38,978 research outputs found

    Non-Rigid Structure from Motion for Complex Motion

    Get PDF
    Recovering deformable 3D motion from temporal 2D point tracks in a monocular video is an open problem with many everyday applications throughout science and industry, or the new augmented reality. Recently, several techniques have been proposed to deal the problem called Non-Rigid Structure from Motion (NRSfM), however, they can exhibit poor reconstruction performance on complex motion. In this project, we will analyze these situations for primitive human actions such as walk, run, sit, jump, etc. on different scenarios, reviewing first the current techniques to finally present our novel method. This approach is able to model complex motion into a union of subspaces, rather than the summation occurring in standard low-rank shape methods, allowing better reconstruction accuracy. Experiments in a wide range of sequences and types of motion illustrate the benefits of this new approac

    LiveCap: Real-time Human Performance Capture from Monocular Video

    Full text link
    We present the first real-time human performance capture approach that reconstructs dense, space-time coherent deforming geometry of entire humans in general everyday clothing from just a single RGB video. We propose a novel two-stage analysis-by-synthesis optimization whose formulation and implementation are designed for high performance. In the first stage, a skinned template model is jointly fitted to background subtracted input video, 2D and 3D skeleton joint positions found using a deep neural network, and a set of sparse facial landmark detections. In the second stage, dense non-rigid 3D deformations of skin and even loose apparel are captured based on a novel real-time capable algorithm for non-rigid tracking using dense photometric and silhouette constraints. Our novel energy formulation leverages automatically identified material regions on the template to model the differing non-rigid deformation behavior of skin and apparel. The two resulting non-linear optimization problems per-frame are solved with specially-tailored data-parallel Gauss-Newton solvers. In order to achieve real-time performance of over 25Hz, we design a pipelined parallel architecture using the CPU and two commodity GPUs. Our method is the first real-time monocular approach for full-body performance capture. Our method yields comparable accuracy with off-line performance capture techniques, while being orders of magnitude faster

    Better Feature Tracking Through Subspace Constraints

    Full text link
    Feature tracking in video is a crucial task in computer vision. Usually, the tracking problem is handled one feature at a time, using a single-feature tracker like the Kanade-Lucas-Tomasi algorithm, or one of its derivatives. While this approach works quite well when dealing with high-quality video and "strong" features, it often falters when faced with dark and noisy video containing low-quality features. We present a framework for jointly tracking a set of features, which enables sharing information between the different features in the scene. We show that our method can be employed to track features for both rigid and nonrigid motions (possibly of few moving bodies) even when some features are occluded. Furthermore, it can be used to significantly improve tracking results in poorly-lit scenes (where there is a mix of good and bad features). Our approach does not require direct modeling of the structure or the motion of the scene, and runs in real time on a single CPU core.Comment: 8 pages, 2 figures. CVPR 201

    Fast Multi-frame Stereo Scene Flow with Motion Segmentation

    Full text link
    We propose a new multi-frame method for efficiently computing scene flow (dense depth and optical flow) and camera ego-motion for a dynamic scene observed from a moving stereo camera rig. Our technique also segments out moving objects from the rigid scene. In our method, we first estimate the disparity map and the 6-DOF camera motion using stereo matching and visual odometry. We then identify regions inconsistent with the estimated camera motion and compute per-pixel optical flow only at these regions. This flow proposal is fused with the camera motion-based flow proposal using fusion moves to obtain the final optical flow and motion segmentation. This unified framework benefits all four tasks - stereo, optical flow, visual odometry and motion segmentation leading to overall higher accuracy and efficiency. Our method is currently ranked third on the KITTI 2015 scene flow benchmark. Furthermore, our CPU implementation runs in 2-3 seconds per frame which is 1-3 orders of magnitude faster than the top six methods. We also report a thorough evaluation on challenging Sintel sequences with fast camera and object motion, where our method consistently outperforms OSF [Menze and Geiger, 2015], which is currently ranked second on the KITTI benchmark.Comment: 15 pages. To appear at IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). Our results were submitted to KITTI 2015 Stereo Scene Flow Benchmark in November 201
    • …
    corecore