
Santos, NL and Ghita, B and Masala, GL (2019)Enhancing data security in
cloud using random pattern fragmentation and a distributed nosql database.
In: Proceedings: 2019 IEEE International Conference on Systems, Man and
Cybernetics (SMC)„ 06 October 2019 - 09 October 2019, Bari, Italy.

Downloaded from: http://e-space.mmu.ac.uk/624948/

Publisher: IEEE

DOI: https://doi.org/10.1109/SMC.2019.8914454

Please cite the published version

https://e-space.mmu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/288346687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://e-space.mmu.ac.uk/view/creators/Santos=3ANL=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Ghita=3AB=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Masala=3AGL=3A=3A.html
http://e-space.mmu.ac.uk/624948/
https://doi.org/10.1109/SMC.2019.8914454
https://e-space.mmu.ac.uk

Abstract— The cloud computing model has become very
popular among users, as it has proven to be a cost-effective
solution to store and process data, thanks to recent
advancements in virtualization and distributed computing.
Nevertheless, in the cloud environment, the user entrusts the
safekeeping of its data entirely to the provider, which
introduces the problem of how secure such data is and whether
its integrity has been maintained. This paper proposes an
approach to the data security in cloud by utilizing a random
pattern fragmentation algorithm and combine it with a
distributed NoSQL database. This not only increases the
security of the data by storing it in different nodes and
scramble all the bytes, but also allows the user to implement an
alternative method of securing data. The performance of the
approach is compared to other approaches, along with AES 256
encryption. Results indicate a significant performance
improvement over encryption, highlighting the capabilities of
this method in cloud, as it creates a layer of protection without
additional overhead.

I. INTRODUCTION

The paradigm of cloud computing has been well received
by different communities, as its users are able to reduce costs
associated with storage, maintenance, computing power, and
focus on the development [1]. Despite the many benefits
brought by this technology, many threats have also emerged.
Cloud data centres are increasingly becoming targets of
attacks not only from outside attackers, but also malicious
inside users [2]. What is more, the cloud provider is
responsible both for management and safekeeping of the user
data and in most cases does not disclose such procedures to
its users [3-5]. Encryption is widely used to secure the data in
the cloud, however, encryption algorithms expose data once
they are compromised [6], not to mention the encryption
process adds overhead, rendering this approach inefficient,
especially in data driven environments such as big data or
internet of things [7][8]. This paper approaches the problem
by proposing the use of a fragmentation algorithm, combined
with a distributed NoSQL (Not only SQL) database, to secure
data stored in the cloud. The data is fragmented into chunks,
which are scrambled and stored in the database, which is also
distributed across different nodes. This provides a faster
alternative to secure data in the cloud and this distributed
approach allows the data to be processed simultaneously,

N. L. Santos is with the School of Computing, Electronics and
Mathematics, University of Plymouth, Plymouth, PL4 8AA, United
Kingdom (email: nelson.santos@plymouth.ac.uk)

B. Ghita is with the Centre for Security, Communications and Network
Research, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
(email: bogdan.ghita@plymouth.ac.uk)

G. L. Masala is with the School of Computing, Mathematics and Digital
Technology of the Manchester Metropolitan University, Manchester, M15
6BH, United Kingdom (email:g.masala@mmu.ac.uk)

taking advantage of the high resources offered by cloud
computing and thus facilitating its adoption in this
environment. Scenarios suitable for the proposed method lie
mainly on environments where speed is paramount and the
client resources are limited. This includes mobile cloud
computing, internet of things (IoT), including medical
devices that compose a wireless body area network [9], as
resources such as battery power, processor speed and
memory capabilities, affect greatly the capabilities of the
device. Another area of application for the proposed method
would include backup and storage of data in public clouds,
where the provider is entrusted with the safeguarding of the
data, without disclosing its procedures to the client [5]. The
data will reside in different nodes and in the unlikely event
the cloud gets compromised, attackers would not be able to
reconstruct the data even if the attacker is able to access all
the database nodes. The method proposed fits in the bitwise
category, as described by [10], in which the method can be
applied to any data type, increasing its usability and scenarios
of application.

The paper will start by analysing the related work
concerning data security on the cloud, followed by a detailed
description of the proposed method. Afterwards, the
proposed method will be compared to similar approaches
with regards to performance. Finally, the results will
presented and discussed, to increase the awareness of the
benefits and drawbacks of using alternative approaches to
encryption to secure data in the cloud.

II. RELATED WORK

A. Data Anonymization
One of the many approaches evaluated by the research

community to secure data in the cloud revolves around
anonymization of stored data. A study conducted by [11] in
various well-known anonymization algorithms, identified that
K-anonymity prevents linkage between records by generating
large equivalence classes, however if records of the same
class have similar values on a sensitive attribute, an attacker
can identify an individual. L-Diversity although overcoming
this drawback, proved to be difficult to achieve and
insufficient in preventing the disclosure of attributes. To
overcome this, t-closeness was proposed, however the
amount of useful information that can be extracted after
applying it is very limited.

A publication by Goswami and Madan [12] compared
and contrasted different techniques using Map Reduce for
their advantages and disadvantages. Such techniques
included [13], which proposed a two phase top own
specialization using K-anonymity that used the full capability
of MapReduce for data anonymization. However, according

Enhancing Data Security in Cloud using Random Pattern
Fragmentation and a Distributed NoSQL Database

Nelson L. Santos, Bogdan Ghita, Giovanni L. Masala

mailto:nelson.santos@plymouth.ac.uk
mailto:bogdan.ghita@plymouth.ac.uk

to the authors [12], it was susceptible to overhead errors due
to actions such as splitting and key-value pair sorting.
Another investigated method was [14], which proposed
MapReduce with optimal balancing scheduling
anonymization that improved the data locality problem in
map reduce. Nevertheless the method proved challenging in
the big data environment, apart from security issues it
presented. Moreover, [15] proposed a top down
specialization using MapReduce that consists of a more
accuracy constraint MapReduce framework for data
anonymization. Nevertheless, the proposed method had
reduced extensibility and fault tolerance.

Furthermore, [16] replaced location coordinates with
semantic categories, a technique known as semantic
labelling, to achieve data anonymization. Nevertheless, their
method, can only be used in locations which can be mapped
to semantic vocabulary. In addition, the categories needed to
be decided in advanced and without the possibility of adding
categories during runtime or changing existing categories in
real time.

B. Encryption
When addressing the security, trust and privacy of data in

cloud computing, the most common approach is the use of
encryption [2]. Dahya and Rani [17] combined DES and
AES using RSA to increase the protection of sensitive data
(username and password) in the cloud using symmetric
tokens. Similarly, [18] proposes a Hybrid Cryptographic
System that combines symmetric and asymmetric encryption,
along with hashing and salting techniques at various levels to
protect data in the cloud. However, using such high number
of encryption mechanisms affects the efficiency of the
system. Furthermore, their current implementation does not
support multi cloud environments or any recovery features
that would prevent data loss. Potey, Dhote and Sharma [19]
propose the use of full homomorphic encryption in the cloud
in order to allow users to compute their data, residing on a
Dynamo DB, in a public cloud whilst encrypted. Despite this
advances, homomorphic encryption algorithms, similar to
symmetric algorithms add unwanted overhead and consume
vast resources. What is more, there is also the need to evolve
current querying algorithms under the full homomorphic
encryption scheme [19]. Correspondingly, [20] proposes a
scheme for data storage by combining symmetric encryption
and erasure codes. Despite being well researched and widely
used, symmetric algorithms require the exchanging of the
secret key [21], which if captured, would render the
mechanism ineffective. Additionally, encryption adds
unwanted complexity computing overhead, hindering
therefore its use on applications with limited resources, such
as mobile phones [22] or internet of things, where it would
overwhelm the CPU, RAM and battery. In addition,
environments where speed is paramount, for instance, big
data or real-time are also affected by encryption as the client
cannot run queries on encrypted data [23]. Even with the
existence of homomorphic encryption, which allows
encrypted data to be processed, the large key size and low
calculation efficiency, hinders its practicality in cloud
computing [24][25].

C. Data Fragmentation
Data fragmentation as a concept can be found in the

literature as far back as the late 70s, with a paper by [26]. It
has proven to ensure data security at much lower costs, as by
exploiting concepts in parallel computing, multiple fragments
can be accessed simultaneously [23]. However, its adoption
is yet to be widespread [10], as it was mainly adopted in
relational databases [27, 28] and multi-cloud architectures
[29]. Kapusta and Memmi [10], provide a wide range survey
of different data protection mechanism using fragmentation,
where the authors categorize different approaches into
bitwise and structure wise fragmentations. In [30], the author
analyses the performance of different data fragmentation
algorithm and contrasts with the use of encryption. The
techniques include a predefined fragmentation, a random
pattern fragmentation and a combination of random pattern
fragmentation with AES encryption. Results from that
research indicated a trade-off between performance and
security, however, the author also offered a range of
environments in which the mechanisms would be applied
based on their needs. However, the evaluated mechanisms
did not provide any means of data management, not to
mention the research was limited to a single instance in the
cloud, creating therefore a single point of failure.

In [31], the authors propose a fragmentation and dispersal
technique of cypher texts obtained using block ciphers.
Similarly, [6] combined different encryption algorithms with
a distribution system, which distributes a database across
different clouds, based on the level of encryption applied.
Bahrami and Singhal [32] proposes a light-weight method
that allows mobile clients to store .JPEG images on multiple
clouds. The data is scrambled using a pseudo-random
permutation based on the chaos system. However, their
system only concerns jpeg image files and could not be
extended to support multiple file types. Some authors
implemented a database in addition of a fragmentation
technique to add more management to the data. For instance,
[33] introduces a distributed MongoDB database to store the
fragmented data. Similarly, [34], demonstrates a solution,
where the data is randomly fragmented before being stored in
a NoSQL database. However, the NoSQL database proposed
by the author was hosted on a single instance, inducing
therefore the problem of a single point of failure.

This work will introduce a combination of the random
pattern fragmentation algorithm and an Apache Cassandra
database [35], where the objective is to split the data into
chunks and utilize the database not only to add management
to the data, but also add a layer of security as the fragmented
data stored on it, will be distributed across different nodes.

III. METHODOLOGY
As mentioned previously, this paper aims to increase the

security of data stored in the cloud, by means of data
fragmentation and a distributed database. The method aims at
identifying an alternative data security solution for cloud
computing, where the data is divided into multiple chunks
and scrambled into split files. Those split files, in turn are
inserted into an Apache Cassandra database, which is
distributed across multiple nodes (virtual instances in the

cloud). This technique allows the data to be dispersed across
and in the events a node gets compromised, the attacker
would not gain complete access to the data. Furthermore, in
the unlikely event all nodes get compromised, the attacker
would only be able to reconstruct the data with either the
pattern key stored in the client, or using brute force, which
would take considerable time to be reconstructed. Moreover,
the proposed method also allows for the nodes to be stored in
different cloud providers, increasing significantly the security
of the data.

A. Random Pattern Fragmentation (RPF)
The random pattern fragmentation algorithm, as seen in

figure 1, consists on the division of the original file into N
chunks determined by the users. The chunks are then
scrambled in a random order and inserted into special files
(split files) that contain some metadata of what is being
stored. The number of split files is also determined by the
user and the chunks are serialized into arrays of raw bytes.
Finally, the split files are then sent to the database, where
each split file is saved as a row in the table. Unlike other
related approaches, such as [32] and [36], the proposed
method does not track the header and footer of the file, nor it
adds padding to chunks to ensure they are all the same size.
This is due to the unwanted performance overhead that both
practices introduce. Rather, the proposed method relies on a
combination of the metadata in the split file and the order of
the pattern stored in the client machine, to determine the
correct order of the chunks. It is also important to note that
all communications between the client machine and the
database occur via a virtual private network (VPN),
encrypting therefore all the data in traffic.

Fig.1 Proposed random pattern fragmentation algorithm during the
fragmentation stage.

During the reconstruction stage, as seen in figure 2, the
database is queried on the metadata held on the split file. The
split files are then downloaded in the client machine, where
the serialized chunks are aligned and re-organized based on
the pattern stored in the client machine and the metadata that
each split file contains. This process includes creating a
dictionary datatype containing the unique id assigned to the
chunk and the raw bytes containing the data. Once in the
correct order, the chunks are then converted to a byte array
and de-serialized and the original file is stored in the client

device. Similar to the previous stage, all communications are
secured through a VPN.

Fig 2. Proposed Random Pattern Fragmentation method in the

reconstruction stage

B. Cassandra Distributed Database
According to [37], Apache Cassandra is an open source

NoSQL database that stores and handles large data on
commodity servers, whilst maintaining its service
availability high without any single point of failure. Contrary
to other databases, Cassandra’s nodes communicate equally
to each other without the exiting concept of a master node.
Cassandra is a wide column store, which combines a key-
value and tabular database management systems.
Distribution is performed using an internal component
named partitioner, a hashing mechanism that computers a
numerical token on the primary key of a table row, and
assigns it to a node in the cluster. The database is natively
distributed, allowing the addition of nodes or datacentres
with minimal downtime. What’s more, this built-for-scale
architecture allows the database to handle large amounts of
data and concurrent operations. Such factors, along with its
support of multiple data types, led to Cassandra being the
database of choice for this project.

In the proposed approach, the database will store the split
files, which contain the chunks in raw bytes and their
metadata; when the user selects the desired number of split
files, the same number of tables is automatically created to
store them. The process of the insertion into the database can
be described as follows:

• The user describes the desired number of split files and
a corresponding number of tables is created

• When the client program completes the fragmentation
and has the split files ready for upload, different
threads are created to handle the insertion into the
database concurrently.

• The split files are inserted and the chunks (in byte
arrays) are stored as Binary Large Objects (BLOBs).

For the download of the split files, the steps would consist
of:

• A query with the details of the file is created and sent
to the database

• For each split file described by the client, a separate
thread is created to handle the download of all the
split files concurrently

• When all the files are downloaded from the database
the connection is closed.

IV. EXPERIMENT AND RESULTS
Initial results, shown in figure 3 and table 1 highlight the

significant difference in latency of the proposed method,
when compared to its counterparts. The average latency of
the proposed method was around 0.56 seconds. In contrast,
the approach using CouchDB averaged 1.57 seconds, whilst
AES mean latency is 1.60. The single file upload averaged
1.44 seconds across all data types. Across each file type, not
much difference in the latency is seen, as the standard
deviation values were 0.02 for Cassandra, 0.01 for the
CouchDB and 0.03 for both the AES encryption and the
single file upload. It is important to notice that for this
experiment, as explained earlier, the time taken to create
tables for an individual user was not taken into account, as
they were created in advance. In fact, the user can submit
many files during the session, and this added latency is only
counted at the beginning of the session and not for each file
sent. Nevertheless, it can be seen on table 1 that on average,
the database takes 0.70 seconds to create both tables that
store the split files.

Fig.3 Performance comparison of proposed methods with other approaches

Table 1 Detailed performance comparison of all methods

File
Type

Cassand
ra

CouchD
B

AES Single
File

Chunk
Len.

Table
Creatio

n
(Cassan

dra)
DOCX 0.57 1.55 1.596 1.39 1000 0.72
PDF 0.56 1.56 1.561 1.44 1000 0.69
JPEG 0.53 1.57 1.651 1.45 1000 0.73
BMP 0.54 N/A 1.601 N/A N/A 0.67

MEAN 0.56 1.57 1.60 1.44 1000 0.70
St.

Dev.
0.02 0.01 0.03 0.03 1000 0.02

The significant improvement in performance lies in the
techniques used in the proposed method. Given that the file is
fragmented processing is done simultaneously on the split
files, either in the client machine or the database. Such
asynchronous behaviour allows different components to be

processed quicker, as well as utilizes the resources of the
devices more efficiently. In contrast to encryption, where the
process is done in a sequential manner, where each block
must be completed before another block is being encrypted.
Moreover, the method proposed by [34] despite some
asynchronous methods being used, the database was hosted
on a single server, not only restricting the available resources,
but also increasing the risk of total data loss, as this
architecture would represent a single point of failure.
Cassandra’s distributed architecture also features a data
replication technique that spans across the cluster, which
allows data to be easily recovered, in case a node encounters
any problems.

The proposed method does not aim to replace encryption.
Rather, fragmenting the data and concurrently sending the
fragments into the cloud, provides an alternative to securing
the data in the cloud in a more bespoke manner. As seen in
table 2, random pattern fragmentation provides enough
security without consuming many resources, making it ideal
for usage in environments such as mobile phones, Internet of
Things, or big data, where the devices possess very limited
resources and performance is paramount.

Table 2 Performance and security comparison of all methods
Method Sec Perform Suit
RPF +
Cassandra

Med High Mobile, Big
Data, IoT

RPF +
CouchDB

Med Med Mobile, Big
Data, IoT

AES High Low High Security
Environments

V. CONCLUSION
Cloud data security, privacy and trust has become a

crucial issue that impacts the success of this paradigm.
Traditional encryption mechanisms, are not suited for the
task of protecting data in the cloud, as the nature of
unstructured vast volume of data, along with the exponential
increase on demand for fast access to the data, increase the
latency and add overhead to the processing of the data.
Similarly, data anonymization techniques also proved to add
unwanted overhead and in some scenarios proved insufficient
to fully preserve the privacy of an individual. We have
proposed a method that combines random pattern
fragmentation with a wide-column NoSQL database. Current
results indicate a higher performance when compared to its
counterparts, which implies the usability of the proposed
method in cloud computing, especially in scenarios with high
speed needs and limited resources. . A drawback in the
current system lies in the management of the user tables in
the database. The number of split files is predefined at the
beginning and further changes are not allowed at runtime.
This would allow the user to quickly assess the security level
of the data and further distribute or split the data when
needed. In addition, further improvements would need to be
done to increase the usability of the proposed system in
environments that need constant access to the data, or real-

time access. Future work will also include the introduction of
additional mechanisms of data recovery and further tests with
bigger datasets and an environment encompassing different
cloud providers. With cloud computing rapidly increasing
and the users become more security-conscious, having a vast
array of possibilities to secure the data not only deters attacks
from occurring, but also drives the evolution of such
technologies further.

VI. REFERENCES
[1] M. Bahrami and M. Singhal, "The Role of Cloud Computing

Architecture in Big Data", in Information Granularity, Big Data, and
Computational Intelligence, 8th ed., Pedrycz and S. Chen, Ed.
Springer, 2015, pp. 275-295.

[2] Z. Yan, R. Deng and V. Varadharajan, "Cryptography and Data
Security in Cloud Computing", Information Sciences, vol. 387, pp. 53-
55, 2017.

[3] Cloud Security Alliance, "Top Threats to Cloud Computing", CSA,
2010.

[4] P. Kumar, P. Raj and P. Jelciana, "Exploring Data Security Issues and
Solutions in Cloud Computing", Procedia Computer Science, vol.
125, pp. 691-697, 2018.

[5] R. Hegarty and J. Haggerty, "Extrusion detection of illegal files in
cloud-based systems", International Journal of Space-Based and
Situated Computing, vol. 5, no. 3, p. 150, 2015.

[6] A. Alsirhani, P. Bodorik and S. Sampalli, "Improving Database
Security in Cloud Computing by Fragmentation of Data", 2017
International Conference on Computer and Applications (ICCA), C. J.
Kaufman, Rocky Mountain Research Lab., Boulder, CO, private
communication, May 1995.

[7] G. Manogaran, C. Thota and M. Kumar, "MetaCloudDataStorage
Architecture for Big Data Security in Cloud Computing", Procedia
Computer Science, vol. 87, pp. 128-133, 2016.

[8] M. Potey, C. Dhote and D. Sharma, "Homomorphic Encryption for
Security of Cloud Data", Procedia Computer Science, vol. 79, pp.
175-181, 2016.

[9] M. Li, W. Lou and K. Ren, "Data security and privacy in wireless
body area networks", IEEE Wireless Communications, vol. 17, no. 1,
pp. 51-58, 2010.

[10] K. Kapusta and G. Memmi, "Data protection by means of
fragmentation in various different distributed storage systems - a
survey", arXiv:1706.05960v1, 2017. [Accessed 14 March 2019].

[11] K. Parmar and V. Shah, "A Review on Data Anonymization in
Privacy Preserving Data Mining", International Journal of Advanced
Research in Computer and Communication Engineering, vol. 5, no. 2,
pp.75-79,2016.Available:
https://www.ijarcce.com/upload/2016/february16/IJARCCE%2016.pd
f. [Accessed 12 April 2019].

[12] P. Goswami and S. Madan, "Privacy preserving data publishing and
data anonymization approaches: A review", 2017 International
Conference on Computing, Communication and Automation (ICCCA),
2017.

[13] Z. Priyanka, K. Nagaraju and Y. Venkateswarlu, "Data
Anonymization Using Map Reduce on Cloud based A Scalable Two-
Phase Top-Down Specialization", International Journal on Recent
and Innovation Trends in Computing and Communication, vol. 2, no.
12, pp. 3879-3883, 2014. [Accessed 18 April 2019].

[14] R. Sreedhar and D. Umamaheshwari, "Big-Data Processing With
Privacy Preserving Map-Reduce Cloud", International Journal of
Innovative Research in Science, Engineering and Technology, vol. 3,
no. 1, pp. 343-350, 2014. [Accessed 18 April 2019].

[15] M. Balusamy and S. Muthusundari, "Data anonymization through
generalization using map reduce on cloud", Proceedings of IEEE
International Conference on Computer Communication and Systems
ICCCS14, 2014.

[16] O. Barak, G. Cohen and E. Toch, "Anonymizing mobility data using
semantic cloaking", Pervasive and Mobile Computing, vol. 28, pp.
102-112, 2016.

[17] N. Dahiya and S. Rani, "implementing multilevel data security in
cloud computing", International Journal of Advanced Research in
Computer Science, vol. 48, no. 8, pp. 146-152, 2017.

[18] A. Arora, A. Khann, A. Rastogi and A. Argarwal, "Cloud security
ecosystem for data security and privacy", in 2017 7th International
Conference on Cloud Computing, Data Science & Engineering -
Confluence, Noida, India, 2017.

[19] M. Potey, C. Dhote and D. Sharma, "Homomorphic Encryption for
Security of Cloud Data", Procedia Computer Science, vol. 79, pp.
175-181, 2016

[20] R. Wang, "Research on Data Security Technology Based on Cloud
Storage", Procedia Engineering, vol. 174, pp. 1340-1355, 2017.

[21] A. Bhardwaj, G. Subrahmanyam, V. Avasthi and H. Sastry, "Security
Algorithms for Cloud Computing", Procedia Computer Science, vol.
85, pp. 535-542, 2016.

[22] M. Bahrami and M. Singhal, "A dynamic cloud computing platform
for eHealth systems", 2015 17th International Conference on E-health
Networking, Application & Services (HealthCom), 2015.

[23] H. Dev, T. Sen, M. Basak and M. Ali, "An Approach to Protect the
Privacy of Cloud Data from Data Mining Based Attacks", in 2012 SC
Companion: High Performance Computing, Networking Storage and
Analysis, Salt Lake City, 2012, pp. 1106-1115.

[24] X. Song and Y. Wang, "Homomorphic cloud computing scheme based
on hybrid homomorphic encryption", 2017 3rd IEEE International
Conference on Computer and Communications (ICCC), 2017.

[25] Z. Mahmood and M. Ibrahem, "New Fully Homomorphic Encryption
Scheme Based on Multistage Partial Homomorphic Encryption
Applied in Cloud Computing", 2018 1st Annual International
Conference on Information and Sciences (AiCIS), 2018

[26] A. Shamir, "How to share a secret", Communications of the ACM, vol.
22, no. 11, pp. 612-613, 1979.

[27] T. Hong and J. Ren, "Fragmentation Storage Model: An Efficient
Privacy Protection Technology", 2017 4th International Conference
on Information Science and Control Engineering (ICISCE), 2017.

[28] G. Aggarwal et al., "Two can keep a secret: A distributed architecture
for secure database services", in Proc. CIDR, 2005.

[29] J. Bohli, N. Gruschka, M. Jensen, L. Iacono and N. Marnau, "Security
and Privacy-Enhancing Multicloud Architectures", IEEE Transactions
on Dependable and Secure Computing, vol. 10, no. 4, pp. 212-224,
2013.

[30] N. Santos, S. Lentini, E. Grosso, B. Ghita and G. Masala,
"Performance Analysis of Data Fragmentation Techniques on a Cloud
Server"in Proc, International Journal of Grid and Utility Computing.

[31] K. Kapusta and G. Memmi, "Enhancing Data Protection in a
Distributed Storage Environment Using Structure-Wise Fragmentation
and Dispersal of Encrypted Data", 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), 2018.

[32] M. Bahrami and M. Singhal, "A Light-Weight Permutation Based
Method for Data Privacy in Mobile Cloud Computing", in 2015 3rd
IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, San Francisco, CA, 2015, pp. 189-198.

[33] G. Masala, P. Riu and E. Grosso, "Biometric Authentication and Data
Security in Cloud Computing", in Computer and Network Security
Essentials, K. Daimi, Ed. Detroit: Springer, 2018, pp. 337-353.

[34] N. Santos and G. Masala, "Big Data Security on Cloud Servers",
in 11th International KES Conference on Intelligent Interactive
Multimedia: Systems & Services, Goad Coast, 2018.

[35] "Apache Cassandra", Cassandra.apache.org, 2018. [Online].
Available: http://cassandra.apache.org/. [Accessed: 16- Dec- 2018].

[36] S. Lentini, E. Grosso and G. Masala, "A Comparison of Data
Fragmentation Techniques in Cloud Servers", Advances in Internet,
Data & Web Technologies, pp. 560-571, 2018.

[37] DataStax Academy, "What is Apache Cassandra", DataStax Academy,
2019. [Online]. Available: https://academy.datastax.com/planet-
cassandra/what-is-apache-cassandra. [Accessed: 04- Apr- 2019].

[38] "Bitnami Cassandra Stack for Microsoft Azure", Docs.bitnami.com,
2019.[Online].Available:https://docs.bitnami.com/azure/infrastructure/
cassandra/. [Accessed: 04- Apr- 2019].

[39] Microsoft Inc, "Microsoft Azure Cloud Computing Platform &
Services", Azure.microsoft.com, 2018. [Online]. Available:
https://azure.microsoft.com/en-gb/. [Accessed: 08- Dec- 2018].

[40] "The leading operating system for PCs, IoT devices, servers and the
cloud|Ubuntu", Ubuntu.com,2019.[Online].Available:https://www.ubu
ntu.com/. [Accessed: 04- Apr- 2019].

[41] J. Lawas, A. Vivero and A. Sharma, "Network performance evaluation
of VPN protocols (SSTP and IKEv2)", 2016 Thirteenth International
Conference on Wireless and Optical Communications Networks
(WOCN), 2016. Available: 10.1109/wocn.2016.7759880 [Accessed 4
April 2019].

[42] "AES — PyCryptodome 3.8.1 documentation", PyCryptodome, 2019.
[Online].Available:https://pycryptodome.readthedocs.io/en/latest/src/c
ipher/aes.html. [Accessed: 13- Apr- 2019].

[43] CISCO, "Secure Copy", 2011.
[44] "Apache CouchDB", Couchdb.apache.org, 2019. [Online]. Available:

http://couchdb.apache.org/. [Accessed: 18- Apr- 2019].

	I. INTRODUCTION
	II. Related work
	A. Data Anonymization
	B. Encryption
	C. Data Fragmentation

	III. Methodology
	A. Random Pattern Fragmentation (RPF)
	B. Cassandra Distributed Database

	IV. Experiment and results
	V. Conclusion
	VI. References

