1,027 research outputs found

    A Rule of Persons, Not Machines: The Limits of Legal Automation

    Get PDF

    Digitalization of musculoskeletal risk assessment in a robotic-assisted assembly workstation

    Get PDF
    The ergonomic assessment of adopted working postures is essential for avoiding musculoskeletal risk factors in manufacturing contexts. Several observational methods based on external analyst observations are available; however, they are relatively subjective and suffer low repeatability. Over the past decade, the digitalization of this assessment has received high research interest. Robotic applications have the potential to lighten workers’ workload and improve working conditions. Therefore, this work presents a musculoskeletal risk assessment before and after robotic implementation in an assembly workstation. We also emphasize the importance of using novel and non-intrusive technologies for musculoskeletal risk assessment. A kinematic study was conducted using inertial motion units (IMU) in a convenience sample of two workers during their normal performance of assembly work cycles. The musculoskeletal risk was estimated according to a semi-automated solution, called the Rapid Upper Limb Assessment (RULA) report. Based on previous musculoskeletal problems reported by the company, the assessment centered on the kinematic analysis of functional wrist movements (flexion/extension, ulnar/radial deviation, and pronation/supination). The results of the RULA report showed a reduction in musculoskeletal risk using robotic-assisted assembly. Regarding the kinematic analysis of the wrist during robotic-assisted tasks, a significant posture improvement of 20–45% was registered (considering the angular deviations relative to the neutral wrist position). The results obtained by direct measurements simultaneously reflect the workload and individual characteristics. The current study highlights the importance of an in-field instrumented assessment of musculoskeletal risk and the limitations of the system applied (e.g., unsuitable for tracking the motion of small joints, such as the fingers)

    Digitalization of musculoskeletal risk assessment in a robotic-assisted assembly workstation

    Get PDF
    The ergonomic assessment of adopted working postures is essential for avoiding musculoskeletal risk factors in manufacturing contexts. Several observational methods based on external analyst observations are available; however, they are relatively subjective and suffer low repeatability. Over the past decade, the digitalization of this assessment has received high research interest. Robotic applications have the potential to lighten workers’ workload and improve working conditions. Therefore, this work presents a musculoskeletal risk assessment before and after robotic implementation in an assembly workstation. We also emphasize the importance of using novel and non-intrusive technologies for musculoskeletal risk assessment. A kinematic study was conducted using inertial motion units (IMU) in a convenience sample of two workers during their normal performance of assembly work cycles. The musculoskeletal risk was estimated according to a semi-automated solution, called the Rapid Upper Limb Assessment (RULA) report. Based on previous musculoskeletal problems reported by the company, the assessment centered on the kinematic analysis of functional wrist movements (flexion/extension, ulnar/radial deviation, and pronation/supination). The results of the RULA report showed a reduction in musculoskeletal risk using robotic-assisted assembly. Regarding the kinematic analysis of the wrist during robotic-assisted tasks, a significant posture improvement of 20–45% was registered (considering the angular deviations relative to the neutral wrist position). The results obtained by direct measurements simultaneously reflect the workload and individual characteristics. The current study highlights the importance of an in-field instrumented assessment of musculoskeletal risk and the limitations of the system applied (e.g., unsuitable for tracking the motion of small joints, such as the fingers).This work was supported by NORTE-06-3559-FSE-000018, integrated in the invitation NORTE-59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF). This work was also supported by FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Optimisation of traffic accident statistics

    Get PDF
    The OPTIMA project or the “Optimisation of traffic accident statistics”, initiated by the DWTC1, is part of a strategy to obtain the necessary means to establish a traffic safety policy. A policy on traffic safety should be a reliable and representative reflection of safety issues. This makes traffic accident data an essential element in making policy decisions on traffic safety. In this sense, the availability of reliable and representative statistical material is the basis upon which traffic safety policy must be founded. The project objective is to obtain more complete and more representative traffic accident statistics by linking hospital records with existing police records and comparing the hospital data with available police information. Part 1 of the project, the description of the existing situation, goes through a series of steps. The introductory text explores the problem of the current incom-pleteness of recorded data in Belgium. This is followed by an international investigation of recording methods in the Nether-lands, Sweden, Great Britain and the USA. This section provides a more detailed description of hospital records and the concurrence between hospital and police records. In the following report the current Belgian process for hospital records, as well as the pro-cedure through which the hospital notifies the police will be set out. This part will end with a series of policy suggestions, based on the description of the weaknesses of the existing formalities for records. Part 2 of the project outlines a demonstration record system for traffic casualties in hospitals. The aim is to introduce this demo into an emergency admission service and to extend it to a day clinic at a later stage. At the same time, the possibility of coupling hospital data with police data will be explored. Foreign experience with traffic casualty records will be put to use in this experiment. Alongside the de-monstration, the possibility of recording traffic casualties through primary care services will also be examined. Part 3 features policy proposals and validates the research results. This inception report looks at the state of affairs in part 1 of the research project, and more specifically at the problem of the current under-recording of traffic casualties in Belgium and at recording methods in the Netherlands, Sweden, Great Britain and the USA

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF

    Efficiency and Automation in Threat Analysis of Software Systems

    Get PDF
    Context: Security is a growing concern in many organizations. Industries developing software systems plan for security early-on to minimize expensive code refactorings after deployment. In the design phase, teams of experts routinely analyze the system architecture and design to find potential security threats and flaws. After the system is implemented, the source code is often inspected to determine its compliance with the intended functionalities. Objective: The goal of this thesis is to improve on the performance of security design analysis techniques (in the design and implementation phases) and support practitioners with automation and tool support.Method: We conducted empirical studies for building an in-depth understanding of existing threat analysis techniques (Systematic Literature Review, controlled experiments). We also conducted empirical case studies with industrial participants to validate our attempt at improving the performance of one technique. Further, we validated our proposal for automating the inspection of security design flaws by organizing workshops with participants (under controlled conditions) and subsequent performance analysis. Finally, we relied on a series of experimental evaluations for assessing the quality of the proposed approach for automating security compliance checks. Findings: We found that the eSTRIDE approach can help focus the analysis and produce twice as many high-priority threats in the same time frame. We also found that reasoning about security in an automated fashion requires extending the existing notations with more precise security information. In a formal setting, minimal model extensions for doing so include security contracts for system nodes handling sensitive information. The formally-based analysis can to some extent provide completeness guarantees. For a graph-based detection of flaws, minimal required model extensions include data types and security solutions. In such a setting, the automated analysis can help in reducing the number of overlooked security flaws. Finally, we suggested to define a correspondence mapping between the design model elements and implemented constructs. We found that such a mapping is a key enabler for automatically checking the security compliance of the implemented system with the intended design. The key for achieving this is two-fold. First, a heuristics-based search is paramount to limit the manual effort that is required to define the mapping. Second, it is important to analyze implemented data flows and compare them to the data flows stipulated by the design

    Infrastructural Requirements and Regulatory Challenges of a Sustainable Urban Air Mobility Ecosystem

    Full text link
    The United Nations has long put on the discussion agenda the sustainability challenges of ur- banization, which have both direct and indirect effects on future regulation strategies. Undoubtedly, most initiatives target better quality of life, improved access to services & goods and environment pro- tection. As commercial aerial urban transportation may become a feasible research goal in the near future, the connection possibilities between cities and regions scale up. It is expected that the growing number of vertical takeoff & landing vehicles used for passenger and goods transportation will change the infrastructure of the cities, and will have a significant effect on the cityscapes as well. In addition to the widely discussed regulatory and safety issues, the introduction of elevated traffic also raises environmental concerns, which influences the existing and required service and control infrastructure, and thus significantly affects sustainability. This paper provides narrated overview of the most common aspects of safety, licensing and regulations for passenger vertical takeoff & landing vehicles, and highlights the most important aspects of infrastructure planning, design and operation, which should be taken into account to maintain and efficiently operate this new way of transportation, leading to a sustainable urban air mobility ecosystem
    corecore