3 research outputs found

    Integration of multisensor hybrid reasoners to support personal autonomy in the smart home.

    Get PDF
    The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environmentÂżs reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy

    An IoT-Aware Approach for Elderly-Friendly Cities

    Get PDF
    The ever-growing life expectancy of people requires the adoption of proper solutions for addressing the particular needs of elderly people in a sustainable way, both from service provision and economic point of view. Mild cognitive impairments and frailty are typical examples of elderly conditions which, if not timely addressed, can turn out into more complex diseases that are harder and costlier to treat. Information and communication technologies, and in particular Internet of Things technologies, can foster the creation of monitoring and intervention systems, both on an ambient-assisted living and smart city scope, for early detecting behavioral changes in elderly people. This allows to timely detect any potential risky situation and properly intervene, with benefits in terms of treatment's costs. In this context, as part of the H2020-funded City4Age project, this paper presents the data capturing and data management layers of the whole City4Age platform. In particular, this paper deals with an unobtrusive data gathering system implementation to collect data about daily activities of elderly people, and with the implementation of the related linked open data (LOD)-based data management system. The collected data are then used by other layers of the platform to perform risk detection algorithms and generate the proper customized interventions. Through the validation of some use-cases, it is demonstrated how this scalable approach, also characterized by unobtrusive and low-cost sensing technologies, can produce data with a high level of abstraction useful to define a risk profile of each elderly person
    corecore