4 research outputs found

    Treewidth in Non-Ground Answer Set Solving and Alliance Problems in Graphs

    Get PDF
    To solve hard problems efficiently via answer set programming (ASP), a promising approach is to take advantage of the fact that real-world instances of many hard problems exhibit small treewidth. Algorithms that exploit this have already been proposed -- however, they suffer from an enormous overhead. In the thesis, we present improvements in the algorithmic methodology for leveraging bounded treewidth that are especially targeted toward problems involving subset minimization. This can be useful for many problems at the second level of the polynomial hierarchy like solving disjunctive ground ASP. Moreover, we define classes of non-ground ASP programs such that grounding such a program together with input facts does not lead to an excessive increase in treewidth of the resulting ground program when compared to the treewidth of the input. This allows ASP users to take advantage of the fact that state-of-the-art ASP solvers perform better on ground programs of small treewidth. Finally, we resolve several open questions on the complexity of alliance problems in graphs. In particular, we settle the long-standing open questions of the complexity of the Secure Set problem and whether the Defensive Alliance problem is fixed-parameter tractable when parameterized by treewidth

    DynASP2.5: Dynamic Programming on Tree Decompositions in Action

    Get PDF
    Efficient, exact parameterized algorithms are a vibrant theoretical research area. Recent solving competitions, such as the PACE challenge, show that there is also increasing practical interest in the parameterized algorithms community. An important research question is whether such algorithms can be built to efficiently solve specific problems in practice, that is, to be competitive with established solving systems. In this paper, we consider Answer Set Programming (ASP), a logic-based declarative modeling and problem solving framework. State-of-the-art ASP solvers generally rely on SAT-based algorithms. In addition, DynASP2, an ASP solver that is based on a classical dynamic programming on tree decompositions, has recently been introduced. DynASP2 outperforms modern ASP solvers when the goal is to count the number of solutions of programs that have small treewidth. However, for quickly finding one solutions, DynASP2 proved uncompetitive. In this paper, we present a new algorithm and implementation, called DynASP2.5, that shows competitive behavior compared to state-of-the-art ASP solvers on problems like Steiner tree for low-treewidth graphs, even when the task is to find just one solution. Our implementation is based on a novel approach that we call multi-pass dynamic programming

    Graph Structures for Knowledge Representation and Reasoning

    Get PDF
    This open access book constitutes the thoroughly refereed post-conference proceedings of the 6th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2020, held virtually in September 2020, associated with ECAI 2020, the 24th European Conference on Artificial Intelligence. The 7 revised full papers presented together with 2 invited contributions were reviewed and selected from 9 submissions. The contributions address various issues for knowledge representation and reasoning and the common graph-theoretic background, which allows to bridge the gap between the different communities
    corecore