9,867 research outputs found

    A survey of intrusion detection system technologies

    Get PDF
    This paper provides an overview of IDS types and how they work as well as configuration considerations and issues that affect them. Advanced methods of increasing the performance of an IDS are explored such as specification based IDS for protecting Supervisory Control And Data Acquisition (SCADA) and Cloud networks. Also by providing a review of varied studies ranging from issues in configuration and specific problems to custom techniques and cutting edge studies a reference can be provided to others interested in learning about and developing IDS solutions. Intrusion Detection is an area of much required study to provide solutions to satisfy evolving services and networks and systems that support them. This paper aims to be a reference for IDS technologies other researchers and developers interested in the field of intrusion detection

    Enhancing data security in cloud using random pattern fragmentation and a distributed nosql database

    Get PDF
    © 2019 IEEE. The cloud computing model has become very popular among users, as it has proven to be a cost-effective solution to store and process data, thanks to recent advancements in virtualization and distributed computing. Nevertheless, in the cloud environment, the user entrusts the safekeeping of its data entirely to the provider, which introduces the problem of how secure such data is and whether its integrity has been maintained. This paper proposes an approach to the data security in cloud by utilizing a random pattern fragmentation algorithm and combining it with a distributed NoSQL database. This not only increases the security of the data by storing it in different nodes and scramble all the bytes, but also allows the user to implement an alternative method of securing data. The performance of the approach is compared to other approaches, along with AES 256 encryption. Results indicate a significant performance improvement over encryption, highlighting the capabilities of this method for cloud stored data, as it creates a layer of protection without additional overhead

    LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed

    Full text link
    Running off-site software middleboxes at third-party service providers has been a popular practice. However, routing large volumes of raw traffic, which may carry sensitive information, to a remote site for processing raises severe security concerns. Prior solutions often abstract away important factors pertinent to real-world deployment. In particular, they overlook the significance of metadata protection and stateful processing. Unprotected traffic metadata like low-level headers, size and count, can be exploited to learn supposedly encrypted application contents. Meanwhile, tracking the states of 100,000s of flows concurrently is often indispensable in production-level middleboxes deployed at real networks. We present LightBox, the first system that can drive off-site middleboxes at near-native speed with stateful processing and the most comprehensive protection to date. Built upon commodity trusted hardware, Intel SGX, LightBox is the product of our systematic investigation of how to overcome the inherent limitations of secure enclaves using domain knowledge and customization. First, we introduce an elegant virtual network interface that allows convenient access to fully protected packets at line rate without leaving the enclave, as if from the trusted source network. Second, we provide complete flow state management for efficient stateful processing, by tailoring a set of data structures and algorithms optimized for the highly constrained enclave space. Extensive evaluations demonstrate that LightBox, with all security benefits, can achieve 10Gbps packet I/O, and that with case studies on three stateful middleboxes, it can operate at near-native speed.Comment: Accepted at ACM CCS 201
    • …
    corecore