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ABSTRACT 

BAYESIAN NONPARAMETRIC CLUSTERINGS IN 
RELATIONAL AND HIGH-DIMENSIONAL SETTINGS 

WITH APPLICATIONS IN BIOINFORMATICS 

By 

Dazhuo Li 

March 23, 2012 

Recent advances in high throughput methodologies offer researchers the ability to understand com

plex systems via high dimensional and multi-relational data. One example is the realm of molecular 

biology where disparate data (such as gene sequence, gene expression, and interaction information) 

are available for various snapshots of biological systems. This type of high dimensional and multi

relational data allows for unprecedented detailed analysis, but also presents challenges in accounting 

for all the variability. High dimensional data often has a multitude of underlying relationships, each 

represented by a separate clustering structure, where the number of structures is typically unknown 

a priori. 

To address the challenges faced by traditional clustering methods on high dimensional and multi

relational data, we developed three feature selection and cross-clustering methods: 1) infinite re

lational model with feature selection (FIRM) which incorporates the rich information of multi

relational data; 2) Bayesian Hierarchical Cross-Clustering (BHCC), a deterministic approximation 

to Cross Dirichlet Process mixture (CDPM) and to cross-clustering; and 3) randomized approxi

mation (RBHCC), based on a truncated hierarchy. An extension of BHCC, Bayesian Congruence 

Measuring (BCM), is proposed to measure incongruence between genes and to identify sets of con

gruent loci with identical evolutionary histories. We adapt our BHCC algorithm to the inference of 

BCM, where the intended structure of each view (congruent loci) represents consistent evolutionary 

processes. 

We consider an application of FIRM on categorizing mRNA and microRNA. The model uses la-
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tent structures to encode the expression pattern and the gene ontology annotations. We also apply 

FIRM to recover the categories of ligands and proteins, and to predict unknown drug-target inter

actions, where latent categorization structure encodes drug-target interaction, chemical compound 

similarity, and amino acid sequence similarity. BHCC and RBHCC are shown to have improved pre

dictive performance (both in terms of cluster membership and missing value prediction) compared 

to traditional clustering methods. Our results suggest that these novel approaches to integrating 

multi-relational information have a promising future in the biological sciences where incorporating 

data related to varying features is often regarded as a daunting task. 
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CHAPTER 1 

INTRODUCTION 

The research presented in this dissertation focuses on Bayesian non parametric techniques to cluster

ing in relational and high-dimensional settings, as well as its application in aiming to solve challenging 

biological problems. The complexity of nature and the inevitable lack of detailed observations make 

human understanding of biological systems extremely challenging. Steady progress towards the goal 

are achieved by successful integration of inferential methods (e.g. statistical modeling, graph theory, 

Bayesian network, causality models) and biological data (e.g. randomized observations and carefully 

designed experiments). One of the fundamental building blocks in human understanding of nature 

is categorization. Biologically sensible categories of genes, proteins and chemical ligands, although 

abstracted and simplified representation of the dynamic causal machinery underlying complex bio

logical systems, may capture many of the system's essential characteristics. Despite the development 

of high-throughput experimental methods of molecular biology, which generate detailed high dimen

sional and relational data, our understanding is still hindered substantially by the lack of appropriate 

methodologies for extracting complex patterns effectively from many resources available. 

Statistical modeling aims to derive from observations a summarized interpretation which can be 

used to predict future events. Parametric statistical modeling assumes that the observations have 

been generated from a parametrized probability distribution where the parameters are unknown and 

estimated from the likelihood function. Bayesian modeling puts parameters on the same concep

tuallevel as observations such that the parameters are modeled through probability distributions as 

well. Both classical and Bayesian parametric modeling require a fixed and finite number of parame

ters. To avoid over-fitting or under-fitting caused by the inappropriate complexity assumption of a 

model, model selection and comparison techniques are applied along with the process of parameter 

estimation. Bayesian nonparametrics incorporates infinite dimensional parameters into models and 

automatically adjusts model complexity to the data. There has been a great deal of previous work 
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applying Bayesian and nonparametric Bayesian methods to a broad range of scientific fields, includ

ing density estimation and clustering [Escobar and West, 1995, Rasmussen, 2000, Beal et al., 2002, 

Teh et al., 2003, Heller and Ghahramani, 2005a], document modeling [Blei et al., 2003, Rosen-Zvi 

et al., 2004, Li and McCallum, 2006, Blei et al., 2004], visual detection and object recognition [Sud

derth et al., 2003, Sigal et al., 2004, Fei-Fei and Perona, 2005, Li et al., 2009], and bioinformatics 

[Medvedovic and Sivaganesan, 2002, Savage et al., 2009]. 

To address the challenges faced by traditional clustering methods on high dimensional and multi

relational data, we developed three feature selection and cross-clustering methods. We represent the 

extended clustering problems in these novel settings using a Bayesian non parametric approach and 

probabilistic graphical model. Similar to finite mixtures or Dirichlet process mixtures, we assume 

each data point is generated by a mixture of distributions rather than a standard distribution 

(e.g. Gaussian distribution). As a result, analytical inference is not possible for the presented 

models of this dissertation. We provide general procedures for Bayesian inference, learning, and 

prediction. Alternatively, by integrating greedy and randomized algorithmic techniques, we provide 

more scalable inference algorithms while still retaining the desirable properties from a Bayesian 

paradigm. First, we propose joint feature selection and infinite relational model (FIRM) which allows 

for more robust collective inference and often results in significant performance gains. Traditional 

IRMs define the same form of mixture density functions over all features, and feature selection, an 

essential part of clustering, is ignored or must be done prior to the application of the methods. In 

contrast with these methods, FIRM incorporates latent variables of features to explicitly represent 

feature saliency in a relational context and results in structures with more intuitive interpretation 

and better prediction accuracy. By recasting the feature selection problem as parameter estimation, 

FIRM is able to efficiently avoid the combinatorial search through the space of all feature subsets. 

Second, we propose Bayesian Hierarchical Cross-Clustering (BHCC), a greedy and deterministic 

approximation to CDPM which relaxes the single-DPM assumption, allowing the possibility of one 

data set having multiple different views of clusterings. This provides the capability to separate 

structured features from noisy features and the ability to identify cases where different dimensions 

of the data are best described by different DPMs. Third, we provide a more efficient computational 

algorithm, the randomized BHCC (RBHCC), based on a randomization and truncated hierarchy, 

that scales linearly in the number of dimensions and data points; last, an extension of BHCC, 

Bayesian Congruence Measuring (BCM), is proposed to measure incongruence between genes and 

to identify sets of congruent loci with identical evolutionary histories. 

To validate the methods performance, we first perform experiments and compare the methods' 
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prediction accuracy. Our results show that FIRM, by incorporating feature selection into relational 

learning, are more robust to noise, and adjust better to model complexity. This leads to a more 

intuitive interpretation and greater predictive accuracy. Meanwhile, results on synthetic and real

world data sets demonstrate that the cross-clustering based algorithms perform as well or better 

than the dustering based algorithms, our deterministic approaches perform as well as the MCMC

based CDPM, and the randomized approximation provides a remarkable speed-up relative to the 

full deterministic approximation with minimal cost in predictive error. As particular examples, we 

consider applications of these methods in bioinformatics. First, we apply FIRM on the discovery 

of microRNA and mRNA modules. MicroRNA (miRNA) plays an important role in biological pro

cesses by translational repression or degradation of mRNAs. For the later case, the expression levels 

of genes may be substantially affected by miRNAs. It is thus interesting to discover co-expressed 

mRNAs and miRNAs that are potentially involved in the same regulatory network. FIRM takes 

an miRNA-mRNA correlation matrix and gene ontology (GO) annotation data as the input, and 

aims to find mRNA and miRNA clusterings that yield dean blocks representing co-expression and 

potentially co-regulatory relationships between the genes and miRNAs. The results suggest inter

esting gene modules and GO terms. Second, we study the identification of interactions between 

ligands (chemical compounds, drugs) and proteins (receptors, targets), which is an important step 

of drug discovery. Various data types have been collected for drug-target interaction prediction, 

including chemical compound descriptors, protein sequences, ligand-target bindings and pharma

ceutical effects. We apply a special case of FIRM (where all input data are relational) to jointly 

detect biologically sensible ligand groups and protein groups, and to predict drug-target interac

tions. Third, we demonstrate BCM on estimating the phylogeny relationships amongst ray-finned 

fish (Act-inopterygii) with 10 alignments of protein-coding genes. BCM accounts for evolutionary 

heterogeneities and identifies congruent gene subsets using Bayesian hypothesis testing, and approx

imates the posterior probability of genes being congruent in a fast deterministic manner. The result 

shows that the model recovers interesting congruence structure among genes. A brief description of 

our approaches in this dissertation are outlined as follows. 

Chapter 2: Bayesian Methods 

We begin by reviewing a broad range of topics on both Bayesian methods upon which the models 

in this dissertation are based. We first describe the fundamental concept of Bayesian learning in 

the world of uncertainty. We then provide an introduction to the exponential families of probability 

distributions and conjugate priors which are used extensively in later chapters. Turning to clustering 
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and probability density estimation, we discuss several algorithms based on different formulations or 

inference techniques, including K-means, maximum likelihood estimation, and maximum a posterior 

estimation. The chapter concludes with an introduction to the Dirichlet process, which is widely 

used in Bayesian nonparametric statistics. We cover the probabilistic theory underlying these robust 

methods, before discussing the learning algorithms. 

Chapter 3: Molecular Biology 

Chapter 3 begins with a brief introduction to molecular biology, followed by a description of mi

croarray experiment technology. Turning to molecular evolution, we describe nucleotide substitution, 

which is the basic process in the evolution of DNA sequences and is fundamental for estimating the 

rate of evolution and for reconstructing the evolutionary history of organisms. We then survey 

several different model-based methods for molecular phylogenetics, including maximum likelihood 

estimation and MCMC sampling algorithms. 

Chapter 4: Infinite Relational Model with Feature Selection 

In chapter 4, we develop a novel Bayesian nonparametric model for simultaneous feature selection 

and clustering. We begin by reviewing unsupervised feature selection, which aims to discover a 

subset of features representing the structure of greatest interest. We then propose FIRM (a joint 

Feature selection and Infinite Relational Model) which aims to address the drawbacks of traditional 

algorithms due to the absence of class labels and prior knowledge of the underlying structure. Via 

latent graphical model and the Chinese Restaurant Process, FIRM fuses feature data and the rich 

information contained in different relational data, which are increasingly available for many problem 

domains. Although an analytic solution is not possible in FIRM for the same reason as in other 

mixture models (e.g DPM) where data are represented by a mixture of distributions rather than a 

standard distribution, through MCMC and Gibbs sampling, we provide an efficient inference method 

for learning the posterior distribution of the latent structures. We conclude by validating FIRM's 

performance in clustering and predicting hand-written digits. 

Chapter 5: Application of FIRM on Biological Problems 

The fifth chapter considers applications of FIRM to challenging problems in Bioinformatics. We 

begin with the problem of discovering biological sensible groups of mRN A and microRN A. The model 

encodes latent categorization of mRNA and microRNA, and the latent saliency of gene ontology 

terms. The latent structures further encode the gene expressions of microRN A and mRN A, and 
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the gene ontology annotation mappings. Applying blocked Gibbs sampling, we iteratively and 

repetitively draw different parts of the latent structures from their posterior distributions. We then 

apply FIRM to detect biologically sensible ligand (drug) groups and target (protein) groups and to 

predict drug-target interactions. The model encodes latent categorization structure of drugs and 

proteins, which in turn encodes drug-target interaction, chemical compound similarity, and amino 

acid sequence similarity. 

Chapter 6: Bayesian Hierarchical Cross-Clustering 

In chapter 6, we develop an approximate inference algorithm for the Cross Dirichlet Process Mixture 

(CDPM) model which accounts for a more complex structure than the Dirichlet Process Mixture 

(DPM) model. Standard clustering models, for example the DPM, assume a single clustering struc

ture to account for all the variability in the data. However, as the number of dimensions increases, 

the assumption becomes less realistic and effective in explaining the heterogeneity in the data. We 

begin by reviewing an alternative set of clustering algorithms, which relax the traditional assumption 

and allow for multiple views, each describing the data using a subset of the dimensions. Standard 

joint feature selection and clustering also boils down to the case where the number of views is fixed 

and known, and is two. Motivated further by the fact that typically the number of views is not known 

a priori, we describe the CDPM model that allows potentially many views, and infers the correct 

number for a given data set. We then propose Bayesian Hierarchical Cross-Clustering (BHCC), a 

greedy and deterministic approximation to CDPM. Our bottom-up, deterministic approach results 

in a hierarchical clustering of dimensions, and at each node, a hierarchical clustering of data points. 

We also provide a more efficient computational algorithm, the randomized BHCC (RBHCC), based 

on a randomization and truncated hierarchy, that scales linearly in the number of dimensions and 

data points. We conclude by validating BHCC and RBHCC's predictive performance on synthetic 

and real-world data sets. 

Chapter 7: Bayesian Congruence Measuring in Phylogenomics 

In this chapter, we generalize our BHCC algorithm to the more complex field of molecular evolu

tionary biology. We begin by describing the gene incongruence problem whereby separate molecular 

phylogenies inferred from individual loci disagree with each other. This incongruence among phy

logenies can be the result of systematic error, but can also be the result of different evolutionary 

histories. We review different methodologies for measuring gene incongruence. We then present 

Bayesian Congruence Measuring (BCM) to estimate the degree of incongruence and to identify sets 
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of congruent loci within which the evolutionary histories are identical. The inference for BCM is 

adapted from our BHCC algorithm. Instead of clustering structures, The intended structure of each 

view (congruent loci) in BCM represents evolutionary processes rather than clustering structures as 

originally developed for CDPM. We demonstrate the method on a gene sequence data of 10 nuclear 

genes from 20 ray-finned fish (Actinopterygii) species. 

Chapter 8: Summary and Future Work 

We conclude by surveying the contributions of this dissertation, and outline directions for future 

research. 
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CHAPTER 2 

BAYESIAN METHODS 

Probabilistic modeling methods play an essential role in the design and analysis of complex systems. 

We review several probabilistic learning techniques upon which our contributions are based. The 

fundamental concept of Bayesian learning is described in Sec. 2.1. Sec. 2.2 describes exponential 

families of probability distributions, highlighting sufficiency and conjugacy, two properties essential 

to Bayesian learning. Mixture based density estimation and clustering are discussed in Sec. 2.3, 

followed by Sec. 2.4, an introduction to Dirichlet process and its mixtures, a Bayesian nonparametric 

method more robust and flexible than finite mixtures. 

2.1 Bayesian Inference 

From a Bayesian perspective, probabilities represent degrees of belief about events in the world, 

and data are used to update those degrees of belief [Pearl, 2009, Jaynes, 2003, MacKay, 2003]. The 

events, or generative models which give rise to the data, can be deterministic and expressed in the 

form of deterministic functions, or stochastic and expressed in the form of probabilistic functions. 

Intuitively, the updated degree of belief about an event should reflect both our prior belief about the 

event and the plausibility of data being generated by the event. Formally, according to Bayes' rule, 

the beliefs over models given the data is expressed by the posterior distribution (or posterior 

belief) of models: 

p(mID) 
p(m)p(Dlm) 

p(D) 
N 

exp(m) II p(xnlm) 
n=l 
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(2.1) 

(2.2) 



where m denotes the model, D denotes the data, p( m) is the prior distribution (or prior belief) 

over the model, and p(Dlm) is the likelihood of the model given the data. 

In many situations, statistical models are used to predict future observations given current ob-

servations. Since it is uncertain which events have generated the observed data, it is important to 

account for all the possibilities. The predictive distribution of a new observation X* is: 

M 

p(x*ID) = L p(x*lm)p(mID) (2.3) 
m=l 

Note that the posterior distribution p(mID) represents the updated degree of beliefs over the models. 

In statistical modeling, standard models are usually defined as a certain type of parametric 

probability distributions. The likelihoods are usually written as p(DI8), with 8 as the parameters of 

the model m. Similarly, the prior distributions are usually written as p( 81..\), which is typically itself 

a member of a family of densities with hyperparameters ..\. Recursively, the hyperparameters may 

also be placed in a prior distribution p(..\). For the moment, we assume these hyperparameters are 

set to some fixed value. Then the posterior distribution of the parameters can be written 

(81D ..\) =p(81"\)p(DI8, ..\) 
p, p(D) (2.4) 

N 

cxp(81..\) II p(xnI 8) (2.5) 
n=l 

The predictive distribution then takes the form: 

p(x*ID,..\) = J p(x*18)p(8ID, ..\)d8 (2.6) 

Contrary to the Bayesian paradigm, one may choose to ignore the uncertainty over the events and 

search for a point-estimate of the parameters. One such choice is to approximate the parameters' 

posterior distribution (Eq. 2.4) by a single maximum a posteriori (MAP) estimate: 

OMAP = argmaxp(8ID,..\) 
(J 

N 

= argrnaxp(81..\) II p(xnI 8) 
(J n=l 

N 

= argmax(logp(81..\) + L logp(xnI8)) 
(J n=l 

8 

(2.7) 

(2.8) 

(2.9) 



Another popular choice is the maximum likelihood (ML) parameter estimate: 

OML = arg ma..xp(DI8, A) 
() 

N 

=argmax L)ogp(xnI8)) 
() n=l 

2.2 Exponential Family 

(2.10) 

(2.11) 

Exponential family represents a broad class of probability distributions having many important 

properties (e.g. sufficient statistics, conjugate priors) in common. This section studies several 

probability distributions in the exponential family. 

2.2.1 Distribution on Binary Variables 

Bernoulli Distribution 

Consider a binary random variable x E {O, I}. The probability of x = 1 is parameterized by fL: 

p(x = 11fL) = fL where 0 :s: IL :s: 1). The probability distribution over x can also be written in the 

form 

(2.12) 

which is know as the Bernoulli distribution. The mean and variance of the distribution has the 

following simple form 

E[x] = fL 

var[x] = fL(l - fL) 

Given N i.i.d. observations as in Eq. 2.12, the likelihood function on fL is 

N N 

p(DlfL) = II P(XnlfL) = II fL x
" (1 - fL/- Xn 

n=l n=l 

9 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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Figure 2.1: Examples of beta distributions. (Left) Beta densities with small hyperparameters. 
(Right) Beta densities with large hyperparameters. 

The maximum likelihood estimate of the parameter J..L given D is obtained by setting the derivative 

of 10gp(DIJ..L) with respect to J..L equal to zero: 

1 N 
P-ML = N L Xn 

n=l 

Here 2::=1 xn is a sufficient statistic for the observations under Bernoulli distribution. 

Beta P riors 

(2.17) 

The b eta distribution is the conjugate prior for the Bernoulli distribution and the binomial distri

bution. The beta distribution with hyperparameters a, b can be written as follows: 

( ) r(a + b) a-1( )b-1 
Beta J..L la,b = f(a)r(b)J..L 1- J..L (2.18) 

The normalization constant of beta distribution involves a ratio of gamma functions (r(x)). The 

mean and variance of the beta distribution has the following simple form 

lE[p] = _a_
b a+ 

ab 
var[p] - -:---...."..,...-----:

- (a + b)2(a + b + 1) 

(2.19) 

(2.20) 

Fig. 2.1 illustrates several beta distributions. When a = b = 1, it assigns equal probability to all 

possible value of J..L. Small hyperparameters indicates biased priors. Large hyperparameters lead to 

unimodal priors concertrated on the chosen mean. 
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Conjugate Posteriors and Predictions 

The posterior distribution of J.l given observations D = {Xl, ... , X N} and hyperparameters a, b is 

derived as follows 

C N-C f(a + b) a-1 b-1 
p(J.lID,a,b) = J.l (1 - J.l) f(a)f(b)11 (1- J.l) 

ex Beta( a + C - 1, b + N - C - 1) 

(2.21 ) 

(2.22) 

(2.23) 

where C = L~=l. We see that through conjugacy, the posterior (Eq. 2.21) has the same functional 

dependence on J.l as the prior distribution. 

The predictive function of a future observation x* (as in Eq. 2.6) is often of interest. For 

binomial-beta, this takes the form 

p(x = liD, a, b) = J p(x = 1 1J.l)p(J.l1 D, a, b)dJ.l = lE[J.lID, a, b] 

a+C 
a+b+N 

(2.24) 

(2.25) 

which can be interpreted as the fraction of the total observations corresponding to x = 1 (including 

both real observations and prior believed observations). Comparing this posterior mean (Eq. 2.24) 

to the ML estimate as in Eq. 2.17, we see that in the limit of an infinitely large data set, the 

result reduces to the MLE. the raw frequencies underlying the ML estimate. The raw frequencies 

underlying ML estimate have been smoothed by the fictitious counts contributed by the Beta prior. 

2.2.2 Distribution on Multinomial Variables 

Multinomial Distribution 

Consider a random variable x taking one of K mutually exclusive discrete values in {I, ... ,K}. If 

we denote the probability of Xk = 1 by the parameter J.lk, then the probability distribution of p(x) 

is 

K 

II 8(x k) 
P(Xl/l1'··· ,J.lK) = J.lk· 

k=l 

1 ifx=k 
(2.26) 

o ifx#k 
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It is convenient to adopt the l-of-K scheme in which the variable is represented by a K-dimensional 

vector x such that if the variable is in state k, then Xk = 1 and Xi = 0 for i =1= k. As a result, the 

distribution p(x) in Eq. 2.26 is also represented as 

K 

p(xIJL) = II J-l%k 
k=l 

Given N independent observations Xl, ... , X N, the corresponding likelihood function is 

N N K K 

p(DIJL) = II p(xnIJL) = II II J-l%nk' = II {tfk. 
n=l n=l k=l k=l 

N 

C k = LXnk 

n=l 

(2.27) 

(2.28) 

We see Ck is the sufficient statistics for this distribution. From this likelihood function we can 

derive that the maximum likelihood estimates of the parameters equal the empirical frequencies of 

the states over the N observations: 

(2.29) 

The multinomial distribution considers the joint distribution of the quantities C1 , ... , C K, parame-

terized by J-l and the total number N of observations. Derived from the likelihood function (Eq. 2.28) 

we have 

Dirichlet Prior 

K 

Multinomial(CI , ... , CK )IJL, N) = C
I
! ,~,!CK! II J-lfk. 

k=l 

(2.30) 

The Dirichlet distribution (Fig. 2.2) is the conjugate prior for the multinomial distribution. The 

Dirichlet distribution with hyperparameters a = {£Xl, ... , £XK} has the form: 

(2.31 ) 

Note that the Dirichlet distribution's normalization constant involves a ratio of gamma functions. 

When K = 2, the Dirichlet distribution is equivalent to the beta distribution. Denoting the beta 

distribution's two hyperparameters by a and b, then the beta density J-l ,...., Beta(a, b) as in Eq. 2.18 

is equivalent to the Dirichlet density (J-l, 1 - {L) ,...., Dirichlet ( (J-l, 1 - J-l) 1 (a, b)). As in beta distribution, 
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Figure 2.2: Examples of Dirichlet distributions over three variables. The two horizontal axes form the 
plane of the simplex and the vertical axis represents the value of the density. (Left) {ad = 0.1 favors 
sparse multinomial distributions. (Center) {ak} = 1 lead to a uniform prior. (Right) {ak} = 10 
represent an unbiased unimodal prior. Figures are from [Bishop, 2006, chap. 2] with permission 
granted from the author [Bishop]. 

the mean and variance of the Dirichlet distribution has very simple forms, written as: 

(2.32) 

(2.33) 

The Dirichlet distribution pertains an aggregation property which can be useful when it is appealing 

to combine a subset of the categories for multinomial data. The aggregation property states that 

if IL rv Dirichlet(lLlo) , the vector of parameters attained by aggregation are also Dirichlet [Gelman 

et al. , 2003]. For example, combining the first two categories gives 

(2.34) 

This also suggests that the marginal distribution of any single component of a Dirichlet distribution 

follows a special case of Dirichlet distribution with two components, i.e. a beta density: 

(2.35) 

This representation leads to an alternative, sequential procedure for drawing random samples from 

Dirichlet density [Gelman et al., 2003]. 
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Conjugate Posteriors and Predictions 

Multiplying the likelihood function (Eq.2.30) by the Dirichlet prior (Eq.2.31 distribution, we obtain 

t.he posterior distribution for the parameters Jl as 

K 

( ID ) r(oo + N) II <>k+C k- 1 D" hI (I C) 
p J.L ,0 = f( C) f( C) Jlk = mc et J.L 0 + 

01 + 1 ... OK + K 
k=l 

(2.36) 

The predictive probability of future observation x* (as in Eq.2.6) is often of interest. For 

multinomial-Dirichlet, this takes the form 

p(x = kiD, 0) = J Multinomial(x = kIJl)Dirichlet(JlID, o)dJl 

Ok +Ck 
= lE [Jl kiD, lXk] = -'-'----::-:-

lXo+N 

2.3 Clustering and Mixutre Model 

(2.37) 

(2.38) 

Clustering takes a set of objects and aims to put them into groups that are similar to each other. 

There are several motivations for clustering. First, a good clustering allows for prediction on un-

observed features of an object. Second, clusters facilitate description and communication. A third 

motivation is that clustering can help highlight interesting objects that deserve special attention. 

Clustering can be viewed as mixture density modeling, which construct complex probability distri

butions through combinations of simpler distributions. 

Well known clustering algorithms include K-means clustering and hierarchical clustering [Hastie 

et al., 2009]. The distance metrics used in these algorithms include Euclidean distance, Pearson 

correlation and squared Pearson correlation. Besides distance-based algorithms, self organized map 

(SOM), spectral clustering and model-based clustering are also common [Hastie et al., 2009]. This 

section focuses on K-means algorithms, and the closely related finite mixture model which are the 

foundations for more complex mixture-density based modeling. 

2.3.1 K-means Clustering 

The K-means algorithm is a clustering method where each cluster is parameterized by a vector called 

its mean or center. Each observation is assigned to the cluster whose centers are the nearest to the 

observation. Since cluster centers are unknown a prior', the algorithm starts with some randomly (or 
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Algorithm 1: K-means Clustering. 

1 Initialize the means /lkl and evaluate the initial value of the distortion measure J (Eq. 2.43).; 

2 Evaluate the assignments rnk (Eq. 2.39) using the current mean values. 

if k = argminj Ilxn - /ljW 
otherwise. 

3 Re-estimate the means /lk (Eq. 2.42) using the current assignments. 

N 

2 L rnk(Xn - /lk) = 0 => 
n=l 

4 Evaluate the distortion measure and check for convergence of either the means or the 
distortion measures. If the convergence criterion is not satisfied return to step 2. 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

carefully) chosen centers. It then iteratively assigns observations to the nearest centers and updates 

the centers according to the assignment. 

Let X = {Xl,"" X N} where Xn (n = 1, ... , N) is an observation of a D-dimensional random 

variable. Let K (K ::; N) be a pre-specified number of clusters. The assignment of observations to 

clusters can be represented by a set of binary indicator variables rnk E {O, I} (n = 1, ... , N; k = 

1, ... ,K), so that rnk = 1 and rnj = 0 for j i= k if observation Xn is assigned to cluster k. Let /lk 

(k = 1, ... ,K) be a D-dimensional vector associated with the kth cluster. The goal of clustering is 

estimating {rnk1 and {/ld to minimize the loss function, or distortion measure, defined by 

That is, 

N K 

J = L L rnkllxn - /lk11 2 

n=lk=l 

{Tn"k}, {Ilk} = argmin J 
{rnd.{lld 

(2.43) 

(2.44) 

Algorithm 1 shows the iterative procedure for the estimation of these parameters. Fig. 2.3 

illustrates the K-means algorithm on a sample data set. 
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Figure 2.3: Illustration of K-means clustering. (a) Green points denote the observations in a two
dimensional Euclidean space. Red and blue crosses represent the initial choice of centers. (b) Using 
the current mean values, each data point is assigned either to the red cluster or to the blue cluster, 
according to its distance to the centers. (c) Cluster centers are updated according to the cluster 
assignment. (d)-(i) Repeat the two steps until convergence. Figures are from [Bishop, 2006, chap. 
9] with permission granted from the author [Bishop]. 

16 



Figure 2.4: A directed graphical representation of a finite mix1;ure model. Grey circle node denotes 
observed variables, white circle nodes represent latent variables, and square nodes denote hyperpa
rameters. Plates denote repeated variables over the N observations and K components. Specifically, 
{xd are the observations, {Zi } are the latent component variables, and {8d are component model 
parameters. The observations are conditionally independent given the cluster assignment. 

2.3.2 Finite Mixture Model 

Mixtures of distributions is considered as a useful extension to the "standard" probability distribu

tions. A mixture density is formed by taking linear combinations of other distributions. A mixture 

of distributions can be described as 

K 

p(x) = L 7rk/k(X), 
k=l 

K 

L7rk = I , K > 1 
k=l 

(2.45) 

In most cases, !k are from a parametric family such as Gaussians or Bernoulli distributions, with 

unknown parameter 8k , leading to the parametric mixture model 

K 

p(x) = L 7rkPdx I8k) (2.46) 
k=l 

Given N independent observations D = {Xl, . .. , XN}, the likelihood function has the form 

N K 

p(DIO, 11' ) = II L 7rkP(xnI 8k) (2.47) 
n=lk=l 

Eq. 2.46 formulates the mixture model as a linear combination of other distributions. We see from 

this representation that the maximum like!ihood estimation for the parameters does not have a 

closed-form analytical solution. Alternatively, mixtures can also be formulated in terms of discrete 

latent (or auxiliary) variables, which motivates the expectation-maximization (EM) algo

rithm [Bishop, 2006]. It is possible to associate to a random variable X in Eq. 2.46 another random 
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variable Z such that 

(2.48) 

Here the latent variable Zn is a multinomial random variable identifying to which of the K com

ponents the observation Xn belongs. The EM algorithm considers the problem of maximizing the 

likelihood for the "complete" data set {D, z}. The likelihood function takes the form 

K 

p(D, z18, 1\") = II II 7rkp(xnl{h) 
k=l {nlzn=k} 

(2.49) 

Figure 2.4 shows a probabilistic graphical representation of the finite mixture model. Equivalently, 

we can also represent it using a binary variable Znk E {O, I} and let Znk = 1 if and only if C-n = k. 

N K 

p(D, zle, 7r) = II II 7r~nkp(xnlek) (2.50) 
n=lk=l 

Comparison with the likelihood function in 2.47 for the partial observation D shows that the 

summation over K components have been replaced by multiplication. The logarithm of the new 

likelihood function now acts directly on the probability distribution p(Xnlek), which if being a 

member of the exponential family, leads to a much simpler solution. Algorithm 2 describes the EM 

algorithm applied on a finite Gaussian mixture model where each mixture component is represented 

by a Gaussian distribution. 

2.4 Dirichlet Process 

Realistic datasets are usually generated from a complex world which can not be adequately described 

by most standard parametric models. A mixture model is usually formulated as a type of approx-

imation of unknown distributions. Nonparametric modeling methods avoid assuming restricted 

functional forms and allow defining flexible models with unbounded complexity. The focus of this 

section will be on Dirichlet Process and mixtures [Ferguson, 1973, Aldous, 1985], an important 

technique in the Bayesian non parametric family. 

A Dirichlet Process defines a distribution on random probability measures, or equivalently 

non-negative functions which integrate to one. A Dirichlet process is parameterized by a base 

measure H over a measure space e, and a positive scalar concentration parameter Q. Consider 
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Algorithm 2: EM for Finite Gaussian Mixtures. 

1 Initialize the means J-Lk, covariances I:k and mixing coefficients 7rk, and evaluate the initial 
value of the log likelihood in Eq. 2.47. 

2 Evaluate the responsibilities 'Y(.::nk) (Eq. 2.51) using the current parameter values. 

(2.51 ) 

3 Re-estimate the parameters J-Lk, I:k, trk (Eq. 2.52, 2.53, 2.55) using the current responsibilities. 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

4 Evaluate the log likelihood and check for convergence of either the parameters or the log 
likelihood. If the convergence criterion is not satisfied return to step 2. 

a finite partition (AI, ... ,AK) of 8: 

K 

UAk=8 k =1= 1 (2.56) 
k=1 

A random probability distribution G on 8 is drawn from a Dirichlet process if its measure on every 

finite partition follows a Dirichlet distribution: 

(2.57) 

2.4.1 Stick-Breaking Construction 

The definition of Dirichlet process in Eq. 2.56 suggests several implicit properties. However, it does 

not provide a mechanism for sampling from Dirichlet processes, or predicting future observations. 

Sethuraman [1994] provides an explicit definition of the Dirichlet process, called the stick-breaking 

construction, which shows that Dirichlet measures are discrete with probability one. This construc-

tion definition simplifies the definitions of Dirichlet process and also leads to a simple model for 

predictive distributions known as the Chinese restaurant process. The stick-breaking construction 
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generates a random measure G from Dirichlet process, G "" DP(o, H), through the following con-

struction procedure: 

• First, construct mixture weights 'Tr from the stick-breaking process: 

(3k rv Beta(l, 0) k = 1,2"" (2.58) 

k-1 

'Trk = (3k IT (1 - (3k) (2.59) 
1=1 

• Then, construct random measure G as an infinite sum of weighted point masses: 

G(O) = L 'Trk 8(O, Ok) (2.60) 
k=l 

The stick-breaking distribution over 'Tr is sometimes written 'Tr "" GEM, contributed by Griffiths, 

Engen and McCloskey [Pitman, 2006]. 

2.4.2 Blackwell-MacQueen Urn Scheme 

The stick-breaking construction shows that Dirichlet measures G produced by Dirichlet processes 

are discrete with probability one. Therefore, the probability of multiple observations (drawn from 

G) taking identical values is positive. The stick-breaking construction enables a simpler derivation 

of the predictive probability of new observations. Consider a random probability measure G drawn 

from a Dirichlet process: G"" DP(o, H), where the base measure H has density h(O). Consider a 

set of N observations On rv G, the predictive distribution for a new observation ON+1, conditioned 

on 01 , ... ,ON and with G marginalized out, is written as: 

(2.61) 

This generative process can be interpreted metaphorically via an extended Polya urn model 

called Blackwell-MacQueen Urn Scheme [Blackwell and MacQueen, 1973]. Consider each value in 

the measure space e is a unique color, each value On drawn from the process is a ball with the color 

corresponding to the value. Consider an urn containing one ball for each proceeding observations. 

For the drawing steps, we will either, with probability a":N' pick a new color (draw ON+! rv H) to 

paint a ball and put the ball into the urn, or, with probability a~N pick a ball from the urn, paint 

a new ball with the same color as the picked ball and drop both balls into the urn. The Blackwell-
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MacQueen urn scheme has been used to show the existence of the Dirichlet process [Blackwell and 

MacQueen, 1973]. The procedure can also be used to sample observations from a Dirichlet process, 

without explicitly constructing the underlying mixture G", DP(n, H) and marginalize it. 

2.4.3 Chinese Restaurant Process 

We see from Eq. 2.61 that draws from a Dirichlet process have the properties of discreteness and 

clustering. Since the values of draws are repeated, let Oi, ... ,8K be the distinct values assigned to 

the observations 81 , ... ,8 N. The predictive distribution of Eq. 2.61 can be equivalently written as 

(2.62) 

where 

Zn = k if 8n = Ok n = 1,2, ... , N + 1 k= 1,2, ... ,K 

ZN+l = k + 1 if 8N+1 = 8K+ 1 is a new value sampled from H 

and 

N 

Ck = L 8(zn' k) (2.63) 
n=l 

The distribution over partitions is called by Pitman and Dubins the Chinese Restaurant Process 

(CRP) [Pitman, 2006]. The name comes a metaphor useful in interpreting Eq. 2.62. In this metaphor 

there is a Chinese restaurant with an infinite number of tables, each of which can seat an infinite 

number of customers. The first customer enters the restaurant and sits at the first table. The 

remaining customers enter the restaurant one by one and sit at a table with other customers, or a 

new table by itself. In general, the N + lth customer either sits at an already occupied table k with 

probability proportional to the number of already seated diners Ck , or sits at an empty new table 

with probability proportional to n. There is not an a priori distinction between the unoccupied 

tables. 

CRP defines an exchangeable distribution on partitions such that the joint distribution is in-

variant to the order in which observations are assigned to clusters. Another important clustering 

property induced by CRP is the expected number of clusters among N observations. Since the nth 
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observation has the probability O+~-l taking on a new value (being assigned to a new cluster), the 

expected K is: 

N 

JElKIN] = L a E O(ologn) 
o+n-l 

n=l 

(2.64) 

That is, a controls the number of clusters a priori: a larger a indicates a larger number of clusters a 

priori. The number of clusters grows only logarithmically with respect to the number of observations. 

2.4.4 Dirichlet Process Mixture Model 

By far the most common application of the Dirichlet process is as a nonparametric prior over 

components in a mixture model. The nonparametric nature of the Dirichlet process allows for 

an infinite number of components within a mixture model. Consider a set of observations D = 

{Xl, ... , XN}. Each X; has a corresponding latent parameter 8;. so that Xi is drawn from some 

parameterized family F(8i ). Each 8i is sampled independently and identically from G. This describes 

the Dirichlet process mixture model: 

8i lG '" G (2.65) 

Gla, H '" DP(a, H) 

As discussed, the stick-breaking construction guarantees a random measure sampled according to 

a Dirichlet process. This implies the following representation of a Dirichlet process mixture model: 

OG 

G(8) = L 7rkJ(8, 8k) (2.66) 
k=l 

7r '" GEM(o) 

To highlight the mixture perspective of the Dirichlet process mixture model, there is another useful 

representation. As in the description on CRP, each observation Xi is associated with a latent variable 

Zi indicating to which mixture component the observation is assigned to. Then Eq.2.66 is equivalently 
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N 00 N 

Figure 2.5: Directed graphical representations of the Dirichlet process mixture model. (Left) Stan
dard Dirichlet process representation. Each observation Xi is generated from a directly associated 
model parameter Oi, which is drawn from G, an infinite discrete distribution on the parameter space. 
(Right) Latent variable representation. Each Xi is generated according to its component assignment, 
i.e. Xi '" F( O;J, where Zi is generated from a multinomial distribution, i.e. Zi '" Multinomial ( 11'), 
and 0;; '" H(>'). The mixture weights 11' '" GEM (a) follow a stick-breaking process. The number of 
mixture components is not fixed a priori. 

expressed as 

xilzi, {Ok} '" F(O;J 

0k lH '" H 

7r1a'" GEM(a) 

(2.67) 

Equivalently, we may use the Chinese restaurant process (or the Blackwell-MacQueen Urn 

scheme) to express the model: 

where {Cd is as defined in Eq.2.63 . 

xilzi, {Ok} '" F(O;.) 

OklH '" H (2.68) 

Rather than fixing the number of clusters as in finite mixture model (Eq. 2.46) , the Dirichlet 

process mixture model allows for a countably infinite number of clusters, thus an infinite mixture 

model. In the Dirichlet process mixture model, the actual number of clusters is not fixed , and can 
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be inferred from data using Bayesian posterior inference. An alternative derivation of the Dirichlet 

process mixture model is through the finite mixture model and takes the number of components K 

to an infinite limit, as an infinite mixture model [Rasmussen, 2000]. In this limit, predictions based 

on the finite mixture model approach those of the corresponding Dirichlet process. Figure 2.5 shows 

directed graphical representations of the Dirichlet process mixture model. 

Inference for DPMs 

Exact computation of the posterior distribution for a DPM model is infeasible. Approximate in

ference methods are required for estimating posterior quantities under DPM. One of the methods 

of choice for DPM is Markov chain Monte Carlo (MCMC) sampling [Escobar and West, 1995, 

Neal, 1998], which samples from the posterior distribution of the model parameters by simulating a 

Markov chain which has this as its equilibrium distribution. The simplest such methods are based 

on Gibbs sampling, which repeatedly and iteratively draws values for each parameter Oi from its 

conditional distribution given both the observations D and the model parameters O-i (-i denotes 

{l,··· ,i - 1, i + 1"" N}). As pointed out by [Neal, 1998], although the algorithm produces an 

ergodic Markov chain, convergence to the posterior distribution may be very slow and sampling may 

be inefficient. The problem lies in the fact the algorithm cannot change the 0 for more than one 

observation simultaneously. 

The problem is alleviated if Gibbs sampling is instead applied to the model formulated through 

latent indicator variable as in Eq. 2.67 or Eq. 2.68. Each Gibbs sampling scan consists of drawing 

a new value for the latent indicator variable Zi from its conditional distribution given the data D, 

the model parameters (J*, and Li (-i is defined as {1, ... , i - 1, i + 1" .. ,K + l} where K is the 

number of mixture components so far) and then drawing a new value for each Ok from its conditional 

distribution given Xi for which Zi = k. When a new value is chosen for (J*, the values of Oi = Ok 

will change automatically and simultaneously for all observations associated with component k (all 

Xi such that Zi = k). 

Finally, in a conjugate context where the distribution of each mixture components has a conjugate 

prior, we can often integrate analytically over the component parameters (J*. The state of the Markov 

chain then consists only of the latent indicator variables Zi. Note that due to the incremental 

update nature of algorithm, the Gibbs sampling method can still become trapped in isolated modes 

corresponding to an inappropriate clustering of the data points. Split-merge Markov chain algorithms 

have been proposed to further alleviate the problem of inefficient sampling. The Metropolis-Hastings 

procedure aims to escape such local modes by splitting or merging mixture component according to 
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proposals obtained from a restricted Gibbs sampling scan. 

Variational inference provides an alternative, deterministic methodology for approximating like

lihoods and posterior. The approach is based on reformulating the problem of posterior distribution 

estimation as an mathematical optimization problem, relaxing this object function, and then derive 

computational tractable algorithms which bound or approximate the statistics of interest [Wain

wright and Jordan, 2008]. Blei and Jordan [2006] developed a mean-field variational algorithm for 

the DP mixture, based on the stick-breaking representation of the DPM. The Bayesian Hierarchical 

Clustering (BHC) by Heller and Ghahramani [2005a] introduces another approximation strategy to 

DPM. The method represents clustering through a tree structure with each node associated with 

a set of data point and posterior of merging, and computes the marginal likelihood and poste

rior prediction by summarizing over all the tree-consistent partitions where the number of them is 

exponential in the number of data point for balanced binary trees. 
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CHAPTER 3 

MOLECULAR BIOLOGY AND MOLECULAR 

EVOLUTION 

This chapter provides a brief review on the basic concepts in molecular biology (Sec. 3.1) and 

molecular evolution (Sec. 3.3) relevant to our applications. For a detailed treatment of the concepts, 

readers may consult Watson et al. [2008], Graur and Li [2000]. 

3.1 Molecular Biology 

Heredity of every living organism is controlled by its genome, or DNA. The sequence of the in

dividual subunits, or bases, of the DNA determines the development of the organism. Through 

a complex series of interactions, the DNA sequence produces all of the proteins of an organism. 

Proteins serve a variety of roles in an organism's development and function. Physically, the genome 

may be divided into a number of chromosomes. Functionally, the genome is divided into genes, 

each of which encodes a single type of RNA or polypeptide. All complex cellular characteristics are 

under the control of many genes, rather than a one gene-one characteristic mapping. When two 

genes are on the same chromosome, they tend to be inherited together. Genes affecting different 

characteristics are sometimes inherited independently of each other, since they are located on differ

ent chromosomes. Normally, genes are extremely stable and are copied exactly during chromosome 

duplication; inheritable changes (mutations) in genes, occur at infrequent rates and can have harmful 

consequences. 

3.1.1 The Central Dogma of Molecular Biology 

The Central Dogma of Molecular Biology was coined by Francis Crick in 1958 [Crick, 1958] 

and re-stated in 1970 [Crick, 1970], and refers to the hypothesis that chromosomal DNA acts as the 
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template for RNA molecules, which subsequently move to the cytoplasm, where they determine the 

arrangement of amino acids within proteins. Figure 3.1 illustrates the Central Dogma of Molecular 

Translation DUPlicato· 0 Transcription 

DNA • RNA ---.... ~ Protein 

Figure 3.1: The Central Dogma of Molecular Biology. 

Biology. The arrows denotes the directions assumed for the transfer of genetic information. The 

arrow encircling DNA indicates that DNA is the template for its self-replication. The arrow from 

DNA to RNA indicates that RNA synthesis (transcription) is directed by a DNA template. Corre

spondingly, protein synthesis (translation) is directed by an RNA template. Note that the last two 

arrows are unidirectional, signifying that RNA is never made from protein templates, nor is DNA 

made from RNA templates. The Central Dogma still remains the dominant paradigm of molecular 

biology after its original proclamation about 60 years ago. It is still true that proteins never act as 

templates for RNA, though it has been discovered that, in very rare cases, RNA sequences can serve 

as templates for DNA chains of complementary sequence. As a result, in rare occasions, information 

from a cellular RNA is converted into DNA and inserted into the genome. 

3.1.2 Genes are DNA 

It was known that chromosomes possessed a unique molecular material, deoxyribonucleic acid 

(DNA), but it was initially unclear that this material carried genetic information. That DNA might 

be the key genetic molecule emerged when Frederick Griffith observed that nonvirulent strains of the 

pneumonia-causing bacteria became virulent when mixed with their heat-killed pathogenic counter-

parts [Griffith, 1928]. The observations of such transformations supports the genetic interpretation 

and motivates the search for the chemical identity of the transformation agent. However, at that 

time, the belief that genes were proteins was still held by the majority of biochemists. In 1944, 

through their purification of the transformation principle, Oswald T. Avery, Colin M. MacLeod 

and Maclyn McCarty announced that the active genetic material was DNA [Avery et al., 1944]. 

Further experiments demonstrated that, besides bacteria, all known organisms and many viruses 

use DNA as it genetic material. Some viruses, though, use RNA acts as the genetic material. 

The underlying structure of DNA remained a puzzle. By the 1950s, the observation by Er-

win Chargaff led to the concept that genetic information is carried in the form of a sequence of 
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Adenl",e Thymine 

GUlnlne Cyto l ln . 

Figure 3.2: Illustration of the DNA structure. DNA is a double helix formed by base pairs attached 
to a sugar-phosphate backbone. (Image courtesy of the U.S. National Library of Medicine [U.S. 
National Library of Medicine]) 

bases [Chargaff, 1950]. The experiments of Chargaff also showed that regardless of the absolute 

amounts of each base, the relative ratios of the four bases were not random. The number of adenines 

(A) in all DNA samples was equal to the number of thymines (T) , and the number of guanines (G) 

was always the same as the number of cytosines (C). High-quality X-ray diffraction photographs 

taken by Maurice Wilkins and Rosalind Franklin [Franklin and Gosling, 1953] suggested that the 

underlying DNA structure was helical and consisted of more than one polynucleotide chain. Building 

on these observations, in 1953, James D. Watson and Francis H. Crick announced the elegant and 

correct solution, a complementary double helix [Watson and Crick, 1953]. In the double helix, as 

illustrated in Fig. 3.2, the two DNA strands are held together by hydrogen bonds between pairs of 

bases on the opposing chains. This base pairing is very specific: the purine adenine only hydrogen 

bonds to the pyrimidine thymine, and the purine guanine only hydrogen bonds to the pyrimidine 

cytosine. The two intertwined strands of complementary bases suggested the exciting hypothesis 

that one strand acts as the specific template that directs the synthesis of the other strand. The 

experiments by Arthur Kornberg demonstrated that DNA is the direct template for its own forma

tion [Lehman et al. , 1958, Bessman et al. , 1958]. The research by Matthew Meselson and Frank 

W . Stahl in 1958 showed that DNA replication was a semiconservative process where each indi

vidual strands of the double helix remain intact and is distributed into one of the two daughter 

DNA [Meselson and Stahl, 1958] . 
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3.1.3 RNA 

Although DNA must carry the genetic material for protein synthesis, it does not serve as a direct 

role for this process because it had been shown that protein synthesis occurs at sites (cytoplasm 

for all eukaryotic cells) where DNA is absent. There had to be another type of molecule which 

obtains its genetic information from DNA, and carries it to the cytoplasm to serve as the template 

for protein synthesis. This second information-carrying molecule is ribonucleic acid (RNA). The 

chemical structure of RNA is very similar to DNA: it also is a long, unbranched molecule containing 

four types of nucleotides linked together by 3' --+ 5' phospho diester bonds. Two differences distinguish 

RNA from DNA: first, the sugar of DNA is deoxyribose, while in RNA it is ribose. The second is 

that RNA contains no thymine, but the closely related pyrimidine uracil. Unlike DNA, RNA is 

typically found in the cell as a single-stranded molecule. The RNA that carries information from 

DNA to the ribosomal sites of protein synthesis is called messenger RNA (mRNA). Only 4% of 

total cellular RNA is mRNA. About 10% of cellular RNA is transfer RNA (tRNA) molecules, 

which serves as an adaptor between the four-letter genetic code in mRNA and the twenty-letter code 

of amino acids in proteins. Ribosomal RNA (rRNA) accounts for 85% of all cellular RNA found 

in ribosomes. Although initially considered as the template for ordering amino acids, the rRNA, 

together with about fifty different ribosomal proteins binding to them, function as the factories for 

protein synthesis. They bring together the tRNA and amnio acid precursors into position where 

they decode the information provided by the mRN A templates. 

RNA molecules plays an essential role in gene expression regulation. Short RNAs have a distinct 

role in gene regulation: they can repress the expression of genes with homology to them. This 

repression, called RNA interference (RNAi), can function to inhibit translation of the mRNA 

or degradation of the mRNA. Short interfering RNAs (siRNAs) are short double-stranded 

fragments about 23 nucleotides long. Once a given siRNA has been assembled within a complex 

called RISe (RNA-induced silencing complex), they together inhibit expression of a homologous 

gene in three possible ways: destruction of its target mRNA; inhibition of the translation of its 

target mRNA; or induce of chromatin modifications within the promoter which silence the gene. 

microRNAs (miRNAs) are another type of RNAs that repress gene expression in a similar way 

as siRNAs. 
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3.1.4 Gene Expression 

The Central Dogma states the unidirectional information flow from genes to proteins, beginning 

with the form of linear nucleotides sequence in a polynucleotide chain, to the form of linear amino 

acids sequence in a polypeptide chain. Understanding the detailed mechanism of the flow, or how 

the gene is expressed, remains an exceptionally challenging task. Transcription (Fig. 3.3) refers to 

the process by which genetic information in the form of a nucleotide sequence is transferred from 

DNA to RNA. Translation refers to the process by which genetic information contained in an mRNA 

in the form of nucleotide sequence is used to direct the ordering of amino acids into a polypeptide 

chain of a protein. Chemically and enzymatically, transcription is very similar to DNA replication. 

However, the two processes have profound differences and serve completely different purposes. In 

DNA replication, the entire genome is copied once during cell division. In transcription, only certain 

parts of the genome are selected and the number of copies out of the parts can range from one 

to thousands. The choices of which regions to transcribe, and of what extent, can be regulated. 

The protein products of genes represent an enormous variety of structures and functions, including 

structural, enzymatical, and regulatory functions. A gene encoding a protein or RNA involved in 

regulating the expression of other genes is called a regulatory gene. 

The coding sequence of a gene is a series of three-nucleotide codons. In many eukaryotic genes, 

these blocks of coding sequences are separated from each other by blocks of noncoding sequences. 

The coding sequences are called exons and the intervening sequences are called introns. A gene, 

part of the entire genome, is transcribed into a single RNA copy. This RNA copy is the primary 

transcript (or pre-mRNA) and contains the same introns and exons as the orignial gene. The 

protein-synthesizing factory of the cell is only able to translate mRNAs containing a contiguous 

stretch of codons; It cannot recognizing and skipping over a block of intron. Therefore, the pre

mRNA must have their introns removed before they can be translated into protein. The process 

by which introns are removed from the pre-mRNA is called RNA splicing (Fig. 3.4). Some pre

mRNAs can be spliced in more than one way, for example, through clifferent combinations of exons, 

generating alternative mRNAs. This process is called alternative splicing, through which a gene 

can lead to more than one form of a polypeptide product. It is estimated that about 95% of the 

genes in the human genome are spliced in alternative ways and allow for different protein isoforms 

per gene. The number of different mature mRNA that a given gene can encode through alternative 

splicing varies from two to even thousands. 
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Figure 3.3: An illustration of transcription, which is the process by which genetic information in 
the form of nucleotide sequence is transferred from DNA to RNA. (Top) Initiation, by which RNA 
polymerase (RNAP) binds to a promoter in DNA. (Center) Elongation, by which one strand of 
the DNA is used as a template for RNA synthesis. (Bottom) Termination, by which the newly 
synthesized RNA is released from the elongation complex. Figure from wikipedia with permission 
granted from the author [wikipedia, d]. 

pre-mRNA 

5'UTR Exon 

~!~::.!7 
Exon 3'UTR 

Figure 3.4: An illustration of RNA splicing, by which introns are removed from the pre-mRNA and 
exons are linked to form a mature mRNA. Figure from wikipedia with permission granted from the 
author [wikipedia, b]. 
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Figure 3.5: An illustration of the procedure for DNA microarray experiment. Figure from wikipedia 
with permission granted from the author [wikipedia, a]. 

3.1.5 DNA M icroarray Technology 

It is often desirable to determine the expression level of a specific mRN A in two different cell types, 

or the same cell type of different conditions. This type of information can be obtained based on 

the process of hybridization. Because the two strands of the double helix are held together by 

relatively weak (noncovalent) forces, DNA strands can separate and reassociate. Hyb r idization 

refers to the process where two complementary single-stranded nucleic acids meet together and 

reform regular double helices. Hybrids can be formed between complementary strands of DNA 

and/or RNA. Hybridization has been the basis for many important techniques in molecular biology, 

such as Southern blots [Southern, 1975], as well as DNA microarrays. A Southern blot allows for 

the identification of the amount of a specific gene. In this procedure, thousands of DNA fragments 

are generated by cutting the genome into discretely visible bands. The cut DNA are then separated 

by gel electrophoresis, and the double strands of each fragment is separated in alkali. These strands 

are then incubated with a probe which is a defined D A sequence of interest-either a purified 

fragment or a chemically synthesized DNA molecule. Probing is performed under specific conditions 

of salt concentration and temperature such that the probe DNA will only hybridize tightly to its 

exact complement. This hybridization activity can be detected by a variety of medias such as films 

that are sensitive to the light or electrons emitted by the labeled DNA. A northern blot is a similar 

procedure used to identify a particular mRNA in a population of RNAs, where hybridizations are 

between complement strands of RNA and DNA. 

DNA microarray (Fig. 3.5) is based on the same principles of Southern and northern blots, but 

allows for massive and parallel experiments. Advanced technology allows tens of thousands of probes 

matching all known mRN As in a cell to be attached to a small surface of one square centimeter, 

forming a DNA micoarray. Samples of mRNA from cells, tissues, and other biological sources are 

labeled with fluorescence and added to the array for hybridization. Molecules in the fluorescent 

sample react with probes on the chip, causing each spot to glow with an intensity proportional 
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Figure 3.6: An example of an approximatedly 40,000 probe spotted oligonucleotide array. Figure 
from wikipedia with permission granted from the author [wikipedia, c]. 

to the abundance of the mRNA. After scanning the surface of the chip, the amount of sample 

hybridized to each of the probes can be quantified from the image. High throughput experimental 

data generated from microarray enable gene expression profiling on a genomic scale. Gene expression 

profiling through microarray technology are also used for identification of microRN As involved in 

specific cellular process. 

Image Analysis 

Image analysis of micro array experiments aims to extract intensity information for each spot on the 

scanned array (Fig. 3.6) . It can have a substantial effect on subsequent microarray data analysis. The 

analysis of the image consists of several steps. Gridding seeks to identify each spot on the array by 

aligning a grid to the spots, which are arranged in columns and rows on the array. Segmentation 

aims to separate the identified spots from the background. Intensity extraction summarizes 

each segmented spot with an intensity value, which will be used for statistical analysis. Typical 

intensity measure are the mean or median intensity from the distribution of all pixels within the 

spot. Background correction seeks to adjust the intensity according to the background signal 

and spatial bias on an array. 

Normalization 

The extracted intensities enable the comparison of gene expression profiles from different cells or 

tissues, or under different conditions. This comparison seeks to identify each gene or RNA whose 

expression varies in response to genetic and environmental differences. This type of variation is 
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referred to as interesting variation. However, before applying any statistical analysis techniques 

to the intensity values, it is essential to assure that the values extracted from multiple arrays are 

comparable. This is due to obscuring variation or systematic bias, i.e. variation introduced 

during the sample preparation, manufacture of the arrays, and the processing of the arrays (label

ing, hybridization, and scanning). The comparison and analysis cannot be trusted unless arrays 

are appropriately normalized, i.e. systematic bias are removed. Stafford [2008] provies a review 

on various methods for normalizing gene expression arrays. One strategy of normalization is based 

on the assumption that some genes are invariant or non-differentially expressed across samples. 

Normalization is then achieved by mathematically adjusting the intensities of the arrays until the 

expressions of the invariant genes are equal in all the arrays. In the past, housekeeping control genes 

were assumed expressed at a constant level and were frequently used for normalization. However, it 

has been reported that the expression levels of housekeeping genes can vary significantly. Another 

method is to assume that the total mass of mRN A in a cell is constant, and therefore the intensities 

are adjusted such that the masses of different arrays are equal. Alternatively to these approaches, 

spike control is a technique that introduces an external RNA to the mRNA samples during prepa

ration. The spiked transcript is amplified and labeled the same way as the other transcripts and 

hybridized with a unique probe on the arrays. The mRNA intensities are then normalized according 

to the external controls on different arrays being equal to each other. The spiked transcript must 

not match any gene in the RNA samples. One could also use many spiked control RNAs with differ

ent concentrations to improve normalization accuracy. The mathematical adjustment can be linear, 

such as scaling (multiplying) a constant to the intensities; or non-linear, such as fitting smoothing 

splines. 

When there is no a priori knowledge about the choice of invariant genes, these genes may be 

inferred from the arrays using mathematical techniques. One such method is to first rank genes 

according to their intensities, and then consider the genes whose rank does not differ more than 

a threshold value between arrays as invariant genes. Quantile normalization is also frequently 

used, which assumes that the probe intensity distributions between arrays should be the same. 

3.2 Gene Expression Data and Clustering 

Genome wide gene expression information generated from various high throughput biological experi

ments, such as microarrays, provide unprecedented opportunities for understanding the associational 

and causal relationships among genes, diseases, and environmental factors. A wide range of statis-
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tical and computational methods have been designed and applied to gene expression studies. For 

example, statistical hypothesis testing, in conjunction with some correction for chance, are used 

to select genes differentially expressed across various conditions under study (e.g. treatment vs. 

control). Supervised learning, such as Fisher discriminant analysis, logistic regression, and support 

vector machine (SVM), are used to predict phenotypes (e.g. cancer vs. normal) [Jelizarow et al., 

2010]. Bayesian networks, ordinary differential equations, and clustering are used to infer the reg

ulatory relationship [Friedman et al., 2000, Greenfield et al., 2010a, Yip et al., 2010, Reiss et al., 

2006, Bar-Joseph et al., 2003, Segal et al., 2001, 2003]. 

Clustering [Duda et al., 2000, Bishop, 2006, Hastie et al., 2009], introduced in Sec. 2.3, partitions 

a set of observations into mutually exclusive subsets. In micro array data analysis, genes may be 

clustered into biological meaningful groups according to their pattern of expression across all exper

imental conditions. Genes within a gene cluster have similar expression patterns and are said to be 

coexpressed (Fig. 3.7). Rather than clustering genes, experimental conditions may also be clustered 

into groups where genes express similarly across conditions within each group. 

Yeung et al. [2001a] demonstrated the potential usefulness of the Gaussian mixture model-based 

approach to gene expression data clustering. They also used a variety of multivariate normality 

assessment tests suggested by Aitchison [1982] to explore the extent to which different transfor

mations of gene expression data satisfy the Gaussian assumption. They showed in [Yeung et al., 

2001b] that, with proper data transformation, the approach performed well on gene expression data. 

The "correct" number of mixture components of a finite mixture model, which is usually uncertain, 

can be estimated through model selection methods [Robert, 2007], such as Bayes factor [Kass and 

Raftery, 1995], Akaike's information criterion (AIC) [Akaike, 1974], and Bayesian information cri

terion (BIC) [Schwarz, 1978]. An alternative approach to model selection and model comparision 

is to incorporate a Dirichlet process prior on the mixtures, a.k.a, Dirichlet process mixture model 

(DPM) [Escobar and West, 1995, Neal, 1998, Rasmussen, 2000, Jain and Neal, 2004], introduced in 

Sec. 2.4.4. DPM and various inference methods have been applied to cluster genes and experimental 

conditions, including those using Gibbs sampling [Medvedovic and Sivaganesan, 2002, Qin, 2006], 

variational inference [Teschendorff et al., 2005], and Bayesian hierarchical clustering [Savage et al., 

2009]. These studies demonstrated the robustness of DPM at estimating the number of clusters 

compared to finite mixture model with model selection techniques. 

An alternative type of clustering, called biclustering, has gained tremendous popularity in bioin

formatics. Unlike standard clustering, biclustering algorithms attempt to uncover blocks (subma

trices of a microarray data matrix) with interesting patterns. Based on the problem, the definition 
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Figure 3.7: Heatmap illustrations of agglomerative hierarhical clustering on a subset of micro array 
gene expression data, in which each row denotes a gene, each column denotes a sample, and each 
entry denotes a log based and normalized expression value for the corresponding row and column. 
The dendrograms show the agglomerative clustering result performned independently on rows and 
on columns. Rows and columns are ordered according to the dendrograms. Sec. 5.1.2 provides more 
detailed description of the data. 
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of "interesting pattern" may vary enormously. In one instance, it may denote a submatrix having 

constant or similar values on rows and/or columns. In another, it may mean a submatrix having 

coherent patterns, such as correlation, across rows or columns. Algorithms also differ in their defi-

nit ion of "structure" based on which interesting blocks are organized. Some only allowed mutually 

exclusive blocks, such as a microarray data matrix divided into checkerboard blocks. Others allowed 

arbitrarily positioned and overlapping blocks. This section revies two representive biclustering al-

gorithms. For a more complete review on the topic, readers are referred to Madeira and Oliveira 

[2004]. 

Biclustering by Cheng and Church 

Cheng and Church [2000] defined the concept of a bicluster as a subset of genes and a subset of 

conditions with a high similarity score, which measures the coherence of the genes and conditions 

in the bicluster. They developed mean squared residue, a similarity score suitable to expression 

data transformed by a logarithm and augmented by the additive inverse. Let X be the set of genes 

and Y be the set of conditions. Let aij be the element of the expression matrix A representing 

the logarithm of the relative abundance of the mRNA of the ith gene under the jth condition. Let 

I c X and J c Y be subsets of genes and conditions. The pair (1, J) specifies a submatrix AlJ 

with mean squared residue score defined by 

1 " 2 H(1, J) = IIIIJI . Lt (aij - aiJ - alj + alJ)' 
tEI,]EJ 

(3.1) 

where 

1 1 
aiJ = -IJI Laij,alj = -III Laij, 

jEJ iEI 

(3.2) 

and 

(3.3) 

are the row and column means and the mean in the submatrix AlJ. AlJ is called a 15-bicluster if 

H(I, J) ~ 8 for some 8 ~ O. The goal is to find one or more potentially overlapping 15-biclusters 

with a large number of rows and columns. They showed the N P-hardness of the problem and 

developed greedy algorithms to find interesting biclusters. To find a bicluster, at the node deletion 
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step, it recursively removes either one (or multiple) rows or columns to receive a better mean squared 

residual score (Eq. 3.1) until a certain criteria is reached; after node deletion, the resulting J-bicluster 

may not be maximal, in the sense that some rows and columns may be added without increasing 

the score. This is the node addition step. In order to find multiple biclusters, repeated runs of the 

two steps will not be satisfactory, as the deterministic characteristic of the algorithm. Before each 

repetition, at the node mask step, the elements in the submatrix were replaced by random numbers. 

In the following the computational complexity is discussed. For details of the algorithm, please refer 

to the original paper by Cheng and Church [2000]. 

The Plaid Model 

Lazzeroni and Owen [2000] introduced plaid models for decomposing gene expression data. The 

generative models assumed that each expression value is a sum over multiple components, called 

layers, each of which may represent the presence of a particular set of biological processes. Let K be 

the number of layers. Let Pik = 1 if the ith gene is affected by the kth layers and Pik = 0 otherwise. 

Let !ijk = 1 if the jth condition is affected by the kth layers and !ijk = 0 otherwise. Let ()ijk be 

a quantity afforded by the kth layer to the ith gene and jth condition. Let aij be the element of 

the expression matrix A representing the ith gene under the jth condition. The plaid models are 

expressed as 

K 

aij = ()ijO + L ()ijkPik!ijk 

k=l 
K 

= L ()ijkPik!ijk 

k=O 

(3.4) 

(3.5) 

where the Oth layer (k = 0) is the base layer affecting on all genes and conditions (Pik = 1, !ijk = 1). 

The situation of the biclusters being mutually exclusive or overlapping is expressed by Pik and !ijk. 

E~=l Pik = 1 indicates that the ith gene to exactly one bicluster. E~=l Pik :::: 2 indicates that the 

ith gene belongs to more than one biclusters. E~=l Pik :::: 0 indicates that the ith gene belongs to 

none of the interesting biclusters. 

In a plaid model, the concept of coherent pattern in a bicluster is expressed by ()ijk. To define 

coherence as having constant elements throughout a bicluster, the plaid models set ()ijk = JLk for 

all i, j of the bicluster. For a bicluster k with similar, though not constant, expression values across 

all experimental conditions (or across all genes, or across all genes and conditions) in that bicluster, 
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eijk are constricted by Eq. 3.6, Eq. 3.7, and Eq. 3.8 respectively. 

eijk = ILk + {3ik, 

A biclustering problem can be considered as inferring a plaid model with a small value of 

1 M N K 2 

2 L L ( aij - L eijkPik!1,jk) , 
i=1 j=1 k=O 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

for an expression A with AI genes and N samples. The problem is N P-hard, and the authors 

proposed a greedy strategy which, if given K - 1 layers, seek the Kth layer to minimize the sum of 

squared errors: 

where 

!If N 

Q = ~ LL(Zij - eij KPiK!1,jK)2 
i=1 j=1 

K-1 

Zij = aij - L eijkPik!1,jk 
k=O 

(3.10) 

(3.11) 

is the residual from the first K - 1 layers. They developed an iterative algorithm with each cycle 

updating e, P and !1, respectively. The algorithm is briefly shown in algorithm 3. For details of the 

estimation procedure, please refer to the original paper [Lazzeroni and Owen, 2000]. 

3.3 Molecular Evolution 

Molecular evolution focuses mainly on two areas of study: the characterization of changes (including 

to what pattern and rates such changes occur) in nucleic acids and proteins during evolutionary time, 

as well as the reconstruction of evolutionary history of organisms from molecular data. The two 

disciplines are closely related, and progress in one area facilitates progress in the other: knowledge 

for the pattern and rate of evolution is essential in reconstructing phylogenetic trees statistically; 

and in the meantime, phylogenetic knowledge is essential in determining the arrangement of DNA 

sequences of organisms and guiding the estimation of evolution patterns and rates. 
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Algorithm 3: Estimation for Plaid Model 

1 foreach k = 1, ... , K do 
2 foreach s = 1, ... , S do 

3 

4 

5 

6 

7 

Initialization. ; 

U d O(s). (s) (s) (3(s) 
pate ijk' i-lk ,a:ik , jk' 

U d (s) (s) 
pate Pik ,/ijk . 

end 

Update Zijk. 

8 Estimate importance of layer k: (j~ = 2::7=1 2::~=1 Pik/ijkOTjk' ; 

9 Convergence test based on permutation test. If convergence is reached, jump out of the 
loop. ; 

10 end 
11 foreach k = 1, ... ,K do 

12 I backfitting: Oijk; 

13 end 

3.3.1 Models of Nucleotide Substitution 

One basic process in the evolution of DNA sequences is the substitution of one nucleotide for another 

during evolutionary time. This process are complex and often cannot be directly observed due to 

the slow changes. Therefore, in order to study the dynamics of nucleotide substitution, one must 

make simplified and abstracted assumptions regarding to the characteristics of the process. It is a 

standard practice in model-based phylogenetic methods to assume that character substitution occurs 

according to a continuous-time Markov chain [Huelsenbeck et al., 2004]. In a Markov chain, the rate 

of change between states is represented by a transition matrix. Phylogenetic analyses using DNA 

sequence data assume four states (the nucleotides A, C, G, T IU) and thus the rate matrix is a 

4 x 4 matrix representing the 12 possible nucleotide substitutions. Some well recognized nucleotide 

substitution models include .Jukes-Cantor (JC69) [Jukes and Cantor, 1969], two parameter models 

(K80) [Kimura, 1980], F81 [Felsenstein, 1981]' HKY85 [Hasegawa et al., 1985], TN93 [Tamura and 

Nei, 1993], and GTR [Tavan§, 1986]. This section reviews JC69 and K80. 

Discrete-Time Jukes-Cantor Model 

The discrete-time Jukes-Cantor model is discussed by Ewens and Grant [2004] and is a simpler and 

discrete-time version of the Jukes-Cantor model. It is a Markov chain with four states A, G, C, and 
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T. The transition matrix P for this model, in the order AGCT, is 

1- 30: 0: 0: 0: 

0: 1- 30: 0: 0: 
P= (3.12) 

0: 0: 1-30: 0: 

0: 0: 0: 1- 30: 

where the parameter 0: depends on the timescale chosen. The spectral expansion of pn is 

1/4 1/4 1/4 1/4 3/4 -1/4 -1/4 -1/4 

pn = 
1/4 1/4 1/4 1/4 + (1 - 40:)n 

-1/4 3/4 -1/4 -1/4 
(3.13) 

1/4 1/4 1/4 1/4 -1/4 -1/4 3/4 -1/4 

1/4 1/4 1/4 1/4 -1/4 -1/4 -1/4 3/4 

Thus, the probability that a site has the same nucleotide at time n as the one at time 0 is 

1 3 ( )n - + - 1- 40: 
4 4 ' 

(3.14) 

and the probability that a site has a different nucleotide at time n to the one at time 0 is 

1 1 ( )n - - - 1- 40: 
4 4 

(3.15) 

The stationary distribution of the model is 

(3.16) 

Continuous-Time Jukes-Cantor Models 

Let i, j,and k be arbitary states from {A, G, C, T}. The instantaneous transition rates qij are defined 

as 

Qij = 0: for all i =f j (3.17) 

Thus, qi = Li#j qij = 30:. Following the Markov assumption and time-homogeneity assumption, 

the probability of the state at time t + 10 being j given the state at time t being i is 

Pij(t + E) = :L Pik(t)Pkj(E), 
k 
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where the sum is taken over all possible states in the set {A, G, C, T}. To solve the equation, a 

system of differential equations, called forward Kolrnogrorov equations of the system, can be derived: 

d 
dt Pij(t) = -3a.Pij (t) + a. L Pidt) 

k#-j 

= -3a.Pij (t) + a. L(1 - Pij(t)) 
k#-j 

(3.19) 

(3.20) 

(3.21 ) 

With boundary conditions Pii(O) o for i -I- j, the solution of the linear differential 

equation is 

) 1 3 -4at p·(t = - +-e 
" 4 4 ' 

P () 1 1 -4at t: . -t. . 
ij t = 4" - 4"e ,lOr) r l. 

Discrete-Time Kimura Models 

(3.22) 

The assumption that all nucleotide substitutions occur with equal probability, as in the one param-

eter model of JC69, is unrealistic in most cases. For example, a transition, that is, the replacement 

of one purine or pyrimidine by another (i.e., replacement between A and G or between C and T) is 

generally more frequent than a transversion, that is, the replacement of one purine by a pyrimidine 

or of one pyrimidine by a purine. To take this fact into account, Kimura [1980] proposed a two

parameter model (K80). The transition matrix for the discrete-time version of K80, in the order 

AGCT, is 

1 - a. - 2(3 a. (3 (3 

a. 1 - a. - 2(3 (3 (3 
P= (3.23) 

f3 (3 1 - a. - 2(3 a. 

(3 (3 a. 1 - a. - 2(3 
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where a is the probability of a transition in one time unit and (3 is the probability of a transversion 

in one unit. The spectral expansion of pn is 

1/4 1/4 1/4 

pn = 
1/4 1/4 1/4 

1/4 1/4 1/4 

1/4 1/4 1/4 

+ (1 - 2(a + (3))n 

1/4 1/4 

1/4 + (1 - 4(3)n 
1/4 

1/4 -1/4 

1/4 -1/4 

1/2 -1/2 0 0 

-1/2 1/2 

o 

o 

o 

o 

o 0 

1/2 -1/2 

-1/2 1/2 

Continuous-Time Kimura Models 

1/4 -1/4 -1/4 

1/4 -1/4 -1/4 

-1/4 1/4 1/4 

-1/4 1/4 1/4 
(3.24) 

Let i,j,and k be arbitary states from {A, G, C, T}. The instantaneous transition rates qij for K80 is 

1 - a - 2(3 

a 
q= 

(3 

(3 

and 

a (3 

1 - a - 2(3 (3 

(3 1 - a - 2(3 

(3 a 

qi = L qij = a + 2(3. 
i#j 

(3 

(3 
(3.25) 

a 

1- a - 2(3 

(3.26) 

Recall that the forward Kolmogorov equations of the continuous-time Markov model take the form 

(3.27) 

With boundary conditions Pii(O) = 1 and Pij(O) = 0 for j =I i, the solutions of the differential 

equations are 

111 p.(t) = - + _e- 4 /3t + _e- 2(a+/3lt 
.. 4 4 2 ' 

(3.28) 
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and for (i,j) E {(A,G),(G,A),(C,T),(T,Cn 

P(t) = ~ + ~e-4/3t _ ~e-2(a+/3)t 
'J 4 4 2 ' (3.29) 

and for (i,j) E {(A, C), (A, T), (G, C), (G, T), (C, A), (C, G), (T, A), (T, Gn 

(3.30) 

3.3.2 Molecular Phylogenetics 

The objectives of phylogenetics are to reconstruct the genealogical relationships among biological 

species, to estimate the time of divergence between species, and to chronicle events along evolutionary 

lineages. Molecular phylogenetics study evolutionary relationships through molecular data such 

as nucleotide sequences and amino acid sequences, as opposed to traditional information such as 

anatomical, morphological, and palaeontological data. Comparing to these traditional data, there 

are several advantages of DNA and proteins in phylogenetic studies: they are heritable, unambiguous, 

and abundant. 

The reconstruction requires proper assumptions on the process of DNA evolution, and the struc-

ture of the evolutionary relationships among taxonomic units. Sec. 3.3.1 introduced nucleotide 

substitution, a basic process in the evolution of DNA. In phylogenetics, the evolutionary relation-

ships among organisms are presented as a phylogenetic tree (3.8). It is worthing mentioning 

that alternative structures such as phylogenetic networks have also been studied, e.g. [Huson 

et al., 2011]' though we shall focus on tree structure in this study. The nodes of the tree represent 

taxonomic units (e.g. species, individuals, or genes), and the branches define the ancestry-descent 

relationships among the taxonomic units and the number of changes occurred during the event. 

Operational taxonomic units (OTUs) refers to the leaf nodes of the tree and represent the 

extant taxonomic units under comparison. Internal nodes represent inferred ancestral units, and 

are sometimes referred to as hypothetical taxonomic units (HTUs). A bifurcating node is 

defined as one which has exactly two immediate descendant lineages, while a multifurcating node 

can have more than two. In practical reconstruction process, it is often assumed that speciation is a 

bifurcating process. A rooted tree is a tree with a particular internal node (the root) representing 

the most recent common ancestor of all the taxonomic units under study. An unrooted tree is a 

tree without specifying the root, though strictly speaking, an unrooted tree may not be considered 

a phylogenetic tree. 
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Edwards and Cavalli-Sforza [1964] found that the number of possible bifurcating unrooted trees 

with n leaves is 

(2n - 5)! 
NR = 2n - 3 (n _ 3)!' for n ~ 3, (3.31) 

and Felsenstein [1978] showed that the number of possible bifurcating rooted trees with n leaves is 

(2n - 3)! 
NR = 2n - 2 (n _ 2)!' for n ~ 2. (3.32) 

Table 3.3.2 lists N R for n = 1,2, ... ,20. 

Table 3.1: The number of possible rooted evolutionary trees for a given number of OTUs 

2 1 
3 3 
4 15 
5 105 
6 954 
7 10,395 
8 135,135 
9 2,027,025 
10 34,459,425 
15 213,458,046,676,875 
20 8,200,794,532,637,891,559,375 

We introduce in the following the basic phylogenetic tree inference methods. For a detailed 

treatment of these methods, readers may consult Felsenstein [2003]. The simplest method for tree 

construction is called UPGMA, which stands for unweighted pair group method using arithmetic 

averages [Sokal and Michener, 1958]. It is used when the rates of evolution are approximately 

constant among the different lineages. UPGMA is a greedy algorithm essentially the same as ag

glomerative hierarchical clustering Duda et al. [2000]. It starts with each OTU in its own cluster 

and repeatedly merge clusters greedily until there is only one cluster left. There are many different 

ways of defining distance, which quantifies the evolutionary difference between OTUs. One can take 

the distance to be the fraction of mismatches between two sequences, where a mismatched base 

pair is defined as pair in which different nucleotides are found in the two aligned sequences. This 

gives a sensible definition for small fractions. But for two unrelated sequences, random substitutions 

will cause the fraction to approach a value expected by chance. Markov models of nucleotide substi-

tution, discussed in Sec. 3.3.1, can be used to define evolutionary distances with large value as the 

fraction approaches the expected value. In UPGMA, the distance between two clusters is defined as 
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the average distance between all pairs of sequences from each cluster. Besides average distance, the 

minimum or maximum of all the distances can also be used to define distance between two clusters. 

An alternative strategy to the greedy approach in UPGMA is maximum parsimony, which 

involves the identification of a topology that can explain the observed sequences (or the observed 

differences among the sequences) with a minimal number of substitutions. A maximum parsimony 

algorithm thus consists of two components: an objective function (or optimality criterion) which is 

a value assigned to a phylogeny, and a searching algorithm which explore "all" trees and pick the 

one with the best value according to the optimality criterion. The objective function of parsimony 

often treats each base independently, and then adds the substitutions for all bases. Unweighted 

parsimony considers all the different nucleotide substitutions are given equal weight during sum

mation, and weighted parsimony refers to the case where the various character state changes are 

assigned different weights. An exhaustive search, i.e. enumerate all possible topologies and compare 

them, is computationally infeasible because the searching space increase rapidly with the number 

of OTUs. Heuristic search methods that can balance the computation resources effectively between 

exploration and exploitation of the searching space is essential to a maximum parsimony algorithm. 

Branch swapping is also an important technique which is used to generate topologically similar 

trees from an initial one. 

The neighbor-joining method [Saitou and Nei, 1987] is a greedy approximate algorithm with 

the same objective as the maximum parsimony algorithm, i.e. to find the minimum evolution tree. 

The algorithm starts with a star-like tree where all the OTUs are connected to a central node. At 

each stage of clustering, it finds and merges the pairs of neighbors that minimize the total branch 

length. The method defines a pair of neighbors as a pair of taxonomic units (can be OTUs or 

HTUs) connected through a single interior node in an unrooted, bifurcating tree. The combined 

pair of taxonomic units is regarded as a single taxonomic units (HTU) and can serve as neighbor to 

other taxonomic units as well. The merging procedure is continued until all interior branches are 

found. 

The Likelihood of a Phylogenetic Tree 

From a statistical point view, a phylogenetic tree and its substitution pattern describe a generative 

model about how the observations (i.e. DNA sequences) were evolved from their common ancestors. 

Given contemporary sequences derived from contemporary organisms, the model parameters, i.e. 

the rates of substitution, the number of changes, and the topology can be inferred using a variety 

of parameter estimation methods, such as maximum likelihood estimation (MLE) and Bayesian 
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inference. 

x 

a b c e 

Figure 3.8: A phylogenetic tree for five species. 

Assume the evolutionary tree of five species shown in Fig. 3.8. Let T be the tree topology, 

fl = {tl, t2,··· ,t8} be the branch lengths measuring the expected number of substitutions, e be 

whatever substitution model chosen (Le. JC69, 1(80). Let F = {a, b, c, d, e} at the leaves be the 

observed nucleotides at a particular site. Let I = {x, y, z, 'U'} at non-leaf nodes be the unobserved 

ancestral nucleotides at that site. The likelihood of T, fl, e given the observation F, is 

(3.33) 

oX Y z 'W 

= L 11"x{ L PXy(tl)Pya(t3)PYb(t4)}{ L Pxz (t2)Pze(t6) L Pzw (t5)Pwc(t7 )PWd(t8)} 
x y z w 

(3.35) 

The likelihood sums over all possible assignments of nucleotide state to the ancestral nodes. For 

a phylogenetic tree with N leaf nodes, the number of assignments is 4 N -1 for nucleotide sequence 

and 20N - l for amino acid. Felsenstein [1981] developed a pruning algorithm which reformed the 

likelihood using Horner's rule (i.e. reform Eq. 3.33 into Eq. 3.35) and calculated the likelihood in a 

bottom up way using a dynamic programming strategy. 

Let Y be an N x S matrix representing a set of aligned sequences over N loci and S sites. Let 

Ys be the 8th column of Y. Let T, fl, e be the topology, branch lengths and substitution parameters 

respectively. If it is assumed that the sites evolve independently, then the likelihood of the model 
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parameters given the observation Y is 

s 
£(7,(3,8; Y) d;j. P(YI7,(3,8) = II P(Ys I7, (3, 8) (3.36) 

s=l 

Maximum Likelihood Estimation 

Let 4> = (7, (3, 8), The maximum likelihood (ML) estimator, denoted by ~MLE' is 

~ML = arg max £(7, (3, 8; Y) (3.37) 
T,;3,e 

s 
= argmax L P(Ys I7, (3, 8) 

T,;3,e s=l 

(3.38) 

The parameters to be estimated include the topology 7 , branch lengths (3 and substitution param-

eters 8. Given the values of these parameters, the likelihood can be calculated using the pruning 

algorithm. The ML estimation normally consists of two tasks. The first task is to, given a fixed 

topology 7, estimate the branch lengths and substitution parameters. The likelihood function 

£((3,8; Y, 7) d;j. P(YI7, (3, 8) (3.39) 

has the same joint density as of the likelihood function £(7, (3, 8; V), except that 7 is treated as fixed 

and known value. The estimation is then 

S 

$ML,SML = argmax LP(Ys I7,(3,8) 
;3,e 8=1 

(3.40) 

This estimation is normally done through iterative methods such as expectation ma..ximization 

[Felsenstein, 1981, Friedman et al., 2002, Dempster et al., 1977] or numerical optimization [Olsen 

et al., 1994, Yang, 2000, Nocedal and Wright, 2000]. An optimization procedure often cycles through 

two steps. In the first step, branch lengths are optimized one by one through Newton's algorithm 

while keeping substitution parameters fixed. In the second step, substitution parameters are opti-

mized through numerical optimization methods such as BFGs while keeping branch lengths fixed. 

The second task is to estimate the topology, as in Eq. 3.37. For a given topology 7, the optimized 

likelihood (£($M£, SAIL; Y, 7)) can be estimated using numerical methods. Therefore, a brute force 

approach would enumerate all possible topologies, estimate the maximum likelihood with respect 

to branch lengths and substitution parameters for each topology, and choose that topology which 
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yielded the highest likelihood (TML). This exhaustive search strategy is computationally infeasible 

because of the large topology space. To effectively explore the topology space and estimate the 

maximum likelihood, algorithms based on heuristic paradigms have been proposed. Felsenstein 

[1981J developed a search algorithm, which builds the tree by successively adding species to it, 

beginning with a two-species tree. When the kth species is being added to the tree, there will be 

2k - 5 branches from which it could arise. Each of these topologies is tried and their maximum 

likelihood with respect to branch lengths and substitution parameters are estimated. The placement 

yielding the highest likelihood is accepted. If k ~ 5, before trying adding the species to the tree, 

local rearrangements of taxa in the tree are conducted to explore alternative topologies. If any of 

these topologies improves the likelihood, it is accepted and the hill climbing process continues until 

no local rearrangement can improve the likelihood. 

Guindon and Gascuel [2003J developed an efficient estimation algorithm which starts with an 

initial tree constructed by a distance-based algorithm such as BIONJ [Gascuel, 1997J and iteratively 

refines the tree through simultaneous branch length optimization and subtree swapping. 

Lewis [1998], Lemmon and Milinkovitch [2002]' independently, developed genetic algorithms for 

the ma..ximum likelihood estimation. The algorithm in [Lewis, 1998J starts with a population of n 

individuals, each of which is a phylogenetic tree with arbitrarily specified topology, branch lengths 

and substitution parameters. The algorithm then explores the searching space through generations, 

which follow a simulated natural selection process. At each generation, individuals with higher 

likelihood will get higher chances to survive and reproduce; meanwhile, individuals are subjected 

to branch length mutation, topology mutation and substitution model mutation; at the end of the 

generation, recombinations between individuals are carried out. 

The standard maximum likelihood formulation for phylogenetic trees (as in Eq. 3.37) seeks 

parameters yielding the highest likelihood. An alternative maximum likelihood formulation for 

estimating tree topology, which we introduce here, is to sum over all possible branch and substitution 

parameters: 

TML = argmax L £(7, (3, e ; Y) 
T j3,e 

(3.41) 
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Bayesian Inference 

According to Bayes' theorem, the posterior probability of T, (3, 8 given the aligned sequences Y is 

P(T, (3, 81Y) = P(T,(3, 8)C(T, (3,8;Y) 
J P(T,(3,8)C(T,(3,8;Y)dT (38 

(3.42) 

Here, for ease of representation, symbols Land J are used interchangeably. 

P(TIY) = J P(T,(3,8IY)d (3 8 (3.43) 

The study of Bayesian approaches to molecular phylogenetics using MCMC begins with several 

independent works in [Yang and Rannala, 1997, Mau et al., 1999]. Rannala and Yang [1996] devel-

oped an algorithm based on empirical Bayesian analysis, where the parameters of the substitution 

model and the prior distribution of phylogenetic trees were estimated using maximum likelihood, and 

these estimates were then used to replace the true parameters to evaluate the posterior probabilities 

of trees. The calculations involve a sum over all topologies and, for each topology, an integral over 

branch lengths using numerical integration. Recognizing that the computational procedure is suit

able only for very small trees, they incorporated Monte Carlo integration to evaluate the integral over 

branch lengths and avoided the sum over all topologies by sampling the posterior distribution using 

MCMC [Yang and Rannala, 1997]. According to the Metropolis-Hastings algorithm, the probability 

of accepting a proposed new state <I>* from the current state <I> is 

. ( P( <I> * IY)q( <I> * , <I» ) 
r = mm 1, P(<I>IY)q(<I>, <I>*) (3.44) 

the sampler uses a Metropolis-within-Gibbs [Tierney, 1994] algorithm that cycles through blocks of 

model parameters within <I>. For example, the probability of accepting the proposed new substitution 

parameters 8* from the current state 8 is 

. (1 P(8*IY,T,(3)qe(8*,8)) 
re = min , 

P(8IY, T, (3)qe(8, 8*) 
(3.45) 

Larget and Simon [1999] developed in BAMBE two algorithms for proposing new trees. The first 

one, a GLOBAL algorithm, modifies all branch lengths and potentially changes the tree topology 

simultaneously; The second, a LOCAL algorithm, modifies the tree only in a small neighborhood of 
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a randomly chosen internal branch, leaving the rest of the tree unchanged. A version relaxing the 

assumption on a molecular clock was also proposed in the same paper. 

To reduce the chance that Markov chain simulations remain in the neighborhood of a single mode 

for a long period of time, Huelsenbeck and Ronquist [2001] implemented in MRBAYES a variant of 

Metropolis-coupled MCMC ((MC)3) [Geyer, 1991], also known as simulated tempering [Neal, 1996]. 

(A1C)3 runs m Markov chains in parallel, having different, but related, stationary distributions, 

il,'" , 1m· After all m chains have gone one step, a swap is attempted between two randomly 

chosen chains i and j according to a Metropolis update with the odds ratio defined as 

(3.46) 

Here, 7; and 7j are the tree topologies drawn from chain i and j respectively. The stationary 

distribution J; ( 7) is defined as 

1;(7) = P(7Iy)i3i 

MRBAYES uses incremental heating which defines /3i for the ith chain as 

1 
/3i=1+(i_1)T 

(3.47) 

(3.48) 

where T is a user-set temperature. Samples for the target posterior distribution are drawn only 

from the first chain (cold chain, i = 1, /3; = 1). The heated chains (/3i < 1) can more effectively 

explore the searching space because heating makes the peaks (modes or local optima) lower and 

valleys higher. 

Rate Heterogeneity Across Sites 

It is realistic to assume that substitution parameters vary across different sites [Tateno et al., 1994, 

Yang, 1996]. A nuanced model would allow using one set of substitution parameters for each site. 

That is, for an aligned sequence data Y with S sites, the substitution parameters takes the form 

where 8 s is the substitution parameters specific to site S (8 = 1,2, ... ,S). This, however, results in 

too many parameters to estimate given a limited number of observations. A more practical approach 
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is to model the rate variation using a probabilistic distribution. 

In the gamma-rates model [Gu et al., 1995, Kelly and Rice, 1996], it is assumed that the substi-

tution parameters e take the form 

Here all the sites share a common set of substitution parameters Q but vary in rates by a proportion 

(rs)' rl,r2,'" ,rs are independent and identically distributed (Li.d.) random variables from a 

gamma distribution (denoted g( rlQI , (2) with QI, Q2 being prior parameters. The likelihood of 

model parameters given information on site s is 

(3.49) 

This marginal likelihood does not have an analytical form and thus numerical methods or Monte 

Carlo methods are necessary. Mayrose et al. [2005] used numerical integration which approximate 

the integrand with simpler functions and a reduced finite set of r. Nevertheless, the computational 

intensive integrand and the large domain of integration prohibit the marginal likelihood from practi-

cal usage. A more practical and widely accepted method is to use finite mixture modeling techniques, 

where sites are partitioned and all sites within each partition share a common rate. For example, 

under discrete-gamma model[Yang, 1996, Mayrose et al., 2005] with C equal probable rate classes, 

The likelihood of model parameters given Y s is 

c 
P(Ys lr,,8, Q, QI, (2) = L P(Y s lr,,8, re, Q)g(reIQI, (2). (3.50) 

e=l 
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CHAPTER 4 

INFINITE RELATIONAL MODEL WITH FEATURE 

SELECTION 

4.1 Introduction 

Infinite relational models (IRMs) [Kemp and Tenenbaum, 2006, Xu et al., 2006, Friedman et al., 

1999, Airoldi et al., 2008] are generalizations of Dirichlet process mixture (DPM) models [Escobar 

and West, 1995] (also known as infinite mixture models [Rasmussen, 2000]) to the relational domain, 

where the observations include not only the object-feature data representing entity properties, but 

also one or more relations involving one or more types, representing object-object relationships. 

The goal of the IRMs is to partition each type into clusters, where a good set of partitions allows 

entity features and relationships between entities to be predicted by their cluster assignments. IRM 

associates each entity with a latent variable representing cluster assignment, and defines a generative 

model for the observations and latent variables. In the Bayesian hierarchical model, the relations are 

conditionally independent given the cluster assignments, and the prior assigns some probability mass 

to all possible partitionings of the type, often through Bayesian non parametric techniques [Ferguson, 

1973] and the Chinese restaurant process (CRP) [Aldous, 1985, Pitman, 2006]. 

A fundamental assumption of an IRM approach to clustering is that all features are interesting 

in describing the underlying structure. There are many cases in which, however, the structure of 

greatest interest may be best represented using only a selected subset of features. This may result 

in structures with more intuitive interpretation, or better prediction accuracy. In general, removing 

unnecessary features (and variables) may also improve the precision of parameter estimation. 

In this paper, we introduce joint feature selection and infinite relational model (FIRM) which 

allows for more robust collective inference and often results in significant performance gains. Tradi

tional IRMs define the same form of mixture density functions over all features, and feature selection, 

53 



an essential part of clustering, is ignored or must be done prior to the application of the methods. 

In contrast with IRMs, FIRM incorporates latent variables of features to explicitly represent feature 

saliency in a relational context and results in structures with more intuitive interpretation and better 

prediction accuracy. ily recasting the feature selection problem as parameter estimation, FIRM is 

able to efficiently avoid the combinatorial search through the space of all feature subsets. 

Although many mixture-based methods for joint feature selection and clustering have been pro

posed and applied to a wide range of domains [Law et al., 2003, 2004, Tadesse et al., 2005, Con

stantinopoulos et al., 2006, Chang et al., 2005], these previous methods have focused exclusively on 

feature (or attribute) data. Feature selection in clustering, however, is inherently a harder problem 

than in supervised learning, due to the absence of class labels and prior knowledge of the underlying 

structure which would guide the search for relevant features. Relationships between objects of the 

same or different domains account for a large proportion of semantic knowledge. The studies in 

statistical relational learning have demonstrated that learning joint models can often lead to better 

performance. FIRM differs from these previous feature selection methods in that it incorporates an 

arbitrary system of relations and entity types in a domain of interest. By conditioning the multi

ple probability density functions on latent component variables, the model allows for information 

exchange between features and relations of the same entity type, and also leads to information 

propagation among different entity types through the entire multi-relational network. 

4.2 Background 

The general form of a finite mixture model with K mixture components or clusters can be written 

as: 
K 

f(x) = L 7rdk(X), (4.1) 
k=l 

where x is a multivariate variable, 7rk is the mixing proportion of the kth component and represents 

the prior probability of an observation being generated from the kth component, and fd·) is the 

probability density function of the kth component. The components are often modeled by members 

of the same parametric density family so the finite mixture model can be written as: 

K 

f(x) = L 7rkf(xlfh), (4.2) 
k=l 

where (h is the parameter vector for the kth component. 

The feature saliency is defined as the probability that a feature is relevant to the clustering. 
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Assuming the features are independent for each mixture component, the mixture density function 

with feature saliency is then written as: 

K D 

f(x) = I: 7rk II (Pdf(Xd!()kd) + (1 - Pd)g(Xd!<Pd)), (4.3) 
k=l d=l 

where D is the number of features, Xd is the observation of the dth feature, and ()kd is the parameter 

specific to the kth component and the dth feature, Pd is the prior probability of the dth feature 

being relevant to data clustering, and g(Xd!<Pd) is the density function of the dth feature when it is 

irrelevant to the mixtures. The form of g(.!.) can be any uni-variate distribution, e.g. Gaussian or 

even mixture distributions. 

Given a set of observations, the model parameters can be estimated with different type of infer

ence algorithms, including expectation-maximization (EM) for maximizing the likelihood function 

(MLE) or the posterior probability (MAP), Markov chain Monte Carlo (MCMC) for drawing sam-

pIes of the posterior probability distributions, or Bayesian variational approximations for maximizing 

the marginal likelihood function. The choice of the number of mixture components K, a key task 

in the application of finite mixture models, can be handled with different type of model selection 

techniques, including a complexity criterion approach using an extended minimum message length 

(MML) criterion for finite mixtures [Law et al., 2004, Figueiredo and Jain, 2002], a Bayesian sam

pling approach using reversible jump MCMC embedded within a Gibbs sampler [Tadesse et al., 2005, 

Richardson and Green, 1997], or a Bayesian variational model selection approach [Constantinopoulos 

et al., 2006, Corduneanu and Bishop, 2001]. 

The Dirichlet process mixture model (DP:M, also known as infinite mixture model) [Escobar 

and West, 1995, Rasmussen, 2000] is a Bayesian nonparametric alternative for density estimation 

using mixtures of Dirichlet processes [Ferguson, 1973]. DP~vl allows a count ably infinite number of 

component and this number can be automatically and implicitly inferred from data using the usual 

Bayesian posterior inference framework such as MCMC for DPM [Escobar and West, 1995, Neal, 

1998, Jain and Neal, 2004], or tree-based approximating for DPM [Heller and Ghahramani, 2005a]. 

The feature saliency strategy for feature selection shown in (4.3) can be smoothly incorporated into 

the framework of DPM, as proposed in [Kim et al., 2006]. 
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4.3 Model 

We shall restrict the discussion to the situation where the observed data includes a feature data 

X and a relation data R, though the model applies to situations of multiple feature datasets and 

relations. Specifically, suppose the feature data X contains a vector of feature observations for each 

entity of type T1 , and the relational data R contains a relation observation for each pair of entities 

of type T1 and T2 . FIRM aims to model X and R by the following generative process, 

z ,...., CRP(az ), (4.4) 

Sd ,...., Bernoulli(Pd), (4.5) 

Ok,d""" iO(AO), (4.6) 

¢d ,...., gO(Ad», (4.7) 

Xi,d ,...., i(Xi,dIOZi,d)Sd g(Xi,dl¢d )1-8d , (4.8) 

u,...., CRP(au ), (4.9) 

~!k,l ,...., hO(A.p), (4.10) 

Ri,j ,...., h(Ri,jl~JZi,Uj)' (4.11) 

where a discrete latent variable, Zi E {I,··· ,K}, is introduced for each entity i of T1 to encode 

which component has generated the observation; i.e. Zi = k indicates that the ith observation is 

generated by the kth component, also introduced is a binary latent variable, Sd E {O, I} for each 

feature d to encode whether the feature is relevant to the clustering, and i, io, h, ho, 9 are functions 

described in the subsections. 

4.3.1 Prior on Partitions 

While the Dirichlet process implicitly partitions the observations, the Chinese restaurant process 

(CRP) [Pitman, 2006, Aldous, 1985] explicitly defines a predictive distribution over partitions and 

provides a convenient interpretation of the partitions induced by the Dirichlet process. Imagine 

building a partition over n observations: under the CRP, there is an infinite number of clusters; 

and the probability that the ith observation is assigned to the kth cluster is proportional to nk, the 

number of observations already assigned to the kth cluster; the observation can also be assigned to a 

new (and empty) cluster with probability proportional to the positive scalar concentration parameter 
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Figure 4.1: The basic graphical model for FIRM with feature data X and relation data R. The 
observation of each entity i includes a length D vector (Xi,. ) representing the features (or properties) 
of i, and a length J vector (Ri ,. ) representing i's relationships with J entities. The observations are 
conditionally independent given the cluster assignment. White and grey circle nodes denote latent 
and observed variables respectively, gray square nodes denote hyperparameters, and arrows indicate 
probabilistic dependencies. Plates denote repeated variables over the indicated indices. 00 denotes 
countably infinite number of components and grows with the number of entities. Specifically, z and 
u are latent component indicator variables, s are latent feature saliency variables, and () , </> and 1/1 
are component model parameters. 

0; note there is no a priori distinction between the empty clusters, i.e. 

{
~ 
n-l+Q 

P( Zi = k\Z- i, 0) = _Q_ 

n- l + Q 

(4.12) 

k: new cluster 

Here the subscript - i indicates all indices except i . The CRP induces an exchangeable distribution 

on partitions, so that the joint distribution is invariant to the order in which observations are assigned 

to clusters. One particular combinatorial characterization of the partition structure produced by 

the CRP is that the number of non-empty clusters almost surely approaches olog(n) as N 4 00. 

This shows that being a nonparametric prior, the CRP favors models whose complexity grows with 

the number of observations. Importantly, the simple predictive distributions induced by the CRP 

lead to efficient Monte Carlo algorithms for learning and inference. 

4.3.2 Prior on Feat ure Saliency 

We assume that Sd 'S, the latent indicator variable for feature selection, are independent Bernoulli 

random variables given feature saliency variable Pd 'S: 

(4.13) 
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and conjugate prior 

(4.14) 

where the hyperparameters a, b are common to all features, and B(a, b) is the beta function and a 

normalization constant of the beta distribution. 

4.3.3 Choices for the Likelihood Functions and Their Priors 

The likelihood terms in 4.8 and 4.11 describe the dependency of observations (features and relations) 

on the latent variables. These models should be tailored to the specific types of the observations. The 

most common choices in practice are to use a Gaussian noise distribution for a numerical variable 

and a Bernoulli distribution for a binary one. Independently of each other, features and relations 

can take on either continuous or discrete values. For simplicity of discussion, we only describe the 

situation where all of the observations are numerical and are modeled by Gaussian distribution 

(denoted N). 

In slight abuse of annotation, we use a univariate variable x to represent an observation, Xi,d, 

and use J.tk, aZ to represent the component and feat71re specific mean and variance, then the likelihood 

function f('I') in (4.8) is written as: 

( 4.15) 

J.tk and aZ are given conjugate Gaussian priors and conjugate inverse-gamma priors (denoted Ig) 

respectively: 

( 4.16) 

where )..0 = {m, v, ct,,B} are hyperparameters common to all components. Likewise, the likelihood 

function h('I') and the prior function hQ, which generate the relation R, are defined analogously. 

4.3.4 Posterior Distribution 

Having specified the model and the prior densities, we can now write the posterior, which is the 

distribution of the parameters conditioned on the observed data and hyperparameters. The posterior 

is given by 

p(iI>IX, R, A) ex p(XIiI»p(RIiI»p(iI>IA) ( 4.17) 
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Algorithm 4: Collapsed Gibbs sampling for FIRM. 

1. initialize latent indicator variables z 1 , U 
1 , S 

1 

2. For t = 1, ... , T 

For each i = 1, ... , I sample latent indicator variables Zi'S in sequential: 

For each j = 1, ... , J sample latent indicator variables Ui'S in sequential: 

For each s = 1, ... , D sample latent feature saliency variables Si'S in sequential: 

Note 0* denotes ot except that those latent variables already being sampled at iteration tare 
updated with the newest values, e.g. when sampling z;+1, 
0* = {z~+1, ... ,zf~i, zf, ... ,zj, u t , st}. The notation \, e.g. A\B, denotes the set-theoretic 
difference. 

where If> {s, z, u, 8, l/J, 1/J} denotes all latent variables in the model, and A 

{Qz , Qu, a, b, AB, Aq" A'I/I} denotes all hyperparameters in the model. A graphical representation of 

the model is given in Fig. 4.1. 

4.4 Inference with Gibbs Sampling 

In a fully Bayesian framework. the interest is in computing the posterior distribution over the 

parameters, p(If>IX, R, A). The posterior, given in 4.17, is only known up to a normalization constant, 

p(X, RIA), whose computation involves integrating over the unnormalized posterior, which is not 

analytically tractable. Instead, we approximate the posterior distribution using Markov chain Monte 

Carlo (MCMC). 

We propose an inference procedure based on collapsed Gibbs sampling. Gibbs sampling is appli

cable when the joint density of the parameters is not known, but the parameters can be partitioned 

into groups whose posterior conditional densities are known. The collapsing is appealing when part 

of the parameter groups can be integrated out while the resulting marginalized posterior conditional 

densities are still computational feasible. The collapsed Gibbs sampler iteratively sweeps through 

the groups of parameters (while skipping the ones that are integrated out) and generate a random 

sample for each, conditioned on the current value of the others. This procedure forms a homogeneous 

Markov chain and its stationary distribution is exactly the joint posterior. 
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Algorithm 5: Sampling for the component parameters. 

1 For samples {z, u, s }' s from the equillibruim distribution 

• For each k = 1, ... , K and d = 1, ... , D where Sd = 1, sample component parameters ° in 
parallel: 

• For each k = 1, ... , K and I = 1, ... , L sample component parameters 't/J in parallel: 

• For each d = 1, ... ,D sample parameters cjJ in parallel: 

Note the density function P(·I·), denotes the posterior probability density function of the 
model with Gaussian likelihood and Normal-inverse-Gamma prior. 

The collapsed Gibbs sampler keeps only the latent indicator variables (n = {s, z, u}) while 

marginalize over the latent component model parameters ({ 0, cjJ, 't/J } ), so the posterior density is 

given by 

p(nIX, R, A) ex p(Xln, A)p(Rln, A)p(nIA) (4.18) 

Because of the choice of conjugate priors (4.15, 4.16), the marginalized likelihood p(Xln, A) and 

p(Rln, A) which condition on the latent indicator variables, have analytical tractable forms: 

p(Xln, A) = p(Xlz, s, >'0, >'<,/» 

= J p(Xlz,s,O,cjJ)p(OI>'o)p(cjJl>.<,/»dOcjJ 

D max(z) Sd I-Sd 

= II [ II M(Xi:Zi=k.d)] [M(X..d)] 
d=1 k=1 

and 

p(Rln, A) = p(Rlz, u, >.,;,) 

= J p(Rlz,u,'t/J)p('t/JI>'psi)d't/J 

max(z) max(u) 

II II M(Ri:Zi=k,j:zj=d 
k=l 1=1 

(4.19) 

(4.20) 

(4.21 ) 

( 4.22) 

(4.23) 

(4.24) 

where the subscript i : Zi = k indicates all indexes such that Zi = k, and the density function M(·), 

described in Appendix, denotes the marginal likelihood of a model with Gaussian likelihood and 
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normal-inverse-gamma prior. 

The Gibbs sampler (Algorithm 4) draws samples of Zi'S, Ui'S, and Sd'S sequentially from their 

conditional densities in 4.25, 4.26, and 4.27 respectively. 

p(UjIX, R, n\Uj' A) ()( p(X, Rln, A)p(ujlu_j, O:tt) 

p(sdIX, R, n\Sd, A) ()( p(X, Rln, A)P(Sdla, b) 

(4.25) 

(4.26) 

(4.27) 

After the chain converges, the component parameters, which are independent conditioned on the 

sampled latent indicator variables, are drawn from the corresponding posterior density functions (Al

gorithm 5). 

4.5 Experiments 

We demonstrate the proposed method on an image clustering problem, and compare it to three 

other Bayesian nonparametric techniques: infinite relational model (IRM), Dirichlet process mixture 

(DPM) model, and joint feature selection and clustering with DPM (FDPM). 

4.5.1 Data 

We consider the setting of two domains (Tl and T2 ) and one relation between them. Domain Tl 

contains the digits 0-9, and domain T2 consists of the alphabetic characters A-J. Digit samples 

obtained from the MNIST dataset which consists of 28 x 28 pixel gray scale images of handwritten 

digits (Fig. 4.2). 100 images of each digit were randomly selected, yielding 1000 unique images. The 

images were rescaled so that pixel intensities are in the [0, 1] interval, and the vectorized images were 

arranged as the rows of the 1000 x 787 matrix X. Character samples were obtained from the Simon 

Lucas dataset which consists of 20 x 16 pixel binary images of handwritten letters. All 39 images 

of the capital letters A-J were selected, resulting in 390 unique images. The vectorized images were 

arranged as the rows of the 390 x 320 matrix Y. Both datasets are available online [Roweis] in 

Matlab format courtesy of Sam Roweis. 

We assume, between the ten digits and the ten letters, there only exists 1:1 mappings in the pairs 

of (1, A), (2, B), (3, C) ... , (9, I), and (0, J). We call these pairs the digit:chamcter assumption. 

The pairwise relations between the 1000 samples of digits and the 390 samples of character are 
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Figure 4.2: Sample images from the MNIST digit dataset 

Relation R(digi ts, characters) 
f = 0.8 ,b= 0.4 

Figure 4.3: Illustration of synthetic relational data with random noise, in which each row corre
sponds to an image of digit, each column corresponds to an image of characters, and each entry 
represents whether a relation exits between the corresponding digit image and character image. The 
binary values are generated from Bernoulli distributions, with parameter b for background, and 
f for foreground . Here foreground is defined as those pairs of digit and character satisfying our 
digit:character assumption. 
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represented by a 1000 x 390 binary matrix R, where a value 1 denotes an existing mapping and 0 

denotes no mapping (Fig. 4.3). The observation R is noisy, and each entry Ri,j is drawn from a 

Bernoulli distribution, whose parameter is chosen according to some desired noise rate. If the digit 

represented by the ith digit image and the letter represented by the jth letter image follows the 

digit:character assumption, the noise rate should be low; otherwise, the noise rate should be high. 

4.5.2 Task 

The objective is to categorize the images and to predict missing pixels in the images. Although the 

digit images corresponds to the ten digits, we cannot expect the models to find exactly ten clusters 

with each corresponding to a digit. This is due to the facts that, first, there are high variations as 

to how each digit is written; and second, there exists a large proportion of low variation features 

surrounding all images regardless of their corresponding digit. Bayesian nonparametric models can 

more effectively account for the variations in the data and can infer the number of parameters 

automatically. To illustrate how well each of the models avoids over-fitting and under-fitting, we 

compare their performances on predicting missing pixels in testing images. To simply performance 

comparison, we focus on the setting where the digit images X and the relationship data R are made 

available, thus FIRM can be applied exactly as shown in Fig. 4.1. 

4.5.3 Methods 

In each experiment, the collapsed Gibbs sampling algorithms for the models (DPM, FDPM, IRM, 

and FIRM) were performed for 100 iterations 1, the first half was used for burn-in and every fifth 

sample from the second half was used to estimate posterior quantities. Each iteration consisted 

of sampling all the latent mixture component variables and latent saliency variables. To facilitate 

mixing, we interleaved split-merge proposals [Jain and Neal, 2004] between Gibbs sweeps. To improve 

the mixing, Metropolis coupled MCMC [Geyer, 1991] was performed in which two chains were run, 

one of which was "heated" by raising the posterior probability to a power 0.8. Same component 

hyperparameters (Fig. 4.1) are used for all experiments: A() = Aq, = {rn = 0, v = 1, II = 5, f3 = 0.5}, 

AljJ = {ll = 0.2, f3 = 0.2}, llz = llu = 1. 

ITests showed that increasing the number of iterations did not lead to better predictive accuracy. 
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Figure 4.4: Clustering 1000 images of digits. Shown is the cluster mean inferred from each of the 
four methodologies. Gibbs sampling algorithms were run and samples with the highest posterior 
probability among the Gibbs samples were selected. The number of clusters is automatically inferred 
from the data. The relational data R used by IRM and FIRM are generated with a moderate level 
of noise (f = 0.8 and b = 0.2). 
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Figure 4.5: Testing image and cluster prediction. (a) 50 randomly selected testing images with the 
same 10 out of the 28 rows missing. (b-e) Posterior probability of the latent indicator variables for 
testing images. Rows represent the 50 images, columns represent the MAP clusters (see Fig. 4.4), 
and each value represents the predictive probability of a testing image being assigned to a cluster. 
Each row vector sums to 1. 
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Figure 4.6: Missing value prediction. We run the models on the 1000 training images and predict 
the missing values in the 50 testing images (see Fig. 4.5) using all the Gibbs samples. The predicted 
missing values are shown along with the rest of the images. 
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4.5.4 Cluster Mean 

To illustrate the performance, we first show the means of the clustering inferred from each model 

(Fig. 4.3). Although DPM successfully discovers four clean groups of images representing the digits 

1,6, and 7, it fails at differentiating the other images into cleaner groups. This is due to both the high 

variation within images of each digit, and the large proportion of low variation features around all 

digit images. This latter problem is effectively addressed by FDPM which, by incorporating feature 

selection mechanism into the clustering process, discover five new and cleaner groups representing 

the digits 2, 3, 6, and 9. 

The artificially generated relational data has a strong bias towards the 10 digits. Therefore, by 

incorporating the relation, IRM would ideally have the advantage over DPM and FDPM when the 

goal is to find clusters congruent to the known digits 0-9. This is indeed the case as shown in the 

figure. Images of digit 4, though similar to those of digit 9 and assigned to the same cluster by 

FDPM, are assigned to a separate group by IRM; similarly, IRM separates some images of digit 7 

from images of digit 9. Addressing both high and low variation feature problems, FIRM is able to 

produce clusters with very clear and intuitive interpretation. Image groups of digit 5 and 8, which 

are lost in the other models, are found by FIRM. Preferring clear interpretation, the model also split 

group into multiple ones even if they correspond to the same digit. For example, digits 1, 2, 5, and 

8 each has two image clusters. 

4.5.5 Cluster Prediction 

Clustering with less interpretability often leads to poor intuitive prediction. We illustrate the perfor

mance in Fig. 4.5, where 50 testing images (not in the 1000 training images) were randomly selected 

and 10 out of the 28 rows (same for all images) were set as missing values. We then compute, for 

each testing image, the predictive probability of it belonging to the known clusters (in this case, the 

known clusters are inferred from the 1000 training images and we use the MAP ones (Fig. 4.4) for 

illustration purpose). DPM and IRM tends to classify images into black blob clusters (the fifth one 

in DPM and the tenth one in IRM). Regardless of the missing values, FIRM aligns almost all of the 

50 images very well with the corresponding image clusters of high intuitive interpretation. 

4.5.6 Missing Value Prediction 

We further illustrate the predictive performance in Fig. 4.6, where missing values in testing images 

(Fig. 4.5) are predicted by summarizing over all possible clusterings weighted by their posterior 
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Figure 4.7: Prediction accuracy. Gibbs samplers are run on the 1000 training images. 1000 testing 
images (100 for each digit) are randomly selected and 10 rows are set as missing (same as in Fig. 4.5). 
(Top) Root mean square error (RMSE) between the real values of the missing data and their posterior 
expectations approximated from Gibbs samples. (Bottom) Adjusted random index between the 
known testing images partitioning (corresponding to digit 0-9) and their predicted clusters from the 
MAP of the Gibbs samples. 

probability given the training images. This posterior expectation is approximated through Gibbs 

sampling with half burn-in. Although less intuitive interpretation does not necessarily result in a 

less accurate prediction on missing values, clustering algorithms which do not sufficiently address 

variation problems often yield poor predictions. With about 35% of rows missing, images could be 

confused with each other. For example, some images of digit 2 and 3 could be confused with digit 

8 (Fig. 4.5). Therefore, we cannot hope to predict missing values and form images exactly as they 

were. Nevertheless, the predictions from FIRM complement the images very well to form clear ones 

than the other models, which produce smearing edges and/or lost connectivity. 

4.5.7 Varying Noise Rate in R elat ion 

The effectiveness of relational models requires reliable data sources to integrate. One would expect 

that the more noise embedded in the relational data, the less accurate the models will be when 

clustering the images. We generate the synthetic relational data using a variety of background 

noise rate from a to 0.9, while holding foreground to 90% of true positive information. We run the 

experiment (the same procedure as described in Sec.4.5.2-Sec.4.5.6) using these different relational 

data and quantify its prediction accuracy on missing values in Fig. 4.7. DPM and FDPM, indifferent 

to the relational data, provides two baselines of prediction accuracy. As expected, the performance 

of both IRM and FIRM is affected by the noise: without background noise, both methods predict 

more accurate than FDPM; with increasing noise, their performance decreases. However, FIRM 

is able to hang around much closer to the baseline of FDPM than IRM. FIRM is more robust to 

random noise in the relational data. 
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4.6 Conclusion 

We described a joint feature selection and infinite relational model (FIRM), a novel approach for 

learning system of categories and predicting missing values from multiple data sources. We have 

contrasted predictive performance on the MNIST image dataset, with standard clustering model 

(DPM), extension to DPM with feature selection (FDPM), infinite relation model (IRM), and FIRM. 

Our results show that FIRM, by incorporating feature selection into relational learning, are more 

robust to noise, and adjust better to model complexity. This results in a more intuitive interpretation 

and greater predictive accuracy. We consider these results promising, and future work will explore 

applications of the model to other real-world data sets, and extensions to more richly structured 

models. 
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CHAPTER 5 

APPLICATION OF FIRM TO BIOLOGICAL PROBLEMS 

5.1 MicroRNA and mRNA Module Discovery 

The cell can be represented as an overlay of at least several types of networks, which describes 

protein-DNA, miRNA-mRNA, protein-protein, and protein-metabolite interactions (Fig.5.l). These 

networks are composed of hundreds to thousands of molecules interacting via nonlinear and poten

tially more complex processes. The complex and dynamic nature of these networks makes human 

understanding of biological systems extremely difficult. :Many studies on reconstructing biological 

networks have relied on bioinformatics approaches on genome-wide biological data, such as time

series microarray gene expression, binding motifs sequences, and ChIP-seq experimental data, using 

computational and statistical methods such as clustering [Reiss et al., 2006, Bar-Joseph et al., 2003, 

Medvedovic and Sivaganesan, 2002, Qin, 2006], supervised learning [Yeunga et al., 2011]' ordinary 

differential equations [Greenfield et al., 20lOb], and Bayesian networks [Friedman et al., 2000j. 

The underlying assumption of clustering methods, and many additional approaches, is that co

regulated genes tend to be co-expressed. MicroRNA (miRNA) plays an important role in biological 

processes by translational repression or degradation of mRN As. For the later ca.'le, the expression lev

els of genes may be substantially affected by miRNAs. It is thus interesting to discover co-expressed 

mRNAs and miRNAs that are potentially involved in the same regulatory network (Fig. 5.2). In this 

study, we apply FIRM to jointly cluster mRNAs and miRNAs using a miRNA-mRNA correlation 

matrix and gene annotation data (details on the data are described in Section 5.1.2). FIRM aims 

to find mRNA and miRNA clusterings that yield dean blocks representing co-expression and poten

tially co-regulatory relationships between the genes and miRNAs. The searching for clean blocks on 

the correlation matrix is a trade-off between merging/splitting mRNA groups and merging/splitting 

miRNA groups. The incorporation of Gene Ontology annotation data introduces additional infor-
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o microRN A c::::::::J protein o mRNA 0 protein complex 

Figure 5.l: An illustration of gene regulatory network involving genes, proteins, and microRNAs. 
The nodes represent expression levels, circle for mRNA, ellipse for miRNA, and square for protein. 
The expression level of an mRNA is determined by multiple factors , including transcription factors 
and protein complexes which transcribe the genes, and miRNA which degrades the mRNA. 
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Figure 5.2: An illustration of putative regulatory relationships for a pair of positively or negatively 
co-expressed mRNA (denoted X) and miRNA (denoted Y). (left to right): X and Y share a common 
transcription factor (denoted P); P transcribes X, and Y degrades X; Y translationally represses P 
which transcribes X; P transcribes X which regulates Y. 

mation on mRNA, which tends to result in fewer mRNA clusters due to the high degree of sparsity 

in the data. This in turn leads to a higher number of miRNA clusters. 

5.1.1 Background 

MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in regulating gene expression 

(gene silencing) at the post-transcriptional level. These small (approximately 22 nucleotide) single

strand RNAs guide a gene silencing complex to a target mRNA by complementary base pairing, 

mostly at the 3' untranslated region (3 ' UTR) of the target mRNA. The binding of the RNA-induced 

silencing complex (RlSC) to the conjugate mRNA causes a silence of the gene either by translational 

repression or by degradation of the mRNA [He and Hannon, 2004J. 1100 human miRNA has been 

discovered and described [http://www.microrna.orgJ and it has been estimated that each of the rniR

NAs tends to target about 100 different mRNAs [Lim et al. , 2005J MiRNA plays an important role 

in several essential biological processes, including differentiation, cell growth, stress response and cell 

death [Zamore and Haley, 2005J. However, few targets of miRNAs have been experimentally vali

dated. Attempts at identifying miRNA targets have mainly focused on bioinformatics approaches, 

though the procedure is very challenging because of the insufficient knowledge of rnicroRNA biology 

and their targets in vivo. 

The bioinformatics prediction of miRNA-target interactions relies on the rules of miRNA-target 

interactions concluded from several experimentally validated cases. Early studies show that near-

perfect matches (6 to 8 continuous bases) complementarity at the 5' end of the miRNA, known 

as the "seed region" at positions 2 to 7, is a primary determinant of target specificity [Lai, 2002J. 
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However, studies have shown that the presence of a perfect seed match alone is not a reliable 

predictor for microRNA regulation [Didiano and Hobert, 2006], due to the large number of random 

occurrences of any given hexamer in 3' UTRs [Betel et al., 2010], resulting in a high false positive 

rate. Meanwhile, studies have also found that some target sites, despite of the presence of a mismatch 

or a G:U wobble in the seed region, display a noticeable regulatory effect [Didiano and Hobert, 2006]. 

Therefore, a perfect seed match is neither necessary nor sufficient for microRNA regulation. Rather, 

additional factors, such as sequence-dependent 3' UTR accessibility [Didiano and Hobert, 2006], 

AT-richness [Robins and Press, 2005], evolutionary conservation [Lau et al., 2001, Lee and Ambros, 

2001, Lim et al., 2003], and/or specific RNA- or protein-based cofactors, may be major determinants 

of 3' UTR responsiveness to a seed-matched miRNA [Grimson et al., 2007]. 

There has been a wide array of miRNA-target prediction algorithms proposed, ranging from 

those based on perfect seed complementarity [Krek et al., 2005], those allowing for G:U wobbles or 

mismatches in the seed region [John et al., 2004], to those considering secondary structure [Kruger 

and Rehmsmeier, 2006, Kertesz et al., 2007]. False positive predictions, which form a large portion 

of the predictions from these methods, are filtered through evolutionary conservation [Lewis et al., 

2003, 2005], which eliminates poorly conserved candidate sites from consideration based on the 

observations that the phylogenetic conservation of miRNAs is very strong within mammals and 

often extends to invertebrate homologs [Lim et al., 2003]. 

Assuming that changes in mRNA expression following microRNA transfections are reasonable 

indicators for microRNA regulation, Betel et al. [2010] proposed a model for predicting mRNA ex

pression changes after microRNA transfections, by incorporating target site information, contextual 

features, conservation, and mRNA expressions into a single support vector regression (SVR) model. 

5.1.2 Description of Data 

Expression profiling of mRNA and miRNA has been used to characterize various tissues and tu

mors. In breast cancer, mRN A and miRN A profiling has been used to associate them with clinical 

and pathological characteristics. Abnormal expression levels of several mRNAs and miRNAs have 

been shown to be associated with multiple cancer types including breast cancer. In this work, we 

downloaded the expression profiling of miRNAs and mRNAs in 101 human primary breast tumor 

samples from Gene Expression Omnibus (GEO) with accession ID GSE19536 [GSE19536]. 

According to the data contributors [GSE19536], the miRNA profiling from total RNA was per

formed using Agilent Technologies. miRNA signal intensities for replicate samples were averaged 
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and 10g2 transformed. The expression levels were normalized to the 75th percentile. MiRNAs that 

were detected in less than 10% of the samples were filtered out, resulting in 469 miRNAs considered 

to be expressed in this set of human breast tumors and used in further analysis. The mRNA profiling 

from total RNA on the same samples were performed on an Agilent catalog design whole human 

genome 4x44K single channel oligo array. Scanning was performed on Agilent Scanner G2565A and 

signals were extracted using Feature Extraction v9.5. Data were 10g2 transformed, non-uniform 

spots were excluded. Population outliers were excluded when averaging replicated probes. Probes 

that are missing on more than 10 arrays were excluded. Quantile normalization was performed in 

R Bioconductor using Limma [Smyth, 2005] and missing values were imputed using LLS imputa

tion [Kim et al., 2005]. We used the top 10,000 probes with the highest expression variance across 

the samples for further analysis. Spearman correlation is calculated for each pair of mRN A and 

miRNA, yielding a 10,000 x 469 correlation matrix. 

The Gene Ontology (GO) project [Ashburner et al., 2000] provides an explicitly defined vocab

ularies to describe the biological properties of genes. GO consists of two components: the GO 

ontology, which defines terms along with the structured relationships between the terms; and GO 

annotation, which map the associations between gene products and the terms. GO provides both 

ontologies and annotations for three areas of cell biology: molecular function, biological process, and 

cellular component. A GO term consists of a name, an identifier, a definition with cited sources, 

among others. The GO ontology is structured as a directed acyclic graph (DAG), where the nodes 

represent the terms and the edges represent relationships among them. In a DAG, the parent terms 

represent more general entities than their children terms, and a term may have multiple parents. A 

GO annotation associates a gene with terms in the ontologies and is generated either by experiment 

or by computational prediction. To represent the knowledge of a gene, the annotation associates 

it with as many terms as appropriate, and with the most specific terms available. Once a gene is 

annotated to a term, by inheritance, it is also associated with all the terms on the path from this 

term to the root term (in the DAG). The annotation relationships of a gene and its (inherited) 

terms must all be accurate or the ontology must be revised. The GO ontology and annotations are 

continually updated to correct errors and reflect. current knowledge. In this study, we transformed 

the GO annotations to a flattened vector representation, i.e. each gene is represented by a binary 

vector of length N (the number of all GO terms), and a value of 1 denotes an association between 

the gene and the term. Filtering the genes not associated with any term, and filtering the terms 

with fewer than 10 associated genes, resulted in a binary matrix containing association information 

for 6128 genes and 3325 GO terms, which is referred to the flattened GO matrix. 
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Figure 5.3: A visualization of the GO terms selected by FIRM using REVIGO. Cluster representa
tives (i .e. terms with redundant ones filtered out) are plotted in a two dimensional space derived by 
applying multidimensional scaling to a matrix of pairwise semantic similarities between GO terms. 
Bubble size indicates the frequency of the GO terms in the underlying GO annotation database. 
The more general a term, the larger its corresponding bubble. 
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Figure 5.4: Heatmaps of the adjusted P-values, where each row denotes an mRNA cluster, and 
each column denotes an miRNA cluster. The null hypothesis states that a correlation submatrix 
has mean 0, and the alternative hypothesis states that the mean is less than O. (Top) Results from 
FIRM. (Bottom) Results from IRM. 
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Figure 5.5: Heatmaps of the adjusted P-values for representative miRNA clusters, where each row 
denotes an miRNA cluster, each column denotes an mRNA cluster, and each entry is the log 10 
based P-values. Only the 29 highly negatively correlated miRNA clusters (P-value less than 105 ) 

with at least one mRNA groups are chosen. 
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Figure 5.6: A visualization of the GO terms enriched by mRNA cluster 4, using REVIGO. Cluster 
representatives (i.e. terms with redundant ones filtered out) are plotted in a two dimensional space 
derived by applying multidimensional scaling to a matrix of pairwise semantic similarities between 
GO terms. Bubble color indicates the P-value from hypergeometric te t. Bubble size indicates the 
frequency of the GO terms in the underlying GO annotation database. The more general a term, 
the larger its corresponding bubble. 
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5.1.3 Results 

We applied various clustering algorithms on the data. The flattened GO matrix is extremely 

sparse (with only about 2.2% of the entries for known associations) The infinite mixture (or DPM) 

model inferred three gene clusters, indicating it favors a very low number of clusters due to the 

limited differentiating factors within the data. Infinite relational models combine the flattened GO 

matrix and the correlation matrix, and is presumed to be able to balance the two types of data 

when clustering. However, it inferred three gene clusters as well, and thus was also subjected to the 

sparsity issue. Feature selection tends to filter out those features which do not provide significant 

differentiating power. Applying FDP~'I to the GO matrix led to five gene clusters and 1747 selected 

GO terms, while applying FIRM on the GO matrix and the correlation matrix yielded 19 gene 

clusters and 106 selected GO terms. To further investigate the GO terms selected by FIR};I, we 

use REVIGO [Supek et al., 2011] (with default parameters) to clustering the GO terms selected by 

FIRM, relying on semantic similarity measures, and to visualize the list of GO terms in scatterplots. 

The results indicate that FIRM selected a set of GO terms with very low degree of redundancy, and 

the set includes several groups of GO terms crucial to tumor control (e.g. regulation of mature B 

cell apoptosis, and immune system process) (Fig. 5.3). 

FIRM and IRM categorize mRNAs and miRNAs in a way such that the clusterings would result 

in relatively clean blocks of correlations representing co-expressing relationship. The clustering 

of mRNAs and miRNAs are thus depending on each other. Both FIRM and IRM estimated a 

large number of clusters (373 from FIRM and 256 from IRM) for the 469 miRNAs due to the 

low correlations among miRNA and mRNA expressions. One-sided (less than) student's t-test 

are performed on each of the correlation submatrices yielded from the clustering, where the null 

hypothesis states that the sample correlations have mean zero (Fig. 5.4). The P-values are adjusted 

for multiple comparisons through the control of the false discovery rate [Benjamini and Hochberg, 

1995]. Several submatrices have significantly high negative correlations between the corresponding 

mRNA and miRNA clusters (Fig. 5.5). The miRNA cluster consisting of two miRNAs (hsa-miR-

141 *, hsa-miR-200c) are highly negatively correlated (P-value less than 105 ) with ten gene groups, 

and there are 29 miRNA clusters, with a total of 49 miRNAs, that are highly negatively correlated 

(P-value less than 105 ) with at least one gene group (Fig. 5.5). 

The pairs of mRNA and miRNA groups that have the largest P-value ("-' 6.67e - 10) are 

(mRNA group 1, "hsa-miR-19b,hsa-miR-20a,hsa-miR-20b"), (mRNA group 16, "hsa-miR-19b,hsa

miR-20a,hsa-miR-20b"), (mRNA group 4, "hsa-miR-191 * ,hsa-miR-411 * ,hsa-miR-425*"), (mRNA 
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group 4, "hsa-miR-141 *,hsa-miR-200c"). Hypergeometric test on the enrichment of GO terms from 

the biological process category is performed for each mRNA group using GOstats [Falcon and Gen

tleman, 2007]. Several GO terms important to tumor control, including negative regulation of 

macrophage apoptosis, humoral immune response, and inflammatory response, among others, are 

significantly enriched by mRNA group 4 (Fig. 5.3). 

5.2 Drug-Target Interaction 

The identification of protein function and the prediction of ligand-target interaction is an active 

research field facilitated by means of categorizing ligands and proteins into biologically sensible 

groups. Because of the pharmacological fact that related drugs can bind to receptors without 

obvious sequence or structural similarity, it is appropriate to categorize proteins based not only 

on their sequence or structures but also on the chemical structure and the phenotypic side-effect 

of their ligands. In chemogenomic studies where the complete set of ligands for a protein is not 

known a priori, integrating the de novo detection of interacting ligand and protein groups into the 

categorization process can guide the process towards more biologically sensible solutions. 

Various data types have been collected for drug-target interaction prediction, including chemical 

compound descriptors, protein sequences, ligand-target bindings and pharmaceutical effects. We 

apply a special case of FIRM (and a special case of IRM as well, where all input data are relational) 

to jointly detect biologically sensible ligand groups and protein groups, and to predict drug-target 

interactions. The method takes advantage of the Bayesian non parametric paradigm for integrating 

multiple data types, for allowing for missing values (e.g. unknown ligand-target interaction) in the 

data, for automatically inferring the number of clusters without explicit model comparison, and for 

predicting the ligand-target interactions. 

5.2.1 Background 

The identification of interactions between ligands (chemical compounds, drugs) and proteins (re

ceptors, targets) is an important step of drug discovery. A protein's chemical conformation, i.e. its 

three dimensional shape, determines its functional state. When a ligand (usually a small molecule) 

binds to a site on a target protein, it may cause a conformational change in the receptor protein, 

resulting in and altered behavior of the receptor and triggering physiological response. The binding 

occurs by intermolecular forces, such as ionic bonds and hydrogen bonds, and is usually reversible. 

The potency of a drug depends on both the binding affinity which characterize the intermolecular 
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forces, and the ligand efficacy which refers to its ability to produce a biological response and the 

degree of this response. 

Traditionally, drug discovery has been an effort of screening (or selecting) ligands according to its 

properties for a single protein target. When a compound interacts with a target in a productive way, 

that compound is considered as having the potential of becoming a drug. Compounds fail the initial 

screen may be screened later against other targets. This is an extremely time consuming effort, 

and among the estimated 3000 druggable proteins [Russ and Lampel, 2005] in human, only approx

imately 800 has been investigated by the pharmaceutical industry [Paolini et al., 2006]. To address 

the issue, advances in assay and instrument technologies have been made for high-throughput minia

turization and parallelization of compound synthesis. This high-throughput screening process allows 

for batches (millions) of compounds being tested for binding activity or biological activity against 

batches of target molecules [Macarron et al., 2011]. Despite all of the technology advancement, 

however, drug discovery requires tremendous chemical and biological insight, and the experimental 

effort requires a high quality compound library and target library, and reliable high-throughput 

binding and functional assay. As a result, our current knowledge about the compound and protein 

interactions is relatively limited. Among over 10 million non-redundant chemical structures in the 

chemical space, only a small fraction of them has been tested on a fraction of the entire target space 

and only approximately 1000 have been approved as drugs [Rognan, 2007]. 

In silico prediction (or virtual screening [Rognan, 2007]) methods complementing existing exper

imental approach. One such in siUco method is molecular docking, which, predicts the preferred 

orientation and affinity of a binding between a pair of ligand and receptor. Based on the knowl

edge of a protein's 3-D structure, the prediction is made either by matching the molecular surface 

descriptions of the pair, or by simulating a chemical environment for the pair to bind. The in

formation on a proteins' structure are usually determined through biophysical techniques such &'l 

x-ray crystallography. Docking also requires an efficient algorithm for searching through all possible 

orientations and conformations, as well as a sensible scoring function for binding affinity estimation. 

An alternative strategy is through supervised machine learning and can be categorized into three 

categories [Rognan, 2007]: ligand-based, target-based, and ligand-target based. The idea 

underlying ligand-based in silica screening is that similar ligands are likely to have similar binding 

profiles, i.e. targeting the same proteins. For example, structural descriptions on a set of chemi

cal compounds are collected; from these compounds, there is a subset, considered as training set, 

whose binding status against a protein of interest are known a priori. The supervised model aims 

to predict, for the remaining compounds (testing set), their probability and/or affinity of binding 
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against the protein, by building a functional mapping between the structural description space and 

the binding status space using the training information [Xia et al., 2004, Nidhi et al., 2006]. The 

functional mapping can be linear or nonlinear, and often a wide array of supervised models, such 

as logistic regression, Fisher discriminant analysis, and SVM, are applied and their performance are 

compared or combined. In ligand-based approach, the proteins are considered independent and a 

separate model is built for each protein of interesting. Analogically, a target-based learning approach 

would build the model based on protein similarity in the target space. 

A ligand-target based approach jointly takes into account all three types of information, i.e. drug 

chemical structures, target protein descriptions and the currently known drug-target interactions, 

therefore allows for information propagation in a "single" learning process. The essential idea of 

the approach is to unify the structural information in the original spaces (ligand and protein) into 

a joint ligand x target space. The approach would then search for a functional mapping from the 

joint space to the binding status. Kernel learning methods for machine learning [Cristianini and 

Shawe-Taylor, 2000, Sch6lkopf and Smola, 2002, Bishop, 2006] work directly with pairwise distances 

or similarities between observations, rather than an explicit feature representation which is not 

readily available. The learning problem is thus casted into one of defining a kernel that captures 

the intrinsic nature of the problem. Erhan and L'Heureux [2006] defines a kernel over the joint 

ligand x target space by first defining similarity measures between pairs of targets, then between 

pairs of compounds, and then combining the two measures into a kernel function of the desired type. 

The method first defines the kernel on proteins as a linear combination of four standard kernels, 

including an identity kernel, a Gaussian kernel, a correlation kernel, and a quadratic kernel. The 

kernel on compounds is defined exactly the same way. Then the kernel on the joint space is defined 

by the product of the protein kernel and compound kernel. This factorization dramatically reduces 

the computational complexity of working with tensor products in large dimensions. Ivanciuc [2007] 

reviews a wide range of compound kernels used in chemoinformatics, including those based on 2D 

or 3D fingerprints of compounds, and those based directly on detecting common substructures in 

the compounds' 2D or 3D structure. A variety of approaches have also been proposed to design 

kernels for proteins, ranging from those based on the amino-acid sequence of a protein [Jaakkola 

et al., 2000] to those based on the 3D structures of proteins [Borgwardt et al., 2005]. Jacob and Vert 

[2008] proposes a new protein kernel which incorporates information on protein categorization with 

respect to ligand binding. 

Another ligand-target based approach is called bipartite graph learning method [Yamanishi et al., 

2008], which models the interactions using a bipartite graph between proteins and ligands, and 
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predicts interactions between a ligand-protein pair based on the distance between the two on the 

learned graph. Bleakley and Yamanishi [2009] proposes the bipartite local models, which first 

adapts the bipartite graph strategy to ligand-based and target-based learning, independently. It then 

combines the prediction results from the two in a straightforward way, e.g. the predicted interaction 

score for a pair is the higher one between scores from ligand-based and target-based. Van Laarhoven 

et al. [2011] further explores the relevance of the topology of ligand-protein interaction bipartite graph 

as a source of information for predicting interactions. Besides compound fingerprints, pharmaceutical 

effect information has also been used to quantify compound similarity in prediction [Yamanishi et al., 

2010]. 

5.2.2 Description of Data 

This section briefly describes the various representations of ligands and proteins, and introduces the 

experimental dataset collected by Yamanishi et al. [2010], which contains the drug-target interaction 

matrix, and the similarity matrices between ligands and between proteins. 

Chemical Data 

Chemical compounds can be described in different details and dimensionalities, and are usually 

classified as one, two, or three dimensional (l-D, 2-D, 3-D) descriptors [Rognan, 2007]. A basic 

1-D descriptor accounts for the compounds' global properties (for example, molecular weight, atom 

and bond counts), which can be derived from the chemical formulae. A popular representation 

of this kind is the "Simplified Molecular Input Line Entry System" or SMILES [Weininger, 1988]. 

Fingerprint-based methods [Willett, 2006] are widely used in both 2-D and 3-D descriptors. Finger

prints are easy to derive, represent, and computationally easy to compare. For 2-D descriptor, a bit 

string, called a "fingerprint", encodes the occurrence of predefined structural events (atoms, frag

ments, rings, substructures and 2-D pharmacophores). A fingerprint-based 3-D descriptor encodes 

conformation-specific properties into a bit string, including the occurrence of all possible pharma

cophore tuplets (doublets, triplets, and quadruplets), their corresponding features (e.g., H-bond 

acceptor, and positively ionisable atom), and interfeature distances. 

Yamanishi et al. [2010] collected structures of chemical compounds from the KEGG DRUG and 

KEGG LIGAND databases [Kanehisa et al., 2008], and computed the chemical structure similarities 

between compounds using SIMCOMP [Hattori et al., 2003], a program that finds the common 

substructures between two compounds and outputs the global similarity score based on a graph 
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alignment algorithm. The similarity between two compound structures x and y is evaluated by 

Tanimoto coefficient defined as Schem(X, y) = Ix n yl/ix U yl. As in Yamanishi et al. [2010], the 

similarity score is referred to as chemical structure similarity. 

Pharmacological Data 

Yamanishi et al. [2010] also collected pharmacological effect keywords for drugs (pharmaceutical 

molecules) from the JAPIC (Japan Pharmaceutical Information Center) database. The key word 

was then translated into English followed by the unification of synonymous words. There are total 

of 17109 keywords tagged "pharmaceutical effect". Each drug is represented by a binary vector of 

length 17109 in which 1 denotes the occurrence of the pharmaceutical effect keyword for the drugs, 

and 0 otherwise. The "pharmacological similarity" between two drugs is evaluated by the weighted 

cosine correlation coefficient between vectors of their keywords, where weights are introduced to 

emphasize infrequent keywords rather than frequent keywords across different drug package inserts. 

Genomic Data 

Yamanishi et al. [2010] collected amino acid sequences of the human genome from the KEGG 

GENES database [Kane his a et al., 2008], and computed the normalized version of Smith-Waterman 

score [Smith and Waterman, 1981] which quantifies the amino acid sequence similarities. 

Drug-Target Interaction Data 

The interactions between drugs and target proteins are collected by Yamanishi et al. [2010] from 

several online drug-target databases. The numbers of known drugs with pharmacological information 

in JAPIC are 212, 99, 105 and 27, for their targets enzymes, ion channels, GPCRs and nuclear 

receptors, respectively. The numbers of the corresponding target proteins in these classes are 664, 

204, 95 and 26, respectively. The numbers of the corresponding interactions are 1515, 776, 314 and 

44, respectively. 

5.2.3 Results Using Drug-Target Interaction Data Alone 

To illustrate the performance, we first show the categorization result inferred by using the drug

target interaction data alone. The hypothesis is that both ligands and proteins can be put into 

sensible groups within each of which the elements share a common binding activity. Unlike tradi

tional feature-based clustering algorithms which assume features are independent when clustering 

82 



observations (for example, proteins are independent when clustering drugs (or vice versa)), rela

tional clustering algorithms (e.g. FIRM and IRM) aim to find clear blocks by jointly clustering 

both dimensions. By randomly selecting entries of the interaction matrix as missing values (with 

various percentage), we are able to simulate the real-world case where a great deal of drug-target 

interaction relationships are undetermined yet. The clean blocks from applying FIRM (Fig. 5.7) 

suggest interesting drug and target groups. Even with half of the information missing from the 

original data, the blocks are still homogeneous, suggesting a clustering that is able to capture the 

category-level interactions. 

Clusters not only facilitate description and communication, they also allow for prediction on 

unobserved drug-target interactions. For example, it is very likely that missing entries in the blocks 

filled with black and red represent interactions (Fig. 5.7). To systematically test the intuition, we 

perform N-fold cross validation (N=lO, 5, 3, 2) and plot the ROC curves (Fig. 5.8). For example, in 

2-fold cross-validation, half of the entries in the matrix are randomly selected and used as training 

data, while the remaining entries are used for testing. Gibbs sampling was performed for 100 

iterations, with the first half used for burn-in and every fifth sample from the second half used to 

estimate posterior quantities. 

5.2.4 Results Using Various Data Sources 

Although the gold standard drug-target interaction data provides the most direct interaction infor

mation (Fig. 5.7), and can be used alone to predict unobserved interactions (Fig. 5.8), there are 

several motivations for incorporating other data sources. First, the drug-target data may contain 

no information on a protein or compound, and therefore, sequences or structures are the only infor

mation available. Second, the drug-target data may consist of only a very few entries for a protein 

or compound. To apply amino sequence and other similarity data for interaction prediction, it is 

helpful to first visualize how congruent they are to the drug-target data. One way to do so is drawing 

the heatmap of a similarity matrix, with the rows and columns ordered according to the clustering 

structure inferred by using the drug-target data alone (Fig. 5.9). Ideally, the blocks on the diagonal 

of the heatmap (as defined by the clustering) would have higher similarity values, indicating that 

proteins (or drugs) in the same interaction groups (as inferred with the drug-target data alone) have 

similar sequence (or structures). We cannot expect a perfect match though, because of the fact that 

similarity measures are simplified indirect representations of interaction activity. Nevertheless, some 

similarity matrices may have a higher congruence to the drug-target data than others. For example, 
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Figure 5.7: Biclustering of drug-target interaction gold standard data, with varying degree of missing 
values (unknown interaction status). Row represents target , column represents drug, and each entry 
in the binary matrix represents whether there exists an interaction between the corresponding drug 
and target. Gibbs sampling algorithm was run and samples with the highest posterior probability 
among the Gibbs samples were selected. The orders of the drugs and targets in the heatmaps 
are according to the biclustering. Black and white show known interactions and non-interactions, 
respectively. We randomly select a percentage of entries and mark them as missing values using either 
red (for existing interactions) or blue (for non-interactions). (Left) The complete data. (Center) 
Randomly select 30% of the data as missing values. (Right) Randomly select half of the data as 
missing values. 
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Figure 5.8: Prediction on unobserved drug-target interactions using the partially observed drug
target interaction data alone. Gibbs sampling was run, and posterior expectation of each missing 
entry was estimated, on 5 times N-fold cross validation (N=10 , 5, 3, 2). 
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Figure 5.9: An illustration of congruence between drug-target interaction data and similarity ma
trices. (Top) Genomic space. (Center) Chemical space. (Bottom) Pharmacological space. The left 
column shows heat maps with row and column ordered by clusters inferred from drug-target inter
action data, and the right column demonstrates distribution of within-cluster pairwise similarity (in 
red) against bootstrap ones (in green). 
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as shown in Fig. 5.9, in genomic space, the blocks have relatively high similarity values and are likely 

not due to randomness, while the pharmacological space has relatively low similarities in the blocks. 

The prediction accuracy of an algorithm is affected by random error, data error (e.g. biased 

sample), and methodology error (e.g. over-fitting or under-fitting). While we cannot avoid random 

error, it is possible to improve performance by collecting data more congruent to the prediction, 

and devising more accurate algorithms. Here we study the effectiveness of the different data sources 

on the prediction task, when applying the same prediction framework of relational clustering. For 

convenience, we define a ligand as a known drug if its interaction status with many proteins has 

already been observed, and unknown drug otherwise. Similarly, a known target refers to a 

protein whose interaction status with many drugs has been observed, and unknown protein refers 

to otherwise. Depending on the characteristic of the prediction tasks, there are several different 

ways of using the data sources for clustering: 

• For an unobserved status between a pair of known drug and known target, the drug-target 

interaction data alone contains the most relevant information for the prediction (Sec. 5.2.3, 

Fig. 5.8). 

• For a pair of known drug and unknown protein, the prediction requires both the genomic 

data and the drug-target data. In this case, we first simultaneously cluster the known drugs 

and known targets, using both data (Fig. 5.10). Then for each unknown protein, we predict 

its cluster membership to the inferred clustering based on the genomic information. Their 

interactions with unknown drugs are then predicted based on the inferred cluster assignment. 

Note that the procedure is done in the Bayesian nonparametric framework with predictions 

averaged over uncertainties on clusterings. 

• For a pair of unknown drug and known protein, besides the drug-target data, it needs infor

mation from either the chemical data or the pharmacological data. The prediction procedure 

is analogical to the case of known drug and unknown protein as described above. 

• For a pair of unknown drug and unknown protein, besides the drug-target data, the interaction 

prediction requires genomic information, as well as ligand information from either the chemical 

data or the pharmacological data. The prediction procedure is in the same fashion as the other 

cases, i.e. we first simultaneously clustering the known drugs and known targets, using all three 

types of data covering genomic space, ligand space, and the drug-target space (Fig. 5.10). Each 

unknown protein (and unknown ligand) is then categorized into the inferred clustering, which 
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Figure 5.10: Illustration of the integrative biclustering of the drug-target interaction data and other 
data sources. The drug-target matrix are shown with drugs and targets ordered according to the 
clustering. (Left) Integrated with genomic data. (Center) Integrated with chemical data. (Right) 
Integrated with pharmacological data. 

is then used to infer the interaction relationship. 

We conduct a 10-time 5-fold cross validation for each of the various scenarios 5.11. For example, 

in the case of known drugs and unknown proteins, the proteins (and as a result, the drug-target data 

and the genomic data) are randomly partitioned into five sets, each of which is used as testing set 

(unknown proteins) once while the remaining is considered as training set. Gibbs sampling is run 

on the training data set to jointly cluster the drugs and known targets . The sampled distribution 

for the clustering is then used to predict interactions for the testing set of proteins. This cross 

validation procedure is repeated 10 times for the case. Ideally, the gold-standard drug-target data 

would contain the observation for any drug-target pair belongs to the set of known drugs and 

known proteins. We cannot expect so, however , in a real-world case because a great deal of the 

interactions has not yet been determined. Therefore, as in Sec. 5.2 .3 and illustrated in Fig. 5.7, we 

randomly select entries of the interaction matrix as missing values (with a variety of percentages). 

The drug-target matrix consists of the most direct information on interaction, and thus results in 

the best prediction performance when the percent of missing values is low (Fig. 5.11 , 30% missing). 

Meanwhile, interaction prediction for unknown proteins, through the genomic data, yields better 

performance than prediction for unknown ligands, through the chemical or pharmacological data. 

This is consistent with the analysis that the genomic space is more congruent to the drug-target data 

than the other spaces do (Fig. 5.9). As the missing observations in the gold-standard interaction 

matrix increase, the performance of all cases is affected. Nevertheless, due to the introduction of 

genomic data which is highly relevant to the interaction, the prediction for unknown proteins using 
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genomic data remains accurate while the performance of using interaction matrix alone dropped 

dramatically. 
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Figure 5.11: Illustration of the prediction performance on a variety of prediction cenarios: (dt) 
prediction on known drug and known target; (dLgen) prediction on known drug and unknown 
protein, through genomic data; (dt_chm / dLphm) prediction on unknown ligand and known target, 
through chemical/pharmacological data; (dLgen_chm / dLgen_phm) prediction on unknown ligand 
and unknown target , through genomic data and chemical/pharmacological data. The drug-target 
interaction data (with a variety of randomly selected missing entries) is used in all scenario. A 
lO-times 5-fold cross validation is performed, and the receiver operating characteristic (ROC) curves 
are plotted. 
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CHAPTER 6 

BAYESIAN HIERARCHICAL CROSS-CLUSTERING 

Most clustering algorithms assume that all dimensions of the data can be described by a single struc

ture. Cross-clustering (or multi-view clustering) allows multiple structures, each applying to a subset 

of the dimensions. We present a novel approach to cross-clustering, based on approximating the so

lution to a Cross Dirichlet Process mixture (CDPM) model [Shafto et al., 2006, Mansinghka et al., 

2009]. Our bottom-up, deterministic approach results in a hierarchical clustering of dimensions. and 

at each node, a hierarchical clustering of data points. We also present a randomized approximation, 

based on a truncated hierarchy, that scales linearly in the number of levels. Results on synthetic 

and real-world data sets demonstrate that the cross-clustering based algorithms perform as well or 

better than the clustering based algorithms, our deterministic approaches models perform as well 

as the MCMC-based CDPM. and the randomized approximation provides a remarkable speed-up 

relative to the full deterministic approximation with minimal cost in predictive error. 

6.1 Introduction 

Standard approaches to clustering assume that there is a single clustering that describes all of the 

data. Consider, for example the Dirichlet process mixture (DPM) model, a widely used model for 

density estimation and for clustering. The model takes as input a set of data points, and their 

values on a set of dimensions. For each data point, the DPM infers a latent variable indicating 

an assignment of the data to a mixture component. A fundamental assumption underlying this 

approach is that all of the dimensions of the data are described from a single view, Le., the data 

points were generated by a single underlying DPM. 

However, there are many cases in which a single view does not describe all aspects of the data 

points. In some cases, we might expect some dimensions to be described by one model while others 

90 



are merely "noise". More generally, any given data set may be generated by multiple different 

models, each applying to subsets of the observed dimensions. In these contexts, clustering algorithms 

typically identify a single dominant structure and the dimensions better explained by other models 

appear to be weakly structured. 

Cross-clustering (or multi-view clustering) relaxes the single-DPM assumption, allowing the pos

sibility that a data set may have multiple different views. Consider, for example, a generalization 

of the DPM, the Cross Dirichlet Process Mixture model (CDPM) [Shafto et al., 2006, Mansinghka 

et al., 2009]. This model allows that a single data set may be composed of data generated by mul

tiple different DPMs. The model therefore infers, for each dimension, a latent variable indicating 

an assignment of that dimension to a view, and w.r.t. each view, an assignment of data points to 

mixture components of DPM. This provides the capability to separate structured features from noisy 

features and the ability to identify cases where different dimensions of the data are best described by 

different DPMs. Because the CDPM is a generalization of the DPM, this approach should lead to 

improved predictive performance on previously unobserved values. However, cross-clustering mod

els admit a very large number of possible latent structures, and their success depends on reliable, 

efficient inference algorithms. 

In this paper, we propose Bayesian Hierarchical Cross-Clustering (BHCC), a deterministic ap

proach to approximate inference for a CDPM. We also propose Randomized BHCC (RBHCC), a 

much faster alternative approximation to the CDPM. Building off the work by Heller and Ghahra

mani [2005a], BHCC builds a hierarchical clustering of dimensions, where the posterior probability 

of merging dimensions in different views is estimated based on the marginal likelihood that the data 

are generated by a DPM. 

6.2 Related Work 

In addition to the work by Shafto et al. [2006], Mansinghka et al. [2009], there has been growing 

interest in the problem of multi-view clustering. Rodriguez et al. [2008] proposed a very similar 

approach which they call the Nested Dirichlet Process. In terms of other approaches, there are those 

that allow for two views [Qi and Davidson, 2009, Gondek and Hofmann, 2004, Dang and Bailey, 

2010], and those that allow many views. Because we typically do not know how many views there 

are a priori, approaches that allow potentially many views, and infer the correct number for a given 

data set are more appealing. Cui et al. [2007] use a sequential approach, iteratively clustering in 

subspaces that are orthogonal to existing solutions. Guan et al. [2010] propose a deterministic, 
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variational approximation to CDP~L Their model differs in that they use a DP prior on categories 

via the stick-breaking construction. Unlike in their work, our approaches result in hierarchical 

clusterings of dimensions, which may be desirable in some situations. Additionally, we provide 

results on real-world prediction problems to provide objective validation for the approach. 

6.3 Cross Dirichlet Process Mixture Model 

The problem of learning cross-cutting category structure can be approached by generalizing stan

dard category-learning approaches. Shafto et al. [2006] introduced the CDPM (which they called 

CrossCat), a generalization of standard DPMs [Neal, 1998]. The CDPM was formalized by assuming 

that dimensions are assigned to mixtures via the Chinese Restaurant Process (CRP) [Aldous, 1985]. 

Let X be an I x J data matrix, where the ith row Xi,. represents data point i and the jth column 

x.,j represents dimension j. Let u be a vector of latent variables representing the partitioning of 

dimensions into views, where Uj = v indicates that dimension j is assigned to view v. Let Z be a 

matrix of latent variables representing the partitioning of data points w.r.t. all views, where Zi,v = c 

indicates that, in view v, data point i is assigned to component c. The generative model for a CDPM 

is then, 

u "-' CRP(a), 

z.,v "-' CRP(a), 

8 c,v "-' H(t5), 

Xi,u=v "-' F(Xi,u=vI8 z;,v,v), 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

where a is the concentration hyperparameter of the CRPs (using a single parameter for simplicity), 

H is the prior distribution over component parameters 8 c,v, F is the component distribution (e,g. F 

is Binomial distribution and H is Beta distribution), and u = v returns a vector of indices: (jluj = 

11 for j = 1, ' .. ,J). Alternatively, by adopting conjugate models, one may substitute Equation 6.3 

and 6.4 with 

XZ.,v=c,u=v "-' G(Xz,v=c,u=vl t5 )· (6,5) 

As with the DPMs, analytic inference is intractable, but simple Gibbs sampling algorithms are 

no longer possible, Because mixing over possible views requires potentially creating new DPMs 
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on data points, special-purpose MCMC algorithms are required (see [Mansinghka et al.. 2009]). 

Developing computationally efficient samplers that mix well is time-consuming and challenging, and 

it is desirable to have alternatives to sampling-based methods. 

6.4 Bayesian Hierarchical Cross Clustering 

The BHCC algorithm takes the data matrix X and produces tree T, a hierarchical clustering of the 

dimensions. Each subtree in Tree T is represented by a 4-tuple Te = (c, Ta, Tb, Te) where c is the 

identification number for the root node of Te, Ta and Tb are the left and right subtrees of c, and Te 

is the posterior probability of merging Ta and Tb to form Te. Each node in T is associated with a 

set of dimensions and forms a view w.r.t. which the data are generated from a DPM. 

Definition 6.4.1. Define £(T) as a function returning identification numbers for all the leaf nodes 

in tree T, i.e., if T = (c, Ta, Tb, Te). then 

{ c} if Ta = Tb = 0 

£(Ta) U £(Tb) otherwise. 

BHCC is described in Algorithm 6. The algorithm is initialized with each dimension forming 

a view by itself: it starts with J trees: Tj = (j, 0, 0,1) for j = 1, ... , J. The algorithm proceeds 

by repeatedly merging the pair of subtrees that, when joined, have the highest probability, and 

continues until all dimensions are joined in the same view. To estimate the posterior probability 

of merging trees Ta and Tb, BHCC considers two hypotheses Hi and H2. The null hypothesis Hi 

states that the set of dimensions £(Ta) U £(n) form one view, i.e., data points in X,.qTa)UC(n) 

were generated by the same DPM, 

We follow [Heller and Ghahramani, 2005a] in approximating the marginal likelihood of the data 

under a DPM using BHC. 

The alternative hypothesis states that the dimensions £(Ta) U£(Tb) form two or more views, i.e., 

data points in X,.qTa)u.qn) were generated by two or more DPMs. The number of possible ways of 

dividing n dimensions into two or more dimension clusters is Bn - 1 where Bn is the Bell number: 

Bn = I:~:~ (n~l)Bk and Bo = L Thus summing over these possibilities is intractable, BHCC 

restricts itself to dimension partitionings consistent with the subtrees Ta and n (see Definition 6.5.1). 
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The marginal likelihood of this restricted alternative hypothesis, 1-l~, given the data, is a product 

over the subtrees: 

where each term on the right-hand side of the equation is a probability of a data under a BHCC 

tree defined recursively as follows. 

Let Tc = (c, Ta, Tb, 1'c) be the merged tree. The marginal probability of the data in tree Tc is a 

weighted sum of the probability of the data under both hypothesis: 

p(X,C(Tc)ITc) = 7rcp(X,c(Tc)I1-lD+ 

(1- 7rc)p(X,C(Ta )ITa )p(X,CCTI,)ITb), 
(6.6) 

where the weight 7rc is the prior probability of this merge, i.e., 7rc d~. p(1-li). Heller and Ghahramani 

[2005a] proposed a bottom-up method for computing the prior under the CRP: 

7rc = 1 

Qr(Nc) 
7rc = de 

if Tc is a leaf 

otherwise, 
(6.7) 

where () is the concentration hyperparameter, Nc d~. 1.c(Tc)l, and r(.) is the Gamma function. 

The posterior probability of the merged hypothesis given the data is computed using Bayes rule, 

(6.8) 

The quantity r c is used to decide greedily which two trees to merge at the stage of inferring the 

BHCC tree; it also allows one to define posterior predictive distributions as discussed in Section 6.6. 

6.5 Approximate Inference in a Cross Dirichlet Process Mix-

ture Model 

In this section, we show that the BHCC algorithm is an approximate inference algorithm for CDPM. 

Definition 6.5.1. Define Ptns(T) as a function returning the set of tree-consistent partitionings of 
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Algorithm 6: Bayesian Hierarchical Cross-Clustering (BHCC) algorithm. 

input : An I x J data matrix X 
output : The final merged tree T 

initialize: Each dimension j forms a view by itself, i.e. Tj +- (j, 0, 0,1) for j = 1, ... , J, 
where the 4-tuple has the format: (root node, left subtree, right subtree, 
posterior of merge). S +- {Tjlj = 1, ... , J}. The current largest root node id 
c+-J 

1 while lSI> 1 do 
2 c+-c+1 
3 Find the pair of Ta, Tb with the highest probability of the merged hypothesis: 

7r ep(X.C(Ta)UC(Tb) IDPM) 
re+---~--~~~~~~~~~~---

7reP(X,C(Ta )UC(Tb) IDPM) + (1 - 7re)PaPb 

where Pa +- p(X,C(Ta ) ITa), and Pb +- p(X,C(Tb)ITb) 
4 Te +- (C, Ta, n, re), i.e. join trees Ta and n to form Te with root node c, and the 

posterior of merge 1'e 

5 S +- SU {Te} - {Ta,n} 
6 end 
rT+-S 

the set £(T), i.e., if T = (c, Ta, n, 1'c), then 

{

(c) if Ta = Tb = 0 
Ptns(T) = 

(£(T)) u Ptns(Ta) x Ptns(n) else. 

For example, assume a binary tree T with 3 leaf nodes: T 

(4, T1, T2, 1'4), Tl (1,0,0,1), T2 (2,0,0,1), T3 (3,0,0,1), then Ptns(T) 

{(1,2,3),(1,2)(3),(1)(2)(3)}. 

Lemma 6.5.2. Let u be a vector of indicator variables repTesenting a partitioning of N elements, 

p(u) be the p1'Obability ofu in a Dirichlet-Multinomial model, i.e .• p(u) = Jp(uIO)p(Olo:) dO where 

p(uIO) is the Multinomial distribution and p(Olo:) is the Di'richlet distribution, then 

max(u) 
p(u) = f(o:) o:max(u) IT r(lu = vi), 

r(N + 0:) v=l 

wheTe max( u) is the number of clusters in partitioning u, 

Lemma 6.5.3. The marginal l'ikelihood of a CDPM is: 

max(u) 

p(X.c(Tc)ICDPM) = LP(u) IT p(X,u=vIDPM), 
uEU v=l 
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where U is the set of all possible partitionings of the dimensions C(Tc). 

Lemma 6.5.2 follows from a standard Dirichlet integral. Lemma 6.5.3 follows from the definition 

of CDPM. Here the explicit dependence on N, a and 8 has been dropped for simplicity. 

Definition 6.5.4. Following from Equation 6.6, we define p( ulTc) as 

max(u) 

p(uITc) = ~c amax(u) II r(lu = vi)· 
v=l 

Theorem 6.5.5. The quantity in Equation 6.6 computed by the BHCC algorithm is: 

max(u) 

L p(uITc) II p(X.,u=vIBHC) 
uEPtns(Tc ) v=l 

Theorem 6.5.5 can be proven by induction, starting from the base case where Tc is a leaf node; 

proceeding to an arbitrary non-leaf node Te, with inductive hypothesis that the Theorem holds for 

both subtrees Ta and n. The essential techniques for the proof are the same as in Heller and 

Ghahramani [2005a] and we omit the details here. 

Corollary 6.5.6. For any BHCC tree Tc = (c, Ta, n, rc), the following is a lower bound on the 

marginal likelihood of a CDPM: 

recalling that Ne = IC(Te)l. 

Proof. Notice Ptns(Tc ) <;;; U, and p(XIDPM) ~ p(XIBHC), based on Lemma 6.5.2-6.5.3, Defini-
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tion 6.5.4, and Theorem 6.5.5 we have 

P(X,'c(Tc) ICDPM) 

max(u) 

> L p(u) IT p(X,u=vIDPM) 
uEPtns(Tc ) v=l 

max(u) 

> L p(u) IT p(X.u=vIBHC) 
UEPtns(Tr ) 1'=1 

max(u) 

IT p(X,u=vIBHC) 
v=l 

o 

6.6 Prediction 

In this section we define approximate inference for the posterior predictive distribution of a new 

data point p(xIX, T), a new dimension p(yIX, T), and a missing value p(Xi,jIX, T), for any BHCC 

tree T. Throughout this section, x, a length-J row vector, represents a new data point; and y, a 

length-I column vector, represents a new dimension. 

To estimate the predictive distribution of new observation (x, y or Xi,j) given X, the model sums 

the predictions for each of the possible CDPM hypotheses. weighted by the posterior probability of 

these hypothesis given the data. Our approach is to approximate these predictions by considering 

only tree-consistent hypotheses. We exploit the previously-built BHCC tree, and approximate the 

sum using only tree-consistent hypotheses. We present predictive distributions in Section 6.6.1 with 

recursive definitions, and we offer inductive proofs in Sec. 6.10. 

6.6.1 Predictive Distributions 

For any tree Tc = (c, Ta, n, rc), all three types of predictive distribution are approximated recursively 

by summing over the probability of the new observation (x, y, or Xi,j) conditioned on the two 
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hypothesis (H1 and H2) weighted by the posterior probability of the hypothesis given the data: 

p(new observationIX,.c(Tc )' Tc) 

d~. p(Hi IX,.c(Tc ) )p(new observation I Hi) + (6.9) 

(1 - p(H~IX,.c(Tc)))p(new observationIH2)· 

The base case of the recursion, for which Tc is a leaf node, is also defined by Equation 6.9 with 

p(HiIX,.c(Tc)) = rc = 1 by definition, 

To predict a novel data point, note that while recursing down the tree, the new data point x is 

divided into two independent pieces according to the tree partitioning: X.c(Ta) and XC(Tb)' Thus for 

x, Equation 6.9 becomes 

p(XIX,.c(Tc )' Tc) = 1·cp(xIX . .c(Tc )' DPM) + (1 - rc) 

p(xC(Ta) IX,.c(Tu)' Ta)p(xC(Tb) IX,.c(Tb)' n). 
(6.10) 

When predicting a novel dimension, the new dimension y can be generated by each of the subtrees 

Ta and Tb. Thus for y, Equation 6.9 becomes 

p(yIX . .c(Tc)' Tc) = rcp(yIX,.c(Tc), DPM)+ 

(1 - r c) (p(yIX . .c(Ta), Ta) + p(yIX,.c(Tb)' Tb)). 
(6.11) 

We define p(yIX,.c(T.J, DPM) as the probability of the dimension y given that X,.c(Tk) is generated 

from a DPM w,r.t, the view containing the set of dimensions £(Tk): 

p(yIX . .c(Tk)' DPM) 

d~. I: p(ZIX,.c(Tk)' DPM)p(ylz) 
zEV (6.12) 

max(z) 

= I: p(ZIX,.c(Tk)' DPM) II p(Yz=c), 
zEV c=l 

where V denotes the set of all partitionings of data points in the data, each partitioning z E V 

is represented in the form of a vector of indicator variables. IVI follows the Bell number and the 

quantity in Equation 6.12 is intractable. Again, it is approximated by recursing through the BHC 

tree. 

For a missing value, Xi,j, those views (a.k.a. dimension clusters) in the tree not including 
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dimension j will not contribute to the prediction. Thus Equation 6.9 becomes 

p(Xi,j IX,cCTc)' Tc) d;t. 

rcp(Xi,jIX,CCTc )' DPM)lj n £(Tc)1 + (1 - rc) 

(p(Xi,j IX.,C(Tal' Ta) + p(Xi,j IX.,C(Tb)' n)). 

6.7 Randomized BHCC 

(6.13) 

Computational complexity is the primary limitation of the BHCC algorithm, which takes O(J2 ]2) 

computation time to build the tree given a J x J data. This section presents one method that 

can dramatically decrease the complexity, based on a randomized filtering approach [see Heller and 

Ghahramani, 2005bj. 

The Randomized BHCC (RBHCC) algorithm is described in Algorithm 7. It takes in a data set 

X and randomly selects a subset of dimensions Vo from the whole set of dimensions V. The original 

BHCC algorithm is run on X,vo' obtaining a tree T. Based on the priors of the two top subtrees of 

T, along with the predictive probabilities that a dimensions belongs to the left subtree and the right 

subtree (defined in Equation 6.11), the remaining dimensions, V - Vo are then filtered individually 

down the tree. 

For RBHCC, the cost is composed of three parts. The upper levels of the tree are constructed 

using randomized BHCC, which includes recursively running normal BHCC to construct the initial 

tree and then filtering the remaining dimensions based on the tree. The lower levels (the threshold 

number B in Algorithm 7 is reached) are built using normal BHCC. The total number of dimension 

comparisons can be expressed recursively as: 

Comp(J) = lVol 2 + J + Comp(aJ) + Comp((l - a)J), 

recalling that Vo is the set of dimensions randomly chosen for running BHCC, 0 ::; a ::; 1 is the 

proportion of dimensions on one side of the tree. Note that lVol can be considerably smaller than 

J when J is large; Meanwhile, the depth of a balanced binary tree is 10g(J). Thus the number of 

dimension comparisons comp(J) has the computational complexity O(Jlog(J)). If the DPM w.r.t. 

the views is approximated by the randomized BHC algorithm, the overall complexity of RBHCC is 

O(J J log J log J). 

Generally, capturing higher level structures is sufficiently informative. Thus we could restrict the 
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Algorithm 7: Randomized Bayesian Hierarchical Cross-Clustering (RBHCC) algorithm 

input : An I x J data matrix X. A threshold number B determining when to stop 
RBHCC 

output : The final merged tree T 

1 if J < B then return T +- BHCC(X) 
2 V+- {1, 2, ... , J}, Va = Vb = 0 
3 Pick Va C V randomly where I Va I « J 
4 T +- BHCC(X.yo), which, as defined in Algorithm 6, returns a 4-tuple (c, Ta, Tb, rc) with 

c the root node id, Ta and n the left and right subtrees of the root, and r c the posterior 
of merging Ta and n 

5 foreach j E V-V() do 
6 Y +- x.,j 
'T Pa +- p(ylX..C(Ta), Ta), Pb +- p(ylX.,.cm,), Tb) 
8 if 7r aPa > 7rbPb then 
9 I Va +- Va U {j} 

10 else 
11 I Vb +- Vb U {j} 
12 end 
13 end 
14 Ta +- RBHCC(X .. VaU.c(Ta), B) 
15 n +- RBHCC(X .. ~W.c(T,,), B) 
16 Pa +- p(X. . .c(Ta) ITa), Pb +- p(X.,.c(Tb) In), 

7r cp(X..{.c(Tu) . .c(Tb)} IDPM) 

1'T T +- (c, Ta, Tb, r c ), where c is a node id unique to T 

algorithm to running only the top L levels, either a priori or interactively. With these much smaller 

dimensions and data points cut-off levels (L for dimensions and K for data points), the truncated 

RBHCC algorithm is linear, O(IJLK). 

6.8 Results 

6.8.1 An Illustration 

We illustrate the performance of the algorithms using a synthetic dataset. We generated a Bino-

mial dataset with 100 data points and 200 dimensions. The data set has four views of data point 

clusterings. i.e. a CDPM with four DPMs each w.r.t. a subset of the original 200 dimensions. The 

number of dimensions within Views 1-4 are 30, 50, 50 and 70 respectively. The number of Binomial 

mixture components 1 under Views 1-4 are 4, 5, 6 and 8 respectively. 

1 Let [l)k be a data point in the kth component, and (h be the mean of the kth component. Then [l)k ~ 
Binomial(N,Ok) and Ok ~ Beta(a,j3). We set N = 50.a = j3 = 0.5. 
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Figure 6.1: Comparison of the clustering(s) between BHC and BHCC. The data matrix and the 
results from BHC (Single View) and BHCC (View 1-4) are shown in heatmaps, where each row 
denotes a data point and each column denotes a dimension. Note that the number of views and the 
partitioning of dimensions are unknown a priori to BHCC and are inferred from the data. 

Set II Set III Set IV 

Figure 6.2: Comparison of predictive performance among DPM approximations (BHC and Gibbs 
sampling) and CDPM approximations (BHCC, MCMC and RBHCC) on the same synthetic datasets. 
Set II has 2 views; Set III has 3 views and Set IV has 4 views. Each DPM w.r.t. its view contains 
four well separated Binomial mixture components. 

We applied BHC and BHCC on the data. Figure 6.1 shows the original data, the result from 

BHC (Single View) and the results from BHCC (Views 1- 4). Heatmaps are used to display the data 

matrix and the results where each row denotes a data point and each column denotes a dimension. 

For BHC and BHCC, the data points are rearranged according to the inferred hierarchical tree over 

data points to reflect the clustering. 

Note that in BHCC, the partitioning of dimensional space is represented by an inferred hierar

chical tree over dimensions. It yields four dimension subsets when choosing 0.5 as the threshold of 

posterior probability of merging. In each view, clear category structure is evident by the horizontal 

striations. 
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Figure 6.3: Comparison of predictive performance among DPM approximations (BHC and Gibbs 
sampling) and CDPM approximations (BHCC, MCMC and RBHCC) on the same real datasets. 
The 4 real datasets are Arcene, Isolet, Musk and Sonar. The number of dimensions used for the test 
is D (e.g. D = 200) and the number of data points chosen is fixed to 100. For test Arcene (D=2000), 
the results from BHCC and MCMC are not available because of long running time. 

6.8.2 Comparison of Predictive Performance 

We compared the predictive performance of BHCC and RBHCC to those from Markov Chain Monte 

Carlo (MCMC) for CDPM, and two inference methods for DPM, i.e. the BHC approximation and 

collapsed Gibbs sampling [Neal, 1998]. We first compared these algorithms on three synthetic 

datasets. We then compared them on four real-world datasets. In each experiment, a one time 

10-fold cross-validation is performed on predicting missing values, i.e., the set of entries in the data 

matrix is randomly partitioned into 10 subsets, of which each subset is hold out once as the validation 

data and the remaining 9 subsets are used as training data. 

The number of filtering levels for RBHCC is set to L = 6. In each experiment, the collapsed 

Gibbs sampling for DPM was performed for 100 iterations 2, the first half was used for burn-in and 

every fifth sample from the second half was used to estimate posterior quantities. Each iteration 

consisted of sampling all the latent indicator variables associating mixture components with data 

points. To facilitate mixing, we interleaved split-merge proposals [Jain and Neal, 2004] between 

Gibbs sweeps. In each experiment, MCMC for CDPM was performed for 100 iterations, first half of 

which were used for burn-in and every fifth of the second half for estimating posterior quantities. To 

improve the mixing, Metropolis coupled MCMC [Geyer , 1991] was performed in which two chains 

were run, one of which was "heated" by raising the posterior probability to a power 0.8. Due to 

2Tests showed that increasing the number of iterations did not lead to better predictive accuracy. 
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Figure 6.4: Comparison of the prediction accuracy, the estimated marginal likelihood lower bound 
(not applicable to MCMC), and the runtime among RBHCC, BHCC and MCMC. X-axis represents 
the number of dimensions used. The number of data points is fixed to 100. 

space limitations, we do not review the MCMC for CDPM and the collapsed Gibbs sampling for 

DPM here. 

We generated three sets of 200-dimensional Binomial datasets , each with 100 data points. Set 

II has two views; Set III has three views and Set IV has four views. Each view contains a DPM 

with four well separated Binomial mixture components. Figure 6.2 shows the prediction results. 

We found that the predictive accuracy of inference methods for DPM decreased dramatically as the 

number of views in the data increased, while methods for CDPM maintained a consistently high 

accuracy regardless of the number of views. Meanwhile, RBHCC, BHCC and MCMC yield equally 

high accuracy. 

The real datasets used were the Arcene data (900 data points, 10000 dimensions) from NIPS 

2003 feature selection challenge, Isolet (7797 data points, 617 dimensions), Musk Version 1 (476 

data points, 168 dimensions), and Sonar mines vs. rocks (208 data points, 60 dimensions) data. 

All data are from the VCI repository [Asuncion and Newman, 2007]. In each experiment, we 

chose a subset of 100 data points and varied the number of dimensions between 60 and 2000. 

Figure 6.3 shows the results. The performance of each algorithm varied across datasets. Comparing 
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Figure 6.5: Comparison of prediction accuracy among RBHCC with different filtering levels. The 
number of dimensions used for the test is D (e.g. D = 2000) and the number of data points are 
fixed to 100. 

the predictive accuracy between inference algorithms for CDPM and for DPM, we found the former 

gave a substantial improvement on the Arcene and the Isolet data and a slight improvement on the 

Musk and the Sonar data. Meanwhile, RBHCC, BHCC and MCMC yield generally equal accuracy. 

6.8.3 Prediction, Estimated Marginal Likelihood, and Runtime Compar

isons among CD PM Inference Algorithms 

To investigate the relationship between speed and accuracy among the CDPM algorithms, we con

trasted prediction accuracy, the estimated log marginal likelihood (per point, not applicable to 

MCMC) and the runtime among RBHCC, BHCC and MCMC on the real datasets of varying sizes. 

To do so, we selected a subset of the total dimensions, varying the number of dimensions between 

40 and 200 (see Figure 6.4). Although t he estimated marginal likelihood lower bounds differ for 

RBHCC and BHCC, the algorithms yield quite similar prediction accuracy. The runtime of MCMC 

depends on the structure (i.e. number of views and DPMs) underlying the data, which leads to 

quite variable runtime. Furthermore, we note that, consistent with our complexity analyses, RB-

HCC offers a significant speedup compared to BHCC: RBHCC scales linearly w.r.t. the number of 

dimensions in the data, while BHCC is quadratic. 

6.8.4 Varying the Filtering Levels for RBHCC 

To investigate the tradeoff between runtime and prediction accuracy in the RBHCC, we varied the 

number of filtering levels between 2 and 8 for RBHCC and ran it on dataset Arcene, Isolet and Musk 

datasets . Figure 6.5 shows the prediction accuracy. For all tests, the accuracy increases as the level 

increases. Further, the gain in accuracy gets smaller as L reaches to a certain level, indicating the 

performance reaches a potential upper bound and it is not necessary to continue increasing L. 
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6.9 Conclusions 

We described Bayesian Hierarchical Cross-Clustering (BHCC), a novel approach for approximate 

inference of multi-view data. The algorithm provides a deterministic, agglomerative, approximate 

approach to inference in a Cross Dirichlet Process Mixture (CDPM) model. We have also introduced 

a fast, randomized algorithm (RBHCC) that scales linearly in the number of levels of the hierar

chy. We have contrasted predictive performance on synthetic and real-world data, with clustering 

models that adopt a single view of the data, the DPM with Gibbs sampling-based inference and 

Bayesian Hierarchical Clustering, and cross-clustering models that adopt multiple views of the data, 

the CDPM with MCMC-based inference, BHCC, and RBHCC. Our results show that algorithms 

based on inferring multiple views have greater predictive accuracy, that the deterministic approaches 

perform comparably to MCMC-based inference, and the RBHCC provides a remarkable speed-up 

relative to BHCC, with little cost in predictive accuracy. We consider these results promising, and 

future work will explore applications of the model to other real-world data sets, and extensions to 

more richly structured models. 

6.10 Inductive Proofs of Predictive Distributions 

We begin with some preliminary definitions, then proceed to prove the consistency of the predictive 

distributions. 

Definition 6.10.1. Define Nodes(T) as a function returning the identification numbers of all the 

nodes in tree T, i.e., if T = (c, Ta , Tb, Tc ), then 

{ 

0 if T = 0, 
Nodes(T) = 

{c} U Nodes(Ta ) U Nodes(n) else. 

Definition 6.10.2. Define Parent(T, k) as a function returning identification number of the imme

diate parent of node k in a BHCC tree T, i.e., 

Definition 6.10.3. Define Path(T, k) as a function returning identification numbers of all the nodes 
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in the path from the root to node k in a BHCC tree T, Le., 

{ 

0 if {k} n Nodes(T) = 0, 
Path(T, k) = 

{k} U Path(T, Parent(T, k)) else. 

Definition 6.10.4. Define w(T, k) as the posterior probability that £(Tk) forms a view and merging 

other subtrees to Tk does not yield a view: 

w(T, k) = rk II 
cEPath(T.k)-{k} 

Lemma 6.10.5. The quantity defined in Equation 6.10 has a lower bound: 

max( .. ) 

L II w(Tc,k)p(x .. =vlX. ... =v,DPM), (6.14) 
"EPtns(T,,) v=l 

where the partitioning u is represented in the form of a vector of indicator variables, max( u) is the 

number of clusters in partitioning u, and k is the node in Tc such that the two vectors u = v and 

£(Tk) have the same set of dimensions. 

Proof. We show a proof by induction. If c is the leaf node, Ptns(Tc) = (c), max(u) = 1, k = c and 

w(Tc, c) = rc = 1, thus Equation 6.14 becomes p(xIX.,.c(Tc)' DPM) which is equal to the quantity in 

Equation 6.10. Thus the lemma is true in the base case. 

Our inductive hypothesis is that the lemma holds for the two subtrees Ta and n. That is, 

max( .. ') 

L II w(Ta, k')p(x .. ,=v,IX. ... ,=v', DPM) 
.. 'EPtns(Ta ) 1"=1 
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and same for W(Tb' k"). Therefore 

max( .. ') 

L II w(Te, k')p(x"'=v,IX., .. '=v" DPM) x 
.. 'EPtns(Ta ) v'=l 

max( .. ") (6.15) 
II w(Te, k")p(X .. II =v ll lX. ... II=VIl , DPM) 

""EPtns(Tb) v"=l 

max( .. ) 

L II w(Te, k)p(x .. =vIX., .. =v, DPM) 
.. EPtns(Ta ) xPtns(Tb) v=l 

Meanwhile, for the trivial partitioning (£(Te)) (recalling that (£(Te)) represents the partitioning 

where all dimensions in £(Tc) are assigned to the same cluster), we have max(u) = 1, k = e and 

max( .. ) 

II w(Te, k)p(x .. =vIX., .. =v, DPM) 
v=l (6.16) 

By definition, Ptns(Tc ) = (£(Te) U Ptns(Ta) x Ptns(n). Therefore combining the results from 

Equation 6.15 and 6.16, we see the lemma is true. o 

Lemma 6.10.6. The quantity defined in Equation 6.11 is equal to the quantity: 

L w(Te, k)p(yIX,C(Tk ), DPM) (6.17) 
kENodes(Tc) 

which s'ums over the prediction w. r. t. all the nodes in Te weighted by the posterior of the nodes. 

Proof. We show a proof by induction. If e is a leaf node, then Ta = Tb = 0 and r e = 1. By 

definition, p(yIX,.qTc )' Te) = p(yIX.C(T,,) , DPM); Meanwhile, Nodes(Te) = {e}, w(Te, c) = re = 1, 

£(Te) = {e}, thus Equation 6.17 becomes p(yIX,C(Tc)' DPM). Thus the lemma is true in the base 

case. 

Our inductive hypothesis is that Equation 6.17 holds for the two subtrees Ta and Tb, i.e., 

kENodf's(T" ) 

and same for Tb. l\leanwhile, by definition, (1 - re)w(Ta, k) w(Te, k) and same for n; and 
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re = w(Te, c). Therefore, 

p(yIX.L:(Tc )' Te) = w(Te, c)p(yIX,L:(Tc)' DPM)+ 

L w(Te, k)p(yIX,L:(Tk,) , DPM)+ 
kENodes(T,,) 

L w(Te, k)p(yIX,L:(Tk)' DPM) 
kENodes(To) 

Further notice Nodes(Te) = {c} U Nodes(Ta) U Nodes(Tb) , thus the lemma is true. 

Lemma 6.10.7. The quantity defined in Equation 6.13 is equal to the quantity.' 

o 

(6.18) 

which sums over the prediction w. r. t. the nodes on the path from root to dimension j, weighted by 

the posterior of the nodes. 

Proof. We show a proof by induction. If c is a leaf node, Path(Te,j) = {c} n {j}, w(Te, c) = re = 1, 

£(Te) = {c}, thus Equation 6.18 becomes p(Xi,jIX,L:(Tc),DPM) x I{c} n U}I which is also the case 

in Equation 6.13 (Ta = Tb = 0 and re = 1). Thus the lemma is true in the base case. 

Our inductive hypothesis is that Equation 6.18 holds for the two subtrees Ta and Tb, i.e., 

p(Xi,j IX,L:(T.,) , Ta) = 

L w(Ta, k)p(Xi,jIX,L:(Tkl, DPM) 
kEPath(T" ,j) 

and same for Tb. Meanwhile, by definition, (1 - re)w(Ta, k) = w(Te, k) and same for Tb; and 

re = w(Te, c). Therefore, 

w(Te,c)p(Xi,jIX,L:(Tc),DPM) x I{j} n £(Te)l+ 

L w(Te, k )p(Xi,j IX,L:(Tk) ' DPM)+ 
kEPath(T" ,j) 

L w(Te, k)p(Xi,jIX,L:(Tk)' DPM) 
kEPath(Tb,j) 

Assume j is a leaf node of subtree Ta, then Path(Tb,j) = 0, Path(Te,j) = {c} U Path(Ta,j) and 

I{j} n £(Te) I = 1, thus the lemma is true. o 
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CHAPTER 7 

BAYESIAN CONGRUENCE MEASURING IN 

PHYLOGENOMICS 

7 .1 Introduction 

The availability of genome-scale data provides unprecedented opportunities for phylogenetic anal

yses (phylogenomics). However, molecular phylogenies inferred from individual loci may conflict 

with each other (incongruence). The incongruence between genes can be the result of random and 

systematic errors in phylogenetic tree reconstruction, but can also be caused by the underlying bi

ological processes, including population genetic processes [Hartl and Clark], within-species genetic 

recombination (e.g., chromosomes crossover and gene conversion) [Meselson and Radding, 1975] and 

horizontal gene transfer [Jain et al., 1999]. 

Techniques for assessing the significance of phylogenetic incongruence are particularly important 

to systematic biology on a genome-scale. Due to various heterogeneities caused by the biological 

processes, however, measuring phylogenetic incongruence has been a statistically and computation

ally challenging task. Nevertheless, several methods have been proposed (Planet [2006] provides an 

excellent review). An intuitive framework for measuring incongruence is the incongruence length 

difference (ILD) test [Farris et al., 1994]' initially developed in a parsimony context, and later 

adapted to a distance-based method [Zelwer and Daubin, 2004]. The test statistic is defined by 

d = Lc - L~l Li where Li and Lc denote the lengths of the most parsimonious trees calculated for 

the ith individual loci and for the combined loci, respectively. However, studies have suggested that 

the test performs poorly when a substantial rate or pattern heterogeneity exists among sites [Dolphin 

et al., 2000, Darlu and Lecointre, 2002]. 

In a maximum likelihood context, Huelsenbeck and Bull [1996] described a method based on a 

likelihood ratio test with the ratio d = L1/ Lo where Lo is the maximum likelihood assuming that all 
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the genes share identical trees while allowing rate heterogeneity to vary across sites, and L1 is the 

maximum likelihood assuming that all the genes have different trees and different evolutionary rates. 

The null distribution for the test is calculated using the bootstrapping resampling technique. Based 

on hierarchical clustering and the likelihood ratio test, Leigh et al. [2008] described a method to 

identify congruent subsets of genes. However, there are several concerns with a maximum-likelihood 

and bootstrap based approach. To calculate P-values using nonparametric bootstrap, the maximum 

likelihood estimation must be repeated typically 100 to 1000 times. It therefore can be prohibitively 

slow [Larget and Simon, 1999]. In addition, the empirical test of Hillis and Bull [1993] suggested 

that the bootstrap proportion varied too much among replicate data sets to be used as a measure 

of repeatability. 

Bayesian approaches typically model uncertainty in a more interpretable style than maximum 

likelihood approaches. Although Bayesian analyses have been successfully applied to estimate phy

logeny, to our knowledge, very few of these works can explicitly test incongruence between genes 

or identify congruent gene subsets. Most of these analyses assumed that all genes evolved under 

the same phylogenetic tree [Larget and Simon, 1999, Huelsenbeck and Ronquist, 2001, Pagel and 

Meade. 2004, Lartillot and Philippe, 2004]. Suchard et al. [2003] proposed a Bayesian hierarchical 

model which allowed partitions to have different trees. However, it did not explicitly measure the 

degree of incongruence among genes. At the same time, it assumed that partitions were known in 

advance and thus failed in identifying congruent gene subsets. Ane et al. [2007] analyzed each gene 

separately using Bayesian analysis and constructed a gene-to-tree map which is, in turn, used to 

estimate the posterior probability of pairwise gene dissimilarity. A drawback of this method is that 

gene trees, exclusively inferred separately, may not resolve well. 

7.2 Methods 

The analysis begins with aligned molecular sequence data Y over N loci, primarily DNA or protein 

sequences. Data Y = (Y1 , ... , YN) consists of N disjoint alignments with Yn (n = 1, ... , N) cor

responding to loci n. Data Y k = (YkI , .. . , YkNk ) denotes a subset of Y (Y k ~ Y) consisting of Nk 

disjoint alignments, where each Ykg (g = 1, ... , N k ) refers to some Yn (n = 1, ... , N). 

The null hypothesis, denoted H Q, states that the interesting alignments are congruent. The 

alternative hypothesis, denoted HI, states that at least some part of the interesting alignments are 

incongruent to the others. According to Bayes' theorem, the posterior probability of all the Nk 
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Figure 7.1: Hierarchical clustering algorithm using posterior probability of gene clusters being con
gruent as merging criteria. a, b, c, d denote markers. 

markers in Y k being congruent given the alignment is 

(7.1) 

where 1Tk is the prior probability of all the Nk markers being congruent. The larger p(HoIYk ) is, the 

more confidence we have in Ho to believe that the Nk markers are congruent. 

The algorithm starts with measuring the degree of congruence for all pairs of loci, and the pair 

with the highest posterior probability (denoted r) is selected. The value r is compared with a 

threshold p, (p = .5 in this work), if r > p, the test continues, treating this pair as a congruent 

gene cluster consisting of two genes. If r ::::: p, none of the pairs are congruent and the test ends. 

The algorithm is shown in Figure 7.1, where congruent information between pair of genes or gene 

clusters are represented. In Section 7.2.1, the formal definition of topological congruence and branch 

length congruence are described. In Section 7.2.2, a greedy algorithm is proposed to estimate the 

likelihood quantities involved in the evaluation of the posterior probability defined in Equation 7.1. 

7.2.1 Likelihood of Congruence 

For an aligned set of sequences Y k = (Yk1 , ... , YkNk ) over Nk loci, topological congruence defines all 

Nk genes as having identical evolution topology but with various branch lengths and substitution 

processes. Thus the marginal likelihood that the Nk markers are topologically congruent given 
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alignments Y k is 

Nk 

p(YkIHo) = J II p(YkgITk,.Bkg,8kg)p(Tk,.Bkg,8kg) 
g=I (7.2) 

where Tk is the topology shared by these Nk genes, .Bkg is the branch length of sequence Ykg , and 

8 kg is the substitution model of sequence Ykg . 

For branch-length congruence, all Nk genes have identical branch lengths in addition to iden-

tical topology, so the marginal likelihood that these Nk loci are branch-length congruent given the 

alignments Yk is 

The rest of the chapter focuses on topological congruence. However, the same algorithm can be 

applied to branch-length congruence with minor modifications. In Section 7.2.3, the form of the 

likelihood function given a single gene and the strategies on prior distribution are presented. The 

evaluation of the marginal likelihood (Equation 7.2) is discussed in Section 7.2.4. 

7.2.2 Likelihood of Incongruence 

A main difficulty when evaluating the marginal likelihood of incongruence comes from the hypothesis' 

combinatorial nature. For example, assume we have three markers (a,b,e). Hypothesis HI, stating 

that at least some of the markers are incongruent given the alignments, allows four possibilities: 

{albic, able, aelb, albe}, where symbol I separates incongruent markers from congruent markers. 

Thus the marginal likelihood of HI given sequence alignments Ya, Yb, Yc is 

p(Ya, Yb, YclHd = wIP(YaIHo)P(YbIHo)p(YcIHo) 

+ W2P(Ya, YbIHo)p(YcIHo) + W3p(Ya, YcIHo)p(YbIHo) 

+ W4P(Yb, YcIHo)p(YaIHo) 

where Wi (i = 1, ... , 4) is the weight for each case and L::= 1 Wi = 1. A brute force estimation of 

p(YklHd requires enumerating all possible incongruent clusterings over these Nk markers. Notice 
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(a) (b) 

Figure 7.2: (a) An example tree with three genes. Tree-consistent partitions are albic and able. (b) 
A portion of a tree showing Ti and Tj are merged into Tk . 

that the number of possible clusterings over n elements is the nth Bell number: Bn +1 = L~=o (~)Bk' 

(Bo = 1), which prohibits the use of the brute force approach. Instead, we follow the approximation 

approach developed by Heller and Ghahramani [2005a] and restrict to clusterings that partition the 

genes in a manner consistent with the subtrees of the merging algorithm described in Figure 7.1. 

For example, if three genes a, b, c are merged according to Figure 7.2(a), then we only consider two 

clusterings: {albic, able}. So, 

p(Ya, Yb, Yc I HI) ~ {7l'p(Ya, YbIHo)+ 

(1 - 7l')p(YaIHo)P(YbIHo) }p(YcIHo) 

More generally, assume gene cluster k is merged from two mutually exclusive subsets of genes i and 

j. That is, Yk = YiUYj and YinYj = 0. Equipped with the restricted hypothesis, which we denote 

jj 1, the likelihood of incongruence is 

(7.3) 

and 

(7.4) 

where Ti, Tj , T k are binary trees expressing the merging processes as shown in Figure 7.2 (b). Re

stricting to tree-consistent clusterings and assigning different prior probability to them, the method 

provides a reasonable approximation to the brute force approach which averages over all possible 

clusterings. 
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7.2.3 Likelihood Function and Priors 

All sites from an individual gene sequence (e.g., an aligned sequence Ykg ) are assumed to evolve under 

identical topology. Assuming the same substitution rate across sites, however, can be unrealistic. 

A more nuanced model would allow using one set of substitution parameters for each site. This, 

however, results in too many parameters to estimate given a limited number of observations. A 

more practical approach is to model the rate variation using a probabilistic distribution. We use the 

discrete-gamma model [Yang, 2006]. 

In the discrete-gamma model, a finite mixture model is used to model across-site rate hetero

geneity. All sites within a gene are assumed to share a substitution pattern (based composition or 

transition-transversion rate), but fall into several classes with different rates. Thus, a site with rate 

re and pattern Q has the substitution-rate matrix reQ, with re calculated using a gamma func

tion. As it is not known to which rate class each site belongs, we average over all the site classes. 

Incorporating this into the likelihood function, given a sequence alignment Ykg of gene kg, we have 

Skg C (7.5) 

= II I>(YkgsITk, i3kg, reQkg)p(re ) 

s=l e=l 

where Ykgs denotes the 8th site in sequence Y kg , Skg is the number of sites in Y kg , and Qkg is the 

substitution pattern shared by all sites within Ykg . The summation is a weighted average over all 

C site-rate classes. p(re) is the prior probability that a site's rate falls in rate class c. For equally 

likely rate classes, p(re) = l/C. 

For the general time-reversible (GTR) model of nucleotide substitution, the matrix is normally 

written as the product of a symmetric matrix R representing substitution rate, and a diagonal matrix 

II representing a stationary distribution: 

Qf:iR = RkgIIkg = 

akg7fkgC bkg 7fkgA Ckg7fkgG 

akg7fkgT d kg 7fkgA ekg7fkgsG 

akg7fkgT dkg 7fkgC fkg7fkgG 

Ckg 7fkgT ekg7fkgC fkg7fkgA 

Once the tree topology, branch lengths, and site-specific rates are chosen, the likelihood at each 
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site (p(Ykgs 17k, iJkg, TcQkg)) and the likelihood for each gene (see Equation 7.5) are computed using 

Felsenstein's pruning algorithm [Felsenstein, 1981]. 

The stationary distribution requires summation to one and so is modeled by a Dirichlet prior 

distribution, 

The tree topology is sampled from a multinomial distribution. 

7k '" Multinomial(Pl,'" ,PE). 

where E = (2M - 5)!/2M - 3(M - 3)!, Pi (i = 1, ... , E) is the probability of the ith topology being 

sampled over the E possible AJ-taxon topologies. Without bias, these E topologies are assumed to 

be equally probable, so Pi = 1 (i = 1, ... , E). 

The prior information for branch lengths within a gene is modeled by an exponential distribution 

with an average branch length 1/ Akg, 

iJkg '" Exponential(l/Akg)' 

The prior belief on a set of genes being congruent is expressed using 1Tk (as in Equation 7.1). 

1Tk = 0 expresses a strong belief that alignments in Y k are incongruent, while 1Tk = 1 says they are 

congruent. The Dirichlet process prior [Aldous, 1985] is used to model the prior belief. Assume a set 

of genes are partitioned into congruent gene clusters of various sizes (here size means the number of 

genes in a cluster). For a new gene not in this set, a Dirichlet process prior, in general, says that this 

new gene is more likely to be congruent with gene clusters of larger size. Heller and Ghahramani 

[2005a] proposed a prior for agglomerative clustering, which has similar property to Dirichlet Process 

prior: 

1Tk = 1 dk = TJ 

_1Ir(N k) d f(N) dd 1Tk - ~ k = TJ k + i j 

if Tk is a leaf 

else 

where TJ is the concentration hyperparameter, and f(.) is the Gamma function. 

In this work, akg = (1,1,1,1), Akg = 10 for all k and g, and TJ = 0.5, though a Bayesian 

hierarchical model can be easily built such that the uncertainty on hyperparameters akg, Akg, and 

TJ are incorporated into the model. 

ll5 



,---SH3PX3 

plagl2 

ENC1 

tbr1 

ptrt 

zic1 

myh6 

Glyt 

sreb2 

RYR3 

'" X 
0-

'" I 
rJ) 

N 
OJ 
n> c.. 

0 ~ 1:: 

:9 a. 
Z 
w 

U CD >-.<:: 
i3 'N '" E 

N '" .D 0:: 
~ >-
UJ 0:: 

o 
- 10 

-20 

-30 

-40 

-50 

-60 

- 70 

-80 

Figure 7.3 : The dendrogram shows the hierarchical clustering structure of genes based on their 
posterior probability of being congruent. The square heatmap shows the congruence relationships 
between pairs of genes. The warmer the color is in a cell, the more congruent the corresponding 
pair of genes are. The colormap shows values of posterior probability (in logarithm) represented by 
colors. 

7.2.4 Estimation of Marginal Likelihood 

A key computation component of the model described in Section 7.2.1 is the calculation of the 

marginal likelihood defined in Equation 7.2, which is a highly variable function over a high di

mensional parameter space. The integral is analytically intractable (e.g. due to lack of conjugate 

priors) , and the parameter space is too high-dimensional for numerical integration. In this work, 

the approach by Newton and Raftery [1994] using Monte Carlo sampling from the posterior is used. 

Notice that marginal likelihood can be expressed as an expectation with respect to the posterior 

distribution of the parameters: 

(7.6) 

where!1k = (Tk, /3kg,8kg),g = 1, ... , Nk are model parameters, and p(Ykl!1k) are the likelihood 

function, as indicated in Equation 7.2. From here the harmonic mean identity can be used to 

approximate the marginal likelihood p(Y k I H 0) : 

(7.7) 

where !1L ... , !1~ are S samples drawn from the posterior distribution p(!1k IY k)' 

MCMC has been widely used in phylogenetic inference to sample model parameters [Larget 
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and Simon, 1999, Huelsenbeck and Ronquist, 2001, Suchard et al., 2001]. The approach in MR

BAYES [Huelsenbeck and Ronquist, 2001] is adapted in this work. To draw from p(nkIYk), the 

sampler uses a Metropolis-within-Gibbs [Tierney, 1994] algorithm that cycles through blocks of 

model parameters within nk, updating them via a Metropolis-Hastings proposal. For example, to 

sample the substitution model parameters for the first markers in Yk, the acceptance probability is: 

(7.8) 

where ek1 stands for the proposed values for the substitution model parameters. Simulated tem

pering [NeaL 1996], also known as Metropolis-coupled MCMC [Geyer, 1991]' is used to reduce the 

chance that Markov chain simulations remain in the neighborhood of a single model for a long period 

of time. 

It is worth noting that estimation of marginal likelihood remains a central problem in Bayesian 

inference. The decision of using the harmonic mean estimator is due to its simplicity. However, 

the estimator can have infinite variance. Raftery et al. [2007] described a stabilized version of the 

estimator. Gelman and Meng [1998] proposed path sampling which generalizes the thermodynamic 

integration originated from theoretical physics and involves a sequence of intermediate distributions 

bridging prior and posterior. Lartillot and Philippe [2006] applied thermodynamic integration to 

phylogenetic analysis. 

7.3 Results 

The method proposed herein is used to estimate the phylogeny relationships amongst ray-finned fish 

(Actinopterygii) with 10 alignments of protein-coding genes assembled by Li et al. [2008]. Twenty 

species, out of 52 ray-finned fish, are randomly selected, and mouse (Mus musculus) is used as the 

outgroup to root the phylogeny tree. Li et al. [2008] defined one data block for each codon position 

and each gene, yielding 30 data blocks (3 codon positions x 10 genes). For each data block, sub

stitution parameters (GTR + f) were estimated using maximum likelihood and Bayesian inference 

method. They defined the distance between data blocks using their estimated substitution parame

ters. Then data blocks were clustered by hierarchical clustering with centroid linkage. As expected, 

the three major clusters discovered by their method corresponded exactly to codon positions. The 

trees inferred from each individual gene by the Bayesian phylogenetic method (MRBAYES GTR+f) 

either are poorly resolved star-like trees or exhibit an obviously different topology (data not shown 
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Figure 7.4: 50% majority-rule consensus trees inferred from congruent set 1 (a) and congruent set 
2 (b). Posterior probabilities for branches are indicated. 

here), indicating that a systematic way of combining these genes is desirable in order to accurately 

analyze the data set. 

The Bayesian topological congruence method proposed herein is applied to identify congruent 

sets of genes using a Dirichlet process prior with concentration parameter TJ = .5. From this test, 

four mutually incongruent sets of genes were identified, containing 5, 3, 1, and 1 genes, respectively. 

The pairwise gene congruence is shown in a square matrix in Figure 7.3. The warmer (e.g., red is 

warmer than blue) the color is in a cell, the more congruent the corresponding pair of genes are. 

The colorbar maps color to values of posterior probability (on a logarithmic scale). The degree of 

congruence between genes ranges from extremely congruent to extremely incongruent. Gene pairs 

such as (plagl2, ENG1) , (tbrl, ptrt) are highly congruent, with posterior probabilities near 1; gene 

pairs such as (myh6, SH3PX3) , (ENG1, myh6) are highly incongruent, with posterior probabilities 

smaller than e- 50 . It also indicates that some genes, such as SH3PX3 and myh6 are incongruent to 

most of the other genes. 

Genes are further clustered into congruent subsets, shown in a dendrogram in Figure 7.3. Branch 

lengths in the dendrogram correspond to the posterior probability of congruence between gene 

subsets connected by the branch. The shorter the branch, the more congruent they are. The cut 

point value is p = 0.5. Branches having r ::; 0.5 are in black and r > 0.5 are in lighter colors. The 

tree shows two main congruent subsets: set1= (plagl2, ENG1, tbrl, ptrt, zicl) and set2=(RYR3, 

118 



sreb2, Glyt). Notice that although SH3PX3 is congruent to plagl2 and tbrl, it is not included in 

congruent set 1 since that merge has the posterior probability r = e-67 . This is also indicated in 

the square matrix, where the first column shows that SH3PX3 is incongruent to ENGl and ptrt. 

Similarly, although myh6 is highly congruent with RYR3, the gene is not included in congruent set 

2 because the merge has posterior probability r = e-50 • 

Bayesian phylogenies inferred from each of the two congruent sets are shown in Fig. 7.4. Branches 

of the 50% majority-rule consensus tree from congruent set 1 have high posterior probability, pro-

viding strong support for the topology. The main branch with low probability is the pair (An

guilla_TOstrata. Elops_saurus). Although the 50% majority-rule consensus tree from congruent set 

2 has an overall similar topology as the one from congruent set 1, its branches have relatively 

low posterior probabilities. However, one interesting result comes from analysis of congruent set 

2. In this set, there are three levels of ancestral nodes from the Ghr-iocentrus_dorab group to the 

(Ghanos_chanos, Notemigonus_crysoleucas) group, while in congruent set 1, Ghriocentrus_dorab and 

the (Ghanos_chanos, Notemigon1Ls_crysoleucas) group share an immediate common ancestor. 

7.4 Discussion 

Bayesian methods of multigene analysis correspond to various ways of partitioning the genome Pagel 

and Meade [2004], Lartillot and Philippe [2004], Rannala and Yang [2008], Nylander et al. [2004]. 

Gene topological congruence analysis can be considered as partitioning genes according to the under

lying gene topology while allowing branch length and substitution heterogeneity within a partition. 

To infer gene partitioning based on topological congruence, a mixture model is proposed: 

( I
Y) = p(Ylz)p(z) 

p z p(Y) (7.9) 

where, if N genes are clustered into K partitions, z = (Zl' ... , ZN), Zi is the partition of the ith gene, 

and L(YkIHo) is the marginal likelihood integrating over heterogeneous parameters, as defined by 

Equation 7.2 for topological congruence. 

The posterior probability of multiple markers (for example, three markers: a, b, c) being congruent 
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given the sequences are the posterior probability of them being assigned into one partition: 

p(HoIY) = p(zIY) (7.10) 

z E Z 

Za = Zb = Zc 

where Z is the set of all possible clusterings over N elements. Although MCMC inference algorithm 

has been widely used for phylogenetic analysis, sampling over the large sample space imposed by 

Equation 7.9 is extremely computationally expensive. 

The greedy agglomerative algorithm in Figure 7.1 can be considered as a deterministic alternative 

to estimating the mixture model (Equation 7.9) by a sampling method such as MCMC. However, 

it must be noted that this method still does not scale well with very large numbers of loci for two 

reasons. First, the agglomerative algorithm (Figure 7.1) has a computation time complexity of 

O(N2), where N is the number of genes in the data set. Second, the merging criterion still requires 

calculating the marginal likelihood (Equation 7.2) using an MCMC sampler. For this reason, the 

experiment reported in this work includes only ten genes and twenty taxa, a data set smaller than 

would be normally interesting to genome wide phylogenetic analysis. 

In general, Bayesian phylogenomic analysis methods that account for evolutionary heterogeneity 

among genes, including the algorithm described in this work, can present significant computational 

challenges. One solution is to devise parallelizable algorithms. It is particularly interesting to point 

out that the algorithm presented in this work is readily parallelizable. For example, given three gene 

clusters i, j and k, the evaluation of p(HoIYi , Yj ) and p(HoIYi , Y k) are independent and can therefore 

be computed in parallel by different machines. This can significantly speed up the computation and 

allow much larger scale applications of the algorithm. 

7.5 Conclusion 

Genomic scale data offers invaluable opportunities to solve difficult phylogenetic problems, but also 

imposes enormous challenges for statistical and computational methods [Rannala and Yang, 2008]. 

The method proposed in this work accounts for evolutionary heterogeneities and identifies congruent 

gene subsets using Bayesian hypothesis testing. The proposed method approximates the posterior 

probability of genes being congruent in a fast deterministic manner. A notable feature of the method 

is that it is particularly suitable for parallel computation. The test presented on the data set shows 
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that the model recovers interesting congruence structure among genes. Future work will explore 

applications of the model to more interesting genome wide data. 
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CHAPTER 8 

SUMMARY AND FUTURE WORK 

8.1 Summary of Methods and Contributions 

In this dissertation, we investigated several Bayesian nonparametric techniques to clustering in 

relational and high-dimensional settings. These include 1) infinite relational model with feature 

selection (FIRM) which incorporates the rich information of multi-relational data; 2) Bayesian Hier

archical Cross-Clustering (BHCC), a deterministic approximation to Cross Dirichlet Process mixture 

(CDPM) and to cross-clustering; 3) randomized approximation (RBHCC), based on a truncated hi

erarchy; and 4) Bayesian Congruence Measuring (BCM), an extension of BHCC, which measures 

incongruence between genes and to identify sets of congruent loci with identical evolutionary his

tories. As particular examples, we considered applications of these methods in solving challenging 

biological problems. In the study of interactions between microRNA and mRNA, FIRM was applied 

on both miRNA-mRNA correlation matrix and gene ontology (GO) annotation data, and discovered 

GO terms, and mRNA/miRNA clusterings that suggesting interesting biological functions. In the 

field of chemogenomics and drug-target interaction, FIRM was applied to a variety of chemogenomic 

data and was able to predict drug-target interaction even with high degree of missing values. In the 

field of phylogenomic analysis, BCM was applied to estimate the phylogeny relationships amongst 

ray-finned fish (Actinopterygii) with 10 alignments of protein-coding genes, and the result show that 

the model recovers interesting congruence structure among genes. 

Infinite relational models (IRMs) are generalizations of Dirichlet process mixture (DPM) models 

to the relational domain, where the observations include both the object-feature data representing 

entity properties, and one or more relations involving multiple types, representing object-object 

relationships. In Chapter 4, we developed FIRM, a Bayesian non parametric model which extends 

the infinite relational model with simultaneous feature selection. FIRM addresses many cases in 

122 



which the structure of greatest interest may be best represented using only a selected subset of 

features, therefore results in structures with more intuitive interpretation and often better prediction 

accuracy. By conditioning the multiple probability density functions on latent component variables, 

the model allows for information exchange between features and relations of the same entity type, 

and also leads to information propagation among different entity types through the entire multi

relational network. Although the joint density of the parameters is not known, the parameters can 

be partitioned into groups whose posterior conditional densities are known. Meanwhile, part of 

the parameter groups can be integrated out while the resulting marginalized posterior conditional 

densities are still computational feasible. This leads to our proposed inference procedure based 

on collapsed Gibbs sampling, which iteratively sweeps through the groups of parameters (while 

skipping the ones that are integrated out) and generate a random sample for each, conditioned 

on the current value of the others. This procedure forms a homogeneous Markov chain and its 

stationary distribution is exactly the joint posterior. 

The identification of gene and protein functions, and the prediction of interactions among biologi

cal entities is an active research field facilitated by means of categorizing the entities into biologically 

sensible groups. Chapter 5 applied FIRM to challenging problems in bioinformatics. We begin with 

the problem of discovering groups of mRNA and microRNA in the biological context of breast can

cer. The model encodes latent categorization of mRNA and microRNA, and the latent saliency of 

gene ontology terms. The latent structures further encode the gene expressions of microRN A and 

mRNA, and the gene ontology annotation mappings. We also studied the prediction of drug-target 

interactions, by encoding in the model latent categorization structure of drugs and proteins, which 

in turn encodes drug-target interaction, chemical compound similarity, and amino acid sequence 

similarity. 

DPM is a widely used Bayesian nonparametric model for clustering and for density estimation. 

Although it allows for unbounded number of model parameters, and is more flexible than a finite 

mixture model, the model assumes a single clustering structure to account for all the variability 

in the data. Chapter 6 developed several approximate inference algorithms for the Cross Dirichlet 

Process Mixture (CDPM) model, which allows for multiple views, each describing the data using a 

subset of the dimensions. Meanwhile, the model does not restrict the number of views a priori, but 

allows potentially an unbounded number of views that are automatically inferred for a given data 

set. The proposed Bayesian Hierarchical Cross-Clustering (BHCC) is a greedy and deterministic 

approximation to CDPM which results in a hierarchical clustering of dimensions, and at each node, 

a hierarchical clustering of data points. We derived the posterior predictive distribution and asymp-
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totic lower bound for the CDPM. The randomized BHCC (RBHCC) is more efficient approximation 

algorithm extended from BHCC, and is based on a randomization and truncated hierarchy, that 

scales linearly in the number of dimensions and data points. Predictive performance on synthetic 

and real-world data sets demonstrated that approximation algorithms for CDPM are more efficient 

and effective in explaining the heterogeneity in high dimensional data than algorithms for DPM. 

Generalizing cross-clustering and the BHCC algorithm, Chapter 7 developed the Bayesian Con

gruence Measuring (BCM) to estimate the degree of incongruence among phylogenies of different 

genes, and to identify sets of congruent loci within which the evolutionary histories are identical. 

Analogical to cross-clustering where there exits multiple views, BCM also consists of multiple views. 

Rather than clustering structure as originally developed in CDPM, the intended structure of each 

view (congruent loci) in BCM represents evolutionary processes. The results on a gene sequence 

data of 10 nuclear genes from 20 ray-finned fish (Actinopterygii) species demonstrates the interesting 

properties of the algorithm. 

8.2 Future Directions 

There are many exciting directions for future research inspired by this dissertation. In this section, 

we briefly survey several potential research directions suggested by our methods. 

8.2.1 Potential Applications 

Biological systems often involve multiple types of elements (e.g. mRNA, miRNA, and protein) and 

events (e.g. gene transcription and translation, mRNA repression or degradation by miRNA, and 

alternative splicing). High throughput experimental techniques are able to capture snapshots of the 

events and elements. For example, microarrays and RNA-Seq data are used to measure gene and 

miRNA expression, and other transcriptome data; ChIP-chip and ChIP-seq are used to measure 

protein interactions with DNA. Meanwhile, various type of databases have been accumulated to 

represent biological information such as biological processes, molecular functions, cellular compo

nents, and pathway information. However, the high dimensional, multi-relational, and noisy nature 

of these data provides tremendous challenges for analysis. It is thus important to integrate multiple 

types of data so that they complement each other. We have applied FIRM on two problem domains 

(miRNA-mRNA interaction, and drug-target interaction) and generated promising results. The suc

cess of FIRM depends on how congruent the dataset are to each other, and how relevant the data is 

to the problem. Therefore, it is always important to involve domain expert when applying FIRM. 
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While we have focused on applications in bioinformatics, this approaches are also broadly useful in 

many other fields of interest. 

8.2.2 Alternative Bayesian Inference and Learning Approach 

In the Bayesian paradigm, the uncertainty of model parameters is represented by a posterior proba

bility, which, according to Bayes' rule, is proportional to the product of the prior and the likelihood. 

Because of the unified view of both observations and models as random variables, the Bayesian 

framework and probabilistic graphical model allows for building models representing complex sys

tems. One common theme running through many of these richer and more complex Bayesian models 

is that the component likelihood function may by itself be a mixture of distributions, thus does not 

have an efficient analytic (closed-form) solution. Estimation of marginal likelihood remains a central 

problem in Bayesian inference. The component likelihood function of the BHCC and randomized 

BHCC (Chapter 6) is by itself a DPM model. The BCM algorithm (Chapter 7) also has a compo

nent likelihood function which marginalizes over uncertainty in trees, branch length, and substitution 

parameters. These models require efficient and reliable approximation algorithm to estimate their 

component likelihood functions. 

We have chosen the Bayesian hierarchical clustering (BHC) to approximate the DPM in BHCC. 

The BHC is an efficient and determnistic algorithm to DFM which provides a lower bound to the 

DPM. Alternatively, it would be interesting to use other learning algorithm to DPM, such as the 

variational inference algorithm, as reviewed in Sec. 2.4.4. For the likelihood function in BCM, we 

have chosen the harmonic mean estimator due to its simplicity. It is known that the estimator can 

have infinite variance. Gelman and Meng [1998] proposed path sampling which generalizes the ther

modynamic integration originated from theoretical physics and involves a sequence of intermediate 

distributions bridging prior and posterior. Lartillot and Philippe [2006] applied thermodynamic 

integration to phylogenetic analysis. It would be interesting to adapt these alternative methods to 

the BCM algorithm. 

Recent Bayesian inference community has also seen the popularity of approximate Bayesian 

computation (ABC), which is considered as a generally valid approximation for doing Bayesian 

inference in complex models [Beaumont et al., 2002]. ABC has also been applied to conduct the 

model choice in a wide range of phylogenetic models [Cornuet et al., 2008, Robert et al., 2011]. It 

is thus interesting to study and veryfy its application in the models presented in this dissertation. 
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8.2.3 Alternative Nonparametric Methods 

The Dirichlet process allows for infinite (unknown and unbounded) number of mixture components 

associated with the data. It has desirable asymptotic properties, and leads to simple and effective 

learning algorithms. The models presented in this dissertation are direct applications or extensions 

of the Dirichlet process. However, it is not the only framework with such properties, it would be 

interesting to explore some alternative Bayesian nonparametric methods. Meanwhile, nonparametric 

methods alternative to Bayesian nonparametrics, such as kernel density estimation, have also proven 

to be useful for modeling. It would be interesting to integrate these alternative methods into the 

framework of probabilistic graphical model for complex problems. 

8.2.4 Causal Learning and Biological Networks 

Cause-effect relationships are the fundamental building blocks of both nature and human understand

ing of nature. Biological networks are the abstracted representations of the causal "machinery" un

derlying complex biological systems (such as protein-DNA, protein-protein, and protein-metabolite 

interactions), and capture many of the systems' essential characteristics. However, the complexity 

of nature and the inevitable lack of detailed observations make human understanding of biological 

systems extremely challenging. Despite the development of computational algorithms and the avail

ability of high-throughput experimental methods for sequencing and binding, our understanding 

of system-level functions and mechanisms of a biological network is still hindered substantially by 

the lack of appropriate methodologies for learning complex and dynamic causal relationships even 

with many resources available. For instance, although Bayesian network (and dynamic Bayesian 

network) representation of large problems can often lead to a causal interpretation, the application 

of it to learn biological network is still challenging computationally, statistically, and theoretically. 

It would be interesting to develop novel representational and inferential methods, and observational 

and experimental strategies for the understanding of dynamic causal relationships inside biological 

systems, while borrowing the ideas of Dirichlet process, BHCC, and RBHCC for efficient exploration 

over the searching space. Recent findings on network motifs have offered exciting insights into sys

tems biology. Network motifs, the recurring sub-network patterns throughout a biological network, 

carry out specific information-processing functions and are presumably favored by evolution, and 

hence are more abundant than other network patterns. While a complete understanding of the 

functions and mechanisms of biological networks in dynamic and large-scale settings remains grand 

challenges, effort on simultaneously discovering, assembling, and refining network motifs could lead 
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to significant progress on the investigation. Therefore, it would be particularly interesting in defining 

potential canonical network patterns composed of multiple levels of interactions (e.g. protein-DNA, 

protein-protein, microRNA-mRNA, metabolic interactions, and evolutionary patterns), identifying 

these putative motifs on several large biological networks and estimating their probabilistic distri

butions, designing computational algorithms of learning network motifs in biological networks from 

high-throughput experimental data, and analyzing the identifiability and computational complexity 

of these algorithms. 
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