4,641 research outputs found

    A metaobject architecture for fault-tolerant distributed systems : the FRIENDS approach

    Get PDF
    The FRIENDS system developed at LAAS-CNRS is a metalevel architecture providing libraries of metaobjects for fault tolerance, secure communication, and group-based distributed applications. The use of metaobjects provides a nice separation of concerns between mechanisms and applications. Metaobjects can be used transparently by applications and can be composed according to the needs of a given application, a given architecture, and its underlying properties. In FRIENDS, metaobjects are used recursively to add new properties to applications. They are designed using an object oriented design method and implemented on top of basic system services. This paper describes the FRIENDS software-based architecture, the object-oriented development of metaobjects, the experiments that we have done, and summarizes the advantages and drawbacks of a metaobject approach for building fault-tolerant system

    A Language Support for Exhaustive Fault-Injection in Message-Passing System Models

    Full text link
    This paper presents an approach towards specifying and verifying adaptive distributed systems. We here take fault-handling as an example of adaptive behavior and propose a modeling language Sandal for describing fault-prone message-passing systems. One of the unique mechanisms of the language is a linguistic support for abstracting typical faults such as unexpected termination of processes and random loss of messages. The Sandal compiler translates a model into a set of NuSMV modules. During the compilation process, faults specified in the model will be woven into the output. One can thus enjoy full-automatic exhaustive fault-injection without writing faulty behaviors explicitly. We demonstrate the advantage of the language by verifying a model of the two-phase commit protocol under faulty environment.Comment: In Proceedings MOD* 2014, arXiv:1411.345

    Runtime observable and adaptable UML state machine-based software components generation and verification: [email protected] approach

    Get PDF
    Cyber-Physical Systems (CPSs) are embedded computing systems in which computation interacts closely with the physical world through sensors and actuators. CPSs are used to control context aware systems. These types of systems are complex systems that will have different configurations and their control strategy can be configured depending the environmental data and current situation of the context. Therefore, in current industrial environments, the software of embedded and Cyber-Physical systems have to cope with increasing complexity, uncertain scenarios and safe requirements at runtime. The UML State Machine is a powerful formalism to model the logical behaviour of these types of systems, and in Model Driven Engineering (MDE) we can generate code automatically from these models. MDE aims to overcome the complexity of software construction by allowing developers to work at the high-level models of software systems instead of low-level codes. However, determining and evaluating the runtime behaviour and performance of models of CPSs using commercial MDE tools is a challenging task. Such tools provide little support to observe at model-level the execution of the code generated from the model, and to collect the runtime information necessary to, for example, check whether defined safe properties are met or not. One solution to address these requirements is having the software components information in model terms at runtime ([email protected]). Work on [email protected] seeks to extend the applicability of models produced in MDE approaches to the runtime environment. Having the model at runtime is the first step towards the runtime verification. Runtime verification can be performed using the information of model elements (current state, event, next state,etc.) This thesis aims at advancing the current practice on generating automatically Unified Modeling Language - State Machine (UML-SM) based software components that are able to provide their internal information in model terms at runtime. Regarding automation, we propose a tool supported methodology to automatically generate these software components. As for runtime monitoring, verification and adaptation, we propose an externalized runtime module that is able to monitor and verify the correctness of the software components based on their internal status in model terms at component and system level. In addition, if an error is detected, the runtime adaptation module is activated and the safe adaptation process starts in the involved software components. All things considered, the overall safe level of the software components and CPSs is enhanced.Sistema Ziber-Fisikoak, konputazio sistema txertatuez osatuta daude. Konputazio sistema txertatu hauek, mundu birtuala mundu fisikoarekin uztartzeko gaitasuna eskaintzen dute. Sistema ziberfisikoak orokorrean sistema konplexuak izan ohi dira eta inguruan gertazen denaren araberako konfigurazio desberdinak izan ohi dituzte. Gaur egungo industria ingurunetan, sistema hauek daramaten kontroleko softwarea asko handitu da eta beren konplexutasunak ere gorakada handia izan du: aurrez ezagunak ez diren baldintza eta inguruetan lan egin beharra dute askotan, denbora errealeko eskakizunak eta segurtasun eskakizunak ere beteaz. UML State Machine formalismoa, goian aipaturiko sistema mota horien portaera logikoa modelizatzeko erabiltzen den formalismo indartsu bat da. Formalismo honen baitan eta Model Driven Engineering (MDE) enfokea jarraituaz, sistema modelatzeko erabilitako grafikoetatik sisteman txertatua izango den kodea automatikoki sor genezake. MDEk softwarea sortzeko orduan izan genezakeen konplexutasuna gainditu nahi du, garatzailei software-sistemen goi-mailako ereduetan lan egiteko aukera emanez. Hala ere, MDE-an oinarrituriko tresna komertzialak erabiliaz, zaila izaten da berauen bidez sorturiko kodearen errendimendua eta portaera sistema exekuzioan dagoenean ebaluatzea. Tresna horiek laguntza gutxi eskaintzen dute modelotatik sortutako kodea exekutatzen ari denean sisteman zer gertatzen ari denaren informazioa modeloaren terminoetan jasotzeko. Beraz, exekuzio denboran, oso zaila izaten da sistemaren portaera egokia den edo ez aztertzea modelo mailako informazio hori erabiliaz. Eskakizun horiek kudeatzeko modu bat, software modeloaren informazioa denbora errealean izatea da ([email protected] enfokea). [email protected] enfokearen helburu nagusietako bat, MDE enfokearekin garapen fasean sortutako modeloak exekuzio denboran (runtime-en) erabilgarri izatean datza. Exekuzio denboran egiaztapen edo testing-a egin ahal izateko lehen urratsa, testeatu nahi den software horren modeloa exekuzio denboran eskuragarri izatea da. Honela, exekuzio denborako egiaztapen edo berifikazioak softwarea modelatzeko erabili ditugun elementu berberak erabiliaz egin daitke (egungo egoera, gertaera, hurrengo egoera, eta abar). Tesi honen helburutako bat UML-State Machine modeloetan oinarritutako eta exekuzio denboran beren barne egoeraren informazioa modeloko elementu bidez probestu ahalko duten software osagaiak modu automatikoan sortzea da. Automatizazioari dagokionez, lehenik eta behin, software-osagai horiek automatikoki sortzen dituzten tresnak eskaintzen dituen metodologia proposatzen dugu. Bigarrenik, UMLSM oinarritutako software osagaiak automatikoki sortuko dituen herraminta bera proposatzen dugu. Exekuzio denboran eguneraketen jarraipenari, egiaztatzeari eta egokitzeari dagokionez, barne egoera UML-SM modelo terminoetan eskaintzen duten software osagaiak egiaztatzeko eta egokitzeko gai den kanpo exekuzio modulo bat proposatzen dugu. Honela, errore bat detektatzen bada, exekuzio garaian egokitze modulua aktibatuko da egokitzapen prozesu segurua martxan jarriaz. Honek, dagokion software osagaiari abixua bidaliko dio egokitzapena egin dezan. Gauza guztiak kontuan hartuta, software osagaien eta CPSen segurtasun maila orokorra hobetua izango da.Los sistemas cyber-físicos (CPSs) son sistemas de computación embebidos en los que la computación interactúa estrechamente con el mundo físico a través de sensores y actuadores. Los CPS se utilizan para controlar sistemas que proveen conocimiento del contexto. Este tipo de sistemas son sistemas complejos que suelen tener diferentes configuraciones y su estrategia de control puede configurarse en función de los datos del entorno y de la situación actual del contexto. Por lo tanto, en los entornos industriales actuales, el software de los sistemas embebidos tiene que hacer frente a la creciente complejidad, los escenarios inciertos y los requisitos de seguridad en tiempo de ejecución. Las máquinas de estado UML son un formalismo muy utilizado en industria para modelar el comportamiento lógico de este tipo de sistemas, y siguiendo el enfoque Model Driven Engineering (MDE) podemos generar código automáticamente a partir de estos modelos. El objetivo de MDE es superar la complejidad de la construcción de software permitiendo a los desarrolladores trabajar en los modelos de alto nivel de los sistemas de software en lugar de tener que codificar el control mediante lenguajes de programación de bajo nivel. Sin embargo, determinar y evaluar el comportamiento y el rendimiento en tiempo de ejecución de estos modelos generados mediante herramientas comerciales de MDE es una tarea difícil. Estas herramientas proporcionan poco apoyo para observar a nivel de modelo la ejecución del código generado a partir del modelo. Por lo tanto, no son muy adecuadas para poder recopilar la información de tiempo de ejecución necesaria para, por ejemplo, comprobar si se cumplen o no las restricciones definidas. Un enfoque para gestionar estos requisitos, es tener la información de los componentes de software en términos de modelo en tiempo de ejecución ([email protected]). El trabajo en [email protected] busca ampliar la aplicabilidad de los modelos producidos en fase de desarrollo mediante el enfoque MDE al entorno de tiempo de ejecución. Tener el modelo en tiempo de ejecución es el primer paso para poder llevar a cabo la verificación en tiempo de ejecución. Así, esta verificación se podrá realizar utilizando la información de los elementos del modelo (estado actual, evento, siguiente estado, etc.). El objetivo de esta tesis es avanzar en la práctica actual de generar automáticamente componentes software basados en Unified Modeling Language - State Machine (UML-SM) que sean capaces de proporcionar información interna en términos de modelos en tiempo de ejecución. En cuanto a la automatización, en primer lugar, proponemos una metodología soportada por herramientas para generar automáticamente estos componentes de software. En segundo lugar, proponemos un marco de trabajo de generación de componentes de software basado en UML-SM. En cuanto a la monitorización, verificación y adaptación en tiempo de ejecución, proponemos un módulo de tiempo de ejecución externalizado que es capaz de monitorizar y verificar la validez de los componentes del software en función de su estado interno en términos de modelo. Además, si se detecta un error, se activa el módulo de adaptación en tiempo de ejecución y se inicia el proceso de adaptación seguro en el componente de software correspondiente. Teniendo en cuenta todo esto, el nivel de seguridad global de los componentes del software y de los CPS se ve mejorado

    ReSP: A Nonintrusive Transaction-Level Reflective MPSoC Simulation Platform for Design Space Exploration

    Full text link

    Uso de riscos na validação de sistemas baseados em componentes

    Get PDF
    Orientadores: Eliane Martins, Henrique Santos do Carmo MadeiraTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A sociedade moderna está cada vez mais dependente dos serviços prestados pelos computadores e, conseqüentemente, dependente do software que está sendo executado para prover estes serviços. Considerando a tendência crescente do desenvolvimento de produtos de software utilizando componentes reutilizáveis, a dependabilidade do software, ou seja, a segurança de que o software irá funcionar adequadamente, recai na dependabilidade dos componentes que são integrados. Os componentes são normalmente adquiridos de terceiros ou produzidos por outras equipes de desenvolvimento. Dessa forma, os critérios utilizados na fase de testes dos componentes dificilmente estão disponíveis. A falta desta informação aliada ao fato de se estar utilizando um componente que não foi produzido para o sistema e o ambiente computacional específico faz com que a reutilização de componentes apresente um risco para o sistema que os integra. Estudos tradicionais do risco de um componente de software definem dois fatores que caracteriza o risco, a probabilidade de existir uma falha no componente e o impacto que isso causa no sistema computacional. Este trabalho propõe o uso da análise do risco para selecionar pontos de injeção e monitoração para campanhas de injeção de falhas. Também propõe uma abordagem experimental para a avaliação do risco de um componente para um sistema. Para se estimar a probabilidade de existir uma falha no componente, métricas de software foram combinadas num modelo estatístico. O impacto da manifestação de uma falha no sistema foi estimado experimentalmente utilizando a injeção de falhas. Considerando esta abordagem, a avaliação do risco se torna genérica e repetível embasando-se em medidas bem definidas. Dessa forma, a metodologia pode ser utilizada como um benchmark de componentes quanto ao risco e pode ser utilizada quando é preciso escolher o melhor componente para um sistema computacional, entre os vários componentes que provêem a mesma funcionalidade. Os resultados obtidos na aplicação desta abordagem em estudos de casos nos permitiram escolher o melhor componente, considerando diversos objetivos e necessidades dos usuáriosAbstract: Today's societies have become increasingly dependent on information services. A corollary is that we have also become increasingly dependent on computer software products that provide such services. The increasing tendency of software development to employ reusable components means that software dependability has become even more reliant on the dependability of integrated components. Components are usually acquired from third parties or developed by unknown development teams. In this way, the criteria employed in the testing phase of components-based systems are hardly ever been available. This lack of information, coupled with the use of components that are not specifically developed for a particular system and computational environment, makes components reutilization risky for the integrating system. Traditional studies on the risk of software components suggest that two aspects must be considered when risk assessment tests are performed, namely the probability of residual fault in software component, and the probability of such fault activation and impact on the computational system. The present work proposes the use of risk analysis to select the injection and monitoring points for fault injection campaigns. It also proposes an experimental approach to evaluate the risk a particular component may represent to a system. In order to determine the probability of a residual fault in the component, software metrics are combined in a statistical mode!. The impact of fault activation is estimated using fault injection. Through this experimental approach, risk evaluation becomes replicable and buttressed on well-defined measurements. In this way, the methodology can be used as a components' risk benchmark, and can be employed when it is necessary to choose the most suitable among several functionally-similar components for a particular computational system. The results obtained in the application of this approach to specific case studies allowed us to choose the best component in each case, without jeopardizing the diverse objectives and needs of their usersDoutoradoDoutor em Ciência da Computaçã
    corecore