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Abstract—The 3D MIMO code is a robust and efficient space-
time coding scheme for the distributed MIMO broadcasting.
However, it suffers from the high computational complexity if
the optimal maximum-likelihood (ML) decoding is used. In this
paper we first investigate the unique properties of the 3D MIMO
code and consequently propose a simplified decoding algorithm
without sacrificing the ML optimality. Analysis shows that the
decoding complexity is reduced from O(M8) to O(M4.5) in
quasi-static channels when M -ary square QAM constellation
is used. Moreover, we propose an efficient implementation of
the simplified ML decoder which achieves a much lower decod-
ing time delay compared to the classical sphere decoder with
Schnorr-Euchner enumeration.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology in com-

bination with the space-time block code (STBC) offers in-

creased spectral efficiency and improved reliability without

requiring additional spectrum bandwidth [1]. Hence, it has

been widely adopted by many state-of-the-art communication

systems such as IEEE 802.11n, 3GPP Long Term Evolution

(LTE) and WiMAX etc. It is also considered as a core

technique for the future TV broadcasting system [2].

A so-called Space-Time-Space (3D) MIMO code has been

proposed for the 4 × 2 distributed MIMO broadcasting in

which MIMO modulated signal is sent from two cooperating

transmission sites to the receivers in the coverage are. Each

site has two transmit antennas and each receiver equips two

receive antennas, as well [3]. The 3D MIMO code combines

the robustness of Alamouti scheme [4] with the efficiency

of the Golden code [5]. Hence it offers reliable performance

even in presence of strong received signal power imbalances.

The latest study [6] shows that the 3D MIMO code is the

most efficient and robust in distributed MIMO broadcasting

scenarios compared with other state-of-the-art STBCs such as

DjABBA code [7], BHV code [8] and Srinath-Rajan code [9],

which suggests it is a promising candidate for the future

distributed MIMO broadcasting systems.

However, as eight M -QAM modulated information symbols

are stacked within one 3D MIMO codeword, the compu-

tational complexity is as high as O(M8) when maximum-

likelihood (ML) decoding is adopted. No study on reducing

the ML decoding complexity of 3D MIMO code has been con-

ducted in the literature. [10] proposed another fast-decodable

STBC for the distributed MIMO broadcasting. However, it

does not achieve full-rate and its performance is not as good

as 3D MIMO code.

In this work, we first reveal some unique properties of

the 3D MIMO code which have not been presented in any

previous work. Based on these properties, we propose a novel

simplified ML detection method. The complexity reduction is

achieved by three means: 1) embedded orthogonality coming

from Alamouti-like block structure in the codeword enables

a group-wise detection; 2) embedded orthogonality between

real and imaginary parts of the symbol group inheriting from

the Golden code enables independent detection of real and

imaginary parts in parallel; 3) adaptive searching radius avoids

the cumbersome exhaustive search.

The reminder of the paper is organized as follows. The 3D

MIMO code and the MIMO system model is introduced in

Section II. The novel simplified ML decoding algorithm is

proposed in Section III. Complexity analysis and simulation

results are presented in Section IV. Finally, conclusions are

drawn in Section V.

In this paper, xR and xI represent the real and

imaginary parts of the complex number x, respectively.

The function x̌ performs the complex-real conversion as:

x̌ , [[xR xI ]T [−xI xR]T ]. For a complex vector

x = [x1, x2, . . . , xn]
T , the function x̃ separates the real

and imaginary parts of the complex vector, i.e. x̃ ,

[xR
1 , x

I
1, . . . , x

R
n , x

I
n]

T . For a matrix X = [x1,x2, . . . ,xn]
where xj is the jth column of X, the function vec(X)
denotes stacking the columns of X one below another, i.e.

vec(X) , [xT
1 ,x

T
2 , . . . ,x

T
n ]

T . Consequently, ṽec(X) denotes

vectorizing matrix X followed by the real/imaginary part

separation. The inner product of two vectors x and y is

denoted by 〈x,y〉.

II. 3D MIMO CODE AND SYSTEM MODEL

The codeword matrix of the 3D MIMO code is given in (1)

which is shown on next page, where θ = 1+
√
5

2 , θ̄ = 1 − θ,

α = 1 + i(1 − θ) and ᾱ = 1 + i(1 − θ̄) with i =
√
−1. The

codeword is formed by arranging two Golden codewords X1

and X2 in an Alamouti manner. It achieves full-diversity. Since

eight information symbols s = [s1, . . . , s8]
T are transmitted

over four (T = 4) uses, it achieves a space-time (ST) coding

rate of two which is full-rate for 4× 2 MIMO transmission.

The 3D MIMO code is a linear STBC and its codeword
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 (1)

matrix can be constructed as [8]:

ṽec(X) = Gs̃, (2)

where G = [ ˜vec(A1), ˜vec(B1), . . . , ˜vec(B8)] is the generator

matrix with Aj and Bj being the the weight matrices repre-

senting the contribution of the real and imaginary parts of the

jth information symbol sj in the final codeword matrix [9].

For the MIMO system with Nt transmit and Nr receive

antennas, the signal transmission over quasi-static flat-fading

channel is expressed as:

Y = HX+N, (3)

where Y and N are Nr × T matrices representing received

signal and complex-valued additive white Gaussian noise

(AWGN) component, respectively; X is an Nt × T matrix

representing a codeword of the STBC; H is an Nr × Nt

matrix in which the (j, k)th element hj,k is the gain of the

channel link between the kth transmit antenna and jth receive

antenna. Separating the real and imaginary parts and stacking

the columns of the transmitted/received signal, it yields the

signal expression in real-value form:

ỹ = Heq s̃+ ñ, (4)

where ỹ = ṽec(Y), ñ = ṽec(N) and Heq is the equivalent

channel matrix and is written as:

Heq = (IT ⊗ Ȟ)G, (5)

where IT is the T × T identity matrix, ⊗ is the Kronecker

product.

III. SIMPLIFIED ML DETECTION FOR 3D MIMO CODE

A. ML decoding of STBC

Since the received signal ỹ in (4) can be viewed as lattice

points perturbed by the noise, the maximum-likelihood (ML)

solution of the transmitted signal is the combination of the

information symbol s̃ which has minimal Euclidean distance

to the received signal ỹ, namely:

ŝML = arg min
s∈Θ8

‖ỹ −Heq s̃‖2, (6)

where Θ is the set of the constellation of complex-valued in-

formation symbols, and Θ8 indicates that the symbol vector s

consists of eight independently selected constellation points. It

means that the optimal solution is found by jointly determining

eight information symbols. Specifically, when the M -QAM

modulation is adopted by the information symbols, a brute-

force searching of ŝML requires testing all M8 possibilities of

the signal vector, which is computationally intensive.

Fast decoding of the STBC based on orthogonal-triangular

(QR) decomposition has been discussed in literatures [8], [9],

[11]. More precisely, by performing Gram-Schmidt procedure

to the columns of the equivalent channel matrix Heq , it yields

an unitary matrix Q and an upper triangular matrix R, i.e.

Heq = QR where Q , [q1, . . . ,q16] and

R ,




‖r1‖2 〈q1,h2〉 · · · 〈q1,h16〉
0 ‖r2‖2 · · · 〈q2,h16〉
...

...
. . .

...

0 0 · · · ‖r16‖2


 , (7)

where r1 = h1, rj = hj −
∑j−1

k=1〈qk,hj〉qk , qj = rj/‖rj‖,

j = 1, . . . , 16.

Instead of solving (6), the ML solution can be alternatively

obtained by:

ŝML = arg min
s∈Θ8

‖z̃−Rs̃‖2, (8)

where z̃ = QHỹ is the real-valued received signal after

a linear operation QH. For a well-designed STBC, some

elements of R are equal to zero, which permits some infor-

mation symbols to be determined independently from others.

In other words, a joint detection in high dimension is turned

to several independent detections in low dimension, leading to

a significant reduction of decoding complexity [9], [11].

B. Important properties of 3D MIMO code

With the definitions in (1), (2) and (5), we can derive the

real-valued 16 × 16 equivalent channel matrix Heq . Rewrite

the upper triangular matrix R:

R =




R11 R12 R13 R14

0 R22 R23 R24

0 0 R33 R34

0 0 0 R44


 , (9)

where Rjk’s are 4 × 4 matrices containing 〈qm,hn〉’s with

m = 4(j− 1)+1, . . . , 4j and n = 4(k− 1)+1, . . . , 4k. More

importantly, R matrix has the following interesting properties.

Theorem 1: R11 is an upper triangular matrix with

〈q1,h2〉 = 〈q1,h4〉 = 〈q2,h3〉 = 〈q3,h4〉 = 0.

Proof: According to the definition of QR decomposition,

R11 is an upper triangular matrix.

With some straightforward computations based on Heq , it

yields 〈h1,h2〉 = 〈h1,h4〉 = 〈h2,h3〉 = 〈h3,h4〉 = 0. From

the definition of QR decomposition, q1 = h1/‖h1‖. Hence,

〈q1,h2〉 = 〈q1,h4〉 = 0.

In addition, r2 = h2 − 〈q1,h2〉q1 = h2, q2 = r2/‖r2‖ =
h2/‖h2‖. Therefore, using 〈h2,h3〉 = 0, it yields 〈q2,h3〉 =
0.

Finally, r3 = h3 − ∑2
j=1〈qj ,h3〉qj = h3 − 〈q1,h3〉q1,

q3 = (h3 − 〈q1,h3〉q1)/‖r3‖. Therefore, 〈q3,h4〉 =
(〈h3,h4〉 − 〈q1,h3〉〈q1,h4〉)/‖r3‖ = 0.



Remark: Theorem 1 suggests that the real and imaginary

parts of information symbol s1 and s2 can be decoded inde-

pendently. Using similar idea and procedure, the same property

can be derived for Rjj , j = 2, 3, 4.

Theorem 2: R13 is a null matrix when the channel is

quasi-static, i.e. 〈qj ,hk〉 = 0 with j = 1, 2, 3, 4 and k =
9, 10, 11, 12.

Proof: Using the same method as in the proof of Theo-

rem 1, it yields 〈qj ,hk〉 = 0, ∀j = 1, 2, 3, k = 9, 10, 11, 12.

Taking into account that 〈q1,h4〉 = 〈q3,h4〉 = 0, it

yields r4 = h4 − ∑3
j=1〈qj ,h4〉qj = h4 − 〈q2,h4〉q2.

Hence, 〈q4,hk〉 = (〈h4,hk〉 − 〈q2,h4〉〈q2,hk〉)/‖r4‖ = 0,

∀k = 9, 10, 11, 12.

Remark: Theorem 2 suggests that z1 and z2 do not contain

contribution from s5 and s6. It enables separating decoding

into groups. The orthogonalities between columns partially

come from the Alamouti structure embedded in the codeword

which requires the quasi-staticity of the channel.

Theorem 3: Performing QR decomposition R23 = EF, the

yielding upper triangular matrix F has similar structure as

R11, namely its (1, 2), (1, 4), (2, 3) and (3, 4) elements equal

to zero.

Proof: Due to the length limitation, we omit the details

of basic manipulations and only present some sketches of the

proof.

Denote the jth column of R23 as pj , i.e. R23 =
[p1,p2,p3,p4]. From the definition of Heq and using previous

two theorems, it is easy to prove that:

〈qj ,hk〉 = 〈qj+1,hk+1〉, ∀j = 5, 7 and k = 9, 11, (10)

〈qj+1,hk〉 = −〈qj ,hk+1〉, ∀j = 5, 7 and k = 9, 11, (11)

〈h5,h9〉〈h6,h11〉 − 〈h5,h11〉〈h6,h9〉
= 〈h6,h9〉〈h7,h9〉 − 〈h5,h9〉〈h8,h9〉
= 〈h6,h11〉〈h7,h9〉 − 〈h5,h11〉〈h8,h9〉. (12)

(10) and (11) suggest that the first and the second columns

of matrix R23 are orthogonal, i.e. 〈p1,p2〉 = 0. Hence, it

is sufficient to assert that the (1, 2)th element of matrix F is

zero.

In addition, using the properties in (10) and (11), the inner

product of matrix R23’s first and fourth columns writes:

〈p1,p4〉 = 〈q6,h9〉〈q5,h11〉 − 〈q5,h9〉〈q6,h11〉
+ 〈q8,h9〉〈q7,h11〉 − 〈q7,h9〉〈q8,h11〉

=
1

‖r5‖2
(
〈h5,h11〉〈h6,h9〉 − 〈h5,h9〉〈h6,h11〉

)

+
1

‖r7‖2
[
〈h6,h9〉〈h7,h9〉 − 〈h5,h9〉〈h8,h9〉

+
1

‖h5‖2
〈h5,h7〉

(
〈h6,h11〉〈h7,h9〉 − 〈h5,h11〉〈h8,h9〉

)

− 1

‖h5‖4
〈h5,h7〉2

(
〈h5,h9〉〈h6,h11〉 − 〈h5,h11〉〈h6,h9〉

)]
.

(13)

R22 R23 R24
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Fig. 1. Illustration of the ML decoding metric in quasi-static channel.

With the definition of Heq , it can be shown that:

‖r7‖2 = ‖r5‖2
(
1+

1

‖h5‖2
〈h5,h7〉−

1

‖h5‖4
〈h5,h7〉2

)
. (14)

Taking into account the equalities in (12) and (14), (13) is

turned to 〈p1,p4〉 = 0, which is sufficient to assert that the

(1, 4)th element of matrix F is also zero.

Following similar procedure, we can prove that the (2, 3)th
and (3, 4)th elements of F are equal to zero, as well.

The aforementioned properties are illustrated in Fig. 1 where

zero and nonzero entries of matrix R are easily seen. These

properties can be exploited to achieve low-complexity ML

decoding, which will be demonstrated in the following parts.

C. Simplified ML decoding

Based on the theorems provided in the previous part, a

simplified ML detection for the 3D MIMO code is proposed

in this subsection. The basic idea is that, using Theorems 2

and 3, the joint detection of eight information symbols is

converted into several detections in lower searching dimen-

sion in parallel, which results in a lower global detection

complexity. Moreover, using Theorem 1 and its inferences,

the detection of complex information symbols is turned to

independent detections of real and imaginary parts in parallel,

which further reduces the complexity.

More precisely, with the knowledge of matrix R in (9) and

taking into account Theorem 2, the ML detection metric in (8)

can be expressed as:

‖z̃−Rs̃‖2 = ‖z78 −R44d‖2 (15)

+ ‖z56 −R33c−R34d‖2 (16)

+ ‖z34 −R22b−R23c−R24d‖2 (17)

+ ‖z12 −R11a−R12b−R14d‖2, (18)

where a = ˜[s1, s2]T , b = ˜[s3, s4]T , c = ˜[s5, s6]T , d =
˜[s7, s8]T , z12 = ˜[z1, z2]T , z34 = ˜[z3, z4]T , z56 = ˜[z5, z6]T and

z78 = ˜[z7, z8]T . From (15) to (18), it can be seen that symbol

groups a and c can be determined independently from each

other for given b and d. For instance, a is obtained by using
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Fig. 2. Illustration of the modified ML decoding metric in quasi-static
channel.

only (18), if d is already known. This motivates us to perform

conditional detection [12] to realize group-wise decoding.

Specifically, the ML detection (8) can be rewritten in an

equivalent form:

ŝML = arg min
[b,d]∈Θ4

(
‖z78 −R44d‖2 (19)

+ arg min
a∈Θ2

‖v12 −R11a‖2 (20)

+ arg min
c∈Θ2

(
‖v56 −R33c‖2 + ‖v34 −R23c‖2

))
, (21)

where v56 = z56 − R34d, v34 = z34 − R22b − R24d and

v12 = z12−R12b−R14d. It suggests that the joint searching

of eight information symbols is turned into two independent

searching of two information symbols (shown by the two

minimum operations inside the parentheses) conditioned on

the other four information symbols (the first minimum oper-

ation outside the parentheses). Therefore, the ML decoding

complexity is reduced from O(M8) to O(M6). Note that this

complexity reduction is achieved without any constraint on the

constellation of information symbols.

In addition, Theorem 1 suggests that the real and imaginary

parts of a can be determined independently, which results in

a further reduction in complexity. Interestingly, according to

Theorem 3, the real and imaginary parts of c can be obtained

independently, as well. Specifically, the minimum operation

for searching c in (21) is turned equivalently to:

arg min
c∈Θ2

(
‖v56 −R33c‖2 + ‖u34 − Fc‖2

)
, (22)

where u34 = ETv34. The resulting ML detection metric is

illustrated in Fig. 2, where the independency of the real and

imaginary parts of a and c is clearly shown. Provided that

the real and imaginary parts of the information symbols are

independently modulated (such as in the square QAM case),

the ML decoding complexity is then reduced to O(M5).

Moreover, as far as the square QAM constellation is con-

cerned, the decoding of real (imaginary) parts of information

symbols can be further simplified. Take the detection of a

as an example. The square M -QAM complex symbols a are

TABLE I
COMPARISON OF ML DECODING COMPLEXITIES OF STBCS

STBC
ML decoding complexity

any QAM square QAM

3D MIMO [3] O(M6) O(M4.5)

DjABBA [7] O(M7) O(M6)

BHV [8] O(M6) O(M4.5)

Srinath-Rajan [9] O(M5) O(M4.5)

separated into
√
M -PAM real symbols on both real and imag-

inary axes, denoted as aR = [sR1 , s
R
2 ]

T and aI = [sI1, s
I
2]

T ,

respectively. The searching for a in (20) is converted into [11]:

arg min
a∈Θ2

‖v12 −R11a‖2 =

arg min
aR∈Ψ2

‖vR
12 −RR

11a
R‖2+arg min

aI∈Ψ2

‖vI
12 −RI

11a
I‖2, (23)

where we slightly abuse the notation by denoting vR
12 (vI

12)

as the first and third (second and fourth) elements of v12,

RR
11 (RI

11) is tailored accordingly, Ψ is the set of
√
M -PAM

constellation points. Furthermore, the conditional detection is

applied again here. For a given sR2 , the metric of the real part

writes:

‖vR
12−RR

11a
R‖2=

(
w12(1)−R11(1, 1)s

R
1

)2
+w12(3)

2, (24)

where w12(1) = v12(1) − R11(1, 3)s
R
2 and w12(3) =

v12(3) − R11(3, 3)s
R
2 . The metric is a quadratic function of

sR1 . Therefore, the best PAM symbol that minimizes the metric

is easily found by:

ŝR1 = Q

(v12(1)−R11(1, 3)s
R
2

R11(1, 1)

)
, (25)

where Q(·) is the slicing operation providing the PAM symbol

that is closest to the given value. Following the same proce-

dure, for a given sR6 we have:

ŝR5 = Q

(w56(1)R33(1, 1) +w34(1)F(1, 1)

R33(1, 1)2 + F(1, 1)2

)
, (26)

where w56(1) = v56(1) − R33(1, 3)s
R
6 and w34(1) =

u34(1) − F(1, 3)sR6 . Similar expressions can be derived for

ŝI1 and ŝI5, as well. Obviously, decoding of real symbol

groups such as aR is turned into two searchings over
√
M -

PAM constellation points requiring a complexity of O(
√
M).

Therefore, the decoding complexity is reduced to O(M4.5).
Eventually, fully exploiting all the aforementioned properties,

the 3D MIMO code turns out to be a fast decodable STBC.

The ML decoding complexities of state-of-the-art 4×2 rate-

2 STBCs are compared in Table I. Note that all these STBCs

require the quasi-staticity of the channel to achieve the claimed

low complexities. It can be seen that the 3D MIMO code

requires equivalent complexity as other fast-decodable STBCs.

D. Efficient implementation of the simplified ML decoder

The pseudocode of an implementation of the simplified ML

decoder is illustrated in Algorithm 1 which is presented at the

end of this paper. Its major part follows the derivation in the

previous subsection. The two outermost ‘for’ loops performs
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the traversal over combinations of b and d. A sorting function

(denoted as sort(·) in line 4) is used to arrange the possible

combinations of d in ascending order with respect to its

distance from received signal. It enables the early termination

of the searching (in line 8) once the distance resulted from the

current d is greater than the minimum distance found in the

previous searching. The sorted set of d is denoted as Θ̄
2
.

The detection of aR, aI , cR and cI is implemented by real-

valued sphere decoder [13], as shown e.g. from line 13 to 25

(or from line 27 to 39). Moreover, the Schnorr-Euchner (S-

E) enumeration arranges the searching sequence according to

the distances between the constellation points and the received

signal to speed up the searching convergence [13]. It can be

simply implemented by look-up table S-E(x) where x is the

zero-forcing (ZF) result of the received signal (lines 13 and

27 ) [14]. Note that the sort function is actually implemented

using the same technique to reduce the complexity.

Once a combination of information symbols having a

smaller distance than the minimum distance in the previous

search is found, the current solution x and the minimum dis-

tance dmin are updated (line 42). In other words, the searching

radius is adaptively adjusted in the decoding progress, helping

the fast convergence of the searching (lines 7, 17 and 31).

Note that Algorithm 1 is a straightforward implementation

of the proposed simplified decoder without sacrificing ML op-

timality. Other techniques such as statistical tree pruning [15]

and sorted QR decomposition [16] can also be incorporated in

the implementation providing various performance-complexity

trade-offs.

IV. SIMULATION

We evaluate the proposed low-complexity ML decoder by

simulation in this section. The proposed decoder is imple-

mented according to the pseudocode in Algorithm 1. The

sphere decoder with S-E enumeration is realized based on

Guo-Nilsson’s algorithm [17] which is an improved algorithm

of the classical implementation [13] achieving much lower
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Fig. 4. Computational complexity required by sphere decoder with S-E
and proposed simplified ML decoder, in quasi-static Rayleigh channel with
4-QAM constellation.

complexity than the original version. As the proposed decoder

contains four parallel searching branches, the processing time

delay is determined by the maximum visited nodes among

all searching branches. In contrast, since the classical sphere

decoder does not exploit the embedded properties of the code

and follows a serial implementation, the delay is the time

spent by the whole decoding process. The comparison takes

the common assumption that the processing time for checking

each possible solution (referred to as ‘node’) is approximately

the same for both methods. The channel is modeled as quasi-

static i.i.d. Rayleigh fading channel. Symbol constellation is

4-QAM.

Fig. 3 presents the bit error rate (BER) performance of the

proposed simplified decoder, Guo-Nilsson’s sphere decoder

and the optimal ML decoder without taking into account the

channel coding. This is to show the ‘pure’ decoding perfor-

mance of the STBC decoders. The three decoders achieve al-

most the same performance. Especially, the curve of proposed

decoder overlaps with that of ML decoder, which suggests that

the proposed simplified decoder provides the optimal decoding

performance.

Fig. 4 presents the decoding complexity in terms of process-

ing time delay. As can be seen from the figure, both decoders

spend much less complexity than the ML decoder which

needs to check 48 = 65536 times. Moreover, the proposed

decoder achieves a lower complexity than the classical sphere

decoder within the whole signal-to-noise ratio (SNR) range.

Especially, the improvement is more significant in low SNR

region. For instance, the average visited nodes is reduced

from 2738.9 to 550.7 at SNR of 0 dB, namely about 80%
reduction in processing time. The time reduction is over 53%
at SNR of 10 dB. The improvement decreases in higher

SNR region i.e. 15∼30 dB. It is due to the fact that the ZF

solution is more accurate at higher SNR and hence the S-

E enumeration helps greatly improving the sphere decoding

speed. Nevertheless, in high SNR region, the nodes visited by



the proposed method approaches to 29 which is less than 37.6,

the amount required by the classical sphere decoder. This still

leads to 23% reduction of processing time.

V. CONCLUSION

In this work, we first explore some interesting properties

of the 3D MIMO code. With this knowledge, we propose a

simplified ML decoder which reduces the decoding complexity

from O(M8) to O(M4.5) in quasi-static channel. Conse-

quently we propose an implementation of the simplified ML

decoder. Simulation results show that the proposed simplified

decoder needs less processing time, especially in the low SNR

region, than the classical sphere decoder with S-E enumeration

without sacrificing the ML decoding optimality.

ACKNOWLEDGMENT

The authors would like to thank the support of French

ANR project “Mobile Multi-Media (M3)” and “Pôle Images
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Algorithm 1: Implementation of the proposed simplified

ML decoder for 3D MIMO code.

1 [Q,R] = QR(Heq), [E,F] = QR(R23);

2 z̃ = QT ỹ;

3 dmin = ∞;

4 [Θ̄
2
, ε̄78]=sort(ε78 = ‖z78 −R44d‖2, ∀d);

5 for i = 1 to M2 do

6 d = Θ̄
2
(i), compute v56;

7 if ε̄78(i) > dmin then

8 break

9 end

10 for l = 1 to M2 do

11 b = Θ̄
2
(l), compute v12, u34 ;

12 τR12 = τI12 = τR56 = τI56 = ∞;

13 Ψ
2

2 = S-E(vR2 /R11(3, 3)) ;

14 for k = 1 to
√
M do

15 ŝR2 = Ψ
2

2(k);
16 εR2 = |vR2 −R11(3, 3)ŝ

R
2 |2;

17 if (ε̄78(i) + εR2 ) > dmin then

18 break

19 end

20 ŝR1 = Q((vR1 −R11(1, 3)ŝ
R
2 )/(R11(1, 1)));

21 εR12 =
|vR1 −R11(1, 1)ŝ

R
1 −R11(1, 3)ŝ

R
2 |2 + εR2 ;

22 if εR12 < τR12 then

23 xR
1 = ŝR1 , xR

2 = ŝR2 , τR12 = εR12
24 end

25 end

26 run similar process as line 13 to 25 for sI1, sI2
27 Ψ

2

6 = S-E((R33(3, 3)v
R
6 +

F(3, 3)uR
4 )/(R33(3, 3)

2 + F(3, 3)2)) ;

28 for k = 1 to
√
M do

29 ŝR6 = Ψ
2

6(k);
30 εR6 =

|vR6 −R33(3, 3)ŝ
R
6 |2 + |uR

4 − F(3, 3)ŝR6 |2;

31 if (ε̄78(i) + εR6 ) > dmin then

32 break

33 end

34 ŝR5 = Q(((vR5 −R33(1, 3)ŝ
R
6 )R33(1, 1) +

(uR
3 − F(1, 3)ŝR6 )F(1, 1))/(R33(1, 1)

2 +
F(1, 1)2));

35 εR56 = |vR5 −R33(1, 1)ŝ
R
5 −R33(1, 3)ŝ

R
6 |2 +

|uR
3 − F(1, 1)ŝR5 − F(1, 3)ŝR6 |2 + εR6 ;

36 if εR56 < τR56 then

37 xR
5 = ŝR5 , xR

6 = ŝR6 , τR56 = εR56
38 end

39 end

40 run similar process as line 27 to 39 for sI5, sI6
τ = τR12 + τI12 + τR56 + τI56 + ε̄78(i);

41 if τ < dmin then

42 x = [x1, x2,b
T , x5, x6,d

T ]T ; dmin = τ ;

43 end

44 end

45 end


