1,099 research outputs found

    A novel power management and control design framework for resilient operation of microgrids

    Get PDF
    This thesis concerns the investigation of the integration of the microgrid, a form of future electric grids, with renewable energy sources, and electric vehicles. It presents an innovative modular tri-level hierarchical management and control design framework for the future grid as a radical departure from the ‘centralised’ paradigm in conventional systems, by capturing and exploiting the unique characteristics of a host of new actors in the energy arena - renewable energy sources, storage systems and electric vehicles. The formulation of the tri-level hierarchical management and control design framework involves a new perspective on the problem description of the power management of EVs within a microgrid, with the consideration of, among others, the bi-directional energy flow between storage and renewable sources. The chronological structure of the tri-level hierarchical management operation facilitates a modular power management and control framework from three levels: Microgrid Operator (MGO), Charging Station Operator (CSO), and Electric Vehicle Operator (EVO). At the top level is the MGO that handles long-term decisions of balancing the power flow between the Distributed Generators (DGs) and the electrical demand for a restructure realistic microgrid model. Optimal scheduling operation of the DGs and EVs is used within the MGO to minimise the total combined operating and emission costs of a hybrid microgrid including the unit commitment strategy. The results have convincingly revealed that discharging EVs could reduce the total cost of the microgrid operation. At the middle level is the CSO that manages medium-term decisions of centralising the operation of aggregated EVs connected to the bus-bar of the microgrid. An energy management concept of charging or discharging the power of EVs in different situations includes the impacts of frequency and voltage deviation on the system, which is developed upon the MGO model above. Comprehensive case studies show that the EVs can act as a regulator of the microgrid, and can control their participating role by discharging active or reactive power in mitigating frequency and/or voltage deviations. Finally, at the low level is the EVO that handles the short-term decisions of decentralising the functioning of an EV and essential power interfacing circuitry, as well as the generation of low-level switching functions. EVO level is a novel Power and Energy Management System (PEMS), which is further structured into three modular, hierarchical processes: Energy Management Shell (EMS), Power Management Shell (PMS), and Power Electronic Shell (PES). The shells operate chronologically with a different object and a different period term. Controlling the power electronics interfacing circuitry is an essential part of the integration of EVs into the microgrid within the EMS. A modified, multi-level, H-bridge cascade inverter without the use of a main (bulky) inductor is proposed to achieve good performance, high power density, and high efficiency. The proposed inverter can operate with multiple energy resources connected in series to create a synergized energy system. In addition, the integration of EVs into a simulated microgrid environment via a modified multi-level architecture with a novel method of Space Vector Modulation (SVM) by the PES is implemented and validated experimentally. The results from the SVM implementation demonstrate a viable alternative switching scheme for high-performance inverters in EV applications. The comprehensive simulation results from the MGO and CSO models, together with the experimental results at the EVO level, not only validate the distinctive functionality of each layer within a novel synergy to harness multiple energy resources, but also serve to provide compelling evidence for the potential of the proposed energy management and control framework in the design of future electric grids. The design framework provides an essential design to for grid modernisation

    Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    Get PDF
    In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial Electronic

    System-Level Mapping of Modeling Methods for Stability Characterization in Microgrids

    Get PDF

    Resilience-oriented control and communication framework for cyber-physical microgrids

    Get PDF
    Climate change drives the energy supply transition from traditional fossil fuel-based power generation to renewable energy resources. This transition has been widely recognised as one of the most significant developing pathways promoting the decarbonisation process toward a zero-carbon and sustainable society. Rapidly developing renewables gradually dominate energy systems and promote the current energy supply system towards decentralisation and digitisation. The manifestation of decentralisation is at massive dispatchable energy resources, while the digitisation features strong cohesion and coherence between electrical power technologies and information and communication technologies (ICT). Massive dispatchable physical devices and cyber components are interdependent and coupled tightly as a cyber-physical energy supply system, while this cyber-physical energy supply system currently faces an increase of extreme weather (e.g., earthquake, flooding) and cyber-contingencies (e.g., cyberattacks) in the frequency, intensity, and duration. Hence, one major challenge is to find an appropriate cyber-physical solution to accommodate increasing renewables while enhancing power supply resilience. The main focus of this thesis is to blend centralised and decentralised frameworks to propose a collaboratively centralised-and-decentralised resilient control framework for energy systems i.e., networked microgrids (MGs) that can operate optimally in the normal condition while can mitigate simultaneous cyber-physical contingencies in the extreme condition. To achieve this, we investigate the concept of "cyber-physical resilience" including four phases, namely prevention/upgrade, resistance, adaption/mitigation, and recovery. Throughout these stages, we tackle different cyber-physical challenges under the concept of microgrid ranging from a centralised-to-decentralised transitional control framework coping with cyber-physical out of service, a cyber-resilient distributed control methodology for networked MGs, a UAV assisted post-contingency cyber-physical service restoration, to a fast-convergent distributed dynamic state estimation algorithm for a class of interconnected systems.Open Acces

    A general mathematical model for LVRT capability assessment of DER-penetrated distribution networks

    Get PDF
    Low voltage ride through (LVRT) is one of the indispensable issues of recent decade in the context of grid codes. LVRT stands for the ability of a generation facility to stay connected during the voltage dip. Despite the numerous discussions in recent works, but they mostly concentrate on the LVRT-based control of distributed energy resources (DERs) integrated into a microgrid and its improvement. However, what has been hidden and not addressed any more yet is an index to measure the LVRT capability of a DER-penetrated distribution network (DPDN) under different voltage sags. This takes precedence when we want to evaluate the LVRT capability of DPDNs with consideration of various LVRT categories of DERs mandated in IEEE 1547 standard. This paper introduces a general framework for LVRT assessment of a DPDN by solving a system of differential algebraic equations (DAEs). Then expected LVRT capability of a DPDN is evaluated by a proposed LVRT index through the implementation of Monte Carlo simulation technique.This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrids

    Get PDF
    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrid

    An enhancing fault current limitation hybrid droop/V-f control for grid-tied four-wire inverters in AC microgrids

    Get PDF
    Microgrid integration and fault protection in complex network scenarios is a coming challenge to be faced with new strategies and solutions. In this context of increasing complexity, this paper describes two specific overload control strategies for four-wire inverters integrated in low voltage four-wire alternating current (AC) microgrids. The control of grid-tied microgrid inverters has been widely studied in the past and mainly focused on the use of droop control, which hugely constrains the time response during grid-disconnected operation. Taking into account the previous knowledge and experience about this subject, the main contribution of these two proposals regards providing fault current limitation in both operation modes, over-load capability skills in grid-connected operation and sinusoidal short-circuit proof in grid-disconnected operation. In the complex operation scenarios mentioned above, a hybrid combination of AC droop control based on dynamic phasors with varying virtual resistance, and voltage/frequency master voltage control for grid-(dis)connected operation modes are adopted as the mechanism to enhance time response. The two proposals described in the present document are validated by means of simulations using Matlab/Simulink and real experimental results obtained from CENER (The National Renewable Energy Centre) experimental ATENEA four-wire AC microgrid, obtaining time responses in the order of two-three grid cycles for all cases.Postprint (published version

    The Role of Power Electronics in Modern Energy System Integration

    Get PDF
    corecore