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A Metaobject Architecture for Fault-Tolerant
Distributed Systems: The FRIENDS Approach

Jean-Charles Fabre and Tanguy Pérennou

Abstract —The FRIENDS system developed at LAAS-CNRS is a metalevel architecture providing libraries of metaobjects for fault
tolerance, secure communication, and group-based distributed applications. The use of metaobjects provides a nice separation of
concerns between mechanisms and applications. Metaobjects can be used transparently by applications and can be composed
according to the needs of a given application, a given architecture, and its underlying properties. In FRIENDS, metaobjects are used
recursively to add new properties to applications. They are designed using an object oriented design method and implemented on
top of basic system services. This paper describes the FRIENDS software-based architecture, the object-oriented development of
metaobjects, the experiments that we have done, and summarizes the advantages and drawbacks of a metaobject approach for
building fault-tolerant systems.

Index Terms —Metalevel architecture, metaobject protocols, distributed fault tolerance, object-oriented methods and languages,
reusability.

——————————   ✦   ——————————

1 INTRODUCTION

HE use of a metalevel architecture to build dependable
systems has emerged recently and conceptually ap-

pears to be promising. The advantages of this approach
have been advocated in several other works [1], [2], [3] us-
ing a reflective system approach, rather than using a reflec-
tive language approach. The objective of FRIENDS was to
investigate the use of object-oriented techniques and a re-
flective language approach (compile time reflection and
metaobjects) [4], [5] for the development of fault- and intru-
sion-tolerant distributed systems.

The initial aim was to identify the advantages and
drawbacks of this approach. Here is a nonexhaustive list of
questions we were interested in: What is the role of
metaobjects with respect to nonfunctional requirements?
Can we always rely on metaobjects when implementing a
given type of mechanism? What is the minimal system
support for metaobjects? What is the performance of such a
system? To what extent are the expected properties really
satisfied? What are the advantages and drawbacks of such
an architecture with respect to more conventional solu-
tions? To what extent are metaobjects reusable compo-
nents? In addition to these questions, the first one is the
following: Why metaobjects? It is clear that now a number
of fault tolerance mechanisms have reached full maturity.
However, in practice, the integration of such mechanisms
within applications still raises several problems, mainly
related to flexibility. We understand flexibility in the fol-
lowing way: ease of use and transparency of the mecha-
nisms for the programmer; independence of the mecha-
nisms with respect to each other and composability on a
case-by-case basis; reusability of existing mechanisms to

derive new ones. These properties are detailed in Section 2.
To our knowledge, none of the solutions traditionally used
manages to ensure all these properties at the same time.
The approach which is developed and illustrated in this
paper aims at providing a good balance among these prop-
erties. It is based on object-orientation (languages and devel-
opment methods), metaobject protocols and, also, to some
extent, microkernel technology. The notions of reflection and
metaobject protocols in object-oriented languages [6], [7]
have already proven to be both efficient and elegant for the
integration of application-orthogonal concerns in a highly
flexible way. Among many other examples, PCLOS imple-
ments persistent objects [8], R2 allows inclusion of soft real-
time constraints in object-oriented applications [9], Object
Communities provides distribution transparency [10].

Section 2 describes related work on the integration of
fault tolerance mechanisms within applications, describes
what a metaobject protocol is, and delineates what is ex-
pected from its use. Section 3 describes the architecture of a
system supporting dependable applications using a
metaobject protocol. Section 4 describes our application
model and stresses the separation of concerns obtained
when programming fault tolerance or some security
mechanisms1 using multiple metalevels. The approach is
then illustrated with examples of application objects and
metaobjects. Section 5 describes the development of a hier-
archy of metaobjects using an object-oriented design
method. Section 6 is a general discussion of the approach.
Section 7 briefly describes our experiments and provides
performance measurements for the prototype running on a
network of Unix machines.

1. In this paper, the term “security” must mainly be understood as
“secure communication.”
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2 DEFINITIONS AND RELATED WORK

2.1 Definitions
The various properties described below that can be ex-
pected for the implementation of dependability-related
mechanisms are referred as “flexibility” in the remainder of
this paper. Nevertheless, we restrict ourselves here to the
following properties in the case of hardware fault tolerance
and communication security.

2.1.1 Ease of Use
Mechanisms implementing fault tolerance and secure
communication should be easily used by application devel-
opers. This should also be true for the developers of the
mechanisms themselves, for whom, e.g., group communi-
cation mechanisms should be easy to use. When different
mechanisms are used in different applications, the pro-
grammer or the user of a given application should be able
to select the adequate mechanism, even if its implementa-
tion remains hidden. So, we make a distinction between
transparency from a usage viewpoint and visibility from a
configuration viewpoint.

2.1.2 Reusability
From the viewpoint of the mechanism’s developer, reuse
can take one of the following two forms, generality and ex-
tensibility [11]. Generality means that mechanisms can be
reused without modification in new applications. Extensi-
bility means that part of an existing mechanism must be
updated and modified in order to derive a mechanism
meeting different requirements. Object-oriented design
methods and languages provide a good way to obtain both
properties: Abstraction and encapsulation help ensure gen-
erality, while inheritance or delegation allow incremental
development and extensibility.

2.1.3 Composability
This property refers to the ability to use several independent
mechanisms within the same application depending on the
application’s characteristics and requirements. For instance,
several fault tolerance strategies can be used for different
objects in the same application without any clash. Mecha-
nisms can also be of different types: An application may need
both fault tolerance and security mechanisms. The security
mechanisms can be inserted or removed from the application
quite easily without any modification of its source code. The
definition of composability here is similar to the notion of
composition of dependability protocols described in [1].
Nevertheless, our notion is more limited; the notion of com-
position of dependability protocols extends our notion of
composability in the sense that a given fault tolerance proto-
col can be composed of several elementary protocols.

2.2 Conventional Approaches
The approach presented in this paper is an evolution of
previous work on the integration of fault tolerance mecha-
nisms within distributed systems, either at the system level,
through system services, or at the user level, through the
use of libraries.

The system approach provides fault tolerance mechanisms
embedded in the underlying runtime system which are

(almost) transparent to the application programmer. For
example, the Delta-4 system [12] offers several replication
protocols based on a multicast communication system sup-
porting error detection and voting protocols. Mechanisms
are transparent and easy to use in this case. However, be-
cause they are integrated into the operating system, mecha-
nisms are not easy to access and customize. Moreover,
composability of various mechanisms dealing with differ-
ent fault classes is not always possible. Adding various
types of mechanisms to an application on a case-by-case
basis, e.g., client-server authentication, is not easy.

The library approach provides basic mechanisms allowing
users to tailor their own fault tolerance mechanisms to suit
their needs by using constructs and primitives. For in-
stance, Isis [13] offers software constructs (e.g., coordinator-
cohort), group management, and atomic broadcast primi-
tives, on top of which primary/backup and active replica-
tion, for example, can be built. Although more flexible, the
programmer is, however, responsible for correct use of li-
brary functions at appropriate places in the source code to
implement a given fault tolerance mechanism. This ability
may require a good knowledge of fault tolerance tech-
niques and basically lacks ease of use.

The object-oriented development of such libraries provides
the user with classes, rather than functions. Inheritance
then makes it easier to adapt fault tolerance mechanisms
incrementally to specific needs or to add new features. This
approach should, therefore, achieve very good reusability.
Examples of such a use of inheritance can be found in
Avalon/C++ [14] and Arjuna [15]. So, on one hand, a sys-
tem approach provides full transparency of the mecha-
nisms, and, on the other hand, object-oriented libraries pro-
vide reusability, but none of these approaches manages to
combine both properties nor provides a satisfying solution
concerning composability. Actually, a careful observation
of the code written by library users reveals that functions
are used almost systematically at specific points of the
computational model, such as object creation and deletion,
beginning and ending of methods. This is the kind of prob-
lem a metaobject protocol can solve in an elegant way.

2.3 Metaobject Protocols and Language Issues
The essence of metaobject protocols (MOPs) is to give to the
user the ability to adjust the language implementation to
suit their particular needs. Metaobject protocols are based
on reflection [7] and object-orientation. Reflection exposes
the language implementation at a high level of abstraction,
making it understandable for the user while preserving the
efficiency and portability of the default language imple-
mentation. Object-orientation provides an interface to the
language implementation in the form of classes and meth-
ods so that variants of the default language implementation
can be produced, using specialization by inheritance. In-
stances of such classes are called metaobjects. The notion of
protocol relates here to the interaction between object and
metaobject. In class-based reflective languages, this interface
generally comprises at least instance creation and deletion,
attribute read or write access, method call. An a priori argu-
ment against reflection-based languages is that they are not
efficient. A counter-example is ABCL/R2, an object-oriented
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concurrent reflective language that, in terms of perform-
ance, compares with C used with lightweight processes
[16]. Compile time reflection leads to good performance
with respect to partial evaluation, as illustrated in Section 7.

2.4 Using a Metaobject Protocol for Dependability
The ability to adapt some aspects of the language imple-
mentation can be delegated to a third party, rather than the
user, e.g., a fault tolerance or security specialist. In this way,
a clean separation of concerns between the application and
mechanisms for fault tolerance or secure communication
can be achieved. This approach enables the role of different
programmers with a different basic knowledge to be clearly
identified and their task made easier: the application pro-
grammer, the fault tolerance programmer, the security pro-
grammer, the distribution programmer. All of them share
the same knowledge of object-oriented programming and
some about metaobject protocols.

In a simple metaobject protocol, the metaobject is sched-
uled to perform some actions when the object is created
(deleted) or when an object’s method is invoked. Conversely,
the metaobject can activate object’s methods and access ob-
ject’s attributes (the object state). In practice, the interaction
between a client object and a server object can be controlled
by a couple of metaobjects, as illustrated in Section 3.2.1.

This approach can be applied recursively so that the ad-
dition of some dependability-related mechanism takes
place in a simple and systematic way. Nevertheless,
metaobject protocols are not a panacea and it is not claimed
here that they can be used on their own to build depend-
able distributed systems. Several basic services must be
implemented at the system level, like error detection (to
ensure high coverage of the failure mode assumptions [17])
or a security kernel (that must be always invoked and tam-
per proof). Other system services, like group management
and atomic multicast protocols, authentication, and
authorization servers, are also necessary. The respective
roles of metaobjects and system services in the presence of
multiple mechanisms are presented in Section 3 and further
discussed in Section 6.

2.5 Closely Related Work
The FRIENDS system shares the same philosophy of closely
related projects like MAUD [1] and GARF [3]. The idea is to
handle dependability mechanisms at a separate abstraction
level and to bind them to application objects according to
their needs. In the above mentioned examples, the ap-
proach relies mainly on the ability to intercept invocations
and to redirect them to some behavioral object or metaob-
ject. The interception relies more on some runtime system
capabilities to redirect messages than on language facilities.
Also, creation of objects is reified by the runtime system
rather than by the language. Our approach relies more on
language facilities to handle object creation, invocations,
and, also, object state (attributes). Reification of both object
behavior and state information, is of high interest with re-
spect to fault tolerance. The more powerful the reflective
language is, the more object state information can be opti-
mized in checkpoints. The main advantage of a language
approach is that no assumption on the underlying system is

required. The main drawback is that a specific language is
needed and that some programming conventions still have
to be obeyed.

In the Deva Esprit project, several other colleagues take
advantage of reflective capabilities of a language and
metaobjects to handle real-time constraints [18], software
fault tolerance [19], or transactional models [20]. The han-
dling of real-time issues at the metalevel is more complex,
because it involves access to features which are normally
devoted to internal components of the system kernel.

All these works illustrate, in different ways, the interest
of reflection in dependable computing.

2.6 Motivations and Previous Work
In our previous work [4], the use of metaobjects for imple-
menting fault tolerance mechanisms was investigated using
a single metalevel. Several metaobjects classes for various
replication strategies were developed and experimented.
This was very promising and showed that transparency
and separation of concerns could be obtained for the appli-
cation programmer.

However, a single-metalevel approach suffers from sev-
eral drawbacks. First of all, the interaction between replicas
handled at the metalevel was rather complex because of the
use of system calls to group management services. Likewise,
remote interaction between application objects was imple-
mented at the base-level and, thus, very dependent on the
communication mechanisms used. A second problem was
the difficulty in adding some security aspects transparently
(authentication, ciphering, and signature checking). All secu-
rity-related statements were mixed with the source code for
fault tolerance and group management. Because remote in-
teraction and security were not handled as separated and
independent abstractions, the flexibility and the reusability of
the metaobjects that were initially developed was very limited.

This was the first motivation for separating fault toler-
ance, security, and group communication within several
metaobjects. The idea was to hide distribution at the fault
tolerance level using communication metaobjects leading,
thus, to two metalevels instead of one. The separation of
concerns between fault tolerance and distribution protocols
as two distinct metalevels enables security mechanisms to
be inserted as a new metalevel.

3 THE FRIENDS SYSTEM

The objective of the FRIENDS2
 system was to provide

mechanisms for building fault-tolerant applications in a
more flexible way. Flexibility is obtained through the provi-
sion of object-oriented libraries of metaobjects and also
through the provision of subsystems on a microkernel plat-
form. Subsystems can be reused as they are and ported to
various platforms. Metaobject libraries can be rapidly
ported to a new platform (compiler availability) and can be
extended using object-oriented development techniques.
The metalevel approach used here provides new means to
develop functionalities that are traditionally in the operat-
ing system, as metalevel software.

2. FRIENDS stands for Flexible and Reusable Implementation Environ-
ment for your Next Dependable System.
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3.1 System Architecture and Assumptions
The architecture of the system (see Fig. 1) is composed of
several layers:

1) The kernel layer, which can be either a Unix kernel or
better a microkernel, such as Chorus [21],

2) The system layer, composed of several dedicated sub-
systems, one for each abstraction, and, finally,

3) The user layer, dedicated to the implementation of
applications.

3.1.1 System Layer
The system layer is organized as a set of subsystems. In mi-
crokernel technology, a subsystem corresponds to a set of
services implementing any software system, for instance, an
operating system on top of the microkernel (e.g., Unix on Cho-
rus). In FRIENDS, each subsystem provides services for fault
tolerance, or secure communication, or distribution. Any sub-
system may be hardware- and software-implemented. The
three necessary subsystems are the following:

• FTS (Fault Tolerance Subsystem) provides basic serv-
ices mandatory in fault-tolerant computing, in particu-
lar, error detection and failure suspectors, which must
be implemented as low level entities. This subsystem
also includes configuration and replication domains
management facilities and a stable storage support.

• SCS (Secure Communication Subsystem) provides ba-
sic services that must obviously be implemented as
trusted entities within the system (notion of Trusted
Computing Base). These services should include, in
particular, an authentication server, but also an
authorization server, a directory server, an audit server.

• GDS (Group-based Distribution Subsystem) provides
basic services, implementing a distribution support
for object-oriented applications where objects can be
replicated. These basic services include group man-
agement facilities and atomic multicast protocols.

Subsystems provide basic services required by the mechanisms
implemented with metaobjects. These services can be seen as
Software Replaceable Units (SRUs). Using microkernel technology,
the system layer can easily be composed of the required sub-
systems, each of them using the appropriate SRUs.

3.1.2 User Layer
The user layer is divided into two sublayers, the application
layer and the metaobject layer, controlling the behavior of
application objects. Some libraries of metaobject classes for
the implementation of fault-tolerant and secure distributed
applications are implemented on top of the corresponding
subsystem and provide the user with mechanisms that can
be adjusted using object-oriented techniques.

• libft_mo provides metaobject classes for various fault
tolerance strategies (based on stable storage or repli-
cation) with respect to physical faults considering fail-
silent nodes.

• libsc_mo provides metaobject classes for various se-
cure communication protocols, using ciphering tech-
niques, signature computation, and verification based
on secret or public key cryptosystems.

• libgd_mo provides metaobject classes for handling re-
mote object interaction, which can be implemented
with groups. The combination of these metaobjects
and GDS provides a runtime support for distributed
object-oriented applications.

For active replication strategies, we assume that applica-
tion objects have a “deterministic behavior.” Deterministic
behavior ensures that all recipients processing the same
input messages obtain the same results. Since atomic mul-
ticast ensures that all correct recipients receive the same
input messages in the same order, any method invocation
will produce the same results on any of the object replicas.
Concurrency and other sources of nondeterminism have
not been considered yet.

3.1.3 Overall Architecture
The static view of the overall system architecture is illus-
trated in Fig. 1. FRIENDS provides a set of subsystems and
several libraries of metaobject classes.

The implementation of any abstraction (fault tolerance,
secure communication, distribution) is thus divided into a
library of metaobject classes and the corresponding sub-
system, thus spanning, at least partially, the user and sys-
tem layers.

3.2 Multilevel Application Model
For every object in a FRIENDS application, a single or sev-
eral metaobjects can be used. When just distribution is re-
quired, only communication metaobjects are used at the
metalevel. When fault tolerance is required, then the appli-
cation level declares fault tolerance metaobjects according
to the preferred strategy. Distribution is now handled by
fault tolerance metaobjects by meta_-metaobjects. From the
viewpoint of the programmer of fault tolerance metaob-
jects, distribution is handled at the metalevel using com-
munication metaobjects. When security is necessary, then,
instead of using standard communication metaobjects, the
fault tolerance programmer declares security metaobjects.
These metaobjects ensure security at the communication
level and take advantage of the metaobject approach for
remote communications. Such a recursive use of metaob-
jects leads to several metalevels in the final application. In
the next sections, we describe the use of metaobjects for
handling distribution, communication security, and fault
tolerance, including inter-replica protocols.

3.2.1 Distributed Application Model
An application is regarded as a collection of communicat-
ing objects developed using an object-oriented program-
ming language (currently, C++). Every application object is
mapped by GDS onto a runtime object, depending on enti-

Fig. 1. Overall system architecture.
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ties handled by the underlying operating system (Unix
processes or Chorus actors). Each runtime object is not only
composed of an application object, but also contains one or
several metaobjects within the same address space.

Runtime_object = {A, FT, SC, GD} with:

A : application object

FT : fault tolerance metaobject

SC : secure communication metaobject

GD : group-based distribution metaobject

The set of metaobjects depends on the properties that
must be provided to the application and includes at least one
metaobject, GD, for distributed interaction. Ideally, adding
properties to an application involves adding other metaob-
jects to the set. The notion of metaobjects set is similar to the
notion of metaspace, defined in Apertos [22] and also to the
notion of reflective object tower in ABCL/R2 [16]. Fig. 2 depicts
our application model on a distributed system configuration.

Within one runtime object, the interaction between the
application object and the metaobjects is done through the
MOP. The interaction of runtime objects is based on the
client-server model. More precisely, it is based on the proxy
model: A server object is perceived as a proxy within the
client address space. The proxy server is attached to a
metaobject handling the client side, the effective server is
attached to a metaobject handling the server side. Any ab-
straction is handled by a protocol between two metaobjects.
The application programmers just write the application
objects and select the appropriate set of metaobjects.

3.2.2 The Multilevel Approach
In order to solve the problems mentioned in Section 2.6, a
three metalevel application model was defined. Any
(runtime) object is organized using several levels: the first
level or the base-level (the application object), several in-
termediate metalevels (metaobjects for fault tolerance and
secure communication), and, finally, the last metalevel re-
sponsible for handling objects interaction. This structure of
the application implies a sequence of interactions through
the MOP, as shown in Fig. 3. The set of metaobjects is or-
ganized as a stack.

The minimal specifications of the MOP (see Section 4.1
for a more complete description) that we need and that we
have used are the following:

• Object creation/deletion: The creation of object in-
volves creating several replicas, registration in a com-
munication group and authentication when needed;

• Invocation trapping: The method invocation seman-
tics can be implemented in a different way, according
to a given fault tolerance strategy, for instance;

• Base-level access: The base-level methods and attrib-
utes can be manipulated from the metalevel, respec-
tively, to execute object’s methods at active replicas
and to get the object state.

Considering just one metalevel handling distribution,
any server method invocation is trapped by the client
metaobject on the client side, an invocation message is for-
warded to the server side, this message is received by the
server metaobject, and, finally, the method is executed at
the base-level. This protocol is illustrated in Fig. 4. An exam-
ple implemented using this model is given in Section 4.2.

Considering now several intermediate levels, each server
method invocation is trapped by the next metalevel. This is
recursively done until the last metalevel (GD), where an
invocation message is forwarded to the server. The invoca-
tion message is received by the server metalevel (GD) and
the invocation is propagated recursively through interme-
diate levels to the base-level where the method is executed.
This is illustrated in Fig. 5.

This figure  also shows the various underlying protocols
between a client object and a replicated server object. With
this application structure, any intermediate metalevel can
be added or removed quite easily, thus adding or removing
the corresponding underlying protocol.

This multilevel model is also used in the implementation
of inter-replica protocols on the server side. For instance,
the interaction between the primary and the group of
backup replicas is such that the primary is a client of the
group of backup replicas. The primary replica captures the
state of the base-level object and transparently invokes an
update_state method of the backup replicas (Fig. 6). This
is possible because, in many replication strategies, the inter-
replica protocol is a client-server protocol.

Fig. 2. A distributed application using FRIENDS.

Fig. 3. Base and metalevel interaction.

Fig. 4. Using metaobjects for distribution.

Fig. 5. Multilevel implementation of the client-server protocol.
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3.2.3 A Global View of FRIENDS
The overall architecture and application model using
metaobjects is depicted in Fig. 7. This figure illustrates the
FRIENDS system from a different perspective. The applica-
tion structuring is highlighted and shows that the same
model is used for programming at any level. Objects and
metaobjects, but also metaobjects themselves, cooperate
through the MOP. This figure also shows that metaobjects
rely on basic services running on top of the microkernel.

4 IMPLEMENTING AND USING METAOBJECTS

The objective of this section is to show how objects and
metaobjects can be programmed and bound (at compile
time) using a simple MOP. The transparency of the mecha-
nisms for the application programmer is illustrated by a
simple example. According to the models presented in Sec-
tion 3, metaobjects for each abstraction are briefly presented
in an Open C++-like syntax. Open C++ v1.2 [23] is the lan-
guage used in our experiments. The role of the binding
declarations is explained in each case. We also illustrate
how to build the object-metaobject stack with no, one, or
two intermediate metalevels.

4.1 A Simple MOP Definition
The following simple MOP is used throughout the rest of
this section: Each object is controlled by a unique metaob-
ject and the binding is done on a class-by-class basis. The
binding between an application class A and a metaobject
class M is realized by the statement: reflect A: M. All
metaobject classes inherit from the predefined class

MetaObj and have the following interface:
class MetaObj {

public:

void Meta_StartUp ();

void Meta_CleanUp ();

void Meta_MethodCall (int m_id, ArgPac args,

ArgPac reply);

void Meta_Read (int var_id, ArgPac value);

void Meta_Assign (int var_id, ArgPac value);

private:

void Meta_HandleMethodCall (int m_id, ArgPac

args, ArgPac reply);

void Meta_HandleRead (int var_id, ArgPac

value);

void Meta_HandleAssign (int var_id, ArgPac

value);

};

Methods Meta_StartUp and Meta_CleanUp are called,
respectively, after creation and before deletion of the base-
level object; between creation and deletion, object and
metaobject can refer to each other. Meta_MethodCall is
called when a base-level method is invoked: m_id identifies
the method, args packs its input arguments, and reply
packs the results when Meta_MethodCall returns.
Meta_Read is called when an attribute identified by var_id
is read and value contains the result of the read access.
Meta_Assign is called when an attribute identified by var_id
is written and value is the value that should be assigned. Pri-
vate methods implement the default behavior of the language:
Meta_HandleMethodCall, Meta_HandleRead,
Meta_HandleAssign enable the metalevel to invoke a
base-level method or access (read, write) a base-level at-
tribute, respectively. Finally, ArgPac is a stack-like class
that may contain all types of objects (including ArgPac ob-
jects). Fig. 8 illustrates how invocation is trapped and can
be adjusted with this MOP.

Classes that are not bound to a metaobject class have the
default class behavior. This MOP is a simplified version of the
Open C++ MOP [10]. Nevertheless, any reflective object-
oriented language providing this MOP could be used instead.

4.2 Handling Distribution
The idea here is to provide a set of metaobjects classes pro-
viding access to remote, replicated, and/or shared objects.
These metaobjects use other classes, based on GDS, pro-
viding an object-oriented interface to group management
services. A server is seen by the client through a local repre-
sentative, a proxy. This proxy is bound to a client metaobject
whereas the server itself is bound to a server metaobject.

Fig. 6. Multilevel implementation of the primary-backup protocol.

Fig. 7. The FRIENDS system approach.

Fig. 8. Invocation trapping.
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The CLIENT_MO and SERVER_MO metaobjects provide
transparent access to remote groups of objects.

Fig. 9 shows a simplistic client-server application exam-
ple. The extra argument “Bob” passed to the server con-
structor is a group global identifier automatically transmit-
ted to the metalevel CLIENT_MO and SERVER_MO construc-
tors. It is used to identify the underlying group dedicated to
this service. Nodes where server replicas are created are
declared in a configuration file (notion of replication do-
main). The server is created on the appropriate nodes and
shared if different clients use the same identifier. The user
only runs the client; then, the constructor of CLIENT_MO
creates all remote server replicas when necessary. Likewise,
the destructor of CLIENT_MO is responsible for the deletion
of all server replicas. A service called factory was devel-
oped in order to deal with the creation of remote objects.

The extra task of the application programmer just corre-
sponds to some declaration statements. To use an addi-
tional metalevel, say fault tolerance, the programmer only
has to change reflect BankAccount: CLIENT_MO into
reflect BankAccount: FT_CMO in the client source code,
and reflect BankAccount: SERVER_MO into reflect
BankAccount: FT_SMO in the server source code. The
declaration of metaobjects handling distribution is then
delegated to the next metalevel. These declarations may be
inserted automatically, as discussed in Section 6.

4.3 Fault Tolerance
Several fault tolerance mechanisms have been designed (see
Section 5) and implemented in the form of metaobject
classes implemented on FTS: a mechanism based on stable
storage, primary-backup, and leader-follower replication
protocols.3 In most cases, from the fault tolerance pro-
grammer viewpoint, the development of metaobject classes
is done using the same class pattern. Fig. 10 shows a simpli-
fied view of the LFR_CMO and LFR_SMO classes implement-

3. Only server failure is tolerated by these mechanisms.

ing the leader-follower strategy [12].
The client class defines mainly how a method invocation

is handled: Meta_MethodCall(). The method invocation
is propagated to the server metaobject using a simple
statement: FT_server.FT_method_call(). The server
metaobject is transparently invoked from the client
metaobject thanks to the use of the upper distribution
metalevel. The server is declared as a local attribute
FT_server of class LFR_SMO. This class is bound to CLI-
ENT_MO handling the client behavior at the distribution
metalevel.

The server class holds methods for handling the invoca-
tion (all replicas execute the method in this case) and the in-
ter-replica protocol (IRp). The FT_method_call() method is
responsible for handling the server method invocation at the
base-level. This is done using Meta_HandleMethodCall().
The FT_notify method enables the leader to synchronize
with the followers by telling them that a given method was
executed.4 This is done after any base-level method execu-
tion, by Followers.FT_notify(). The followers are in-
voked transparently from the leader, again thanks to the
use of the distribution metalevel. In all replication mecha-
nisms, a replica crash is detected by FTS, which activates
the FT_recover method of one of the alive replicas. In the
example given here, if the leader crashes, then FT_recover
causes a follower becoming a leader and the creation of a
new replica within the appropriate replication domain.

Two declarations are mandatory: reflect LFR_SMO:
SERVER_MO and reflect IRP_LFR_SMO: CLIENT_MO

indicate that the server and the followers are, respectively,
bound to a server metaobject and a client metaobject at the
distribution metalevel. The latter declaration enables the
leader to transparently invoke the followers during the in-

4. In the primary-backup metaobject, the method FT_Update is used in-
stead of FT_Notify to update the base-level state after each base-level
method invocation. This method writes the base-level state of backup repli-
cas using Meta_HandleAssign.

Client source code Server source code
class Customer {

protected:

  BankAccount account ("Bob");

public:

  Customer () {

account.Credit (1000);

account.Debit (500);

printf (account.Balance());

  }

};

class BankAccount {

protected:

  int val;

public:

  BankAccount()

{ val = 0; }

  void Credit(int x)

{ val = val + x; }

  void Debit(int x)

{ val = val - x; }

  int Balance()

{ return val; }

};

reflect BankAccount: CLIENT_MO; reflect BankAccount: SERVER_MO;

int main () {

  Customer client;

}

int main() {

  BankAccount server("Bob");

}

Fig. 9. A client-server application using metaobjects.
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ter-replica protocol, as already mentioned. This frees fault
tolerance metaobjects from handling distribution problems,
such as remote creation/deletion, group management, and
atomic multicast message passing. When implementing
metaobjects for replication protocols, the programmer only
assumes that all server replicas receive the same invocation
requests in the same order, even when the server is shared
by multiple clients. In this example, no secure communica-
tion level is used and, thus, fault tolerance metaobjects are
bound to distribution metaobjects. If such a level is used
then binding declarations must be updated accordingly.

4.4 Secure Communication
The introduction of metaobjects for secure communications
illustrates the flexibility provided by the metaobject ap-
proach described in this paper. The interface of metaobject
classes at this level is similar to the class interface defined in
the previous section, as shown in Fig. 11.

Based on this model, metaobject classes responsible for
the authentication of the client user have been imple-
mented. Currently, authentication is based on the Need-
ham-Schroeder protocol [24] upon client creation and sig-
natures are used upon every server invocations

On the client side, Meta_StartUp authenticates the
client and receives a session key. This session key is
transparently propagated (in a ticket) to the server by
the invocation SC_server.SC_GetSession-Key().
Within Meta_MethodCall, every server method invocation
is signed and propagated transparently to the server by
SC_server.SC_method_call(). On the server side,
SC_method_call verifies the signature and, if it is correct,
the invocation is propagated to the base-level by
Meta_HandleMethodCall(). The base-level can be the
fault tolerance or the application level.

5 OBJECT-ORIENTED DEVELOPMENT OF
METAOBJECTS

In this section, we describe the design of fault tolerance
mechanisms and underline how metaobjects provide a

clean and convenient framework for the design process.
This is mainly because application objects and fault toler-
ance metaobjects interact through a well-defined interface,
i.e., the metaobject protocol. This interaction is automati-
cally handled at compile-time. In addition, fault tolerance
metaobjects are designed and implemented without direct
communication statements because they are hidden in com-
munication meta-metaobjects. So the design of fault tolerance
metaobjects can be made without concern for either the ap-
plication functionalities or communication details.

5.1 Object-Oriented Design Notation
We first briefly present a graphical notation used to describe
some of our design steps. This notation is taken from BON
(Business Object Notation [25]) and provides support for the
description of both the structure and the behavior of a sys-
tem. Static diagrams describe the structure of a system in
terms of classes, represented by ellipses, and their relation-
ship, inheritance, or composition, respectively, represented
by a single arrow and a double arrow. Dynamic diagrams
represent the behavior of a system in terms of the messages
exchanged by objects. Objects are represented by rectangles
and named by their class; when this is not accurate enough,
an instance name is also mentioned. Messages are repre-
sented by dashed arrows with a sequence number and ori-
ented from the sender to the receiver. A scenario is associated
with each dynamic diagram; it is a table where a description
of each message is given according to its sequence number.
Arrows having no origin object represent external input
events received by the system, and arrows having no desti-
nation object represent external output events.

5.2 General Structure
In backward error recovery, an error-free state substitutes
for the erroneous state being detected as such; this state
transformation consists of bringing the system back to a
previously correct state. This involves the definition of re-
covery points, which are points in time during the execu-
tion of the process for which the then-current state may
subsequently need to be restored.

LFR_CMO LFR_SMO
class LFR_CMO {

protected:

  LFR_SMO FT_server;

public:

  void Meta_StartUp () {...}

  void Meta_MethodCall (...) {

...

reply = FT_server.FT_method_call (...);

...

  }

};

class LFR_SMO {

protected:

  IRP_LFR_SMO Followers;

public:

  void Meta_StartUp () {...}

  Argpac FT_method_call (...) {

...

Meta_HandleMethodCall(...);

...

Followers.FT_notify (...);

  }

  void FT_notify (...) {...}

  void FT_recover (...) {...}

};

reflect LFR_SMO: CLIENT_MO; reflect LFR_SMO: SERVER_MO;

reflect IRP_LFR_SMO:CLIENT_MO;

Fig. 10. Fault tolerance metaobject classes.
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The object model and the use of a metaobject protocols
encourage the definition of recovery points at the end of a
method execution. When an error is detected, the currently
running method must therefore be re-executed from the
beginning, which implies the restoration of initial condi-
tions (in particular, the base-level object state) and the
identification of the currently running method (method
number, arguments, etc.). This is enforced by classes
FT_CMO and FT_SMO, the former implementing the client
part of the fault tolerance protocol and the latter imple-
menting the server part. Application level method calls are
trapped into FT_CMO by the method Meta_MethodCall,
which transmits the base-level method invocation to
FT_SMO. The execution of the client's method invocation is
performed in the method FT_method_call of the FT_SMO
metaobject. FT_SMO executes the method requested and
defines the recover point before sending back the method
execution result to FT_CMO. Both classes are inherited and
specialized for all the mechanisms described hereafter. The
metaobject protocol also provides means to access object
attributes from the metalevel. The state information is con-
sidered here as the set of object attributes.

The fault tolerance metaobject interfaces given in Fig. 12
are a generalization of the leader-follower replication
metaobjects already described in Section 4.3. The client

metaobject interface mainly consists of redefining
Meta_MethodCall (belonging to MetaObj) so that it calls
FT_method_call on the server metaobject. This server
metaobject is seen locally in FT_CMO through a proxy called
FT_server. The fact that it is remote is made transparent
by the use of reflect declarations on the client and server
sides. The declaration reflect FT_SMO: CLIENT_MO as-
sociates FT_server (instance of FT_SMO) with a client-type
communication metaobject which turns FT_server into a
proxy, so that the remote method FT_method_call can be
executed using a simple FT_server.FT_method_call
statement. On the server side, the declaration FT_SMO:
SERVER_MO makes the FT_SMO instance an RPC-like server,
waiting for request messages from remote clients. Initiali-
zation of the stack and registration in the corresponding
service group is done by redefining the Meta_StartUp
method.

In FT_method_call, Meta_HandleMethodCall (also
belonging to MetaObj) is called first in order to propagate
the method invocation to the base level; then
FT_method_end is called to define the recovery point. The
fact that effective method execution is handled by
MetaObj’s Meta_HandleMethodCall is essential because
this means that the fault tolerance programmer does not
need to call the application-level method explicitly and,

SC_CMO SC_SMO
class SC_CMO {

protected:

  SC_SMO SC_server;

  session_key SK;

public:

  void Meta_StartUp () {

// get SK from the

// authentication server

SC_server.SC_GetSessionKey(SK);

...

  }

  void Meta_MethodCall (...) {

...

sign (request, SK);

reply=SC_server.SC_method_call(...);

 check (reply, SK);

...

  }

};

class SC_SMO {

protected:

  session_key SK;

public:

  void Meta_StartUp () {...}

  void SC_GetSessionKey (...) {...}

  ArPac SC_method_call (...) {

...

check (request, SK);

Meta_HandleMethodCall(...);

sign (reply, SK);

...

  }

};

reflect SC_SMO: CLIENT_MO; reflect SC_SMO: SERVER_MO;

Fig. 11. Secure communication metaobject classes.

class FT_CMO: public MetaObj {

  FT_SMO FT_server;

public:

  void Meta_StartUp ();

  void Meta_MethodCall (...);

};

class FT_SMO: public MetaObj {

public:

  void Meta_StartUp ();

  ArgPac FT_method_call (...);

  void FT_method_end () = 0;

  void FT_recover () = 0;

};

Fig. 12. Basic interface for backward recovery mechanisms.
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therefore, does not need to know about the application
functionalities. FT_recover is automatically called by the
underlying error detection system service when an error is
detected. Both methods strongly depend on the mechanism
and are, therefore, abstract methods, which makes FT_SMO
an abstract class.

5.3 Recovery Points on Stable Storage
In this mechanism, the current invocation (method id and
args) and the server’s state are saved to stable storage at the
end of every method call. Errors are signaled to the client
metaobject and recovery consists of choosing a valid site,
creating a substitute server on this site, and, if necessary, re-
sending the current invocation. The substitute’s initializa-
tion consists of restoring the last invocation and state avail-
able on stable storage.

We introduce here two classes interfacing system serv-
ices. STABLE_STORAGE provides methods to read and write
data to stable storage (NFS in our experiments) in the form
of ArgPac instances. DOMAIN keeps a consistent view of
valid sites by interfacing to an error detection service in the
fault tolerance subsystem (xAMp [26] in our experiments).
It provides methods to check this view and to obtain the
name of valid sites. Invocation and state are implemented
with the Open C++ ArgPac predefined class which acts as a
metalevel container for any type of argument. Classes
SS_CMO and SS_SMO, respectively, implement the client and
server parts of the mechanism and inherit, respectively,
from FT_CMO and FT_SMO. These metaobjects are causally
connected with group-based communication metaobjects,
which enables SS_SMO to be seen by SS_CMO,  from a mod-
eling viewpoint, but also, in practice, through a simple
composition link. This link hides the use of a proxy of
SS_SMO dedicated to the remote interaction with SS_CMO
and simplifies the design. Fig. 13 gives the static diagram of
the stable-storage-based mechanism.

We now study two important execution scenarios: the
definition of a recovery point at the end of a method execu-
tion and the recovery upon error detection. The former is
implemented by FT_method_end in SS_SMO (on the
server side) and invokes the Save method provided by
STABLE_STORAGE. This scenario is illustrated by Fig. 14.

1. Meta_MethodCall of client metaobject

2. SS_CMO memorize the request

3. invoke FT_method_call

4. SS_SMO memorize the request

5. execute base-level method requested

6. SS_SMO memorize the reply

7. capture new base-level state

8. save request, reply and state on
    stable storage

Fig. 14. Scenario—recovery point definition.

The recovery point definition mainly consists of captur-
ing the base-level state and saving to stable storage. As this
base-level state is made accessible by the metaobject proto-
col, the fault tolerance programmer does not need to call
any application-specific routine.

The second scenario describes the recovery procedure.
During method execution, an error can be detected by the
error detection system service either before the new state is
saved to stable storage or in between the time it is backed
up and the time the server sends the reply to the client.5 In
both cases the error is signaled to the client metaobject,
which starts the procedure described at the beginning of
this section and illustrated by Fig. 15. As for the case of
state capture, state restoration is handled through the
metaobject protocol and, therefore, does not involve appli-
cation-specific statements. State information is obtained by
FT_SMO using Meta_HandleRead, a new replica is created,
and its state is restored by Meta_HandleAssign.

1 error detection

2. get a valid site

3. create the substitute on this site

4. get last request, reply and state
   from stable storage

5. restore state

6. resend the memorized request

7. if the answer is not available,
   execute the request

Fig. 15. Scenario—recovery procedure.

5. The communication subsystem is assumed to be reliable.

Fig. 13. Static diagram—recovery points on stable storage.
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5.4 Primary-Backup Replication
In this replication strategy, all replicas of a server belong to
the same atomic multicast group and, thus, receive the
same input messages (e.g., invocation messages) in the
same order. This assumption is not mandatory, but makes
the design of the mechanism easier. It is enforced by the use
of multicast communication protocols and groups in the
communication metalevel. Among the replicas, only one
(the primary) handles the client requests and checkpoints
its new state at the end of every method executed to the
other replicas (the backups). We assume that any primary
error is detected by the backups which choose a new pri-
mary among themselves. This new primary restores the last
checkpointed state and, if necessary, executes the current
request before returning the reply to the client.

We introduce the PBR_CMO and PBR_SMO metaobject
classes (derived from FT_CMO and FT_SMO,  respectively) to
implement the client and server parts of the primary-
backup replication. Any backup can become primary, so
the primary and backup behaviors are both implemented
by PBR_SMO. The primary or backup status of the PBR_SMO
metaobject is handled through a local variable. The primary
can be seen as a client of the backups, and, therefore,
PBR_SMO is a client of itself, as shown on Fig. 16. The replica
interaction (i.e., the interaction among PBR_SMO instances)
is made transparent through the use of communication
metaobjects as for the client/server metaobjects interaction.

The recovery point definition scenario (Fig. 17) is similar
to that of the stable storage mechanism. The main differ-
ence is that the captured state and invocation are transmit-
ted to the backups, rather than saved to stable storage. This
can also be handled using some of the metaobject protocol
facilities and does not involve any application-specific pro-
gramming for the fault tolerance programmer.

The recovery scenario (Fig. 18) is much more simple than
in the case of the stable storage because, in the case of repli-
cation, reconfiguration (i.e., cloning a new replica on a valid
site) is not mandatory.

Method execution at the base-level must be done only if
the available reply does not correspond to the memorized
reqc. It is handled by Meta_HandleMethodCall and, there-
fore, does not require any application-level programming.
The PBR_SMO instance which handles recovery then be-
comes the new primary and is, therefore, in charge of exe-
cuting subsequent client requests.

5.5 Leader-Follower Replication
This replication mechanism is inspired by the semiactive
replication in Delta-4 [12]. In this protocol, all replicas proc-
ess input messages, but only one (the leader) sends output
messages. As in the case of primary-backup replication, all
replicas of a server belong to the same atomic multicast
group and receive the same messages in the same order. In
our implementation, the leader first executes the request
and then notifies it to the other replicas (the followers),
which, in turn, execute the request. Only the leader returns
the reply to the client. The metaobject classes obtained to
implement this protocol are called LFR_CMO and LFR_SMO.
The static diagram and the scenarios are quite similar to
those obtained for primary-backup replication.

Fig. 16. Static diagram—primary-backup replication.

1. Meta_MethodCall of client metaobject

2. invoke FT_method_call

3. memorize the client request (reqc)

4. execute base-level method requested

5. memorize the reply

6. capture new base-level state

7. send request, reply and state to
   the backups

8. restore the base-level state

9. memorize request and reply

10. return the reply

11. eliminate reqc

Fig. 17. Scenario—recovery point definition.

1. compare the memorized request and reqc

2. if necessary execute reqc at the base-
   level

3. return the reply

Fig. 18. Scenario—recovery procedure.
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5.6 A Complete Hierarchy of Metaobjects
The above mechanisms present several structural and be-
havioral common points. These can be factorized and re-
used in a hierarchy. In all these mechanisms, there exists a
backup of the server’s state, either on stable storage or as
the state of a replica. We introduce the BACKUP class, which
is used in any backward recovery mechanisms. This class
defines the FT_update method; it is an abstract method
because it depends on the mechanism implemented. The
FT_CMO/FT_SMO framework is complemented with
BACKUP, FT_SMO being a client of BACKUP (composition
link). All previously defined classes STABLE_STORAGE,
PBR_SMO, and LFR_SMO inherit from BACKUP and define
FT_update, respectively, as:

• a write operation to stable storage;
• the transmission of the primary’s new state to the

backups;
• the notification of the method execution to the follow-

ers, which, in turn, execute it.

As for stable storage and primary-backup replication, a
state capture is systematically performed upon method
termination before updating the backup (stable storage file
or backup replica). This can also be factorized within the
definition of FT_method_end in a class CHECKPOINT_SMO,
which inherits from FT_SMO. SS_SMO and PBR_SMO inherit
from CHECKPOINT_SMO and extend FT_method_end, re-
spectively, to save the captured state on stable storage or to
send it to the group of backup replicas.

For both replication mechanisms, the recovery procedure
and the handling of client requests by spare replicas (backups
and followers) are similar. This common behavior can also be
factorized in a class REPLICA_SMO inheriting from FT_SMO.
REPLICA_SMO also inherits from BACKUP because its in-
stances used in spare replicas hold successively saved states.
PBR_SMO and LFR_SMO inherit from REPLICA_SMO, and
LFR_SMO redefines FT_method_end so that the current invo-
cation is notified to the followers. PBR_SMO multiply inherits
from CHECKPOINT_SMO and REPLICA_SMO. These also han-
dle reconfiguration by cloning a new replica. These struc-
tural and behavioral common points, factorized classes lead
to the class hierarchy presented in Fig. 19.

6 GENERAL DISCUSSION AND LESSONS LEARNED

6.1 Meeting the Initial Requirements
We discuss here the properties of the FRIENDS architecture
and compare them with the initially required properties
described in Section 2.1.

6.1.1 Ease of Use
Fault tolerance mechanisms can be added to an application
simply by connecting the appropriate metaobjects to the
application objects (using a few metaobjects declaration
statements). In addition, as all fault tolerance metaobjects
have the same interface (the MetaObj interface), the
mechanism used can be changed simply by switching
metaobjects. An application programmer can, thus, develop
application objects locally as a single runtime unit and test
the functional behavior. Once this first version works all
right, it can be distributed by connecting remote objects to
communication metaobjects, provided that each main ap-
plication object is transformed into a single runtime unit.
Then, stable storage metaobjects, for instance, can be in-
serted to make the application fault-tolerant. For perform-
ance reasons, e.g., the recovery time overhead, the applica-
tion programmer can remove the stable storage metaobjects
and replace them with leader-follower metaobjects. All
these operations simply consist in connecting application
objects and metaobjects, and do not involve significant
changes in the application objects.

6.1.2 Generality
This aspect is, in fact, not tied to our application model, but
rather, to the very nature of the mechanisms implemented,
which can be used in a wide range of applications. In brief,
the use of an object-oriented design method and of a
metaobject protocol enables mechanisms to be plugged and
adapted in application objects without any change to af-
filiation source code. Adaptation can take place by deriving
new mechanisms from existing ones, but the interaction
between application objects and metaobjects is fixed
through the MOP.

6.1.3 Extensibility
New mechanisms can also be derived from existing ones by
inheritance at the fault tolerance metalevel. For example,
we can derive mechanisms based on delta-checkpointing
and/or message logging, or mechanisms where the state is
backed up only after writer method executions, or else
various active replication strategies. These mechanisms can
then be used as easily as the others by simple causal con-
nection with application objects. More problematic is the
extension of mechanisms when changing the underlying
assumptions about the communication system. Suppose, on
a given platform, no group management and multicast
protocol is available and development of a primary-
backup-like replication protocol is needed. Then, although
possible, the reuse of the current primary-backup metaob-
jects may be limited, but this is not due to the metaobject
approach.

Fig. 19. Backward recovery metaobject class hierarchy.
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6.1.4 Composability
Different types of fault tolerance mechanisms can be used
in the same application by connecting different remote ob-
jects with different types of metaobjects. For example, a
client object can interact with a remote object backed with a
stable storage and with another remote object replicated
according to the primary-backup model. The use of multi-
ple metalevels also provides composability among different
metafunctional properties. It is just a matter of declarations
at compile time. No change in the fault tolerance metaobject
source code has to be made when just distribution metaob-
jects are used or when security metaobjects are also used.
Security metaobjects can be inserted in our architecture
between fault tolerance and group-based communication
metaobjects.

6.2 About Metaobject Development
A multilevel approach enables group communications to be
disregarded a priori since they are provided by a (next)
metalevel. This does not mean that the properties of group
communication are ignored when developing metaobjects. It
is a core aspect of the design of fault tolerance metaobjects
that must be considered because properties of the communi-
cation system simplifies the fault tolerance solution.

However, the implementation of distributed fault toler-
ance mechanisms implies a strong interaction with group
communication services. For instance, during recovery,
communication metaobjects have to clear some message
queues. This is why the design of communication metaob-
jects has to take into account some aspects of the fault toler-
ance strategies. This is also true for security metaobjects,
e.g., propagating session keys to a new replica during re-
covery must be performed by security metaobjects. This
means that precautions have to be taken when designing
metaobjects; the context of usage has to be precisely defined
and the role of companion metaobjects has to be consid-
ered. Nevertheless, from a practical viewpoint, the fault
tolerance programmer is not responsible for handling calls
to the group communication subsystem but is just involved
in the declarations of object-metaobject links.

This architecture enables other group communication
services to be used, provided they offer the same communi-
cation properties, say, atomic multicast of invocation mes-
sages. The interface to the underlying communication sys-
tem can be different. If the properties provided by the
communication system are weaker (say, global ordering of
message delivery is not provided, such as for Chorus
groups), then there is a strong impact on the design of the
fault tolerance metaobjects because identical input message
delivery cannot be assumed any more. Also, for security
metaobjects the impact might relate to properties of the
communication subsystem with respect to security; if mes-
sages are ciphered by hardware devices at a very low level,
then ensuring confidentiality of message passing does not
rely on the use of metaobjects anymore.

6.3 About the Programming Model
In this architecture, structuring is based on a stack of
metaobjects and, thus, object invocations are trapped recur-
sively by metaobjects in the stack on the client side and exe-

cuted effectively by metaobjects in the stack on the server
side. In fact, the same programming model is used at any
level, either the application or any metalevel. Any remote
object is accessed by a proxy in the client address space.
The protocol between the proxy object and the remote ob-
ject is handled by a pair of metaobjects (client and server).
This simple programming model is very convenient be-
cause it is well understood by both application and system
programmers. At the fault tolerance metalevel, for instance,
the group of server replicas is seen as a single local object,
“the backup,” by the client metaobject. The “group of
backup replicas” is seen as a unique local object by the pri-
mary metaobject replica. This object is associated with a
metaobject handling the communication within the “group
of backups.” At the security metalevel, the authentication
server is seen as a unique and local object also.

6.4 Intermediate Metalevels and Properties
The order of metalevels may vary according to the proper-
ties that must be guaranteed. Except for the last metalevel
(responsible for communications) and the base-level
(application object), a permutation of all intermediate levels
might seem possible and sound. Although this is perfectly
possible from a practical viewpoint (all metaobject classes
share the same metaobject protocol interface), the ordering
actually affects the properties that the final application has.
For instance, if message integrity must also be guaranteed
(e.g., by means of signature computation and verification) on
information added during method invocations by the fault
tolerance metalevel, then the security metalevel must be in-
voked after the fault tolerance metalevel. If message integrity
must just be guaranteed on the application information dur-
ing the method invocation (method and parameters), then
one would expect the security metalevel to be put straight
after the base-level. Suppose, then, that the intermediate lev-
els are organized in the following order: The security
metalevel is put straight after the application level, then the
fault tolerance metalevel, leading, thus, to the following se-
quence (A; SC; FT; GD). When the primary takes a check-
point of the application object, the access to the base-level
state should go through the security metalevel. This implies
that the security metalevel is able to propagate this access
down to its base-level, which is not possible with the
metaobject protocol that we use. Updating the backup state
would also be a problem, because writing base-level attrib-
utes should again go through the security metalevel. This
could be solved by slightly changing the MOP, making both
the base-level and the bottom (application) level accessible,
whatever the location of the metaobject in the stack. Another
solution would be to implement the chaining of metaobjects
using a flat linking, instead of the stack. With the current so-
lution (A; FT; SC; GD) and the simple MOP used, reading or
writing base-level attributes is easily achieved. Moreover,
errors detected by the security metalevel, such as authentica-
tion error after multiple retries, can be delivered to the secu-
rity base-level, i.e., the fault tolerance metalevel which han-
dles recovery actions. Actually, according to the expected
properties of the application, this is the only suitable se-
quence of intermediate levels if both fault tolerance and se-
cure communication are required.
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6.5 Role of Subsystems
Fault tolerance metaobjects implement part of the mecha-
nisms, error processing mainly. They rely on subsystems
implementing services shared by metaobjects. In FRIENDS,
subsystems related to fault tolerance (FTS, GDS) are respon-
sible for error detection, group communication, replication
domains management, object cloning during reconfiguration,
stable storage management. The reasons why these services
are implemented as subsystems on a microkernel are the
following:

• Some services often depend on specialized hardware
components (e.g., watchdog timers for error detec-
tion, fail silent network attachment controllers for
group communication, double memory boards with
autonomous power supply for stable storage); the
corresponding software needs to be run on dedicated
components and needs access to the kernel address
space (e.g., Chorus actors running in supervisor mode
in the implementation of xAMp protocols within
FRIENDS ).

• Some other services need a global view of the distrib-
uted architecture (global view of available nodes,
status and configuration for replication domains man-
agement, for instance) and remote facilities provided
by the microkernel (remote creation microkernel sys-
tem call for object cloning during reconfiguration, for
instance).

• The partition between metaobjects and subsystems is
also interesting for reusing off-the-shelf components; in
FRIENDS, the xAMp software communication service
was reused and implemented as a subsystem on Cho-
rus; the Unix file system was reused as part of the Unix
SCO subsystem available on Chorus Fusion 2.0.

All services provided by subsystems are often manda-
tory for the related metaobject libraries. They are not sub-
ject to change, although metaobjects implementing precise
mechanisms can evolve quite easily.

6.6 Role of Metaobjects and Meta-Functional
Properties

The role of metaobjects may vary according to the meta-
functional property implemented at a metalevel.

6.6.1 Fault Tolerance
This was illustrated already in the previous sections for
tolerating physical faults. Indeed, metaobjects for physical
fault tolerance implement quite a lot of the mechanisms
even if they rely on some mandatory basic services. This
might be different for other types of faults such as software
faults. In this case, most of the mechanisms can be imple-
mented as metaobjects. Subsystems and low-level access to
system software are useless in this case. The difference here
is that metaobject behavior depends on information pro-
vided by the application objects, which was not really the
case when handling physical faults. In the implementation
of recovery blocks or N-version programming, for instance,
the set of versions must be declared by the application pro-
grammer to the metalevel. The adjudicator routines must
also be declared because they are application dependent. In
summary, the application level must parameterise the

metalevel. This may have an impact on the metaobject
protocol.

6.6.2 Security
Providing security in a distributed system involves many
different mechanisms, system structuring, and underlying
properties. In FRIENDS, we have only considered authenti-
cation, confidentiality, and integrity of message passing,
which have proven to be quite easily handled by metaob-
jects. The SCS subsystem is responsible here for user
authentication and key management. The existence of such
a subsystem enables some COTS authentication software to
be integrated within FRIENDS , such as Kerberos. Another
need for this SCS subsystem is that it must be responsible
for permanent keys secure storage. Authorization aspects
have not been considered yet. Nevertheless, it is clear that
these aspects are totally dependent on global information
(user rights) and system structuring (TCB, security kernel).
Ideally, the verification of access rights according to a given
security policy (either for confidentiality or for integrity)
must be implemented by a security kernel that is part of the
microkernel. Moreover, this security kernel must be tam-
per-proof, always invoked, and proven correct. The latter
properties impose design and implementation approaches
that have, to our viewpoint, nothing to do with metaobjects.
The role of the metaobjects in this case is just to trap object
invocations and deliver this invocation to the security ker-
nel for authorization.

6.6.3 Summary
The main interest of the approach is to maximize mecha-
nisms handled within metaobjects. As a consequence,
mechanisms can be more easily updated since they are par-
tially implemented at the user level. It is also a prime objec-
tive to efficiently implement metafunctional properties.
This is why metaobjects and companion subsystems on a
microkernel seems a promising solution. The role of
metaobjects in the implementation of metafunctional prop-
erties may vary a lot; it is worth noting that, for some of
them, the role of metaobjects is not significant (merely an
additional indirection). From an abstract viewpoint,
metaobjects and the corresponding subsystem (including
the microkernel) could be understood as an implementation
of a given metalevel. Although, from a conceptual view-
point, subsystems are part of the metalevel, the motivation
for this implementation was to benefit from the advantages
of both a metalevel architecture (easy configuration of ap-
plications with respect to nonfunctional requirements) and
microkernel technology (easy configuration of the OS).

6.6.4 Limits and Drawbacks.
Those identified so far essentially relate to the MOP that
was used. To overcome a problem due to the static binding
of application classes to metaobject classes, several names
must be given to application classes defining the same be-
havior. In addition, Open C++ V1 provides limited metain-
formation and, thus, application objects have not been im-
plemented using inheritance. However, the latter limit can
be relaxed with a more powerful MOP providing control
over the inheritance tree. Another point concerns the ab-
stractions dealt with. The organization of the metaobject
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stack is possible because neither the security level nor the
communication level need to access the application level.
This is not typical of these abstractions and others, like soft
real-time aspects, could be handled easily in this stack.
Nevertheless, if two metalevels need to access the applica-
tion level, then their respective behavior must be handled at
a single metalevel. Here again, this limit could be relaxed
with a richer MOP allowing systematic access to both the
base-level and the bottom base-level. From a design view-
point of fault tolerance metaobjects, it is also important to
take into account the properties of the underlying group
communication system.

Another lesson we have learned from this experience is
that changing the order of levels in the stack whenever pos-
sible leads to different properties. This must be carefully
analyzed when using several metalevels because such
changes could lead to unexpected side effects, as shown
above. Several other problems are also not easy to solve,
but they are not, to our viewpoint, due to the use of
metaobjects (handling multiple replies, are view changes to
be considered as failures, etc.). Finally, the FRIENDS system
today is very dependent on the language used (Open C++)
and on its homemade object-oriented distributed support. An
alternative approach, using an operational implementation of
the MOP within an object-oriented run-time layer, would be
language independent. CORBA-compliant layers and COTS
(including microkernels) will be considered in the near future.

Dynamic binding of metaobjects was not implemented
in FRIENDS today. Even if dynamic binding may make
validation more difficult, this is possible with a reflective
language approach. In this case, object and metaobjects are
separated runtime entities. Any application object has a
local simple metaobject (based on the MetaObj class in
Open C++) which redirects actions to be done to the effec-
tive metaobject using local communication mechanisms.
The programming interface for the application programmer
is still the same. The implementation of metaobjects
(recovery in particular) must be revised in this case because
of the need to

1) access base level state information,
2) to share information between metaobjects.

6.7 Programming FRIENDS Applications
As shown by the example given in Section 4.2. (Fig. 9),
writing applications on FRIENDS essentially leads to writ-
ing traditional C++ code. The only additional code needed
is the MOP reflect declaration, which connects an object to a
metaobject. In practice, several metaobjects can be used, as
explained in the paper. So, when a client-server application
requires only distribution, then the first and unique decla-
ration corresponds to a distribution metaobject declaration

in both the client and the server. When fault tolerance is
required, then this declaration is replaced by the declara-
tion of fault tolerance metaobjects. Distribution metaobject
are, in this case, declared within fault tolerance metaobjects
(see Fig. 10). From a practical viewpoint, those declarations
can be included automatically in the program by an off-line
configuration tool and can be updated without any user
intervention at compile time.

Because of the language used, a few programming con-
ventions have to be obeyed. For instance, for any class of
objects C, the Open C++ preprocessor generates a reflective
class (refl_C) when C is associated with a metaobject class.
The reflective class must be used instead of the standard
one when reflective objects are created. Because the Open
C++ V1 MOP does not support inheritance, derived classes
must be avoided. Finally, any FRIENDS reflective server
object inherits an init method for initialization and a start
method. The latter method activates the message reception
loop at the communication metalevel.

7 IMPLEMENTATION AND PERFORMANCE ISSUES

7.1 A Prototype Implementation
Two prototypes of FRIENDS are now available, one on
Unix and one on Chorus. Our measurements have been
done with the first prototype on an Ethernet network of
Sun IPC and IPX workstations with SunOS 4, using Open
C++ version 1.2. We also used Sun Sparc Ultras running
Solaris for the measurement of the Open C++ metaobject
protocol overhead. Fig. 20 gives the characteristics of all
these machines.

Several fault tolerance mechanisms (stable storage, pri-
mary-backup, and leader-follower replication in lock-step
mode) have been implemented. GDS includes an object-
oriented extension of the xAMp package (version 3.1) and
the metaobject library provides a support for distributed
applications. The library is comprised of several basic
classes (handling creation/deletion of objects, group regis-
tration and naming, message management, etc.) used for
implementing group-based distribution metaobjects. The
size of the source code for all metaobjects libraries is about
25,000 lines of C++ (xAMp and libraries of cryptographic
functions not included).

Fault tolerance mechanisms have been designed and im-
plemented using inheritance, as described in Section 5.
Metaobjects using a stable storage approach have been im-
plemented first, then a primary-backup strategy, and, finally,
a leader-follower strategy was implemented. Metaobjects
implementing the leader-follower strategy have been de-
rived from the previous one quite easily. In both replication
examples, the inter-replica protocol was also implemented
with a multilevel approach. In FTS, the Unix file system is

type Sparc Station IPC Sparc Station IPX Ultra Sparc 1
OS SunOS 4.1.4 SunOS 4.1.4 Solaris 5.5
RAM 24 MB 32 MB 64 MB
clock 25 MHz 40 MHz 167 MHz
SpecInt92 13.8 21.8 252

Fig. 20. Workstations characteristics.
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used as a stable storage service and failure detection is per-
formed by means of station failure signals provided by
xAMp. Finally, a service manages system configuration and
replication domains in a very simple way.

A first version of the metaobjects handling secure com-
munications has been implemented, based on the Need-
ham-Schroeder authentication protocol with secret keys.
Thus, SCS contains today a simple implementation of a
Needham-Schroeder authentication server used in our ex-
amples; this first implementation can easily be upgraded to
be in accordance with the Kerberos authentication protocol.

The distributed application managing bank accounts,
described in Section 4.2, has been developed. All kinds of
metaobjects have been tested with this application in differ-
ent experiments: First, only distribution metaobjects have
been used, then secure communication and distribution
metaobjects or fault tolerance and distribution metaobjects,
and, finally, fault tolerance, secure communication, and
distribution metaobjects. These various configurations were
obtained by simply changing reflect associations be-
tween objects and metaobjects at compile-time; for easy use,
the corresponding declaration statements are made in-
cluding files and not directly visible in the user source code.
In these experiments, we have also simulated physical faults
(crash failure) and authentication faults (authentication
error, session key expiration). All possible configurations
have been tested and the whole FRIENDS prototype has
been ported to our experimental platform of Chorus-based
i486 PCs, requiring the port of the xAMp package and the
Open C++ compiler.

7.2 Performance Issues
These platforms proved that the properties we expected
could be obtained within the FRIENDS architecture and
application model. The experimental platform was also
used to establish some quantitative performance measures.
The most important result is that the runtime execution
overhead due to the use of a metaobject protocol is negligi-
ble with respect to the runtime execution cost of the
mechanisms implementing metafunctional properties
within the metaobjects. This result was foreseeable; our
experiments confirm it in a quantitative way. We also give
additional information concerning how much execution
time is spent in each metaobject.

7.2.1 Overhead of the Metaobject Protocol
In this section, we compare the execution time of reflective
Open C++ objects and normal C++ objects with respect to
the following operations:

1) object creation/deletion and
2) method invocation with variable number and size of

arguments.

Object creation, invocation, and deletion are empty opera-
tions. The method invocation was performed using either m
arguments of 512 bytes or a unique argument of n × 512
bytes, 0 ≤ m, n ≤ 8. Experiments were done on Sun IPC, IPX,
and Ultra workstations, and each result is the average ob-
tained on 106 executions. The case of an m-argument
method invocation is given in Fig. 21.

The overhead of a reflective object creation/deletion is
approximately 200 percent; it includes metaobject creation
and initialization, plus object/metaobject causal associa-
tion. The overhead of a reflective method call does not de-
pend on the size of the arguments but only on the number
of arguments, with an irreducible overhead of 40 percent.
The total overhead thus increases from approximately 40
percent (no argument) to 100 percent (four arguments). In
terms of absolute execution time, this overhead corre-
sponds to only few microseconds per call.

7.2.2 Individual Cost of the Mechanisms
We give here the individual costs of various basic mecha-
nisms used in the different metaobjects. The measures
given here have been made on Sun IPC and IPX worksta-
tions. Two sorts of costs can be distinguished: the cost of
mechanisms used at object creation time and the cost of
mechanisms used upon method invocation. When creating
an object (replica) on a remote site, a new server process is
launched with a fork/exec UNIX system call; the client and
all the server replicas must join the same service group in
order to communicate. When invoking a method on a re-
mote object, a request and a reply message are multicast in
the service group; additional messages may be sent for the
inter-replica protocol, or write operations may be executed
on the stable storage (NFS in our experiments). Moreover,
the costs of signature computation and verification can be
added to these costs for each message multicast. Measure-
ments of these basic operations on a Sun IPC are reported
in Fig. 22; these values are the average or range obtained on
a thousand executions. Some results depend on the size of
the input data (atomic multicast, writing to stable storage,
signature operations).

The costs reported in Fig. 22 are almost all of a few milli-
seconds. When building a fault-tolerant application, these

Fig. 21. Method call with m arguments.

Remote creation with fork/exec 7 ms
Joining and leaving an xAMp group 10 ms
Atomic multicast within an xAMp group 4–8 ms
Signature computation or verification 5–13 ms
Read operation on stable storage 6 ms
Write operation on stable storage 10–40 ms

Fig. 22. Average execution time of basic operations.
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basic operations are unavoidable and their costs are several
orders of magnitude higher than the cost of the Open C++
metaobject protocol (a few microseconds) used for activat-
ing them. This claim is substantiated in the next section.
7.2.3 Execution Time Decomposition
Here, we study how execution time is distributed among
the various types of metaobjects used within an application.
Extensive experiments were made on the Sun IPC and IPX
workstations using all possible combinations of different
mechanisms within a simple client-server application. The
total execution times were measured in each case, which
allowed their comparison for different mechanisms.

Fig. 23 shows the measures obtained for a set of invoca-
tions within the banking application; each value reported is
the average obtained on 1,000 runs. In this figure, the over-
head resulting from the use of a given type of metaobject
(fault tolerance, security, or distribution) is indicated by a
specific gray level. Nine cases were tested: the application
(1), the application + distribution metaobjects (2), the appli-
cation + security + distribution metaobjects (3), the applica-
tion + fault tolerance + distribution metaobjects (4-6), the
application + fault tolerance + security + distribution
metaobjects (7-9). All types of mechanisms for fault toler-
ance were used: stable storage (4 and 7), primary-backup (5
and 8), and leader-follower (6 and 9).

In all these cases, the execution of the application is short
with respect to the execution of the mechanisms; however,
the execution time of the mechanisms is fixed and does not
depend on the execution time of the application, so it may
become relatively small for higher application method exe-
cution times. The overhead resulting from the use of distri-
bution and security metaobjects is the same in all cases. The
overhead induced by replication protocols (cases 5, 6, 8,
and 9) is significant, but this is probably due to a rather
poor implementation of distribution metaobjects. Finally,
leader-follower replication (cases 6 and 9) has been imple-
mented in lockstep mode, so its execution time is not better
than the execution of the primary-backup protocol.

8 CONCLUSION

This paper summarizes several years of research and the
development of a metaobject architecture for building de-
pendable systems. It describes the FRIENDS system, an
experimental platform that enables object-oriented and

metalevel programming to be used for implementing meta-
functional properties. This architecture also takes advan-
tage of microkernel technology as a way of structuring the
underlying operating system to improve flexibility and effi-
ciency. According to the questions asked in the beginning
of this paper, the lessons we have learned from this work
are rather positive. Although the properties we advocate
are still limited, either by the language used or by its
metaobject protocol, we believe that the new trend opened
by metalevel architectures in our field is very promising.
Clearly, our experiments substantiate and illustrate ideas
that are now being recognized by the dependability re-
search community.

The FRIENDS system is a very suitable platform for ex-
perimenting with object-orientation and metalevel pro-
gramming in various directions. Among them, we have
identified the following: The first one is reusing metaobjects
for implementing new mechanisms with respect to various
fault assumptions and for evaluating how much can be re-
used and what the impact on the existing set of classes is.
The development of a more powerful metaobject protocol
will be done for a more efficient implementation of existing
mechanisms and, also, for the implementation of others
meta-functional properties, mainly related to real-time. We
are currently improving the underlying distributed object-
oriented support using CORBA layers and implementing a
metaobject protocol in this support. Some experiments have
already been done using Open C++ V2. Another interesting
aspect is to analyze alternative ways of designing the
metalevel by different chaining of metaobjects and to allow
dynamic connection between objects and metaobjects. En-
gineering the metalevel is a long term activity. Considering
more advanced computational models and evaluating to
what extent this architecture enables more easy validation
are two future directions of this work within the DeVa
project.

Finally, the approach presented here should be a good
step towards the idea of business objects in and for depend-
able computing. Various programmers specialized in vari-
ous technical fields can cooperate in an attractive fashion
using the approach presented here; this was observed by
the people who contributed to the implementation of the
various prototypes.

Fig. 23. Distribution of execution time.
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