4,837 research outputs found

    Transmission and detection for space-time block coding and v-blast systems

    Get PDF
    This dissertation focuses on topics of data transmission and detection of space -time block codes (STBC). The STBCs can be divided into two main categories, namely, the orthogonal space-time block codes (OSTBC) and the quasi-orthogonal space-time codes (Q-OSTBC). The space-time block coded systems from transceiver design perspective for both narrow-band and frequency selective wireless environment are studied. The dissertation also processes and studies a fast iterative detection scheme for a high-rate space-time transmission system, the V-BLAST system. In Chapter 2, a new OSTBC scheme with full-rate and full-diversity, which can be used on QPSK transceiver systems with four transmit antennas and any number of receivers is studied. The newly proposed coding scheme is a non-linear coding. Compared with full-diversity QOSTBC, an obvious advantage of our proposed new OSTBC is that the coded signals transmitted through all four transmit antennas do not experience any constellation expansion. In Chapter 3, a new fast coherent detection algorithm is proposed to provide maximum likelihood (ML) detection for Q-OSTBC. The new detection scheme is also very useful to analysis the diversity property of Q-OSTBC and design full diversity Q-OSTBC codes. The complexity of the new proposed detection algorithm can be independent to the modulation order and is especially suitable for high data rate transmission. In Chapter 4, the space-time coding schemes in frequency selective channels are studied. Q-OSTC transmission and detection schemes are firstly extended for frequency selective wireless environment. A new block based quasi-orthogonal space-time block encoding and decoding (Q-OSTBC) scheme for a wireless system with four transmit antennas is proposed in frequency selective fading channels. The proposed MLSE detection scheme effectively combats channel dispersion and frequency selectivity due to multipath, yet still provides full diversity gain. However, since the computational complexity of MLSE detection increases exponentially with the maximum delay of the frequency selective channel, a fast sub-optimal detection scheme using MMSE equalizer is also proposed, especially for channels with large delays. The Chapter 5 focuses on the V-BLAST system, an important high-rate space-time data transmission scheme. A reduced complexity ML detection scheme for VBLAST systems, which uses a pre-decoder guided local exhaustive search is proposed and studied. A polygon searching algorithm and an ordered successive interference cancellation (O-SIC) sphere searching algorithm are major components of the proposed multi-step ML detectors. At reasonable high SNRs, our algorithms have low complexity comparable to that of O-SIC algorithm, while they provide significant performance improvement. Another new low complexity algorithm termed ordered group-wise interference cancellation (O-GIC) is also proposed for the detection of high dimensional V-BLAST systems. The O-GIC based detection scheme is a sub-optimal detection scheme, however, it outperforms the O-SIC

    Achieving Low-Complexity Maximum-Likelihood Detection for the 3D MIMO Code

    Get PDF
    The 3D MIMO code is a robust and efficient space-time block code (STBC) for the distributed MIMO broadcasting but suffers from high maximum-likelihood (ML) decoding complexity. In this paper, we first analyze some properties of the 3D MIMO code to show that the 3D MIMO code is fast-decodable. It is proved that the ML decoding performance can be achieved with a complexity of O(M^{4.5}) instead of O(M^8) in quasi static channel with M-ary square QAM modulations. Consequently, we propose a simplified ML decoder exploiting the unique properties of 3D MIMO code. Simulation results show that the proposed simplified ML decoder can achieve much lower processing time latency compared to the classical sphere decoder with Schnorr-Euchner enumeration

    Low Complexity Blind Equalization for OFDM Systems with General Constellations

    Get PDF
    This paper proposes a low-complexity algorithm for blind equalization of data in OFDM-based wireless systems with general constellations. The proposed algorithm is able to recover data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information of the channel and thus does not suffer from latency normally associated with blind methods. We also demonstrate how to reduce the complexity of the algorithm, which becomes especially low at high SNR. Specifically, we show that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of our algorithm

    Reduced-complexity maximum-likelihood decoding for 3D MIMO code

    Get PDF
    The 3D MIMO code is a robust and efficient space-time coding scheme for the distributed MIMO broadcasting. However, it suffers from the high computational complexity if the optimal maximum-likelihood (ML) decoding is used. In this paper we first investigate the unique properties of the 3D MIMO code and consequently propose a simplified decoding algorithm without sacrificing the ML optimality. Analysis shows that the decoding complexity is reduced from O(M^8) to O(M^{4.5}) in quasi-static channels when M-ary square QAM constellation is used. Moreover, we propose an efficient implementation of the simplified ML decoder which achieves a much lower decoding time delay compared to the classical sphere decoder with Schnorr-Euchner enumeration.Comment: IEEE Wireless Communications and Networking Conference (WCNC 2013), Shanghai : China (2013

    Iteratively Decoded Irregular Variable Length Coding and Sphere-Packing Modulation-Aided Differential Space-Time Spreading

    No full text
    In this paper we consider serially concatenated and iteratively decoded Irregular Variable Length Coding (IrVLC) combined with precoded Differential Space-Time Spreading (DSTS) aided multidimensional Sphere Packing (SP) modulation designed for near-capacity joint source and channel coding. The IrVLC scheme comprises a number of component Variable Length Coding (VLC) codebooks having different coding rates for the sake of encoding particular fractions of the input source symbol stream. The relative length of these source-stream fractions can be chosen with the aid of EXtrinsic Information Transfer (EXIT) charts in order to shape the EXIT curve of the IrVLC codec, so that an open EXIT chart tunnel may be created even at low Eb/N0 values that are close to the capacity bound of the channel. These schemes are shown to be capable of operating within 0.9 dB of the DSTS-SP channel’s capacity bound using an average interleaver length of 113, 100 bits and an effective bandwidth efficiency of 1 bit/s/Hz, assuming ideal Nyquist filtering. By contrast, the equivalent-rate regular VLC-based benchmarker scheme was found to be capable of operating at 1.4 dB from the capacity bound, which is about 1.56 times the corresponding discrepancy of the proposed IrVLC-aided scheme

    Turbo Detection of Symbol-Based Non-Binary LDPC-Coded Space-time Signals using Sphere Packing Modulation

    No full text
    A recently proposed space-time signal construction method that combines orthogonal design with sphere packing, referred to here as (STBC-SP), has shown useful performance improvements over Alamouti’s conventional orthogonal design. As a further advance, non-binary LDPC codes have been capable of attaining substantial performance improvements over their binary counterparts. In this paper, we demonstrate that the performance of STBC-SP systems can be further improved by concatenating sphere packing aided modulation with non-binary LDPC codes and performing symbolbased turbo detection. We present simulation results for the proposed scheme communicating over a correlated Rayleigh fading channel. At a BER of 10?6, the proposed symbolbased turbo-detected STBC-SP scheme was capable of achieving a coding gain of approximately 26.6dB over the identical throughput 1 bit/symbol uncoded STBC-SP benchmarker scheme. The proposed scheme also achieved a coding gain of approximately 3dB at a BER of 10?6 over a recently proposed bit-based turbo-detected STBC-SP benchmarker scheme

    DMT Optimality of LR-Aided Linear Decoders for a General Class of Channels, Lattice Designs, and System Models

    Full text link
    The work identifies the first general, explicit, and non-random MIMO encoder-decoder structures that guarantee optimality with respect to the diversity-multiplexing tradeoff (DMT), without employing a computationally expensive maximum-likelihood (ML) receiver. Specifically, the work establishes the DMT optimality of a class of regularized lattice decoders, and more importantly the DMT optimality of their lattice-reduction (LR)-aided linear counterparts. The results hold for all channel statistics, for all channel dimensions, and most interestingly, irrespective of the particular lattice-code applied. As a special case, it is established that the LLL-based LR-aided linear implementation of the MMSE-GDFE lattice decoder facilitates DMT optimal decoding of any lattice code at a worst-case complexity that grows at most linearly in the data rate. This represents a fundamental reduction in the decoding complexity when compared to ML decoding whose complexity is generally exponential in rate. The results' generality lends them applicable to a plethora of pertinent communication scenarios such as quasi-static MIMO, MIMO-OFDM, ISI, cooperative-relaying, and MIMO-ARQ channels, in all of which the DMT optimality of the LR-aided linear decoder is guaranteed. The adopted approach yields insight, and motivates further study, into joint transceiver designs with an improved SNR gap to ML decoding.Comment: 16 pages, 1 figure (3 subfigures), submitted to the IEEE Transactions on Information Theor
    • …
    corecore