932 research outputs found

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey

    Get PDF
    Studies of ad hoc wireless networks are a relatively new field gaining more popularity for various new applications. In these networks, the Medium Access Control (MAC) protocols are responsible for coordinating the access from active nodes. These protocols are of significant importance since the wireless communication channel is inherently prone to errors and unique problems such as the hidden-terminal problem, the exposed-terminal problem, and signal fading effects. Although a lot of research has been conducted on MAC protocols, the various issues involved have mostly been presented in isolation of each other. We therefore make an attempt to present a comprehensive survey of major schemes, integrating various related issues and challenges with a view to providing a big-picture outlook to this vast area. We present a classification of MAC protocols and their brief description, based on their operating principles and underlying features. In conclusion, we present a brief summary of key ideas and a general direction for future work

    Towards End-to-End QoS in Ad Hoc Networks

    Get PDF
    http://citi.insa-lyon.fr/wons2006/index.htmlIn this paper, we address the problem of supporting adaptive QoS resource management in mobile ad hoc networks, by proposing an efficient model for providing proportional endto- end QoS between classes. The effectiveness of our proposed solution in meeting desired QoS differentiation at a specific node and from end-to-end are assessed by simulation using a queueing network model implemented in QNAP. The experiments results show that the proposed solution provides consistent proportional differentiation for any service class and validates our claim even under bursty traffic and fading channel conditions

    TDMAとDCFの組み合わせによるアドホックネットワーク上でのQoS通信の実現方式

    Get PDF
     An ad hoc network does not rely on the fixed network infrastructure; it uses a distributed network management method. With the popularity of the smart devices, ad hoc network has received more and more attention, supporting QoS in ad hoc network has become inevitable. Many researches have been done for provision of QoS in ad hoc networks. These researches can be divided into three types. The first type is contention-based approach which is the most widely used. IEEE 802.11e MAC (media access control) protocol belongs to this type which is an extension of IEEE 802.11 DCF(Distributed Coordination Function). It specifies a procedure to guarantee QoS by providing more transmission opportunities for high priority data. However, since IEEE 802.11eis designed based on the premise that access points are used, when the number of QoS flows increases, packet collisions could occur in multi-hop ad hoc network. The second type is using TDMA-based approach. The TDMA approach can provide contention-free access for QoS traffics through the appropriate time slot reservation. The current TDMA approaches reserve time slots for both QoS traffics and best-effort traffics. However, it is difficult for TDMA as the only approach to allocating channel access time for best-effort traffics sincet he required bandwidth of the best-effort traffics changes frequently. We propose a QoS scheme, which takes advantage of both contention-based approach and TDMA-based approach. In the proposed scheme, contention-based approach DCF provides easy and fair channel time for best-effort traffics, and TDMA approach serves the QoS traffics. A time frame structure is designed to manage the bandwidth allocation. A time frame is divided into two periods, specifically the TDMA periods and the DCF periods. The proportion of two periods is decided by QoS traffics. Therefore the QoS traffics are given absolutely higher priority than best-effort traffics. In order to guarantee the transmission of each QoS packet in TDMA period, a time slot assignment algorithm based on QoS data rate has been proposed. The proposed scheme also employs an admission control scheme, which rejects the new QoS user when the channel capacity is reached. In addition, we provide the configuration of the proposed scheme in the mobile environment. The procedures are designed for route changes and new-adding users.  The proposed scheme is simulated in the QualNet simulator. In the static environment, the performance of the proposed scheme is evaluated in the case of a gradual increase in the number TCP flows and in the case of gradual increase in QoS data rate. Simulation results show that in the static environment the proposed scheme can not only provide effective QoS performance, but also can provide good support for best-effort flows. In the mobile environment, we simulated the performance of the proposed scheme at different moving speed (maximum is 5 Km/h) when the ARF (Auto Rate Fallback) is available. From the simulation results, in a specific mobile environment, the proposed scheme can support the QoS transmission well.電気通信大学201
    corecore