

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

SOME SIMPLE DISTRIBUTED ALGORITHMS
FOR SPARSE NETWORKS

Alessandro Panconesi and Romeo Rizzi

2001

Technical Report # DIT-02-0039

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Unitn-eprints Research

https://core.ac.uk/display/11828846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

Some Simple Distributed Algorithms for Sparse Networks

Alessandro Panconesi

DSI

Universit�a La Sapienza di Roma

Romeo Rizzi

BRICS

University of �Arhus

October 26, 2000

Abstract

We give simple, deterministic, distributed algorithms for computing maximal match-

ings, maximal independent sets and colourings. We show that edge colourings with at

most 2� � 1 colours, and maximal matchings can be computed within O(log� n + �)

deterministic rounds, where � is the maximum degree of the network. We also show how

to �nd maximal independent sets and (� + 1)-vertex colourings within O(log� n +�2)

deterministic rounds. All hidden constants are very small and the algorithms are very

simple.

Key words: distributed computing, sparse networks, maximal independent set, maximal

matching, vertex colouring, edge colouring.

1 Introduction

In this paper, we give fast and simple, deterministic distributed algorithms for computing

several graph structures{ maximal matchings, maximal independent sets, and vertex{ and

edge{colourings. The algorithms are very simple and are very fast when the maximum degree

of the network is small. In a distributed context, computing these structures quickly can be

useful to schedule operations, especially i/o transfers (see [2, 3, 4]). The model we consider

is the synchronous, message-passing network. Here, a graph G models a distributed network

or architecture, as follows. Every vertex of G corresponds to a processor and every edge to a

bidirectional communication link. It is also assumed that every processor has its own unique

ID and that this is an integer between 1 and n, the number of vertices of G. This is without

loss of generality because IDs are used only in comparisons with other IDs.

Computation proceeds in a sequence of rounds, where in each round every processor

receives messages from the neighbours, it does some amount of local computation, and sends

messages to the neighbours. The complexity of a distributed algorithm, or protocol, is, by

de�nition, the number of rounds needed by the algorithm to compute. Since typically sending

messages is orders of magnitude more costly than performing a \reasonable" amount of local

computation, this model gives a rough, but reasonably good, approximation of the cost

incurred by distributed protocols. Notice that in particular the cost of sending a message

between two nodes must be at least proportional to their distance in the network. This

1

makes the model orthogonal to the PRAM where communication is completely free and only

computation is charged for. As stated, computation is free in our model but if needed it can

be easily taken into account{ just charge for it! We remark that the algorithms described in

this paper perform very simple local steps and therefore their cost, including computation,

is the same order of magnitude as the stated communication cost. Our results are as follows.

The input to the algorithms is a (distributed) network of maximum degree � and n vertices.

� We give an O(� + log� n) algorithm for computing maximal matchings;

� We give an O(� + log� n) algorithm for computing (2�� 1)-edge colourings;

� We give an O(�2 + log� n) algorithm for computing (� + 1)-vertex colourings;

� We give an O(�2 + log� n) algorithm for computing maximal independent sets.

We remark that the hidden constants here are really small. This makes our algorithms

\local" in the following sense: if we keep � �xed and let n, the number of vertices, grow, the

complexity remains essentially constant.

Comparison with previous work. While maximal matchings can be computed in poly-

logarithmic, in n, time in the distributed model [8], it is a decade old open problem whether

the same running time is achievable for the remaining 3 structures [1, 8, 9, 10]. The maxi-

mal matching algorithm in [8] takes O(log4 n) rounds and therefore this result appears to be

at the moment only of theoretical interest. For bounded degree graphs the situation looks

somewhat better. In particular, Goldberg and Plotkin [5] give algorithms for the problems

we consider whose complexity is O(log� n). At �rst glance this looks better than the com-

plexity of our algorithms, but there is a catch. There is a hidden additive constant which

is at least �� where � is the maximum degree of the network. Therefore our algorithms

compare favourably with those in [5].

In a short but interesting paper, Linial [9] showed that
(log� n) many communication

rounds is a lower bound for computing the graph structures considered in this paper on a

ring topology. This result does not imply the same bound for all constant degree graphs.

Intuitively, low degrees \decrease" the capability of the network to disperse information

quickly. The result however does easily generalize to constant degree graphs (say, �-regular

graphs, for � constant) for maximal independent sets and (� + 1)-vertex colouring (just

replace every edge of the ring with a �-clique). It does not seem to generalize so easily to

maximal matchings and (2� � 1)-edge colourings and we leave this as an open problem. In

the same paper, Linial also showed that within O(log� n) many communication rounds it is

possible to compute vertex colourings using O(�2) many colours.

In [1], a very simple, deterministic vertex colouring algorithm is given whose complexity

is O(� log n) many rounds. The algorithm uses � + 1 many colours (and can be used to

edge colour the network with 2� � 1 colours). With a straightforward modi�cation the

algorithm also computes maximal independent sets (and maximal matchings). Therefore, as

far as maximal independent sets and vertex colourings are concerned, this algorithm is still

asymptotically better than our algorithms for values of � larger than log n. The simplicity

of the algorithm in [1] is comparable to that of our algorithms.

2

2 Generating a Forest Decomposition in Constant Time

Our algorithms are based on a simple procedure which partitions the edge set of the input

network in constant time. The decomposition is generated as follows:

� Let du be the degree of vertex u. Each vertex u, in parallel, ranks the edges incident

upon itself arbitrarily. By ranking we mean that each edge incident upon u receives

a distinct number between 1 and du. We call this number u's proposal for that edge.

Therefore every edge gets two proposals, one for each endpoint.

� The colour of edge uv is de�ned to be the proposal of the endpoint with highest ID.

This procedure partitions the edge set into at most � classes. We now show that each class is

a forest of rooted arborescences. Recall that a rooted arborescence is a rooted, directed tree.

Claim 2.1 For i = 1; : : : ;� let Ei be the set of edges with colour i. Then Fi := (V;Ei) is

a forest of G, for i = 1; : : : ;�. Furthermore, if every edge is oriented from the endnode of

smaller ID to the one of higher ID, then all such forests consist of outward rooted arbores-

cences.

Proof: First we observe that no two edges of the same colour can be oriented towards a same

node, say v. Assume to the contrary that u1v and u2v are two such edges. But v assigns

di�erent proposals to the edges incident to itself, a contradiction.

To conclude the proof we must exclude the existence of directed cycles inside any Fi.

Now, since every edge is oriented from the endnode of smaller ID to the one of higher ID,

we can exclude the existence of directed cycles altogether, since the orientation is induced by

a total order of the nodes. 2

De�nition 2.2 We shall refer to the forest so computed as a forest decomposition of G.

The algorithm works with an arbitrary proposal scheme that orders the edges incident to

a vertex. In particular, the following Algorithm 1 can be adopted:

Algorithm 1 Rooted Trees

1. Each vertex sends its ID number to all of its neighbors;

2. The edges incident upon each vertex are ordered by decreasing ID value of

the other endnode; the rank so obtained is the proposal made by the vertex;

3. Each edge selects the proposal coming from the endnode of higher ID.

3 Matchings and Edge Colourings

In [5], Goldberg et al. give a distributed algorithm to colour the nodes of a rooted arborescence

T with three colours C1; C2; C3 within O(log� n) rounds, provided that each vertex has its

3

own ID, knows its father, and the root knows to be the root. The hidden constant here is

very small. The algorithm was devised for the PRAM model but it is easily veri�ed to be a

bona�de distributed algorithm in our sense. The arborescences of Claim 2.1 satisfy the above

proviso and therefore the procedure of Goldberg et al. can be applied to them.

We start by showing how to compute a maximal matching in a directed tree T within

O(log� n) rounds. Let T be a rooted arborescence whose nodes are partitioned into three

disjoint independent sets C1; C2; C3. If one just chooses a single outgoing edge for every node

in C1, then the edges so selected are independent. Let M1 be this matching and repeat the

operation, now with C2, in the \left over" subtree obtained by removing all nodes in M1.

This will return a matching M2 which can be added to M1, and, repeating with C3, a last

matching M3 is obtained. Let us now show that the resulting edge set M := M1 [M2 [M3

is a maximal matching. First notice that when Mi is computed, the edges selected by the

vertices of colour i do not share endpoints currently in the tree since only outgoing edges

are selected. Second, these edges cannot share endpoints with edges included in a previous

Mj , j < i, because all vertices matched by Mj were removed from the tree. Therefore,

M := M1 [M2 [M3 is a matching. To see that M is maximal, suppose by contradiction

that an edge uv could be added to M . Suppose moreover without loss of generality that u

is the father of v and that C(u) = i 6= j = C(v). Let us consider the time when colour i is

processed, i.e., when Mi is computed. There are two cases. The �rst is that the edge uv is

not present in the tree at that moment. This implies that either u or v has been previously

matched, a contradiction. The other case is that u is present. But then the set of edges

outgoing from u is nonempty, which implies that u will be matched. Again, a contradiction.

Therefore M is maximal.

Since the trees comprising each forest are vertex disjoint, a maximal matching in a forest

can be computed by simultaneously computing maximal matchings in each tree of the forest,

and by adding these matchings together. We have established the following.

Fact 3.1 Let F be a forest of the forest decomposition of G. If F is 3-vertex coloured then,

a maximal matching of F can be computed within 3 communication rounds.

Therefore, denoting by F1; : : : ; F� a forest decomposition of G, and assuming that each

forest is already 3-vertex coloured, a maximal matching M1 [M2 [: : : [M� is obtained

as follows. First, compute a maximal matching M1 in F1, delete the vertices of M1 from

G, thereby obtaining a \left-over" graph G0 together with a \left-over" forest decomposition

F 0

2; : : : ; F
0

�
. Then, compute M2 in F 0

2, remove all nodes in M2, and so on, for a total of �

such phases. The algorithm is spelled out as Algorithm 2.

Clearly, this procedure computes a maximal matching. As noted, computing a 3-vertex

colouring of the forests takes O(log� n) many rounds, since this can be done simultaneously

for all Fi. Building the matching incrementally takes � phases, each of which necessitates

O(1) many rounds.

Theorem 3.1 A maximal matching of G can be computed within O(log� n+�) rounds.

Let us now switch to the problem of computing an edge colouring of G with 2��1 colours

withinO(log� n+�) rounds. One possibility would be to compute in sequence 2��1 maximal

4

Algorithm 2 Match

1. Compute a forest decomposition F1; : : : ; F� of G.

Direct all edges from lower ID node to higher ID node;

2. Compute a 3-vertex colouring of each Fi, in parallel.

Let ci be the colouring of Fi;

3. M := ;;

4. for i := 1 to � do

5. for c := 1 to 3 do

6. Every u such that ci(u) = c selects arbitrarily one of its outgoing edges;

let Mc be the set of edges so selected;

7. M :=M[Mc;

8. Remove all vertices of Mc from the graph.

matchings, but this would take
(�2+log� n) many rounds. We shall then proceed as follows.

Let Fi be a forest of a forest decomposition of G and assume that it is 3-coloured already.

Let c : V (Fi) ! f1; 2; 3g be the 3-colouring. Consider the following partition of E(Fi), the

edge set of Fi, into three sets Ec
i , c = 1; 2; 3, where

Ec
i := fuv : u is the tail and c(u) = cg:

Observation 3.2 Each set Ec
i is made of node-disjoint stars whose centers are the nodes of

Fi of colour c.

Note that the sets Ec
i partition E. Therefore, Algorithm 3, whose correctness will be argued

shortly, computes a (2�� 1)-edge colouring.

Algorithm 3 Edge Color

1. Compute a forest decomposition F1; : : : ; F� of the input graph G and a

3-vertex colouring ci for each Fi;

2. for i = 1; : : : ;� do:

3. for ci = 1; 2; 3 do:

4. The centers of the stars of Ec
i assign di�erent colours from the interval

[1; : : : ; 2� � 1] to the edges in their respective stars, paying attention

not to create conicts with previously coloured edges.

To convince ourselves that Step 4 of the above algorithm can always be carried out, recall

that each edge is adjacent to at most 2� � 2 other edges, and that we are using 2� � 1

colours. Observation 3.2 implies, for given i and c, that the colouring operations of the stars

are always mutually compatible. Therefore the algorithm computes a (2��1)-edge colouring.

The complexity is clearly as stated.

Theorem 3.2 Algorithm 3 computes a (2� � 1)-edge colouring of the input graph G in

O(� + log� n) many communication rounds.

5

4 Vertex Colourings and Maximal Independent Sets

In this section we show how to �nd a proper (� + 1)-colouring of the nodes of G within

O(log� n+�2) deterministic rounds. As a consequence, we will obtain a deterministic proto-

col to �nd a maximal independent set of G within the same bound. Note that the complement

of a maximal independent set is a minimal node cover and also a minimal dominating set.

Therefore, our algorithm applies to these problems as well.

The vertex colouring algorithm is based on the following two ideas. The �rst idea is

that if G is k-vertex coloured, where perhaps k is much larger than �, the maximum degree

of G, the k-colouring can be shrunk to a (� + 1)-vertex colouring simply as follows: For

each i = � + 2;� + 3; : : : ; k, all vertices with colour i, in parallel, recoulor by picking any

available colour in the set f1; : : : ;� + 1g. This is correct since each colour class of the

original k-colouring is an independent set and therefore all recolouring choices are mutually

compatible. The number of rounds needed is k���1. We shall refer to this as the shrinking

procedure.

The second idea is that the problem of (�+1)-vertex colouring G can be reduced to that

of 3-vertex colouring each forest of a forest decomposition of G, as follows. Let F1; : : : ; F�
be the forest decomposition, and let

A :=
[̀

i=1

E(Fi)

be the edge set of the �rst ` forests. Suppose, by induction, that G[A], the subgraph induced

by the edge set A, is (�+1)-vertex coloured already, and that F`+1 is 3-vertex coloured. Let

� and c, respectively, be the two colourings of G[A] and F`+1. Then, (�; c) is a (3� + 3)-

colouring of G[A[F`+1] which can be shrunk to a (�+1)-colouring in 2�+2 rounds by the

shrinking procedure. Here is the resulting Algorithm 4.

Algorithm 4 Color

1. Compute a forest decomposition F1; : : : ; F� of the input graph G and a

3-vertex colouring ci for each Fi;

2. for i = 1; : : : ;� do finclude Fi one at a timeg

3. for k := 1 to � + 1 do fshrink (�; c) to a (� + 1) colouring g

4. for c := 2 to 3 do

5. all vertices u such that �(u) = k and ci(u) = c set �(u) to an arbitrary

colour in the set f1; : : : ;�+ 1g and not assigned to any neighbor

v of u with ci(v) < c.

To obtain a maximal independent set we only need to consider a minor modi�cation

of Algorithm 4. In step 5, instead of assigning u to any available colour, assign u to the

smallest possible colour. Then, when Algorithm 4 terminates colour class 1 will be a maximal

independent set of G. Clearly, each colour class computed by Algorithm 4 is an independent

set. Maximality follows since if �(u) 6= 1 then u has at least one neighbour with colour 1.

6

Remark: These algorithms will work well even if a small portion of the vertices has degree

higher than a parameter � because they can colour themselves after the bulk of the graph

has coloured itself. This might lead to very e�cient algorithms when the network has only

few high degree nodes.

Acknowledgement

All authors gratefully acknowledge the hospitality of BRICS, �Arhus, Denmark, where this

research was performed. We also thank Riccardo Silvestri and Aravind Srinivasan for useful

conversations.

References

[1] B. Awerbuch, A.V. Goldberg, M. Luby, and S.A. Plotkin, Network decomposition and

locality in distributed computation. In 30th Annual Symposium on Foundations of Com-

puter Science, pages 364-369, November 1989. IEEE

[2] R Jain, J Werth, J.C. Browne, and G Sasaki, A graph-theoretic model for the scheduling

problem and its application to simultaneous resource scheduling, in Computer Science

and Operations Research: New Developments in Their Interfaces, Ed. by O.

Balci, R. Shander, and S. Zerrick, Penguin Press, 1992.

[3] R Jain, K. Somalwar, J Werth and J.C. Browne, Scheduling Parallel I/O Operations in

Multiple Bus Systems, Journal of Parallel and Distributed Computing, 16(4), pp. 352-362,

1992.

[4] R Jain and J Werth Analysis of Approximate Algorithms for Constrained and Uncon-

strained Edge Coloring of Bipartite Graphs, DIMACS Technical Report, 95-01 January,

1995, Appeared in Information Processing Letters,

[5] A. Goldberg and S.A. Plotkin, Parallel (�+1)-coloring of constant-degree graphs. Inform.

Process. Lett., 25 (1987), no. 4, 241{245.

[6] A. Goldberg, S. Plotkin and G.E. Shannon, Parallel symmetry breaking in sparse graphs

SIAM J. Disc. Math. Vol. 1, No. 4, pp. 434-446, November 1988

[7] A. Goldberg, M. Luby, S. Plotkin and G.E. Shannon, Parallel symmetry breaking in

sparse graphs SIAM J. Disc. Math. Vol. 1, No. 4, pp. 434-446, November 1988

[8] M. Hanckowiak, M. Karonski and A. Panconesi, A faster distributed algorithm for com-

puting maximal matchings deterministically, in Proceedings of PODC 99, the Eighteenth

Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing.

[9] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., Vol. 21, No. 1,

pp. 193-201, February 1992

[10] N. Linial and M. Saks, Low diameter graph decompositions, Combinatorica (1993), Vol.

13 (4)

7

