15,858 research outputs found
Image Segmentation Using Weak Shape Priors
The problem of image segmentation is known to become particularly challenging
in the case of partial occlusion of the object(s) of interest, background
clutter, and the presence of strong noise. To overcome this problem, the
present paper introduces a novel approach segmentation through the use of
"weak" shape priors. Specifically, in the proposed method, an segmenting active
contour is constrained to converge to a configuration at which its geometric
parameters attain their empirical probability densities closely matching the
corresponding model densities that are learned based on training samples. It is
shown through numerical experiments that the proposed shape modeling can be
regarded as "weak" in the sense that it minimally influences the segmentation,
which is allowed to be dominated by data-related forces. On the other hand, the
priors provide sufficient constraints to regularize the convergence of
segmentation, while requiring substantially smaller training sets to yield less
biased results as compared to the case of PCA-based regularization methods. The
main advantages of the proposed technique over some existing alternatives is
demonstrated in a series of experiments.Comment: 27 pages, 8 figure
A Novel Euler's Elastica based Segmentation Approach for Noisy Images via using the Progressive Hedging Algorithm
Euler's Elastica based unsupervised segmentation models have strong
capability of completing the missing boundaries for existing objects in a clean
image, but they are not working well for noisy images. This paper aims to
establish a Euler's Elastica based approach that properly deals with random
noises to improve the segmentation performance for noisy images. We solve the
corresponding optimization problem via using the progressive hedging algorithm
(PHA) with a step length suggested by the alternating direction method of
multipliers (ADMM). Technically, all the simplified convex versions of the
subproblems derived from the major framework of PHA can be obtained by using
the curvature weighted approach and the convex relaxation method. Then an
alternating optimization strategy is applied with the merits of using some
powerful accelerating techniques including the fast Fourier transform (FFT) and
generalized soft threshold formulas. Extensive experiments have been conducted
on both synthetic and real images, which validated some significant gains of
the proposed segmentation models and demonstrated the advantages of the
developed algorithm
Gap Filling of 3-D Microvascular Networks by Tensor Voting
We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated
Automated detection of extended sources in radio maps: progress from the SCORPIO survey
Automated source extraction and parameterization represents a crucial
challenge for the next-generation radio interferometer surveys, such as those
performed with the Square Kilometre Array (SKA) and its precursors. In this
paper we present a new algorithm, dubbed CAESAR (Compact And Extended Source
Automated Recognition), to detect and parametrize extended sources in radio
interferometric maps. It is based on a pre-filtering stage, allowing image
denoising, compact source suppression and enhancement of diffuse emission,
followed by an adaptive superpixel clustering stage for final source
segmentation. A parameterization stage provides source flux information and a
wide range of morphology estimators for post-processing analysis. We developed
CAESAR in a modular software library, including also different methods for
local background estimation and image filtering, along with alternative
algorithms for both compact and diffuse source extraction. The method was
applied to real radio continuum data collected at the Australian Telescope
Compact Array (ATCA) within the SCORPIO project, a pathfinder of the ASKAP-EMU
survey. The source reconstruction capabilities were studied over different test
fields in the presence of compact sources, imaging artefacts and diffuse
emission from the Galactic plane and compared with existing algorithms. When
compared to a human-driven analysis, the designed algorithm was found capable
of detecting known target sources and regions of diffuse emission,
outperforming alternative approaches over the considered fields.Comment: 15 pages, 9 figure
DoctorEye: A clinically driven multifunctional platform, for accurate processing of tumors in medical images
Copyright @ Skounakis et al.This paper presents a novel, open access interactive platform for 3D medical image analysis, simulation and visualization, focusing in oncology images. The platform was developed through constant interaction and feedback from expert clinicians integrating a thorough analysis of their requirements while having an ultimate goal of assisting in accurately delineating tumors. It allows clinicians not only to work with a large number of 3D tomographic datasets but also to efficiently annotate multiple regions of interest in the same session. Manual and semi-automatic segmentation techniques combined with integrated correction tools assist in the quick and refined delineation of tumors while different users can add different components related to oncology such as tumor growth and simulation algorithms for improving therapy planning. The platform has been tested by different users and over large number of heterogeneous tomographic datasets to ensure stability, usability, extensibility and robustness with promising results. AVAILABILITY: THE PLATFORM, A MANUAL AND TUTORIAL VIDEOS ARE AVAILABLE AT: http://biomodeling.ics.forth.gr. It is free to use under the GNU General Public License
Visual Quality Enhancement in Optoacoustic Tomography using Active Contour Segmentation Priors
Segmentation of biomedical images is essential for studying and
characterizing anatomical structures, detection and evaluation of pathological
tissues. Segmentation has been further shown to enhance the reconstruction
performance in many tomographic imaging modalities by accounting for
heterogeneities of the excitation field and tissue properties in the imaged
region. This is particularly relevant in optoacoustic tomography, where
discontinuities in the optical and acoustic tissue properties, if not properly
accounted for, may result in deterioration of the imaging performance.
Efficient segmentation of optoacoustic images is often hampered by the
relatively low intrinsic contrast of large anatomical structures, which is
further impaired by the limited angular coverage of some commonly employed
tomographic imaging configurations. Herein, we analyze the performance of
active contour models for boundary segmentation in cross-sectional optoacoustic
tomography. The segmented mask is employed to construct a two compartment model
for the acoustic and optical parameters of the imaged tissues, which is
subsequently used to improve accuracy of the image reconstruction routines. The
performance of the suggested segmentation and modeling approach are showcased
in tissue-mimicking phantoms and small animal imaging experiments.Comment: Accepted for publication in IEEE Transactions on Medical Imagin
- …
