4,250 research outputs found

    Log-Euclidean Bag of Words for Human Action Recognition

    Full text link
    Representing videos by densely extracted local space-time features has recently become a popular approach for analysing actions. In this paper, we tackle the problem of categorising human actions by devising Bag of Words (BoW) models based on covariance matrices of spatio-temporal features, with the features formed from histograms of optical flow. Since covariance matrices form a special type of Riemannian manifold, the space of Symmetric Positive Definite (SPD) matrices, non-Euclidean geometry should be taken into account while discriminating between covariance matrices. To this end, we propose to embed SPD manifolds to Euclidean spaces via a diffeomorphism and extend the BoW approach to its Riemannian version. The proposed BoW approach takes into account the manifold geometry of SPD matrices during the generation of the codebook and histograms. Experiments on challenging human action datasets show that the proposed method obtains notable improvements in discrimination accuracy, in comparison to several state-of-the-art methods

    Graph Representation Learning in Biomedicine

    Full text link
    Biomedical networks are universal descriptors of systems of interacting elements, from protein interactions to disease networks, all the way to healthcare systems and scientific knowledge. With the remarkable success of representation learning in providing powerful predictions and insights, we have witnessed a rapid expansion of representation learning techniques into modeling, analyzing, and learning with such networks. In this review, we put forward an observation that long-standing principles of networks in biology and medicine -- while often unspoken in machine learning research -- can provide the conceptual grounding for representation learning, explain its current successes and limitations, and inform future advances. We synthesize a spectrum of algorithmic approaches that, at their core, leverage graph topology to embed networks into compact vector spaces, and capture the breadth of ways in which representation learning is proving useful. Areas of profound impact include identifying variants underlying complex traits, disentangling behaviors of single cells and their effects on health, assisting in diagnosis and treatment of patients, and developing safe and effective medicines

    Fast depth-based subgraph kernels for unattributed graphs

    Get PDF
    In this paper, we investigate two fast subgraph kernels based on a depth-based representation of graph-structure. Both methods gauge depth information through a family of K-layer expansion subgraphs rooted at a vertex [1]. The first method commences by computing a centroid-based complexity trace for each graph, using a depth-based representation rooted at the centroid vertex that has minimum shortest path length variance to the remaining vertices [2]. This subgraph kernel is computed by measuring the Jensen-Shannon divergence between centroid-based complexity entropy traces. The second method, on the other hand, computes a depth-based representation around each vertex in turn. The corresponding subgraph kernel is computed using isomorphisms tests to compare the depth-based representation rooted at each vertex in turn. For graphs with n vertices, the time complexities for the two new kernels are O(n 2) and O(n 3), in contrast to O(n 6) for the classic GĂ€rtner graph kernel [3]. Key to achieving this efficiency is that we compute the required Shannon entropy of the random walk for our kernels with O(n 2) operations. This computational strategy enables our subgraph kernels to easily scale up to graphs of reasonably large sizes and thus overcome the size limits arising in state-of-the-art graph kernels. Experiments on standard bioinformatics and computer vision graph datasets demonstrate the effectiveness and efficiency of our new subgraph kernels

    Concept for a Web Map Implementation with Faster Query Response

    Get PDF
    Vector data and in particular road networks are being used in many application domains such as in mobile computing. These systems would prefer to receive the query results very quickly. Lots of research is going on to make the query response faster. One technique is to compress vector data so that they can be transferred to the client quickly. If we look different compression technique that are used to make the response faster, we will see that some of them do not make the response fast enough and some of them make response fast but very complex to implement. We report the concept for the implementation of a web map with a simple compression technique to send query response to the client, and found it making response fast. We have used some open source/free components to make the development quick and easy. This paper may work as a guide line for quick implementation of a web map. Keywords: Web Map, PostGIS, Geoserver, GeoWebCache, Compression

    Bayesian nonparametric clusterings in relational and high-dimensional settings with applications in bioinformatics.

    Get PDF
    Recent advances in high throughput methodologies offer researchers the ability to understand complex systems via high dimensional and multi-relational data. One example is the realm of molecular biology where disparate data (such as gene sequence, gene expression, and interaction information) are available for various snapshots of biological systems. This type of high dimensional and multirelational data allows for unprecedented detailed analysis, but also presents challenges in accounting for all the variability. High dimensional data often has a multitude of underlying relationships, each represented by a separate clustering structure, where the number of structures is typically unknown a priori. To address the challenges faced by traditional clustering methods on high dimensional and multirelational data, we developed three feature selection and cross-clustering methods: 1) infinite relational model with feature selection (FIRM) which incorporates the rich information of multirelational data; 2) Bayesian Hierarchical Cross-Clustering (BHCC), a deterministic approximation to Cross Dirichlet Process mixture (CDPM) and to cross-clustering; and 3) randomized approximation (RBHCC), based on a truncated hierarchy. An extension of BHCC, Bayesian Congruence Measuring (BCM), is proposed to measure incongruence between genes and to identify sets of congruent loci with identical evolutionary histories. We adapt our BHCC algorithm to the inference of BCM, where the intended structure of each view (congruent loci) represents consistent evolutionary processes. We consider an application of FIRM on categorizing mRNA and microRNA. The model uses latent structures to encode the expression pattern and the gene ontology annotations. We also apply FIRM to recover the categories of ligands and proteins, and to predict unknown drug-target interactions, where latent categorization structure encodes drug-target interaction, chemical compound similarity, and amino acid sequence similarity. BHCC and RBHCC are shown to have improved predictive performance (both in terms of cluster membership and missing value prediction) compared to traditional clustering methods. Our results suggest that these novel approaches to integrating multi-relational information have a promising future in the biological sciences where incorporating data related to varying features is often regarded as a daunting task

    Network-based methods for biological data integration in precision medicine

    Full text link
    [eng] The vast and continuously increasing volume of available biomedical data produced during the last decades opens new opportunities for large-scale modeling of disease biology, facilitating a more comprehensive and integrative understanding of its processes. Nevertheless, this type of modelling requires highly efficient computational systems capable of dealing with such levels of data volumes. Computational approximations commonly used in machine learning and data analysis, namely dimensionality reduction and network-based approaches, have been developed with the goal of effectively integrating biomedical data. Among these methods, network-based machine learning stands out due to its major advantage in terms of biomedical interpretability. These methodologies provide a highly intuitive framework for the integration and modelling of biological processes. This PhD thesis aims to explore the potential of integration of complementary available biomedical knowledge with patient-specific data to provide novel computational approaches to solve biomedical scenarios characterized by data scarcity. The primary focus is on studying how high-order graph analysis (i.e., community detection in multiplex and multilayer networks) may help elucidate the interplay of different types of data in contexts where statistical power is heavily impacted by small sample sizes, such as rare diseases and precision oncology. The central focus of this thesis is to illustrate how network biology, among the several data integration approaches with the potential to achieve this task, can play a pivotal role in addressing this challenge provided its advantages in molecular interpretability. Through its insights and methodologies, it introduces how network biology, and in particular, models based on multilayer networks, facilitates bringing the vision of precision medicine to these complex scenarios, providing a natural approach for the discovery of new biomedical relationships that overcomes the difficulties for the study of cohorts presenting limited sample sizes (data-scarce scenarios). Delving into the potential of current artificial intelligence (AI) and network biology applications to address data granularity issues in the precision medicine field, this PhD thesis presents pivotal research works, based on multilayer networks, for the analysis of two rare disease scenarios with specific data granularities, effectively overcoming the classical constraints hindering rare disease and precision oncology research. The first research article presents a personalized medicine study of the molecular determinants of severity in congenital myasthenic syndromes (CMS), a group of rare disorders of the neuromuscular junction (NMJ). The analysis of severity in rare diseases, despite its importance, is typically neglected due to data availability. In this study, modelling of biomedical knowledge via multilayer networks allowed understanding the functional implications of individual mutations in the cohort under study, as well as their relationships with the causal mutations of the disease and the different levels of severity observed. Moreover, the study presents experimental evidence of the role of a previously unsuspected gene in NMJ activity, validating the hypothetical role predicted using the newly introduced methodologies. The second research article focuses on the applicability of multilayer networks for gene priorization. Enhancing concepts for the analysis of different data granularities firstly introduced in the previous article, the presented research provides a methodology based on the persistency of network community structures in a range of modularity resolution, effectively providing a new framework for gene priorization for patient stratification. In summary, this PhD thesis presents major advances on the use of multilayer network-based approaches for the application of precision medicine to data-scarce scenarios, exploring the potential of integrating extensive available biomedical knowledge with patient-specific data
    • 

    corecore