448 research outputs found

    Design, Modeling, and Control Strategies for Soft Robots

    Get PDF

    Developing Design and Analysis Framework for Hybrid Mechanical-Digital Control of Soft Robots: from Mechanics-Based Motion Sequencing to Physical Reservoir Computing

    Get PDF
    The recent advances in the field of soft robotics have made autonomous soft robots working in unstructured dynamic environments a close reality. These soft robots can potentially collaborate with humans without causing any harm, they can handle fragile objects safely, perform delicate surgeries inside body, etc. In our research we focus on origami based compliant mechanisms, that can be used as soft robotic skeleton. Origami mechanisms are inherently compliant, lightweight, compact, and possess unique mechanical properties such as– multi-stability, nonlinear dynamics, etc. Researchers have shown that multi-stable mechanisms have applications in motion-sequencing applications. Additionally, the nonlinear dynamic properties of origami and other soft, compliant mechanisms are shown to be useful for ‘morphological computation’ in which the body of the robot itself takes part in performing complex computations required for its control. In our research we demonstrate the motion-sequencing capability of multi-stable mechanisms through the example of bistable Kresling origami robot that is capable of peristaltic locomotion. Through careful theoretical analysis and thorough experiments, we show that we can harness multistability embedded in the origami robotic skeleton for generating actuation cycle of a peristaltic-like locomotion gait. The salient feature of this compliant robot is that we need only a single linear actuator to control the total length of the robot, and the snap-through actions generated during this motion autonomously change the individual segment lengths that lead to earthworm-like peristaltic locomotion gait. In effect, the motion-sequencing is hard-coded or embedded in the origami robot skeleton. This approach is expected to reduce the control requirement drastically as the robotic skeleton itself takes part in performing low-level control tasks. The soft robots that work in dynamic environments should be able to sense their surrounding and adapt their behavior autonomously to perform given tasks successfully. Thus, hard-coding a certain behavior as in motion-sequencing is not a viable option anymore. This led us to explore Physical Reservoir Computing (PRC), a computational framework that uses a physical body with nonlinear properties as a ‘dynamic reservoir’ for performing complex computations. The compliant robot ‘trained’ using this framework should be able to sense its surroundings and respond to them autonomously via an extensive network of sensor-actuator network embedded in robotic skeleton. We show for the first time through extensive numerical analysis that origami mechanisms can work as physical reservoirs. We also successfully demonstrate the emulation task using a Miura-ori based reservoir. The results of this work will pave the way for intelligently designed origami-based robots with embodied intelligence. These next generation of soft robots will be able to coordinate and modulate their activities autonomously such as switching locomotion gait and resisting external disturbances while navigating through unstructured environments

    Towards a Universal Modeling and Control Framework for Soft Robots

    Full text link
    Traditional rigid-bodied robots are designed for speed, precision, and repeatability. These traits make them well suited for highly structured industrial environments, but poorly suited for the unstructured environments in which humans typically operate. Soft robots are well suited for unstructured human environments because they them to can safely interact with delicate objects, absorb impacts without damage, and passively adapt their shape to their surroundings. This makes them ideal for applications that require safe robot-human interaction, but also presents modeling and control challenges. Unlike rigid-bodied robots, soft robots exhibit continuous deformation and coupling between structure and actuation and these behaviors are not readily captured by traditional robot modeling and control techniques except under restrictive simplifying assumptions. The contribution of this work is a modeling and control framework tailored specifically to soft robots. It consists of two distinct modeling approaches. The first is a physics-based static modeling approach for systems of fluid-driven actuators. This approach leverages geometric relationships and conservation of energy to derive models that are simple and accurate enough to inform the design of soft robots, but not accurate enough to inform their control. The second is a data-driven dynamical modeling approach for arbitrary (soft) robotic systems. This approach leverages Koopman operator theory to construct models that are accurate and computationally efficient enough to be integrated into closed-loop optimal control schemes. The proposed framework is applied to several real-world soft robotic systems, enabling the successful completion of control tasks such as trajectory following and manipulating objects of unknown mass. Since the framework is not robot specific, it has the potential to become the dominant paradigm for the modeling and control of soft robots and lead to their more widespread adoption.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163062/1/bruderd_1.pd

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location

    An overview of novel actuators for soft robotics

    Get PDF
    In this systematic survey, an overview of non-conventional actuators particularly used in soft-robotics is presented. The review is performed by using well-defined performance criteria with a direction to identify the exemplary and potential applications. In addition to this, initial guidelines to compare the performance and applicability of these novel actuators are provided. The meta-analysis is restricted to five main types of actuators: shape memory alloys (SMAs), fluidic elastomer actuators (FEAs), shape morphing polymers (SMPs), dielectric electro-activated polymers (DEAPs), and magnetic/electro-magnetic actuators (E/MAs). In exploring and comparing the capabilities of these actuators, the focus was on eight different aspects: compliance, topology-geometry, scalability-complexity, energy efficiency, operation range, modality, controllability, and technological readiness level (TRL). The overview presented here provides a state-of-the-art summary of the advancements and can help researchers to select the most convenient soft actuators using the comprehensive comparison of the suggested quantitative and qualitative criteria

    Human Motor Control and the Design and Control of Backdriveable Actuators for Human-Robot Interaction

    Full text link
    The design of the control and hardware systems for a robot intended for interaction with a human user can profit from a critical analysis of the human neuromotor system and human biomechanics. The primary observation to be made about the human control and ``hardware’’ systems is that they work well together, perhaps because they were designed for each other. Despite the limited force production and elasticity of muscle, and despite slow information transmission, the sensorimotor system is adept at an impressive range of motor behaviors. In this thesis I present three explorations on the manners in which the human and hardware systems work together, hoping to inform the design of robots suitable for human-robot interaction. First, I used the serial reaction time (SRT) task with cuing from lights and motorized keys to assess the relative contribution of visual and haptic stimuli to the formation of motor and perceptual memories. Motorized keys were used to deliver brief pulse-like displacements to the resting fingers, with the expectation that the proximity and similarity of these cues to the response motor actions (finger-activated key-presses) would strengthen the motor memory trace in particular. Error rate results demonstrate that haptic cues promote motor learning over perceptual learning. The second exploration involves the design of an actuator specialized for human-robot interaction. Like muscle, it features series elasticity and thus displays good backdrivability. The elasticity arises from the use of a compressible fluid while hinged rigid plates are used to convert fluid power into mechanical power. I also propose impedance control with dynamics compensation to further reduce the driving-point impedance. The controller is robust to all kinds of uncertainties. The third exploration involves human control in interaction with the environment. I propose a framework that accommodates delays and does not require an explicit model of the musculoskeletal system and environment. Instead, loads from the biomechanics and coupled environment are estimated using the relationship between the motor command and its responses. Delays inherent in sensory feedback are accommodated by taking the form of the Smith predictor. Agreements between simulation results and empirical movements suggests that the framework is viable.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120675/1/gloryn_1.pd

    Inherently Elastic Actuation for Soft Robotics

    Get PDF
    • …
    corecore