1,085 research outputs found

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    Content Distribution by Multiple Multicast Trees and Intersession Cooperation: Optimal Algorithms and Approximations

    Full text link
    In traditional massive content distribution with multiple sessions, the sessions form separate overlay networks and operate independently, where some sessions may suffer from insufficient resources even though other sessions have excessive resources. To cope with this problem, we consider the universal swarming approach, which allows multiple sessions to cooperate with each other. We formulate the problem of finding the optimal resource allocation to maximize the sum of the session utilities and present a subgradient algorithm which converges to the optimal solution in the time-average sense. The solution involves an NP-hard subproblem of finding a minimum-cost Steiner tree. We cope with this difficulty by using a column generation method, which reduces the number of Steiner-tree computations. Furthermore, we allow the use of approximate solutions to the Steiner-tree subproblem. We show that the approximation ratio to the overall problem turns out to be no less than the reciprocal of the approximation ratio to the Steiner-tree subproblem. Simulation results demonstrate that universal swarming improves the performance of resource-poor sessions with negligible impact to resource-rich sessions. The proposed approach and algorithm are expected to be useful for infrastructure-based content distribution networks with long-lasting sessions and relatively stable network environment

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    NUMFabric: Fast and Flexible Bandwidth Allocation in Datacenters

    Get PDF
    We present xFabric, a novel datacenter transport design that provides flexible and fast bandwidth allocation control. xFabric is flexible: it enables operators to specify how bandwidth is allocated amongst contending flows to optimize for different service-level objectives such as minimizing flow completion times, weighted allocations, different notions of fairness, etc. xFabric is also very fast, it converges to the specified allocation one-to-two order of magnitudes faster than prior schemes. Underlying xFabric, is a novel distributed algorithm that uses in-network packet scheduling to rapidly solve general network utility maximization problems for bandwidth allocation. We evaluate xFabric using realistic datacenter topologies and highly dynamic workloads and show that it is able to provide flexibility and fast convergence in such stressful environments.Google Faculty Research Awar

    Routing Games with Progressive Filling

    Full text link
    Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth to each of the users in a network. This allocation can be computed by uniformly raising the bandwidths of all users without violating capacity constraints. We consider an extension of these allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending velocities (allocation rates). These allocations are used in a game-theoretic context for routing choices, which we formalize in progressive filling games (PFGs). We present a variety of results for equilibria in PFGs. We show that these games possess pure Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all users have the same source-destination pair. We characterize prices of anarchy and stability for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the same source-destination pairs. In addition, we show that when a designer can adjust allocation rates, it is possible to design games with optimal strong equilibria. Some initial results on polynomial-time algorithms in this direction are also derived
    corecore