346 research outputs found

    Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching

    Full text link
    We present a deterministic distributed algorithm that computes a (2Δ1)(2\Delta-1)-edge-coloring, or even list-edge-coloring, in any nn-node graph with maximum degree Δ\Delta, in O(log7Δlogn)O(\log^7 \Delta \log n) rounds. This answers one of the long-standing open questions of \emph{distributed graph algorithms} from the late 1980s, which asked for a polylogarithmic-time algorithm. See, e.g., Open Problem 4 in the Distributed Graph Coloring book of Barenboim and Elkin. The previous best round complexities were 2O(logn)2^{O(\sqrt{\log n})} by Panconesi and Srinivasan [STOC'92] and O~(Δ)+O(logn)\tilde{O}(\sqrt{\Delta}) + O(\log^* n) by Fraigniaud, Heinrich, and Kosowski [FOCS'16]. A corollary of our deterministic list-edge-coloring also improves the randomized complexity of (2Δ1)(2\Delta-1)-edge-coloring to poly(loglogn)(\log\log n) rounds. The key technical ingredient is a deterministic distributed algorithm for \emph{hypergraph maximal matching}, which we believe will be of interest beyond this result. In any hypergraph of rank rr --- where each hyperedge has at most rr vertices --- with nn nodes and maximum degree Δ\Delta, this algorithm computes a maximal matching in O(r5log6+logrΔlogn)O(r^5 \log^{6+\log r } \Delta \log n) rounds. This hypergraph matching algorithm and its extensions lead to a number of other results. In particular, a polylogarithmic-time deterministic distributed maximal independent set algorithm for graphs with bounded neighborhood independence, hence answering Open Problem 5 of Barenboim and Elkin's book, a ((logΔ/ε)O(log(1/ε)))((\log \Delta/\varepsilon)^{O(\log (1/\varepsilon))})-round deterministic algorithm for (1+ε)(1+\varepsilon)-approximation of maximum matching, and a quasi-polylogarithmic-time deterministic distributed algorithm for orienting λ\lambda-arboricity graphs with out-degree at most (1+ε)λ(1+\varepsilon)\lambda, for any constant ε>0\varepsilon>0, hence partially answering Open Problem 10 of Barenboim and Elkin's book

    Distributed local approximation algorithms for maximum matching in graphs and hypergraphs

    Full text link
    We describe approximation algorithms in Linial's classic LOCAL model of distributed computing to find maximum-weight matchings in a hypergraph of rank rr. Our main result is a deterministic algorithm to generate a matching which is an O(r)O(r)-approximation to the maximum weight matching, running in O~(rlogΔ+log2Δ+logn)\tilde O(r \log \Delta + \log^2 \Delta + \log^* n) rounds. (Here, the O~()\tilde O() notations hides polyloglog Δ\text{polyloglog } \Delta and polylog r\text{polylog } r factors). This is based on a number of new derandomization techniques extending methods of Ghaffari, Harris & Kuhn (2017). As a main application, we obtain nearly-optimal algorithms for the long-studied problem of maximum-weight graph matching. Specifically, we get a (1+ϵ)(1+\epsilon) approximation algorithm using O~(logΔ/ϵ3+polylog(1/ϵ,loglogn))\tilde O(\log \Delta / \epsilon^3 + \text{polylog}(1/\epsilon, \log \log n)) randomized time and O~(log2Δ/ϵ4+logn/ϵ)\tilde O(\log^2 \Delta / \epsilon^4 + \log^*n / \epsilon) deterministic time. The second application is a faster algorithm for hypergraph maximal matching, a versatile subroutine introduced in Ghaffari et al. (2017) for a variety of local graph algorithms. This gives an algorithm for (2Δ1)(2 \Delta - 1)-edge-list coloring in O~(log2Δlogn)\tilde O(\log^2 \Delta \log n) rounds deterministically or O~((loglogn)3)\tilde O( (\log \log n)^3 ) rounds randomly. Another consequence (with additional optimizations) is an algorithm which generates an edge-orientation with out-degree at most (1+ϵ)λ\lceil (1+\epsilon) \lambda \rceil for a graph of arboricity λ\lambda; for fixed ϵ\epsilon this runs in O~(log6n)\tilde O(\log^6 n) rounds deterministically or O~(log3n)\tilde O(\log^3 n ) rounds randomly

    Distributed CONGEST Approximation of Weighted Vertex Covers and Matchings

    Get PDF
    We provide CONGEST model algorithms for approximating minimum weighted vertex cover and the maximum weighted matching. For bipartite graphs, we show that a (1+ε)(1+\varepsilon)-approximate weighted vertex cover can be computed deterministically in polylogarithmic time. This generalizes a corresponding result for the unweighted vertex cover problem shown in [Faour, Kuhn; OPODIS '20]. Moreover, we show that in general weighted graph families that are closed under taking subgraphs and in which we can compute an independent set of weight at least a λ\lambda-fraction of the total weight, one can compute a (22λ+ε)(2-2\lambda +\varepsilon)-approximate weighted vertex cover in polylogarithmic time in the CONGEST model. Our result in particular implies that in graphs of arboricity aa, one can compute a (21/a+ε)(2-1/a+\varepsilon)-approximate weighted vertex cover. For maximum weighted matchings, we show that a (1ε)(1-\varepsilon)-approximate solution can be computed deterministically in polylogarithmic CONGEST rounds (for constant ε\varepsilon). We also provide a more efficient randomized algorithm. Our algorithm generalizes results of [Lotker, Patt-Shamir, Pettie; SPAA '08] and [Bar-Yehuda, Hillel, Ghaffari, Schwartzman; PODC '17] for the unweighted case. Finally, we show that even in the LOCAL model and in bipartite graphs of degree 3\leq 3, if ε<ε0\varepsilon<\varepsilon_0 for some constant ε0>0\varepsilon_0>0, then computing a (1+ε)(1+\varepsilon)-approximation for the unweighted minimum vertex cover problem requires Ω(lognε)\Omega\big(\frac{\log n}{\varepsilon}\big) rounds. This generalizes aresult of [G\"o\"os, Suomela; DISC '12], who showed that computing a (1+ε0)(1+\varepsilon_0)-approximation in such graphs requires Ω(logn)\Omega(\log n) rounds

    Some Simple Distributed Algorithms for Sparse Networks

    Get PDF
    We give simple, deterministic, distributed algorithms for computing maximal matchings, maximal independent sets and colourings. We show that edge colourings with at most 2D-1 colours, and maximal matchings can be computed within O(log^* n + D) deterministic rounds, where D is the maximum degree of the network. We also show how to find maximal independent sets and (D+1)-vertex colourings within O(log^* n + D^2) deterministic rounds. All hidden constants are very small and the algorithms are very simple

    When Algorithms for Maximal Independent Set and Maximal Matching Run in Sublinear Time

    Get PDF
    Maximal independent set (MIS), maximal matching (MM), and (Delta+1)-(vertex) coloring in graphs of maximum degree Delta are among the most prominent algorithmic graph theory problems. They are all solvable by a simple linear-time greedy algorithm and up until very recently this constituted the state-of-the-art. In SODA 2019, Assadi, Chen, and Khanna gave a randomized algorithm for (Delta+1)-coloring that runs in O~(n sqrt{n}) time, which even for moderately dense graphs is sublinear in the input size. The work of Assadi et al. however contained a spoiler for MIS and MM: neither problems provably admits a sublinear-time algorithm in general graphs. In this work, we dig deeper into the possibility of achieving sublinear-time algorithms for MIS and MM. The neighborhood independence number of a graph G, denoted by beta(G), is the size of the largest independent set in the neighborhood of any vertex. We identify beta(G) as the "right" parameter to measure the runtime of MIS and MM algorithms: Although graphs of bounded neighborhood independence may be very dense (clique is one example), we prove that carefully chosen variants of greedy algorithms for MIS and MM run in O(n beta(G)) and O(n log{n} * beta(G)) time respectively on any n-vertex graph G. We complement this positive result by observing that a simple extension of the lower bound of Assadi et al. implies that Omega(n beta(G)) time is also necessary for any algorithm to either problem for all values of beta(G) from 1 to Theta(n). We note that our algorithm for MIS is deterministic while for MM we use randomization which we prove is unavoidable: any deterministic algorithm for MM requires Omega(n^2) time even for beta(G) = 2. Graphs with bounded neighborhood independence, already for constant beta = beta(G), constitute a rich family of possibly dense graphs, including line graphs, proper interval graphs, unit-disk graphs, claw-free graphs, and graphs of bounded growth. Our results suggest that even though MIS and MM do not admit sublinear-time algorithms in general graphs, one can still solve both problems in sublinear time for a wide range of beta(G) << n. Finally, by observing that the lower bound of Omega(n sqrt{n}) time for (Delta+1)-coloring due to Assadi et al. applies to graphs of (small) constant neighborhood independence, we unveil an intriguing separation between the time complexity of MIS and MM, and that of (Delta+1)-coloring: while the time complexity of MIS and MM is strictly higher than that of (Delta+1) coloring in general graphs, the exact opposite relation holds for graphs with small neighborhood independence
    corecore