34 research outputs found

    High-Speed Clocking Deskewing Architecture

    Get PDF
    As the CMOS technology continues to scale into the deep sub-micron regime, the demand for higher frequencies and higher levels of integration poses a significant challenge for the clock generation and distribution design of microprocessors. Hence, skew optimization schemes are necessary to limit clock inaccuracies to a small fraction of the clock period. In this thesis, a crude deskew buffer (CDB) is designed to facilitate an adaptive deskewing scheme that reduces the clock skew in an ASIC clock network under manufacturing process, supply voltage, and temperature (PVT)variations. The crude deskew buffer adopts a DLL structure and functions on a 1GHz nominal clock frequency with an operating frequency range of 800MHz to 1.2GHz. An approximate 91.6ps phase resolution is achieved for all simulation conditions including various process corners and temperature variation. When the crude deskew buffer is applied to seven ASIC clock networks with each under various PVT variations, a maximum of 67.1% reduction in absolute maximum clock skew has been achieved. Furthermore, the maximum phase difference between all the clock signals in the seven networks have been reduced from 957.1ps to 311.9ps, a reduction of 67.4%. Overall, the CDB serves two important purposes in the proposed deskewing methodology: reducing the absolute maximum clock skew and synchronizes all the clock signals to a certain limit for the fine deskewing scheme. By generating various clock phases, the CDB can also be potentially useful in high speed debugging and testing where the clock duty cycle can be adjusted accordingly. Various positive and negative duty cycle values can be generated based on the phase resolution and the number of clock phases being “hot swapped”. For a 500ps duty cycle, the following values can be achieved for both the positive and negative duty cycle: 224ps, 316ps, 408ps, 592ps, 684ps, and 776ps

    Design Techniques for Energy Efficient Multi-GB/S Serial I/O Transceivers

    Get PDF
    Total I/O bandwidth demand is growing in high-performance systems due to the emergence of many-core microprocessors and in mobile devices to support the next generation of multi-media features. High-speed serial I/O energy efficiency must improve in order to enable continued scaling of these parallel computing platforms in applications ranging from data centers to smart mobile devices. The first work, a low-power forwarded-clock I/O transceiver architecture is presented that employs a high degree of output/input multiplexing, supply-voltage scaling with data rate, and low-voltage circuit techniques to enable low-power operation. The transmitter utilizes a 4:1 output multiplexing voltage-mode driver along with 4-phase clocking that is efficiently generated from a passive poly-phase filter. The output driver voltage swing is accurately controlled from 100-200 mV_(ppd) using a low-voltage pseudo-differential regulator that employs a partial negative-resistance load for improved low frequency gain. 1:8 input de-multiplexing is performed at the receiver equalizer output with 8 parallel input samplers clocked from an 8-phase injection-locked oscillator that provides more than 1UI de-skew range. Low-power high-speed serial I/O transmitters which include equalization to compensate for channel frequency dependent loss are required to meet the aggressive link energy efficiency targets of future systems. The second work presents a low power serial link transmitter design that utilizes an output stage which combines a voltage-mode driver, which offers low static-power dissipation, and current-mode equalization, which offers low complexity and dynamic-power dissipation. The utilization of current-mode equalization decouples the equalization settings and termination impedance, allowing for a significant reduction in pre-driver complexity relative to segmented voltage-mode drivers. Proper transmitter series termination is set with an impedance control loop which adjusts the on-resistance of the output transistors in the driver voltage-mode portion. Further reductions in dynamic power dissipation are achieved through scaling the serializer and local clock distribution supply with data rate. Finally, it presents that a scalable quarter-rate transmitter employs an analog-controlled impedance-modulated 2-tap voltage-mode equalizer and achieves fast power-state transitioning with a replica-biased regulator and ILO clock generation. Capacitively-driven 2 mm global clock distribution and automatic phase calibration allows for aggressive supply scaling

    Clocking and Skew-Optimization For Source-Synchronous Simultaneous Bidirectional Links

    Get PDF
    There is continuous expansion of computing capabilities in mobile devices which demands higher I/O bandwidth and dense parallel links supporting higher data rates. Highspeed signaling leverages technology advancements to achieve higher data rates but is limited by the bandwidth of the electrical copper channel which have not scaled accordingly. To meet the continuous data-rate demand, Simultaneous Bi-directional (SBD) signaling technique is an attractive alternative relative to uni-directional signaling as it can work at lower clock speeds, exhibits better spectral efficiency and provides higher throughput in pad limited PCBs. For low-power and more robust system, the SBD transceiver should utilize forwarded clock system and per-pin de-skew circuits to correct the phase difference developed between the data and clock. The system can be configured in two roles, master and slave. To save more power, the system should have only one clock generator. The master has its own clock source and shares its clock to the slave through the clock channel, and the slave uses this forwarded clock to deserialize the inbound data and serialize the outbound data. A clock-to-data skew exists which can be corrected with a phase tracking CDR. This thesis presents a low-power implementation of forwarded clocking and clock-to-data skew optimization for a 40 Gbps SBD transceiver. The design is implemented in 28nm CMOS technology and consumes 8.8mW of power for 20 Gbps NRZ data at 0.9 V supply. The area occupied by the clocking 0.018 mm^2 area

    LOW-POWER FREQUENCY SYNTHESIS BASED ON INJECTION LOCKING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Precise Timing of Digital Signals: Circuits and Applications

    Get PDF
    With the rapid advances in process technologies, the performance of state-of-the-art integrated circuits is improving steadily. The drive for higher performance is accompanied with increased emphasis on meeting timing constraints not only at the design phase but during device operation as well. Fortunately, technology advancements allow for even more precise control of the timing of digital signals, an advantage which can be used to provide solutions that can address some of the emerging timing issues. In this thesis, circuit and architectural techniques for the precise timing of digital signals are explored. These techniques are demonstrated in applications addressing timing issues in modern digital systems. A methodology for slow-speed timing characterization of high-speed pipelined datapaths is proposed. The technique uses a clock-timing circuit to create shifted versions of a slow-speed clock. These clocks control the data flow in the pipeline in the test mode. Test results show that the design provides an average timing resolution of 52.9ps in 0.18μm CMOS technology. Results also demonstrate the ability of the technique to track the performance of high-speed pipelines at a reduced clock frequency and to test the clock-timing circuit itself. In order to achieve higher resolutions than that of an inverter/buffer stage, a differential (vernier) delay line is commonly used. To allow for the design of differential delay lines with programmable delays, a digitally-controlled delay-element is proposed. The delay element is monotonic and achieves a high degree of transfer characteristics' (digital code vs. delay) linearity. Using the proposed delay element, a sub-1ps resolution is demonstrated experimentally in 0.18μm CMOS. The proposed delay element with a fixed delay step of 2ps is used to design a high-precision all-digital phase aligner. High-precision phase alignment has many applications in modern digital systems such as high-speed memory controllers, clock-deskew buffers, and delay and phase-locked loops. The design is based on a differential delay line and a variation tolerant phase detector using redundancy. Experimental results show that the phase aligner's range is from -264ps to +247ps which corresponds to an average delay step of approximately 2.43ps. For various input phase difference values, test results show that the difference is reduced to less than 2ps at the output of the phase aligner. On-chip time measurement is another application that requires precise timing. It has applications in modern automatic test equipment and on-chip characterization of jitter and skew. In order to achieve small conversion time, a flash time-to-digital converter is proposed. Mismatch between the various delay comparators limits the time measurement precision. This is demonstrated through an experiment in which a 6-bit, 2.5ps resolution flash time-to-digital converter provides an effective resolution of only 4-bits. The converter achieves a maximum conversion rate of 1.25GSa/s

    Design Techniques for High Pin Efficiency Wireline Transceivers

    Get PDF
    While the majority of wireline research investigates bandwidth improvement and how to overcome the high channel loss, pin efficiency is also critical in high-performance wireline applications. This dissertation proposes two different implementations for high pin efficiency wireline transceivers. The first prototype achieves twice pin efficiency than unidirectional signaling, which is 32Gb/s simultaneous bidirectional transceiver supporting transmission and reception on the same channel at the same time. It includes an efficient low-swing voltage-mode driver with an R-gm hybrid for signal separation, combining the continuous-time-linear-equalizer (CTLE) and echo cancellation (EC) in a single stage, and employing a low-complexity 5/4X CDA system. Support of a wide range of channels is possible with foreground adaptation of the EC finite impulse response (FIR) filter taps with a sign-sign least-mean-square (SSLMS) algorithm. Fabricated in TSMC 28-nm CMOS, the 32Gb/s SBD transceiver occupies 0.09mm20.09 mm^{2} area and achieves 16Gb/s uni-directional and 32Gb/s simultaneous bi-directional signals. 32Gb/s SBD operation consumes 1.83mW/Gb/s with 10.8dB channel loss at Nyquist rate. The second prototype presents an optical transmitter with a quantum-dot (QD) microring laser. This can support wavelength-division multiplexing allowing for high pin efficiency application by packing multiple high-bandwidth signals onto one optical channel. The development QD microring laser model accurately captures the intrinsic photonic high-speed dynamics and allows for the future co-design of the circuits and photonic device. To achieve higher bandwidth than intrinsic one, utilizing both techniques of optical injection locking (OIL) and 2-tap asymmetric Feed-forward equalizer (FFE) can perform 22Gb/s operation with 3.2mW/Gb/s. The first hybrid-integration directly-modulated OIL QD microring laser system is demonstrated

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    INJECTION-LOCKING TECHNIQUES FOR MULTI-CHANNEL ENERGY EFFICIENT TRANSMITTER

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore