218 research outputs found

    Large-Scale information extraction from textual definitions through deep syntactic and semantic analysis

    Get PDF
    We present DEFIE, an approach to large-scale Information Extraction (IE) based on a syntactic-semantic analysis of textual definitions. Given a large corpus of definitions we leverage syntactic dependencies to reduce data sparsity, then disambiguate the arguments and content words of the relation strings, and finally exploit the resulting information to organize the acquired relations hierarchically. The output of DEFIE is a high-quality knowledge base consisting of several million automatically acquired semantic relations

    TiFi: Taxonomy Induction for Fictional Domains [Extended version]

    No full text
    Taxonomies are important building blocks of structured knowledge bases, and their construction from text sources and Wikipedia has received much attention. In this paper we focus on the construction of taxonomies for fictional domains, using noisy category systems from fan wikis or text extraction as input. Such fictional domains are archetypes of entity universes that are poorly covered by Wikipedia, such as also enterprise-specific knowledge bases or highly specialized verticals. Our fiction-targeted approach, called TiFi, consists of three phases: (i) category cleaning, by identifying candidate categories that truly represent classes in the domain of interest, (ii) edge cleaning, by selecting subcategory relationships that correspond to class subsumption, and (iii) top-level construction, by mapping classes onto a subset of high-level WordNet categories. A comprehensive evaluation shows that TiFi is able to construct taxonomies for a diverse range of fictional domains such as Lord of the Rings, The Simpsons or Greek Mythology with very high precision and that it outperforms state-of-the-art baselines for taxonomy induction by a substantial margin

    Knowledge extraction from fictional texts

    Get PDF
    Knowledge extraction from text is a key task in natural language processing, which involves many sub-tasks, such as taxonomy induction, named entity recognition and typing, relation extraction, knowledge canonicalization and so on. By constructing structured knowledge from natural language text, knowledge extraction becomes a key asset for search engines, question answering and other downstream applications. However, current knowledge extraction methods mostly focus on prominent real-world entities with Wikipedia and mainstream news articles as sources. The constructed knowledge bases, therefore, lack information about long-tail domains, with fiction and fantasy as archetypes. Fiction and fantasy are core parts of our human culture, spanning from literature to movies, TV series, comics and video games. With thousands of fictional universes which have been created, knowledge from fictional domains are subject of search-engine queries - by fans as well as cultural analysts. Unlike the real-world domain, knowledge extraction on such specific domains like fiction and fantasy has to tackle several key challenges: - Training data: Sources for fictional domains mostly come from books and fan-built content, which is sparse and noisy, and contains difficult structures of texts, such as dialogues and quotes. Training data for key tasks such as taxonomy induction, named entity typing or relation extraction are also not available. - Domain characteristics and diversity: Fictional universes can be highly sophisticated, containing entities, social structures and sometimes languages that are completely different from the real world. State-of-the-art methods for knowledge extraction make assumptions on entity-class, subclass and entity-entity relations that are often invalid for fictional domains. With different genres of fictional domains, another requirement is to transfer models across domains. - Long fictional texts: While state-of-the-art models have limitations on the input sequence length, it is essential to develop methods that are able to deal with very long texts (e.g. entire books), to capture multiple contexts and leverage widely spread cues. This dissertation addresses the above challenges, by developing new methodologies that advance the state of the art on knowledge extraction in fictional domains. - The first contribution is a method, called TiFi, for constructing type systems (taxonomy induction) for fictional domains. By tapping noisy fan-built content from online communities such as Wikia, TiFi induces taxonomies through three main steps: category cleaning, edge cleaning and top-level construction. Exploiting a variety of features from the original input, TiFi is able to construct taxonomies for a diverse range of fictional domains with high precision. - The second contribution is a comprehensive approach, called ENTYFI, for named entity recognition and typing in long fictional texts. Built on 205 automatically induced high-quality type systems for popular fictional domains, ENTYFI exploits the overlap and reuse of these fictional domains on unseen texts. By combining different typing modules with a consolidation stage, ENTYFI is able to do fine-grained entity typing in long fictional texts with high precision and recall. - The third contribution is an end-to-end system, called KnowFi, for extracting relations between entities in very long texts such as entire books. KnowFi leverages background knowledge from 142 popular fictional domains to identify interesting relations and to collect distant training samples. KnowFi devises a similarity-based ranking technique to reduce false positives in training samples and to select potential text passages that contain seed pairs of entities. By training a hierarchical neural network for all relations, KnowFi is able to infer relations between entity pairs across long fictional texts, and achieves gains over the best prior methods for relation extraction.Wissensextraktion ist ein Schlüsselaufgabe bei der Verarbeitung natürlicher Sprache, und umfasst viele Unteraufgaben, wie Taxonomiekonstruktion, Entitätserkennung und Typisierung, Relationsextraktion, Wissenskanonikalisierung, etc. Durch den Aufbau von strukturiertem Wissen (z.B. Wissensdatenbanken) aus Texten wird die Wissensextraktion zu einem Schlüsselfaktor für Suchmaschinen, Question Answering und andere Anwendungen. Aktuelle Methoden zur Wissensextraktion konzentrieren sich jedoch hauptsächlich auf den Bereich der realen Welt, wobei Wikipedia und Mainstream- Nachrichtenartikel die Hauptquellen sind. Fiktion und Fantasy sind Kernbestandteile unserer menschlichen Kultur, die sich von Literatur bis zu Filmen, Fernsehserien, Comics und Videospielen erstreckt. Für Tausende von fiktiven Universen wird Wissen aus Suchmaschinen abgefragt – von Fans ebenso wie von Kulturwissenschaftler. Im Gegensatz zur realen Welt muss die Wissensextraktion in solchen spezifischen Domänen wie Belletristik und Fantasy mehrere zentrale Herausforderungen bewältigen: • Trainingsdaten. Quellen für fiktive Domänen stammen hauptsächlich aus Büchern und von Fans erstellten Inhalten, die spärlich und fehlerbehaftet sind und schwierige Textstrukturen wie Dialoge und Zitate enthalten. Trainingsdaten für Schlüsselaufgaben wie Taxonomie-Induktion, Named Entity Typing oder Relation Extraction sind ebenfalls nicht verfügbar. • Domain-Eigenschaften und Diversität. Fiktive Universen können sehr anspruchsvoll sein und Entitäten, soziale Strukturen und manchmal auch Sprachen enthalten, die sich von der realen Welt völlig unterscheiden. Moderne Methoden zur Wissensextraktion machen Annahmen über Entity-Class-, Entity-Subclass- und Entity- Entity-Relationen, die für fiktive Domänen oft ungültig sind. Bei verschiedenen Genres fiktiver Domänen müssen Modelle auch über fiktive Domänen hinweg transferierbar sein. • Lange fiktive Texte. Während moderne Modelle Einschränkungen hinsichtlich der Länge der Eingabesequenz haben, ist es wichtig, Methoden zu entwickeln, die in der Lage sind, mit sehr langen Texten (z.B. ganzen Büchern) umzugehen, und mehrere Kontexte und verteilte Hinweise zu erfassen. Diese Dissertation befasst sich mit den oben genannten Herausforderungen, und entwickelt Methoden, die den Stand der Kunst zur Wissensextraktion in fiktionalen Domänen voranbringen. • Der erste Beitrag ist eine Methode, genannt TiFi, zur Konstruktion von Typsystemen (Taxonomie induktion) für fiktive Domänen. Aus von Fans erstellten Inhalten in Online-Communities wie Wikia induziert TiFi Taxonomien in drei wesentlichen Schritten: Kategoriereinigung, Kantenreinigung und Top-Level- Konstruktion. TiFi nutzt eine Vielzahl von Informationen aus den ursprünglichen Quellen und ist in der Lage, Taxonomien für eine Vielzahl von fiktiven Domänen mit hoher Präzision zu erstellen. • Der zweite Beitrag ist ein umfassender Ansatz, genannt ENTYFI, zur Erkennung von Entitäten, und deren Typen, in langen fiktiven Texten. Aufbauend auf 205 automatisch induzierten hochwertigen Typsystemen für populäre fiktive Domänen nutzt ENTYFI die Überlappung und Wiederverwendung dieser fiktiven Domänen zur Bearbeitung neuer Texte. Durch die Zusammenstellung verschiedener Typisierungsmodule mit einer Konsolidierungsphase ist ENTYFI in der Lage, in langen fiktionalen Texten eine feinkörnige Entitätstypisierung mit hoher Präzision und Abdeckung durchzuführen. • Der dritte Beitrag ist ein End-to-End-System, genannt KnowFi, um Relationen zwischen Entitäten aus sehr langen Texten wie ganzen Büchern zu extrahieren. KnowFi nutzt Hintergrundwissen aus 142 beliebten fiktiven Domänen, um interessante Beziehungen zu identifizieren und Trainingsdaten zu sammeln. KnowFi umfasst eine ähnlichkeitsbasierte Ranking-Technik, um falsch positive Einträge in Trainingsdaten zu reduzieren und potenzielle Textpassagen auszuwählen, die Paare von Kandidats-Entitäten enthalten. Durch das Trainieren eines hierarchischen neuronalen Netzwerkes für alle Relationen ist KnowFi in der Lage, Relationen zwischen Entitätspaaren aus langen fiktiven Texten abzuleiten, und übertrifft die besten früheren Methoden zur Relationsextraktion

    Harnessing sense-level information for semantically augmented knowledge extraction

    Get PDF
    Nowadays, building accurate computational models for the semantics of language lies at the very core of Natural Language Processing and Artificial Intelligence. A first and foremost step in this respect consists in moving from word-based to sense-based approaches, in which operating explicitly at the level of word senses enables a model to produce more accurate and unambiguous results. At the same time, word senses create a bridge towards structured lexico-semantic resources, where the vast amount of available machine-readable information can help overcome the shortage of annotated data in many languages and domains of knowledge. This latter phenomenon, known as the knowledge acquisition bottlneck, is a crucial problem that hampers the development of large-scale, data-driven approaches for many Natural Language Processing tasks, especially when lexical semantics is directly involved. One of these tasks is Information Extraction, where an effective model has to cope with data sparsity, as well as with lexical ambiguity that can arise at the level of both arguments and relational phrases. Even in more recent Information Extraction approaches where semantics is implicitly modeled, these issues have not yet been addressed in their entirety. On the other hand, however, having access to explicit sense-level information is a very demanding task on its own, which can rarely be performed with high accuracy on a large scale. With this in mind, in ths thesis we will tackle a two-fold objective: our first focus will be on studying fully automatic approaches to obtain high-quality sense-level information from textual corpora; then, we will investigate in depth where and how such sense-level information has the potential to enhance the extraction of knowledge from open text. In the first part of this work, we will explore three different disambiguation scenar- ios (semi-structured text, parallel text, and definitional text) and devise automatic disambiguation strategies that are not only capable of scaling to different corpus sizes and different languages, but that actually take advantage of a multilingual and/or heterogeneous setting to improve and refine their performance. As a result, we will obtain three sense-annotated resources that, when tested experimentally with a baseline system in a series of downstream semantic tasks (i.e. Word Sense Disam- biguation, Entity Linking, Semantic Similarity), show very competitive performances on standard benchmarks against both manual and semi-automatic competitors. In the second part we will instead focus on Information Extraction, with an emphasis on Open Information Extraction (OIE), where issues like sparsity and lexical ambiguity are especially critical, and study how to exploit at best sense-level information within the extraction process. We will start by showing that enforcing a deeper semantic analysis in a definitional setting enables a full-fledged extraction pipeline to compete with state-of-the-art approaches based on much larger (but noisier) data. We will then demonstrate how working at the sense level at the end of an extraction pipeline is also beneficial: indeed, by leveraging sense-based techniques, very heterogeneous OIE-derived data can be aligned semantically, and unified with respect to a common sense inventory. Finally, we will briefly shift the focus to the more constrained setting of hypernym discovery, and study a sense-aware supervised framework for the task that is robust and effective, even when trained on heterogeneous OIE-derived hypernymic knowledge

    Advanced Semantics for Commonsense Knowledge Extraction

    Get PDF
    Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subject-predicate-object (SPO) triples with simple concepts for S and monolithic strings for P and O. Also, these projects have either prioritized precision or recall, but hardly reconcile these complementary goals. This paper presents a methodology, called Ascent, to automatically build a large-scale knowledge base (KB) of CSK assertions, with advanced expressiveness and both better precision and recall than prior works. Ascent goes beyond triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets. The latter are important to express temporal and spatial validity of assertions and further qualifiers. Ascent combines open information extraction with judicious cleaning using language models. Intrinsic evaluation shows the superior size and quality of the Ascent KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent.Comment: Web interface available at https://ascent.mpi-inf.mpg.d

    Learning of a multilingual bitaxonomy of Wikipedia and its application to semantic predicates

    Get PDF
    The ability to extract hypernymy information on a large scale is becoming increasingly important in natural language processing, an area of the artificial intelligence which deals with the processing and understanding of natural language. While initial studies extracted this type of information from textual corpora by means of lexico-syntactic patterns, over time researchers moved to alternative, more structured sources of knowledge, such as Wikipedia. After the first attempts to extract is-a information fromWikipedia categories, a full line of research gave birth to numerous knowledge bases containing information which, however, is either incomplete or irremediably bound to English. To this end we put forward MultiWiBi, the first approach to the construction of a multilingual bitaxonomy which exploits the inner connection between Wikipedia pages and Wikipedia categories to induce a wide-coverage and fine-grained integrated taxonomy. A series of experiments show state-of-the-art results against all the available taxonomic resources available in the literature, also with respect to two novel measures of comparison. Another dimension where existing resources usually fall short is their degree of multilingualism. While knowledge is typically language agnostic, currently resources are able to extract relevant information only in languages providing highquality tools. In contrast, MultiWiBi does not leave any language behind: we show how to taxonomize Wikipedia in an arbitrary language and in a way that is fully independent of additional resources. At the core of our approach lies, in fact, the idea that the English version of Wikipedia can be linguistically exploited as a pivot to project the taxonomic information extracted from English to any other Wikipedia language in order to have a bitaxonomy in a second, arbitrary language; as a result, not only concepts which have an English equivalent are covered, but also those concepts which are not lexicalized in the source language. We also present the impact of having the taxonomized encyclopedic knowledge offered by MultiWiBi embedded into a semantic model of predicates (SPred) which crucially leverages Wikipedia to generalize collections of related noun phrases to infer a probability distribution over expected semantic classes. We applied SPred to a word sense disambiguation task and show that, when MultiWiBi is plugged in to replace an internal component, SPred’s generalization power increases as well as its precision and recall. Finally, we also published MultiWiBi as linked data, a paradigm which fosters interoperability and interconnection among resources and tools through the publication of data on the Web, and developed a public interface which lets the users navigate through MultiWiBi’s taxonomic structure in a graphical, captivating manner

    Fact extraction from Wikipedia article texts

    Get PDF
    Wikipedia je skvělý zdroj informací, v současné době z ní ale nejsou textové informace extrahovány do strojově čitelného formátu. V této práci využíváme DBpedia NIF dataset, představující strukturu stránek Wikipedie, pro cílenou extrakci faktů. Dataset je analyzován, obohacen o odkazy pomocí několika metod a poté připraven na extrakci faktů. V této práci je zkoumáno, implementováno a testováno několik metod extrakce faktů na vybraných vztazích. Experimenty popisují přesnost a použitelnost vybraných a implementovaných metod. Extrahované vztahy jsou vyhodnoceny a odeslány k přidání do DBpedie.Wikipedia is great source of information, currently its text information has not been extracted into fully machine-readable format. In this thesis, we use DBpedia NIF dataset, representing Wikipedia page structure, for targeted fact extraction. The dataset is parsed, enriched by links using several methods and then prepared for fact extraction. In this thesis multiple methods of fact extraction are researched, implemented and tested on selected relations. Experiments describe accuracy and viability of selected and implemented methods. Extracted relations are evaluated and submitted for addition to the DBpedia database

    Advanced Semantics for Commonsense Knowledge Extraction

    Get PDF
    Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subject-predicate-object (SPO) triples with simple concepts for S and monolithic strings for P and O. Also, these projects have either prioritized precision or recall, but hardly reconcile these complementary goals. This paper presents a methodology, called Ascent, to automatically build a large-scale knowledge base (KB) of CSK assertions, with advanced expressiveness and both better precision and recall than prior works. Ascent goes beyond triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets. The latter are important to express temporal and spatial validity of assertions and further qualifiers. Ascent combines open information extraction with judicious cleaning using language models. Intrinsic evaluation shows the superior size and quality of the Ascent KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent

    Semantic vector representations of senses, concepts and entities and their applications in natural language processing

    Get PDF
    Representation learning lies at the core of Artificial Intelligence (AI) and Natural Language Processing (NLP). Most recent research has focused on develop representations at the word level. In particular, the representation of words in a vector space has been viewed as one of the most important successes of lexical semantics and NLP in recent years. The generalization power and flexibility of these representations have enabled their integration into a wide variety of text-based applications, where they have proved extremely beneficial. However, these representations are hampered by an important limitation, as they are unable to model different meanings of the same word. In order to deal with this issue, in this thesis we analyze and develop flexible semantic representations of meanings, i.e. senses, concepts and entities. This finer distinction enables us to model semantic information at a deeper level, which in turn is essential for dealing with ambiguity. In addition, we view these (vector) representations as a connecting bridge between lexical resources and textual data, encoding knowledge from both sources. We argue that these sense-level representations, similarly to the importance of word embeddings, constitute a first step for seamlessly integrating explicit knowledge into NLP applications, while focusing on the deeper sense level. Its use does not only aim at solving the inherent lexical ambiguity of language, but also represents a first step to the integration of background knowledge into NLP applications. Multilinguality is another key feature of these representations, as we explore the construction language-independent and multilingual techniques that can be applied to arbitrary languages, and also across languages. We propose simple unsupervised and supervised frameworks which make use of these vector representations for word sense disambiguation, a key application in natural language understanding, and other downstream applications such as text categorization and sentiment analysis. Given the nature of the vectors, we also investigate their effectiveness for improving and enriching knowledge bases, by reducing the sense granularity of their sense inventories and extending them with domain labels, hypernyms and collocations

    Name Variants for Improving Entity Discovery and Linking

    Get PDF
    Identifying all names that refer to a particular set of named entities is a challenging task, as quite often we need to consider many features that include a lot of variation like abbreviations, aliases, hypocorism, multilingualism or partial matches. Each entity type can also have specific rules for name variances: people names can include titles, country and branch names are sometimes removed from organization names, while locations are often plagued by the issue of nested entities. The lack of a clear strategy for collecting, processing and computing name variants significantly lowers the recall of tasks such as Named Entity Linking and Knowledge Base Population since name variances are frequently used in all kind of textual content. This paper proposes several strategies to address these issues. Recall can be improved by combining knowledge repositories and by computing additional variances based on algorithmic approaches. Heuristics and machine learning methods then analyze the generated name variances and mark ambiguous names to increase precision. An extensive evaluation demonstrates the effects of integrating these methods into a new Named Entity Linking framework and confirms that systematically considering name variances yields significant performance improvements
    • …
    corecore