40,791 research outputs found

    Verif cation of Real-Time Bounded Distributed Systems With Mobility

    Get PDF
    We introduce and study a prototyping language for describing real-time distributed systems. Its time constraints are expressed as bounded intervals to model the uncertainty of the delay in migration and communication of agents placed in the locations of a distributed system. We provide the operational semantics, and illustrate the new language by a detailed example for which we use software tools for analyzing its temporal properties

    Time, clocks and committed choice parallelism for logic programming of real time computations

    Get PDF
    A model for logic programming of real time computing systems is presented. The model is based on the process interpretation of Horn-Clause Logic and employs a non-deterministic committed-choice stream-And parallel search strategy. A real time computing system is represented as a network of communicating goals where each goal maintains its own logical clock which can be read and set by the node reduction process. The system of distributed logical clocks satisfies Lamport's correctness and distributed synchronisation conditions. The programming language is a variant of GHC to which many features are borrowed from PARLOG. Primitives to express time and timing constraints are provided. A meta-interpreter is given to describe the operational semantics of the language and the implementability of the model in the language itself. A telecommunications switching system has been specified and implemented in terms of the model presented here. It is also shown that the fairness problem has a natural solution in the proposed logical frame work. This is illustrated through a real time fair binary merge operator

    Constructive tool design for formal languages : from semantics to executing models

    Get PDF
    Embedded, distributed, real-time, electronic systems are becoming more and more dominant in our lives. Hidden in cars, televisions, mp3-players, mobile phones and other appliances, these hardware/software systems influence our daily activities. Their design can be a huge effort and has to be carried out by engineers in a limited amount of time. Computer-aided modelling and design automation shorten the design cycle of these systems enabling companies to deliver their products sooner than their competitors. The design process is divided into different levels of abstraction, starting with a vague product idea (abstract) and ending up with a concrete description ready for implementation. Recently, research has started to focus on the system level, being a promising new area at which the product design could start. This dissertation develops a constructive approach to building tools for system-level design/description/modelling/specification languages, and shows the applicability of this method to the system-level language POOSL (Parallel Object-Oriented Specification Language). The formal semantics of this language is redefined and partly redeveloped, adding probabilistic features, real-time, inheritance, concurrency within processes, dynamic ports and atomic (indivisible) expressions, making the language suitable for performance analysis/modelling. The semantics is two-layered, using a probabilistic denotational semantics for stating the meaning of POOSLā€™s data layer, and using a probabilistic structural operational semantics for the process layer and architecture layer. The constructive approach has yielded the system-level simulation tool rotalumis, capable of executing large industrial designs, which has been demonstrated by two successful case studiesā€”an ATM-packet switch (in conjunction with IBM Research at ZĀØurich) and a packet routing switch for the Internet (in association with Alcatel/Bell at Antwerp). The more generally applicable optimisations of the execution engine (rotalumis) and the decisions taken in its design are discussed in full detail. Prototyping, where the system-level model functions as a part of the prototype implementation of the designed product, is supported by rotalumis-rt, a real-time variant of the execution engine. The viability of prototyping is shown by a case study of a learning infrared remote control, partially realised in hardware and completed with a system-level model. Keywords formal languages / formal specification / modelling languages / systemlevel design / embedded systems / real-time systems / performance analysis / discrete event simulation / probabilistic process algebra / design automation / prototyping / simulation tool

    Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

    Full text link
    In this paper we propose an extension of the Rebeca language that can be used to model distributed and asynchronous systems with timing constraints. We provide the formal semantics of the language using Structural Operational Semantics, and show its expressiveness by means of examples. We developed a tool for automated translation from timed Rebeca to the Erlang language, which provides a first implementation of timed Rebeca. We can use the tool to set the parameters of timed Rebeca models, which represent the environment and component variables, and use McErlang to run multiple simulations for different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm, where the structure of the model represents the service oriented architecture, while the computational model matches the network infrastructure. Simulation is shown to be an effective analysis support, specially where model checking faces almost immediate state explosion in an asynchronous setting.Comment: In Proceedings FOCLASA 2011, arXiv:1107.584

    Process Algebras

    Get PDF
    Process Algebras are mathematically rigorous languages with well defined semantics that permit describing and verifying properties of concurrent communicating systems. They can be seen as models of processes, regarded as agents that act and interact continuously with other similar agents and with their common environment. The agents may be real-world objects (even people), or they may be artifacts, embodied perhaps in computer hardware or software systems. Many different approaches (operational, denotational, algebraic) are taken for describing the meaning of processes. However, the operational approach is the reference one. By relying on the so called Structural Operational Semantics (SOS), labelled transition systems are built and composed by using the different operators of the many different process algebras. Behavioral equivalences are used to abstract from unwanted details and identify those systems that react similarly to external experiments

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm
    • ā€¦
    corecore