1,501 research outputs found

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Security in Wireless Sensor Networks: Issues and Challenges

    Get PDF
    Wireless Sensor Network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military. The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future. The inclusion of wireless communication technology also incurs various types of security threats. The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks. We identify the security threats, review proposed security mechanisms for wireless sensor networks. We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks.Comment: 6 page

    An Efficient Polynomial-based Filtering Against False Data Injection Attack in CPNS

    Get PDF
    Cyber Physical Network System (CPNS) is gaining lot of attention in many applications like, transportation networks, vehicular networks, life-critical applications and many more. Hence, the system needs to be protected from various kinds of attacks that degrade the system’s performance. There are many different types of attacks that are possible on cyber physical systems, among them false data injection attack is a serious threat to the system’s security. In this type of attack, the adversary compromises sensor nodes, inject false data and send them to the controller through compromised nodes. This makes the controller to estimate wrong system states which leads to various serious issues. Therefore, the false data must be filtered out before it reaches the sink. If all the false data flow towards the controller then it will be bottle neck to filter all the false data and this could paralyze the network. To resolve this issue many filtering schemes have been developed in the past, all use Message Authentication Codes (MACs) for report endorsement and en-route filtering. But they are not suitable for CPNS because of static routes and lack resilience to the number of compromised nodes. Hence, an enhanced scheme has been proposed which uses polynomials instead of MAC for report endorsement and also uses bloom filtering along with en-route filtering. Hence, this achieves high resilience to the number of compromised nodes and achieves high filtering efficiency

    LEDS - An innovative corridor of data security in WSN

    Get PDF
    Recently, WSNs have drawn a lot of attention due to their broad applications in both military and civilian domains. Data security is essential to the success of WSN applications, exclusively for those mission-critical applications working in unattended and even hostile environments which may be exposed to several attacks. This inspired the research on Data security for WSNs. Attacks due to node compromise include Denial of service (DoS) attacks such as selective forwarding attacks and report disruption attacks. Nearby many techniques have been proposed in the literature for data security. Hop-hop security works well when assuming a uniform wireless communication pattern and this security designs provides only hop-hop security. Node to sink communication is the dominant communication pattern in WSNs and hop-hop security design is not sufficient as it is exposed to several attacks due to node compromise. Location aware end-end data security (LEDS) provides end-end security. DOI: 10.17762/ijritcc2321-8169.15025

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Practical security scheme design for resource-constrained wireless networks

    Get PDF
    The implementation of ubiquitous computing (or pervasive computing) can leverage various types of resource-constrained wireless networks such as wireless sensor networks and wireless personal area networks. These resource-constrained wireless networks are vulnerable to many malicious attacks that often cause leakage, alteration and destruction of critical information due to the insecurity of wireless communication and the tampers of devices. Meanwhile, the constraints of resources, the lack of centralized management, and the demands of mobility of these networks often make traditional security mechanisms inefficient or infeasible. So, the resource-constrained wireless networks pose new challenges for information assurance and call for practical, efficient and effective solutions. In this research, we focus on wireless sensor networks and aim at enhancing confidentiality, authenticity, availability and integrity, for wireless sensor networks. Particularly, we identify three important problems as our research targets: (1) key management for wireless sensor networks (for confidentiality), (2) filtering false data injection and DoS attacks in wireless sensor networks (for authenticity and availability), and (3) secure network coding (for integrity). We investigate a diversity of malicious attacks against wireless sensor networks and design a number of practical schemes for establishing pairwise keys between sensor nodes, filtering false data injection and DoS attacks, and securing network coding against pollution attacks for wireless sensor networks. Our contributions from this research are fourfold: (1) We give a taxonomy of malicious attacks for wireless sensor networks. (2) We design a group-based key management scheme using deployment knowledge for wireless sensor networks to establish pair-wise keys between sensor nodes. (3) We propose an en-route scheme for filtering false data injection and DoS attacks in wireless sensor networks. (4) We present two efficient schemes for securing normal and XOR network coding against pollution attacks. Simulation and experimental results show that our solutions outperform existing ones and are suitable for resource-constrained wireless sensor networks in terms of computation overhead, communication cost, memory requirement, and so on
    corecore