8,321 research outputs found

    A Novel Protocol For Barrier K-Coverage In Wireless Sensor Networks

    Get PDF
    One of major problems in the wireless sensor networks is the barrier coverage problem. This problem deals with the ability to minimizing the probability of undetected penetration through the barrier (sensor network). The reliability and fault tolerance problems are very important for long strip barrier coverage sensor networks. Also, another design challenge in sensor networks is to save limited energy resources to prolong the lifetime of wireless sensor network. In this paper we propose the fault tolerant k-barrier coverage protocol, called APBC. The proposed protocol maintains a good balance in using nodes energy, in order to prolong the network lifetime. The proposed protocol presents a proper way to provide the k-barrier coverage at nodes fails without reexecuting the algorithm. The simulation results show that this method prolongs the lifetime of the network in comparison with RIS method

    PROOF OF CONCEPT PROTOTYPE FOR A RAILROAD PEDESTRIAN WARNING SYSTEM USING WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor network is an emerging research topic due to its vast and ever-growing applications. Wireless sensor networks are made up of small nodes whose main goal is to monitor, compute and transmit data. The nodes are basically made up of low powered microcontrollers, wireless transceiver chips, sensors to monitor their environment and a power source. The applications of wireless sensor networks range from basic household applications, such as health monitoring, appliance control and security to military application, such as intruder detection. The wide spread application of wireless sensor networks has brought to light many research issues such as battery efficiency, unreliable routing protocols due to node failures, localization issues and security vulnerabilities. This report will describe the hardware development of a fault tolerant routing protocol for railroad pedestrian warning system. The protocol implemented is a peer to peer multi-hop TDMA based protocol for nodes arranged in a linear zigzag chain arrangement. The basic working of the protocol was derived from Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN)

    Fault tolerant mechanism for multimedia flows in wireless ad hoc networks based on fast switching paths

    Get PDF
    Multimedia traffic can be forwarded through a wireless ad hoc network using the available resources of the nodes. Several models and protocols have been designed in order to organize and arrange the nodes to improve transmissions along the network. We use a cluster-based framework, called MWAHCA architecture, which optimizes multimedia transmissions over a wireless ad hoc network. It was proposed by us in a previous research work. This architecture is focused on decreasing quality of service (QoS) parameters like latency, jitter, and packet loss, but other network features were not developed, like load balance or fault tolerance. In this paper, we propose a new fault tolerance mechanism, using as a base the MWAHCA architecture, in order to recover any multimedia flow crossing the wireless ad hoc network when there is a node failure. The algorithm can run independently for each multimedia flow. The main objective is to keep the QoS parameters as low as possible. To achieve this goal, the convergence time must be controlled and reduced. This paper provides the designed protocol, the analytical model of the algorithm, and a software application developed to test its performance in a real laboratory.This work has been partially supported by Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Covilha Delegation, and by National Funding from the FCT-Fundacao para a Ciencia e a Tecnologia through the Pest-OE/EEI/LA0008/2013 Project.Díaz Santos, JR.; Lloret, J.; Jimenez, JM.; Sendra, S.; Rodrigues, JJPC. (2014). Fault tolerant mechanism for multimedia flows in wireless ad hoc networks based on fast switching paths. Mathematical Problems in Engineering. 2014:1-12. doi:10.1155/2014/361543S1122014Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors, 9(11), 8722-8747. doi:10.3390/s91108722Lloret, J., Bosch, I., Sendra, S., & Serrano, A. (2011). A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing. Sensors, 11(6), 6165-6196. doi:10.3390/s110606165Akyildiz, I., Melodia, T., & Chowdury, K. (2007). Wireless multimedia sensor networks: A survey. IEEE Wireless Communications, 14(6), 32-39. doi:10.1109/mwc.2007.4407225Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513Diaz, J. R., Lloret, J., Jimenez, J. M., & Rodrigues, J. J. P. C. (2014). A QoS-Based Wireless Multimedia Sensor Cluster Protocol. International Journal of Distributed Sensor Networks, 10(5), 480372. doi:10.1155/2014/480372Diaz, J. R., Lloret, J., Jimenez, J. M., & Sendra, S. (2014). MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture. The Scientific World Journal, 2014, 1-14. doi:10.1155/2014/913046Sadiq, A. S., Bakar, K. A., Ghafoor, K. Z., Lloret, J., & Khokhar, R. (2013). An Intelligent Vertical Handover Scheme for Audio and Video Streaming in Heterogeneous Vehicular Networks. Mobile Networks and Applications, 18(6), 879-895. doi:10.1007/s11036-013-0465-8Diaz, J. R., Lloret, J., Jiménez, J. M., & Hammoumi, M. (2014). A new multimedia-oriented architecture and protocol for wireless ad hoc networks. International Journal of Ad Hoc and Ubiquitous Computing, 16(1), 14. doi:10.1504/ijahuc.2014.062486Pagani, E., & Rossi, G. P. (1999). Mobile Networks and Applications, 4(3), 175-192. doi:10.1023/a:1019198815518Xue, Y., & Nahrstedt, K. (2004). Providing Fault-Tolerant Ad hoc Routing Service in Adversarial Environments. Wireless Personal Communications, 29(3/4), 367-388. doi:10.1023/b:wire.0000047071.75971.cdBoukerche, A., Werner Nelem Pazzi, R., & Borges Araujo, R. (2006). Fault-tolerant wireless sensor network routing protocols for the supervision of context-aware physical environments. Journal of Parallel and Distributed Computing, 66(4), 586-599. doi:10.1016/j.jpdc.2005.12.007Bheemarjuna Reddy, T., Sriram, S., Manoj, B. S., & Siva Ram Murthy, C. (2006). MuSeQoR: Multi-path failure-tolerant security-aware QoS routing in Ad hoc wireless networks. Computer Networks, 50(9), 1349-1383. doi:10.1016/j.comnet.2005.05.035Chao, H. L., & Chang, C. L. (2008). A fault-tolerant routing protocol in wireless sensor networks. International Journal of Sensor Networks, 3(1), 66. doi:10.1504/ijsnet.2008.016463Melamed, R., Keidar, I., & Barel, Y. (2007). Octopus: A fault-tolerant and efficient ad-hoc routing protocol. Wireless Networks, 14(6), 777-793. doi:10.1007/s11276-006-0013-6Lopes, P., Salvador, P., & Nogueira, A. (2013). Methodologies for Network Topology Discovery and Detection of MAC and IP Spoofing Attacks. Network Protocols and Algorithms, 5(3), 153. doi:10.5296/npa.v5i3.431

    Checkpoint-based Fault-tolerance for LEACH Protocol

    No full text
    International audienceMost routing protocols designed for wireless sensor networks provide good results in ideal environments. However, their performance degrades dramatically when nodes stop working for various causes such as loss of energy, crushed by animal or climatic conditions. In this paper, we highlight the weaknesses of LEACH (Low Energy Adaptive Clustering Hierarchy) protocol by evaluating its performance. Then we propose an improved version of this protocol based on checkpoint approach that allows it to become a fault-tolerant protocol. Finally, several simulations were conducted to illustrate the benefits of our contribution

    An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Get PDF
    A high degree of reliability for critical data transmission is required in body sensor networks (BSNs). However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.Comment: 10 figures, 19 page
    • …
    corecore