticity applications

    Get PDF
    Food authenticity studies are concerned with determining if food samples have been correctly labelled or not. Discriminant analysis methods are an integral part of the methodology for food authentication. Motivated by food authenticity applications, a model-based discriminant analysis method that includes variable selection is presented. The discriminant analysis model is fitted in a semi-supervised manner using both labeled and unlabeled data. The method is shown to give excellent classification performance on several high-dimensional multiclass food authenticity datasets with more variables than observations. The variables selected by the proposed method provide information about which variables are meaningful for classification purposes. A headlong search strategy for variable selection is shown to be efficient in terms of computation and achieves excellent classification performance. In applications to several food authenticity datasets, our proposed method outperformed default implementations of Random Forests, AdaBoost, transductive SVMs and Bayesian Multinomial Regression by substantial margins
    • ā€¦
    corecore