13,660 research outputs found

    An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration

    Full text link
    We propose numerical algorithms for solving large deformation diffeomorphic image registration problems. We formulate the nonrigid image registration problem as a problem of optimal control. This leads to an infinite-dimensional partial differential equation (PDE) constrained optimization problem. The PDE constraint consists, in its simplest form, of a hyperbolic transport equation for the evolution of the image intensity. The control variable is the velocity field. Tikhonov regularization on the control ensures well-posedness. We consider standard smoothness regularization based on H1H^1- or H2H^2-seminorms. We augment this regularization scheme with a constraint on the divergence of the velocity field rendering the deformation incompressible and thus ensuring that the determinant of the deformation gradient is equal to one, up to the numerical error. We use a Fourier pseudospectral discretization in space and a Chebyshev pseudospectral discretization in time. We use a preconditioned, globalized, matrix-free, inexact Newton-Krylov method for numerical optimization. A parameter continuation is designed to estimate an optimal regularization parameter. Regularity is ensured by controlling the geometric properties of the deformation field. Overall, we arrive at a black-box solver. We study spectral properties of the Hessian, grid convergence, numerical accuracy, computational efficiency, and deformation regularity of our scheme. We compare the designed Newton-Krylov methods with a globalized preconditioned gradient descent. We study the influence of a varying number of unknowns in time. The reported results demonstrate excellent numerical accuracy, guaranteed local deformation regularity, and computational efficiency with an optional control on local mass conservation. The Newton-Krylov methods clearly outperform the Picard method if high accuracy of the inversion is required.Comment: 32 pages; 10 figures; 9 table

    Real-time diffuse optical tomography using reduced-order light propagation models based on a priori anatomical and functional information

    Get PDF
    This paper proposes a new fast 3D image reconstruction algorithm for Diffuse Optical Tomography using reduced order polynomial mappings from the space of optical tissue parameters into the space of flux measurements at the detector locations. The polynomial mappings are constructed through an iterative estimation process involving structure detection, parameter estimation and cross-validation using data generated by simulating a diffusion approximation of the radiative transfer equation incorporating a priori anatomical and functional information provided by MR scans and prior psychological evidence. Numerical simulation studies demonstrate that reconstructed images are remarkably similar in quality as those obtained using the standard approach, but obtained at a fraction of the time

    A Levinson-Galerkin algorithm for regularized trigonometric approximation

    Full text link
    Trigonometric polynomials are widely used for the approximation of a smooth function ff from a set of nonuniformly spaced samples {f(xj)}j=0N−1\{f(x_j)\}_{j=0}^{N-1}. If the samples are perturbed by noise, controlling the smoothness of the trigonometric approximation becomes an essential issue to avoid overfitting and underfitting of the data. Using the polynomial degree as regularization parameter we derive a multi-level algorithm that iteratively adapts to the least squares solution of optimal smoothness. The proposed algorithm computes the solution in at most O(NM+M2)\cal{O}(NM + M^2) operations (MM being the polynomial degree of the approximation) by solving a family of nested Toeplitz systems. It is shown how the presented method can be extended to multivariate trigonometric approximation. We demonstrate the performance of the algorithm by applying it in echocardiography to the recovery of the boundary of the Left Ventricle

    Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    Full text link
    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms are implemented on GPU to achieve a high computational efficiency. The reconstruction algorithm and the enhancement algorithm generate visually similar 4D-CBCT images, both better than the FDK results. Quantitative evaluations indicate that, compared with the FDK results, our reconstruction method improves contrast-to-noise-ratio (CNR) by a factor of 2.56~3.13 and our enhancement method increases the CNR by 2.75~3.33 times. The enhancement method also removes over 80% of the streak artifacts from the FDK results. The total computation time is ~460 sec for the reconstruction algorithm and ~610 sec for the enhancement algorithm on an NVIDIA Tesla C1060 GPU card.Comment: 20 pages, 3 figures, 2 table
    • …
    corecore