3 research outputs found

    Diseño de circuitos integrados analógicos usando la terminal de body en transistores MOS

    Get PDF
    El objetivo del presente trabajo fin de master es el diseño analógico de circuitos integrados CMOS usando la terminal de body en los transistores MOS. Así, se realizará una revisión de las técnicas modernas de diseño, caracterización y análisis, así como la posterior aplicación a diversos sistemas usando estos dispositivos como elemento. Se propondrán nuevas celdas usando esta técnica, las cuales son validadas por resultados de simulación, análisis teóricos y resultados experimentalesMáster Universitario en ComunicacionesUnibertsitate Masterra Komunikazioeta

    Scaling the bulk-driven MOSFET into deca-nanometer bulk CMOS technologies

    Get PDF
    The International Technology Roadmap for Semiconductors predicts that the nominal power supply voltage, VDD, will fall to 0.7 V by the end of the bulk CMOS era. At that time, it is expected that the long-channel threshold voltage of a MOSFET, VT0, will rise to 35.5% of VDD in order to maintain acceptable off-state leakage characteristics in digital systems. Given the recent push for system-on-a-chip integration, this increasing trend in VT0/VDD poses a serious threat to the future of analog design because it causes traditional analog circuit topologies to experience progressively problematic signal swing limitations in each new process generation. To combat the process-scaling-induced signal swing limitations of analog circuitry, researchers have proposed the use of bulk-driven MOSFETs. By using the bulk terminal as an input rather than the gate, the bulk-driven MOSFET makes it possible to extend the applicability of any analog cell to extremely low power supply voltages because VT0 does not appear in the device\u27s input signal path. Since the viability of the bulk-driven technique was first investigated in a 2 um p-well process, there have been numerous reports of low-voltage analog designs incorporating bulk-driven MOSFETs in the literature - most of which appear in technologies with feature sizes larger than 0.18 um. However, as of yet, no effort has been undertaken to understand how sub-micron process scaling trends have influenced the performance of a bulk-driven MOSFET, let alone make the device more adaptable to the deca-nanometer technologies widely used in the analog realm today. Thus, to further the field\u27s understanding of the bulk-driven MOSFET, this dissertation aims to examine the implications of scaling the device into a standard 90 nm bulk CMOS process. This dissertation also describes how the major disadvantages of a bulk-driven MOSFET - i.e., its reduced intrinsic gain, its limited frequency response and its large layout area requirement - can be mitigated through modifications to the device\u27s vertical doping profile and well structure. To gauge the potency of the proposed process changes, an optimized n-type bulk-driven MOSFET has been designed in a standard 90 nm bulk CMOS process via the 2-D device simulator, ATLAS
    corecore