8 research outputs found

    Practical design of optimal wireless metropolitan area networks: model and algorithms for OFDMA networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Ph.D.This thesis contributes to the study of the planning and optimisation of wireless metropolitan area networks, in particular to the access network design of OFDMAbased systems, where different parameters like base station position, antenna tilt and azimuth need to be configured during the early stages of the network life. A practical view for the solution of this problem is presented by means of the development of a novel design framework and the use of multicriteria optimisation. A further consideration of relaying and cooperative communications in the context of the design of this kind of networks is done, an area little researched. With the emergence of new technologies and services, it is very important to accurately identify the factors that affect the design of the wireless access network and define how to take them into account to achieve optimally performing and cost-efficient networks. The new features and flexibility of OFDMA networks seem particularly suited to the provision of different broadband services to metropolitan areas. However, until now, most existing efforts have been focused on the basic access capability networks. This thesis presents a way to deal with the trade-offs generated during the OFDMA access network design, and presents a service-oriented optimization framework that offers a new perspective for this process with consideration of the technical and economic factors. The introduction of relay stations in wireless metropolitan area networks will bring numerous advantages such as coverage extension and capacity enhancement due to the deployment of new cells and the reduction of distance between transmitter and receiver. However, the network designers will also face new challenges with the use of relay stations, since they involve a new source of interference and a complicated air interface; and this need to be carefully evaluated during the network design process. Contrary to the well known procedure of cellular network design over regular or hexagonal scenarios, the wireless network planning and optimization process aims to deal with the non-uniform characteristics of realistic scenarios, where the existence of hotspots, different channel characteristics for the users, or different service requirements will determine the final design of the wireless network. This thesis is structured in three main blocks covering important gaps in the existing literature in planning (efficient simulation) and optimisation. The formulation and ideas proposed in the former case can still be evaluated over regular scenarios, for the sake of simplicity, while the study of latter case needs to be done over specific scenarios that will be described when appropriate. Nevertheless, comments and conclusions are extrapolated to more general cases throughout this work. After an introduction and a description of the related work, this thesis first focuses on the study of models and algorithms for classical point-to-multipoint networks on Chapter 3, where the optimisation framework is proposed. Based on the framework, this work: - Identifies the technology-specific physical factors that affect most importantly the network system level simulation, planning and optimization process. - It demonstrates how to simplify the problem and translate it into a formal optimization routine with consideration of economic factors. - It provides the network provider, a detailed and clear description of different scenarios during the design process so that the most suitable solution can be found. Existing works on this area do not provide such a comprehensive framework. In Chapter 4: - The impact of the relay configuration on the network planning process is analysed. - A new simple and flexible scheme to integrate multihop communications in the Mobile WiMAX frame structure is proposed and evaluated. - Efficient capacity calculations that allow intensive system level simulations in a multihop environment are introduced. In Chapter 5: - An analysis of the optimisation procedure with the addition of relay stations and the derived higher complexity of the process is done. - A frequency plan procedure not found in the existing literature is proposed, which combines it with the use of the necessary frame fragmentation of in-band relay communications and cooperative procedures. - A novel joint two-step process for network planning and optimisation is proposed. Finally, conclusions and open issues are exposed

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Resource allocation and optimization techniques in wireless relay networks

    Get PDF
    Relay techniques have the potential to enhance capacity and coverage of a wireless network. Due to rapidly increasing number of smart phone subscribers and high demand for data intensive multimedia applications, the useful radio spectrum is becoming a scarce resource. For this reason, two way relay network and cognitive radio technologies are required for better utilization of radio spectrum. Compared to the conventional one way relay network, both the uplink and the downlink can be served simultaneously using a two way relay network. Hence the effective bandwidth efficiency is considered to be one time slot per transmission. Cognitive networks are wireless networks that consist of different types of users, a primary user (PU, the primary license holder of a spectrum band) and secondary users (SU, cognitive radios that opportunistically access the PU spectrum). The secondary users can access the spectrum of the licensed user provided they do not harmfully affect to the primary user. In this thesis, various resource allocation and optimization techniques have been investigated for wireless relay and cognitive radio networks

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

    Get PDF
    The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as: To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as: The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment. The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform. The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management. This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks. As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use

    Strategic Location Planning for Broadband Access Networks under Cooperative Transmission

    Get PDF
    To achieve a cost-effective network deployment, employing state-of-art technical advances provides a practical and effective way to enhance system performance and quality of service provisioning. Cooperative transmission has been recognized as one of the most effective paradigms to achieve higher system performance in terms of lower bit-error rate, higher throughput, larger coverage, more efficient energy utilization, and higher network reliability. This dissertation studies the location planning for the deployment of broadband access networks and explores the great potential of cooperative transmission in the context of single-cell cooperative relaying and multi-cell cooperative transmission, respectively. The placement problem is investigated in two categories of network deployment environment, i.e., an existing wireless access network and a perspective broadband access network, respectively. In an existing wireless access network, to solve some practical problems such as the requirements of capacity enhancement and coverage extension, relay stations (RSs) are introduced in the network architecture. We propose two optimization frameworks with the design objectives of maximizing cell capacity and minimizing number of RSs for deployment, respectively. Mathematical formulations are provided to precisely capture the characteristics of the placement problems. The corresponding solution algorithms are developed to obtain the optimal (or near-optimal) results in polynomial time. Numerical analysis and case studies are conducted to validate the performance benefits due to RS placement and the computation efficiency of the proposed algorithms. To deploy a new metropolitan-area broadband access network, we explore the integration of passive optical network (PON) and wireless cooperative networks (WCN) under the multi-cell cooperative transmission technology. An optimization framework is provided to solve the problem of dimensioning and site planning. The issues of node placement, BS-user association, wireless bandwidth and power breakdown assignment are jointly considered in a single stage to achieve better performance. We also propose a solution to the complex optimization problem based on decomposition and linear approximation. Numerical analysis and case studies are conducted to verify the proposed framework. The results demonstrate the performance gains and economic benefits. Given a set of network parameters, the proposed optimization frameworks and solutions proposed in this dissertation can provide design guidelines for practical network deployment and cost estimations. And the constructed broadband access networks show a more cost-effective deployment by taking advantage of the cooperative transmission technology

    Wireless Network Communications Overview for Space Mission Operations

    Get PDF
    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information
    corecore